
ar
X

iv
:0

81
2.

08
52

v3
 [

cs
.C

C
]

 1
0

M
ar

 2
00

9

Hierarchy and equivalence of multi-letter quantum

finite automata∗

Daowen Qiua,c,†, Sheng Yub‡

aDepartment of Computer Science, Zhongshan University, Guangzhou 510275, China

bDepartment of Computer Science, The University of Western Ontario,

London, Ontario, N6A 5B7, Canada

cSQIG–Instituto de Telecomunicações, IST, TULisbon,

Av. Rovisco Pais 1049-001, Lisbon, Portugal

Abstract

Multi-letter quantum finite automata (QFAs) were a new one-way QFA model proposed

recently by Belovs, Rosmanis, and Smotrovs (LNCS, Vol. 4588, Springer, Berlin, 2007,

pp. 60-71), and they showed that multi-letter QFAs can accept with no error some regular

languages ((a+ b)∗b) that are unacceptable by the one-way QFAs. In this paper, we continue

to study multi-letter QFAs. We mainly focus on two issues: (1) we show that (k + 1)-letter

QFAs are computationally more powerful than k-letter QFAs, that is, (k + 1)-letter QFAs

can accept some regular languages that are unacceptable by any k-letter QFA. A comparison

with the one-way QFAs is made by some examples; (2) we prove that a k1-letter QFA A1 and

another k2-letter QFA A2 are equivalent if and only if they are (n1 +n2)
4 + k− 1-equivalent,

and the time complexity of determining the equivalence of two multi-letter QFAs using this

method is O(n12 + k2n4 + kn8), where n1 and n2 are the numbers of states of A1 and A2,

respectively, and k = max(k1, k2). Some other issues are addressed for further consideration.

Keywords: Quantum computing; Multi-letter finite automata; Quantum finite automata;

Equivalence; Hierarchy

∗This research is supported by the National Natural Science Foundation (Nos. 60573006, 60873055), the

Research Foundation for the Doctorial Program of Higher School of Ministry of Education (No. 20050558015),

Program for New Century Excellent Talents in University (NCET) of China, and the Natural Science and

Engineering Research Council of Canada Grand #OGP0041630.
†
E-mail address: issqdw@mail.sysu.edu.cn (D. Qiu).

‡
E-mail address: syu@csd.uwo.ca (S. Yu).

1

http://arxiv.org/abs/0812.0852v3

1. Introduction

Quantum computing is an intriguing and promising research field, which touches on com-

puter science, quantum physics, and mathematics [17, 18, 11, 10]. To a certain extent, quan-

tum computing was motivated by the exponential speed-up of Shor’s quantum algorithm for

factoring integers in polynomial time [33] and Grover’s algorithm of searching in database of

size n with only O(
√
n) accesses [16].

Quantum computers—the physical devices complying with the rules of quantum mechan-

ics were first considered by Benioff [8], and then suggested by Feynman [14]. By elaborating

and formalizing Benioff and Feynman’s idea, in 1985, Deutsch [12] re-examined the Church-

Turing Principle and defined quantum Turing machines (QTMs). Subsequently, Deutsch [13]

considered quantum network models. In 1993, Yao [36] demonstrated the equivalence between

QTMs and quantum circuits. Quantum computation from the viewpoint of complexity theory

was first studied systematically by Bernstein and Vazirani [7].

Another kind of simpler models of quantum computation is quantum finite automata

(QFAs), which can be thought of as theoretical models of quantum computers with finite

memory. This kind of computing machines was first studied by Moore and Crutchfield [27],

as well as by Kondacs and Watrous [24] independently. Then it was dealt with in depth by

Ambainis and Freivalds [1], Brodsky and Pippenger [5], and the other authors (for example,

see the references in [17, 31]). The study of QFAs is mainly divided into two ways: one is

one-way quantum finite automata (1QFAs) whose tape heads only move one cell to right at

each computation step (1QFAs have been extensively studied [4]), and the other is two-way

quantum finite automata (2QFAs), in which the tape heads are allowed to move towards right

or left, or to be stationary [24]. (Notably, Amano and Iwama [2] dealt with a decidability

problem concerning an intermediate form called 1.5QFAs, whose tape heads are allowed to

move right or to be stationary; Hirvensalo [19] investigated a decidability problem related to

one-way QFAs.) Furthermore, by considering the number of times of the measurement in a

computation, 1QFAs have two different forms: measure-once 1QFAs (MO-1QFAs) proposed

by Moore and Crutchfield [27], and, measure-many 1QFAs (MM-1QFAs) studied first by

Kondacs and Watrous [24].

MM-1QFAs are strictly more powerful than MO-1QFAs [1, 4] (Indeed, a∗b∗ can be ac-

cepted by MM-1QFAs with bounded error but not by any MO-1QFA with bounded error).

Due to the unitarity of quantum physics and finite memory of finite automata, both MO-

1QFAs and MM-1QFAs can only accept proper subclasses of regular languages with bounded

error (e.g., [24, 1, 5, 4]). Indeed, it was shown that the regular language (a+ b)∗b cannot be

accepted by any MM-1QFA with bounded error [24].

Recently, Belovs, Rosmanis, and Smotrovs [6] proposed a new one-way QFA model,

2

namely, multi-letter QFAs, that can be thought of as a quantum counterpart of more restricted

classical one-way multi-head finite automata (see, for example, [20]). Roughly speaking, a

k-letter QFA is not limited to seeing only one, the just-incoming input letter, but can see

several earlier received letters as well. That is, the quantum state transition which the au-

tomaton performs at each step depends on the last k letters received. For the other computing

principle, it is similar to the usual MO-1QFAs as described above. Indeed, when k = 1, it

reduces to an MO-1QFA. Any given k-letter QFA can be simulated by some k + 1-letter

QFA. However, we will prove that the contrary does not hold. Belovs et al. [6] have al-

ready showed that (a + b)∗b can be accepted by a 2-letter QFA but, as proved in [24], it

cannot be accepted by any MM-1QFA with bounded error. By L(QFAk) we denote the class

of languages accepted with bounded error by k-letter QFAs. In this paper, we will prove

that L(QFAk) ⊂ L(QFAk+1) for k = 1, 2, ..., where the inclusion ⊂ is proper. Therefore,

(k + 1)-letter QFAs are computationally more powerful than k-letter QFAs.

As we know, determining the equivalence for computing models is a very important issue

in the theory of classical computation (see, e.g., [28, 34, 32, 9, 22, 21]). Concerning the

problem of determining the equivalence for QFAs, there exists some work [5] that deals with

the simplest case—MO-1QFAs. For quantum sequential machines (QSMs), Qiu [29] gave

a negative outcome for determining the equivalence of QSMs, and then Li and Qiu [25]

further gave a method for determining whether or not any two given QSMs are equivalent.

This method applies to determining the equivalence between any two MO-1QFAs and also is

different from the previous ones. For the equivalence problem of MM-1QFAs, inspired by the

work of [35] and [4], Li and Qiu [26] presented a polynomial-time algorithm for determining

whether or not any two given MM-1QFAs are equivalent.

In this paper, we will give a polynomial-time algorithm for determining whether or not

any two given k1-letter QFA A1 and k2-letter QFA A2 for accepting unary languages are

equivalent. More specifically, we prove that two multi-letter QFAs A1 and A2, are equivalent

if and only if they are (n1+n2)
4+k−1-equivalent, where n1 and n2 are the numbers of states

of A1 and A2, respectively, k = max(k1, k2), and two multi-letter QFAs over the same input

alphabet Σ are n-equivalent if and only if the accepting probabilities of A1 and A2 are equal

for the input strings of length not more than n. This method, generalized appropriately, may

apply to dealing with more general cases.

The remainder of the paper is organized as follows. In Section 2, we recall the definition

of multi-letter QFAs and other related definitions, and some related results are reviewed.

In Section 3, we prove that L(QFAk) ⊂ L(QFAk+1) for k = 1, 2, ..., where the inclusion

⊂ is proper. More precisely, we show that, for k ≥ 2, regular language (a1 + a2 + . . . +

ak)
∗a1a2 · · · ak−1 cannot be accepted with bounded error by (k − 1)-letter QFAs but can be

exactly accepted by some k-letter QFAs. In addition, we present a number of examples to

show the relation between multi-letter QFAs and the usual one-way QFAs.

3

In Section 4, we concentrate on the equivalence issue. After proving some useful lemmas,

we prove that a k1-letter QFA A1 and another k2-letter QFA A2 for accepting unary languages

are equivalent if and only if they are (n1+n2)
4+k−1-equivalent, and the time complexity of

determining the equivalence of two multi-letter DFAs using this method is O(n12+k2n4+kn8),

where n = n1 + n2, n1 and n2 are the numbers of states of A1 and A2, respectively, and

k = max(k1, k2). Finally, in Section 5 we address some related issues for further consideration.

In general, symbols will be explained when they first appear.

2. Preliminaries

In this section, we briefly review some definitions and related properties that will be used

in the sequel. For the details, we refer to [6].

First we recall k-letter deterministic finite automata (k-letter DFAs).

Definition 1 ([6]). A k-letter deterministic finite automaton (k-letter DFA) is defined by a

quintuple (Q,Qacc, q0,Σ, γ), where Q is a finite set of states, Qacc ⊆ Q is the set of accepting

states, q0 ∈ Q is the initial state, Σ is a finite input alphabet, and γ is a transition function

that maps Q×T k to Q, where T = {Λ}⋃Σ and letter Λ /∈ Σ denotes the blank symbol (like

a blank symbol in Turing machines [34]), and T k ⊂ T ∗ consists of all strings of length k.

We describe the computing process of a k-letter DFA on an input string x in Σ∗, where

x = σ1σ2 · · · σn, and Σ∗ denotes the set of all strings over Σ. The k-letter DFA has a tape

which contains the letter Λ in its first k − 1 position followed by the input string x. The

automaton starts in the initial state q0 and has k reading heads which initially are on the first

k positions of the tape (clearly, the kth head reads σ1 and the other heads read Λ). Then

the automaton transfers to a new state as current state and all heads move right a position

in parallel. Now the (k−1)th and kth heads point to σ1 and σ2, respectively, and the others,

if any, to Λ. Subsequently, the automaton transfers to a new state and all heads move to the

right. This process does not stop until the kth head has read the last letter σn. The input

string x is accepted if and only if the automaton enters an accepting state after its kth head

reading the last letter σn.

Clearly, k-letter DFAs are not more powerful than DFAs. The family of languages ac-

cepted by k-letter DFAs, for k ≥ 1, is exactly the family of regular languages.

For the sake of readability, we briefly recall the definitions of MO-1QFAs and MM-1QFAs

in the following.

An MO-1QFA is defined as a quintuple A = (Q,Qacc, |ψ0〉,Σ, {U(σ)}σ∈Σ), where Q is a

set of finite states, Qacc ⊆ Q is the set of accepting states, |ψ0〉 is the initial state that is a

superposition of the states in Q, Σ is a finite input alphabet, and U(σ) is a unitary matrix

4

for each σ ∈ Σ.

As usual, we identify Q with an orthonormal base of a complex Euclidean space and every

state q ∈ Q is identified with a basis vector, denoted by Dirac symbol |q〉 (a column vector),

and 〈q| is the conjugate transpose of |q〉. We describe the computing process for any given

input string x = σ1σ2 · · · σm ∈ Σ∗. At the beginning the machine A is in the initial state |ψ0〉,
and upon reading σ1. The transformation U(σ1) acts on |ψ0〉. After that, U(σ1)|ψ0〉 becomes

the current state and the machine reads σ2. The process continues until the machine has

read σm ending in the state |ψx〉 = U(σm)U(σm−1) · · ·U(σ1)|ψ0〉. Finally, a measurement is

performed on |ψx〉 and the accepting probability pa(x) is equal to

pa(x) = 〈ψx|Pa|ψx〉 = ‖Pa|ψx〉‖2

where Pa =
∑

q∈Qacc
|q〉〈q| is the projection onto the subspace spanned by {|q〉 : qi ∈ Qacc}.

An MM-1QFA is defined as a 6-tuple A = (Q,Qacc, Qrej, |ψ0〉,Σ, {U(σ)}σ∈Σ∪{$}), where

Q,Qacc ⊆ Q, |ψ0〉,Σ, {U(σ)}σ∈Σ∪{$} are the same as those in an MO-1QFA defined above,

Qrej ⊆ Q represents the set of rejecting states, and $ 6∈ Σ is a tape symbol denoting the right

end-mark. For any input string x = σ1σ2 · · · σm ∈ Σ∗, the computing process is similar to

that of MO-1QFAs except that after every transition, A measures its state with respect to

the three subspaces that are spanned by the three subsets Qacc, Qrej, and Qnon, respectively,

where Qnon = Q \ (Qacc ∪ Qrej). In other words, the projection measurement consists of

{Pa, Pr, Pn} where Pa =
∑

q∈Qacc
|q〉〈q|, Pr =

∑

q∈Qrej
|q〉〈q|, Pn =

∑

q∈Q\(Qacc∪Qrej)
|q〉〈q|.

The machine stops after the right end-mark $ has been read. Of course, the machine may

also stop before reading $ if the current state of the machine reading some σi (1 ≤ i ≤ m)

does not contain the states of Qnon. Since the measurement is performed after each transition

with the states of Qnon being preserved, the accepting probability pa(x) and the rejecting

probability pr(x) are given as follows (for convenience, we denote $ = σm+1):

pa(x) =

m+1
∑

k=1

‖PaU(σk)

k−1
∏

i=1

(PnU(σi))|ψ0〉‖2,

pr(x) =

m+1
∑

k=1

‖PrU(σk)

k−1
∏

i=1

(PnU(σi))|ψ0〉‖2.

We further recall the definitions of a group finite automaton (GFA) [5] and a one-way

reversible finite automaton (1RFA) [1]. A GFA is a DFA whose state transition function,

say δ, satisfies that for any input symbol σ, δ(·, σ) is a one-to-one map on the state set, i.e.,

a permutation. A 1RFA is defined as an MO-1QFA but restricting the values of its state

transition function onto {0, 1}. More specifically, a 1RFA is a DFA whose set of states, input

alphabet, and state transition function are Q,Σ, δ, respectively, where δ satisfies that, for

any q ∈ Q and any σ ∈ Σ, there is at most one p ∈ Q such that δ(p, σ) = q.

5

Qiu [30] proved that GFAs and 1RFAs are equivalent, i.e., any GFA can be simulated by

a 1RFA and vice-versa.

Definition 2 ([6]). A k-letter DFA (Q,Qacc, q0,Σ, γ) is called a k-letter group finite automa-

ton (k-letter GFA) if and only if for any string x ∈ T k the function γx(q) = γ(q, x) is a

bijection from Q to Q.

Remark 1. When k = 1, a 1-letter DFA is exactly a DFA [32, 34, 37], and a 1-letter

GFA is also the usual GFA [5]. By L(GFAk) and L(DFAk) we denote the classes of all

languages accepted by k-letter GFAs and by k-letter DFAs, respectively. In addition, we

denote L(GFA∗) =
⋃∞

k=1L(GFAk) and L(DFA∗) =
⋃∞

k=1L(DFAk). In [6] it was shown

that

L(GFA) ⊂ L(GFA∗) ⊂ L(DFA) = L(DFA∗), (1)

where ⊂ is a proper inclusion.

Now we further recall the definition of multi-letter QFAs [6].

Definition 3 ([6]). A k-letter QFA A is defined as a quintuple A = (Q,Qacc, |ψ0〉,Σ, µ)
where Q is a set of states, Qacc ⊆ Q is the set of accepting states, |ψ0〉 is the initial unit state
that is a superposition of the states in Q, Σ is a finite input alphabet, and µ is a function

that assigns a unitary transition matrix Uw on C
|Q| for each string w ∈ ({Λ} ∪ Σ)k, where

|Q| is the cardinality of Q.

The computation of a k-letter QFA A works in the same way as the computation of an

MO-1QFA, except that it applies unitary transformations corresponding not only to the last

letter but the last k letters received (like a k-letter DFA). When k = 1, it is exactly an

MO-1QFA as pointed out before. According to [6], all languages accepted by k-letter QFAs

with bounded error are regular languages for any k.

Now we give the probability PA(x) for k-letter QFA A = (Q,Qacc, |ψ0〉,Σ, µ) accepting

any input string x = σ1σ2 · · · σm. From the definition we know that, for any w ∈ ({Λ} ∪Σ)k,

µ(w) is a unitary matrix. In terms of the definition of µ, we can define the unitary transition

for each string x = σ1σ2 · · · σm ∈ Σ∗. By µ we mean a map from Σ∗ to the set of all |Q|-order
unitary matrices. Indeed, µ is induced by µ in the following way. For x = σ1σ2 · · · σm ∈ Σ∗,

µ(x) =

{

µ(Λk−1σ1)µ(Λ
k−2σ1σ2) · · · µ(Λk−mx), if m < k,

µ(Λk−1σ1)µ(Λ
k−2σ1σ2) · · · µ(σm−k+1σm−k+2 · · · σm), if m ≥ k,

(2)

which implies the computing process of A for input string x.

As before, we identify the states in Q with an orthonormal basis of the complex Euclidean

space C|Q|, and let Pacc denote the projector on the subspace spanned by Qacc. Then we define

that

PA(x) = ‖〈ψ0|µ(x)Pacc‖2. (3)

6

Definition 4 ([6]). For k ≥ 1, a DFA contains a Ck-construction if and only if there

are states q1, q2, q3, q4, q5 and a string w = σ1σ2 · · · σk of length k such that q2 6= q5, and

transformation function γ satisfies γ(q2, σk) = γ(q5, σk) = q3, γ
∗(q1, σ1 · · · σk−1) = q2 and

γ∗(q4, σ1 · · · σk−1) = q5.

In the above Ck-construction, if there exists an m > 0 such that γ∗(q3, w
m−1) = q4, then

we call it a Dk-construction.

Proposition 1 ([6]). If there exists a Ck-construction in a DFA, then there also exists a

Dk-construction in this DFA.

Theorem 2 ([6]). The following statements are equivalent:

• A language L is in L(QFAk), i.e., L is accepted by a k-letter QFA with bounded error.

• The minimal DFA of L contains no Ck-construction.

• L is accepted by a k-letter GFA.

From Theorem 2 we know that a language is accepted by a k-letter GFA if and only if it

is accepted by a k-letter QFA with bounded error. For k = 1, it was proved by Brodsky and

Pippenger [5].

3. Hierarchy of multi-letter QFAs and some relations

In this section, we deal with two issues. In Subsection 3.1, we consider the hierarchy

of multi-letter QFAs and prove that j-letter QFA are strictly more powerful than i-letter

QFAs for 1 ≤ i < j. In Subsection 3.2, we attempt to clarify the relations between the

families of languages accepted by multi-letter QFAs and MO-1QFAs and also between those

by multi-letter QFAs and MM-QFAs.

3.1. Hierarchy of multi-letter QFAs

Are k-letter QFAs more powerful than (k − 1)-letter QFAs for k = 1, 2, . . .? The answer

is positive for k = 2 as proved in [6]. In this subsection, we demonstrate that k-letter QFAs

are more powerful than (k − 1)-letter QFAs for any k ≥ 3.

Theorem 3. For any k ≥ 3, there exists a language that can be accepted by a k-letter GFA

but cannot be accepted by any (k − 1)-letter GFA.

Proof. We consider the regular language (a1 + a2 + . . . + ak)
∗a1a2 · · · ak−1 denoted by Lk

over alphabet Σ = {a1, a2, . . . , ak}, and we will prove that Lk satisfies the theorem. First we

construct a minimal DFA for Lk as Ak = (Q,Σ, q0, δ, F) where:

7

• Q = {q0, q1, . . . , qk−1};

• Σ = {a1, a2, . . . , ak};

• F = {qk−1};

• δ is defined as follows:

– δ(q0, a1) = q1; δ(q0, ai) = q0 for i = 2, 3, . . . , k;

– δ(q1, a1) = q1; δ(q1, a2) = q2; δ(q1, ai) = q0 for i = 3, 4, . . . , k;

– δ(ql, al+1) = ql+1 and δ(ql, at) = q0 for l = 2, 3, . . . , k−1 and t ∈ {2, . . . , l, l+2, l+

3, . . . , k}, where we denote qk = q0.

– δ(qi, a1) = q1 for i = 2, 3, . . . , k − 1.

Figure 1 depicts the DFA Ak above described. We prove that Ak is a minimal DFA. It

suffices to prove that, for all states q0, q1, · · · , qk−1, any two different states are distinguishable

[23]. In other words, for any 0 ≤ i, j ≤ k−1 with i 6= j, there exists w ∈ Σ∗ such that exactly

one of δ∗(qi, w) and δ
∗(qj, w) is the accepting state qk−1. Indeed, we can divide it into three

cases.

1. qi and qk−1 for 0 ≤ i ≤ k − 2. Take w = ǫ, empty string. Then δ∗(qi, ǫ) = qi and

δ∗(qk−1, ǫ) = qk−1.

2. q0 and ql for 1 ≤ l ≤ k − 2. Take w = al+1al+2 · · · ak−1. Then δ∗(q0, w) = q0 and

δ∗(ql, w) = qk−1.

3. qi and qj for 1 ≤ i < j ≤ k− 2. Take w = aj+1aj+2 · · · ak−1. Then δ
∗(qj , w) = qk−1 and

δ∗(qi, w) = q0.

Therefore, we have proved that any two different states of q0, q1, · · · , qk−1 are distinguish-

able. Consequently, Ak is minimal.

In fact, we can see that the number k of states is minimal from the number of equivalence

classes over Σ∗ [23]. This equivalence relation ≡ is defined as: for any w1, w2 ∈ Σ∗, w1 ≡ w2

iff for any z ∈ Σ∗, either both w1z and w2z in Lk, or neither w1z nor w2z in Lk. Then we

can divide Σ∗ into the following k equivalence classes: [ǫ], [a1], [a1a2], · · · , [a1a2 · · · ak−1]. As

a result, k is the number of states of the minimal DFA accepting Lk.

In the state transition figure of Ak, we find a Ck−1-construction. In fact, set w =

a2a3 . . . ak. Since δ(q0, ai) = q0 for i = 2, 3, . . . , k, we get δ∗(q0, a2a3 · · · ak−1) = q0 and

δ(q0, ak) = q0. Moreover, δ(qi, ai+1) = qi+1 for i = 1, 2, . . . , k, where we denote qk = q0.

This Ck−1-construction is better described by Figure 2. By Theorem 2, we conclude that Ak

cannot be accepted by any (k − 1)-letter QFA with bounded error.

8

✒✑
✓✏
q0

a1 ✲
✒✑
✓✏
❄

a2, a3, · · · , ak

✒✑
✓✏
q1

a2 ✲✒✑
✓✏
q2

a3 ✲
✒✑
✓✏

❄

a1

✲✒✑
✓✏
ql ✲ ak−1✲ ✖✕

✗✔
qk−1✚✙
✛✘

■ a3, a4, · · · , ak■

a2, a4, a5, · · · , ak
■

a2, · · · , al−1, al, al+2, · · · , ak

■

a2, · · · , ak

✠

a1
✠

a1

✠

a1

■

a2, · · · , al−1, al, al+2, · · · , ak

Figure 1. A state transition diagram of DFA Ak.

However, we will verify that, in the minima DFA Ak, there is no Ck-construction. There-

fore, according to Theorem 2, Lk can be accepted by a k-letter QFA with bounded error.

✒✑
✓✏
q0

a2 ✲✒✑
✓✏
q0 ✲ . . .

. . .

✲✖✕
✗✔
q0

ak−1

✒✑
✓✏
q1

a2 ✲✒✑
✓✏
q2 ✲ ✲✖✕

✗✔
qk−1

ak−1

✑
✑✸

◗
◗s

ak

ak

✖✕
✗✔
q0

a3

a3

Figure 2. A Ck−1-construction in DFA Ak.

Now we check that there is no Ck-construction in Ak. We prove it by contradiction.

Indeed, suppose that there is a Ck-construction depicted by Figure 3.

✒✑
✓✏
qj1

σ1 ✲✒✑
✓✏
qj2 ✲ . . .

. . .

✲✖✕
✗✔
qjk

σk−1

✒✑
✓✏
qi1

σ1 ✲✒✑
✓✏
qi2

σ2

σ2

✲ ✲✖✕
✗✔
qik

σk−1

✑
✑✸

◗
◗s

σk

σk

✖✕
✗✔
q

Figure 3. A supposed Ck-construction.

9

We divide the proof into the following three cases.

1. q = q0.

• σk = a1: It is impossible since q0 cannot be accessed by inputting a1.

• σk = a2: In this case, qik , qjk ∈ {q0, q2, q3, . . . , qk−1}.
If one of qik , qjk , say qik is q0, and the other one qjk belongs to {q2, q3, . . . , qk−1},
then σk−1 = ajk where jk ≥ 2. Thus, qjk−1

= qjk−1 and qik−1
= q0. In succession,

we find that qit = q0, qjt = q1 for some 2 ≤ t ≤ k. However, there is no σ ∈ Σ

leading to q0 and q1 simultaneously. Therefore, it is impossible.

If qik , qjk ∈ {q2, q3, . . . , qk−1}, then the above case shows that this is impossible

either.

Consequently, this case does not exist.

• σk = as for 3 ≤ s ≤ k:

These cases can be similarly verified as above, and we leave the details out here.

2. q = q1

• σk = a1: In this case, qik , qjk ∈ {q0, q1, q2, q3, . . . , qk−1}. Similar to the above proof.

• σk = as for 2 ≤ s ≤ k: It is clearly impossible.

3. q = qs for 2 ≤ s ≤ k:

For any 2 ≤ s ≤ k, there is no σ ∈ Σ and two different states p1 6= p2 such that

δ(p1, σ) = δ(p2, σ) = qs. Consequently, there does not exist such a Ck-construction.

Hence, there does not exist a Ck-construction in Ak, and therefore, by Theorem 2, Lk can

be accepted by a k-letter GFA.

From Theorem 2 and Theorem 3 we have the following corollary.

Corollary 4. For k ≥ 2, L(QFAk−1) ⊂ L(QFAk), where the inclusion is proper.

3.2. Comparison of multi-letter QFAs with others

In this subsection, we try to compare the relations between the families of languages

accepted by multi-letter QFAs and MO-1QFAs and also between those by multi-letter QFAs

and MM-QFAs. First we recall the definition of forbidden construction in a DFA [1].

10

In a DFA, a forbidden construction means that there exist string x and states p1 and p2,

p1 6= p2, such that δ∗(p1, x) = p2 and δ∗(p2, x) = p2, where p2 is neither “all-accepting” state,

nor “all-rejecting”. A state p is neither “all-accepting” state, nor “all-rejecting” whenever

there exist w1, w2 ∈ Σ∗ such that exactly one of δ∗(p,w1) and δ
∗(p,w2) is an accepting state.

Remark 2. Ambainis and Freivalds [1] presented a forbidden construction and showed that, if

the minimal DFA for accepting a regular language does not contain a forbidden construction,

then this language can be accepted by a one-way reversible finite automaton. In [30], Qiu

proved that one-way reversible finite automata are also GFAs and vice versa. Also, Ambainis

and Freivalds [1] proved that a regular language is accepted by an MM-1QFA with bounded

error and with probability over 7
9 if and only if this language is accepted by a 1RFA and thus

by a GFA as well.

Next we verify that a forbidden construction implies a C1-construction.

Proposition 5. In a DFA, if there exists a forbidden construction, then there also exists a

C1-construction.

Proof. Let A = (Q,Qacc, q0,Σ, δ) be a DFA. Suppose that there is a forbidden construction,

that is, there are states p1, p2 and x ∈ Σ∗ satisfying δ(p1, x) = p2 and δ(p2, x) = p2. Suppose

that x = σ1σ2 . . . σk. Then there are states q1, q2, . . . , qk and r1, r2, . . . , rk with qk = p2 = rk

such that δ(p1, σ1) = q1, δ(qk, σ1) = r1, δ(qi, σi+1) = qi+1, where i = 1, 2, . . . , k − 1. This

relation can be described by Figure 4.

✒✑
✓✏
p1

σ1✲✒✑
✓✏
q1

σ2✲✒✑
✓✏
q2 ✲ . . . σk✲✒✑

✓✏
qk

σ1✲✒✑
✓✏
r1 ✲ . . . σk✲✒✑

✓✏
rk

Figure 4. A relation diagram where qk = p2 = rk.

Since p1 6= p2 = qk but qk = rk, there exists qi = ri but qi−1 6= ri−1. Therefore, we have

δ(qi−1, σi) = qi = ri and δ(ri−1, σi) = ri = ri, which is a C1-construction.

By Remark 2 and Theorem 2 we obtain the following corollary.

Proposition 6. The minimal DFA accepting a regular language L does not contain C1-

construction if and only if L can be accepted by an MM-1QFA with bounded error and with

probability over 7
9 .

11

Proof. If the minimal DFA accepting a regular language L does not contain C1-construction,

then, by Theorem 2 we obtain that L can be accepted by a GFA. Therefore, by Remark 2, L

can be accepted by an MM-1QFA with bounded error and with probability over 7
9 .

On the other hand, if L is accepted by an MM-1QFA with bounded error and with

probability over 7
9 , then, with Remark 2 we know that L can be accepted by a GFA. By

Theorem 2, the minimal DFA accepting L does not contain C1-construction.

Next, we present a few examples to show that L(QFA∗) is still a proper subset of all

regular languages. Let us first show an example of regular language that can be accepted by

an MM-1QFA but not by any multi-letter QFA.

Example 1. The language a∗b∗ can be accepted by an MM-1QFA [1] but it cannot be

accepted by any k-letter QFA. Indeed, we can describe the minimal DFA M for accepting

a∗b∗ by Figure 5. In addition, from this figure we can find that there exists a Ck-construction

for any k ≥ 2, which is visualized by Figure 6.

✖✕
✗✔
q0✒✑

✓✏
q0

✒✑
✓✏
q2

◗
◗s
b

✑
✑✰
a ✖✕

✗✔
q1✒✑

✓✏
q1

✒✑
✓✏

✒
a

✒✑
✓✏
■

b

✒✑
✓✏

✻
a

✒✑
✓✏
✻

b

Figure 5. A state transition diagram of DFA M accepting a∗b∗.

a✒✑
✓✏
q1 ✲ ✒✑

✓✏
q2

✒✑
✓✏
q0

✲✒✑
✓✏
q2bk−1

ak−1

✒✑
✓✏
q0 ✲ ✲✒✑

✓✏
q1b

✑
✑✸

◗
◗s

a

a

✒✑
✓✏
q2

Figure 6. A Ck-construction in Figure 6.

Next we provide another example which demonstrates that there exist regular languages

acceptable neither by MM-1QFAs nor by multi-letter QFAs with bounded error. However,

we need a result from [6].

12

Definition 5 ([6]). ADFA with state transition function δ is said to contain an F-construction

if and only if there are non-empty words t, z ∈ Σ+ and two distinct states q1, q2 ∈ Q such

that δ∗(q1, z) = δ∗(q2, z) = q2, δ
∗(q1, t) = q1, δ

∗(q2, t) = q2.

Proposition 7 ([6]). A language L can be accepted by a multi-letter QFA with bounded error

if and only if the minimal DFA of L does not contain any F-construction.

Example 2. We use an example from [3]. Let L be the language consisting of all words that

start with any number of letters a and after first letter b (if there is one) there is an odd

number of letters a. The minimal DFA G accepting L is depicted by Figure 7. As proved

by Ambainis et al [3], L cannot be accepted by MM-1QFAs with bounded error. Indeed, L

cannot be accepted by any multi-letter QFA, either. Because there exists an F-construction

(Figure 8) in the minimal DFA G (Figure 7), we get the result.

✚✙
✛✘
q1

✚✙
✛✘

✚✙
✛✘

②

③
q3 q2 ✾③

✌

b

b
a

a

b

✛

③

a

Figure 7. Automaton G.

✖✕
✗✔
q1

✒✑
✓✏
✸aa ✲b

✖✕
✗✔
q2 ✒✑

✓✏
■

✒✑
✓✏✛

b

aa

Figure 8. An F-construction in the minimal DFA G.

13

In conclusion, we can describe the relations between the families of languages accepted

by MO-1QFAs, MM-1QFAs, and multi-letter QFAs, denoted by L(MO), L(MM), and

L(QFA∗), respectively. We recall that the language (a + b)∗b is accepted with no error

by a 2-letter QFA but cannot be accepted by any MM-1QFA with bounded error, while a∗b∗

is accepted by an MM-1QFA but cannot be accepted by any multi-letter QFA. Therefore,

both L(MM)\L(QFA∗) 6= ∅ and L(QFA∗)\L(MM) 6= ∅ hold. Furthermore, we have that

L(MO) ⊆ L(MM) ∩ L(QFA∗), where ⊆ may be proper. However, by Example 2, we have

known that L(MM) ∪ L(QFA∗) still is a proper subset of all regular languages.

4. Determining the equivalence between multi-letter quantum

finite automata

Determining whether or not two one-way (probabilistic, quantum) finite automata and

sequential machines are equivalent is of importance and has been well studied [28, 35, 27, 25,

26]. Concerning multi-letter QFAs, this issue is much more complicated and a new technique

is needed. Here, we consider only the case of unary languages, i.e., the input alphabet having

one element.

Our goal is to deal with the decidability of equivalence of unary multi-letter QFAs. More

specifically, for any given k1-letter QFA A1 and k2-letter QFA A2 over the same input alpha-

bet Σ = {σ}, our purpose is to determine whether or not they are equivalent.

For a k-letter QFA A = (Q,Qacc, |ψ0〉,Σ, µ), we recall the probability PA(x) for A ac-

cepting input string x = σ1σ2 · · · σm and the definition of µ(x) as follows:

µ(x) =

{

µ(Λk−1σ1)µ(Λ
k−2σ1σ2) · · · µ(Λk−mx), if m < k,

µ(Λk−1σ1)µ(Λ
k−2σ1σ2) · · · µ(σm−k+1σm−k+2 · · · σm), if m ≥ k,

(4)

and then

PA(x) = ‖〈ψ0|µ(x)Pacc‖2. (5)

We give the definition of equivalence between two multi-letter QFAs.

Definition 6. A k1-letter QFA A1 and another k2-letter QFA A2 over the same input al-

phabet Σ are said to be equivalent (resp. t-equivalent) if PA1
(w) = PA2

(w) for any w ∈ Σ∗

(resp. for any input string w with |w| ≤ t).

Before we present a method for determining the equivalence between multi-letter QFAs

over the same unary alphabet, we prove a useful lemma that is helpful to the main re-

sult. We recall the definition of tensor product of matrices [17]. For m × n matrix A =

14

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...

am1 am2 · · · amn

and p × q matrix B, their tensor product A ⊗ B is an mp × nq

matrix defined as

A⊗B =

a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... · · · ...

am1B am2B · · · amnB

.

A basic property of tensor product is that, for any m×n matrix A, p× q matrix B, n× o
matrix C, and q × r matrix D,

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Now we present the crucial lemma.

Lemma 8. Let {U1, U2, . . . , Uk} be a finite set of n×n unitary matrices, and let Mn2 denote

the linear space consisting of all n2 × n2 complex square matrices. Denote

H(i) = span{(U1U2 · · ·Uk)⊗ (U∗
1U

∗
2 · · ·U∗

k), . . . , (U1U2 · · ·U i
k)⊗ (U∗

1U
∗
2 · · · (U i

k)
∗)}

for i = 1, 2, · · · , where, for any subset A of Mn2, spanA denotes the minimal subspace spanned

by A, and ∗ denotes the conjugate operation. Then, there exists an i0 ≤ n4 such that

H(i0) = H(i0+t) (6)

for any t ≥ 0.

Proof. Let dim(S) denote the dimension of subspace S. Due to

H(i) ⊆ H(i+1) ⊆ Mn2 ,

for any i ≥ 1, we have 1 ≤ dim(H(1)) ≤ dim(H(2)) ≤ · · · ≤ dim(H(n4+1)) ≤ n4. Therefore,

we obtain that there exists an i0 ≤ n4 such that H(i0) = H(i0+1). Next we prove by induction

that Eq. (6) holds for t ≥ 0. First, we have known that it holds for t = 0, 1. Suppose that it

holds for t = i ≥ 1, i.e., H(i0) = H(i0+i). This implies that H(i0) = H(i0+1) = · · · = H(i0+i).

Our purpose is to show that it holds for t = i+ 1, i.e., H(i0) = H(i0+i+1). Indeed, we have

(U1U2 · · ·U i0+i+1
k)⊗ (U∗

1U
∗
2 · · · (U i0+i+1

k)∗)

=
[

(U1U2 · · ·U i0+i
k)⊗ (U∗

1U
∗
2 · · · (U i0+i

k)∗)
]

(Uk ⊗ U∗
k)

=

i0
∑

j=1

cj [(U1U2 · · ·U j
k)⊗ (U∗

1U
∗
2 · · · (U j

k)
∗)](Uk ⊗ U∗

k) (7)

=

i0
∑

j=1

cj(U1U2 · · ·U j+1
k)⊗ (U∗

1U
∗
2 · · · (U j+1

k)∗) (8)

15

where (7) is due to the assumption H(i0) = H(i0+i). Therefore,

(U1U2 · · ·U i0+i+1
k)⊗ (U∗

1U
∗
2 · · · (U i0+i+1

k)∗) ∈ H(i0+1) = H(i0+i).

Consequently, H(i0+i+1) = H(i0+i). Again, by the assumption of induction H(i0) = H(i0+i),

we obtain that H(i0+i+1) = H(i0). Therefore, (6) holds for any t ≥ 0.

Now we are ready to present the main theorem regarding the equivalence of multi-letter

QFAs.

Theorem 9. For Σ = {σ}, a k1-letter QFA A1 = (Q1, Qacc,1, |ψ(1)
0 〉,Σ, µ1) and another k2-

letter QFA A2 = (Q2, Qacc,2, |ψ(2)
0 〉,Σ, µ2) are equivalent if and only if they are (n1 + n2)

4 +

k − 1-equivalent, where ni is the number of states of Qi, i = 1, 2, k = max(k1, k2), with

k1, k2 ≥ 1.

Proof. Let Pacc,1 and Pacc,2 denote the projections on the subspaces spanned by Qacc,1

and Qacc,2, respectively. For any string x ∈ Σ∗, we set µ(x) = µ1(x) ⊕ µ2(x) and Pacc =

Pacc,1 ⊕ Pacc,2, Qacc = Qacc,1 ⊕Qacc,2, where ⊕ denotes the direct sum operation of any two

matrices. More precisely, for any m1 × n1 matrix A and m2 × n2 matrix B, A⊕B is defined

as A⊕B =

[

A 0

0 B

]

, an (m1 +m2)× (n1 + n2) matrix.

In addition, we denote |η1〉 = |ψ(1)
0 〉⊕02 and |η2〉 = 02⊕|ψ(2)

0 〉, where 01 and 02 represent

column zero vectors of n1 and n2 dimensions, respectively. Then, for any string x ∈ Σ∗,

Pη1(x) = ‖〈η1|µ(x)Pacc‖2 (9)

and

Pη2(x) = ‖〈η2|µ(x)Pacc‖2. (10)

Indeed, we further have that

Pη1(x) = ‖〈η1|µ(x)Pacc‖2

= 〈η1|µ(x)PaccP
†
accµ(x)

†|η1〉
= 〈η1|µ(x)Paccµ(x)

†|η1〉
= 〈ψ(1)

0 |µ1(x)Pacc,1µ1(x)
†|ψ(1)

0 〉
= PA1

(x) (11)

16

and

Pη2(x) = ‖〈η2|µ(x)Pacc‖2

= 〈η2|µ(x)PaccP
†
accµ(x)

†|η2〉
= 〈η2|µ(x)Paccµ(x)

†|η2〉
= 〈ψ(2)

0 |µ2(x)Pacc,2µ2(x)
†|ψ(2)

0 〉
= PA2

(x). (12)

Therefore, PA1
(x) = PA2

(x) holds if and only if

Pη1(x) = Pη2(x) (13)

for any string x ∈ Σ∗.

On the other hand, we have that

Pη1(x) = ‖〈η1|µ(x)Pacc‖2

=
∑

pj∈Qacc

|〈η1|µ(x)|pj〉|2

=
∑

pj∈Qacc

〈η1|µ(x)|pj〉(〈η1|µ(x)|pj〉)∗

=
∑

pj∈Qacc

〈η1|(〈η1|)∗µ(x)⊗ (µ(x))∗|pj〉(|pj〉)∗

= 〈η1|(〈η1|)∗µ(x)⊗ (µ(x))∗
∑

pj∈Qacc

|pj〉(|pj〉)∗ (14)

and

Pη2(x) = ‖〈η2|µ(x)Pacc‖2

=
∑

pj∈Qacc

|〈η2|µ(x)|pj〉|2

=
∑

pj∈Qacc

〈η2|µ(x)|pj〉(〈η2|µ(x)|pj〉)∗

=
∑

pj∈Qacc

〈η2|(〈η2|)∗µ(x)⊗ (µ(x))∗|pj〉(|pj〉)∗

= 〈η2|(〈η2|)∗µ(x)⊗ (µ(x))∗
∑

pj∈Qacc

|pj〉(|pj〉)∗. (15)

Therefore, Eq. (13) holds if and only if

〈η1|(〈η1|)∗µ(x)⊗ (µ(x))∗
∑

pj∈Qacc

|pj〉(|pj〉)∗

= 〈η2|(〈η2|)∗µ(x)⊗ (µ(x))∗
∑

pj∈Qacc

|pj〉(|pj〉)∗ (16)

17

for any string x ∈ Σ∗.

Denote

D(x) = µ(x)⊗ µ(x)∗ (17)

where D(x) is an (n1 + n2)
2 × (n1 + n2)

2 complex square matrix. Then the equivalence

between A1 and A2 depends on whether or not the following equation holds for all string

x ∈ Σ∗:

〈η1|(〈η1|)∗D(x)
∑

pj∈Qacc

|pj〉(|pj〉)∗

= 〈η2|(〈η2|)∗D(x)
∑

pj∈Qacc

|pj〉(|pj〉)∗ (18)

Consider the linear space Mn2 consisting of all (n1+n2)
2×(n1+n2)

2 complex square matrices.

It is clear that the dimension of Mn2 equals (n1 + n2)
4 = n4.

By D(i) we denote the subspace of Mn2 spanned by {D(x) : x ∈ Σ∗, |x| ≤ i}, where |x|
denotes the length of x. Clearly, we have

D(0) ⊆ D(1) ⊆ · · · ⊆ D(i) ⊆ D(i+1) ⊆ · · · . (19)

Since the dimension of D(i) is not more than (n1 + n2)
4 for any i ≥ 1, there exists i0 such

that for any N ≥ i0, D(i0) = D(N). In the rest of the proof, our purpose is to fix i0.

For the sake of convenience, we denote Ai = µ1(Λ
k1−iσi) for i = 1, 2, . . . , k1, and Bj =

µ2(Λ
k2−jσj) for j = 1, 2, . . . , k2. Set k = max(k1, k2). If k1 ≤ k2, then we denote Ai = Ak1

for i = k1 +1, k1 +2, . . . , k; if k2 ≤ k1, then we denote Bj = Bk2 for j = k2 +1, k2 +2, . . . , k.

In addition, we denote Ci = Ai ⊕Bi for i = 1, 2, . . . , k. Then Ci is an n = n1 + n2 order

unitary matrix for i = 1, 2, . . . , k. According to the definition of µ(x) = µ1(x) ⊕ µ2(x), we

know that C1C2 · · ·Ci = µ(x) for x ∈ Σ∗ and |x| = i ≤ k. On the other hand, if i ≥ k, then

C1C2 · · ·Ci−k+1
k = µ(x).

Thus, D(x) = (C1C2 · · ·Ci)⊗ (C∗
1C

∗
2 · · ·C∗

i) for x ∈ Σ∗ and |x| = i ≤ k; and if i ≥ k, then

D(x) = (C1C2 · · ·Ci−k+1
k)⊗ (C∗

1C
∗
2 · · · (Ci−k+1

k)∗).

We set E(i) = span{D(x) : x ∈ Σ∗, k ≤ |x| ≤ k + i}, i = 0, 1, 2, Then, by means of

Lemma 8 it follows that, there exists i0 ≤ n4 − 1, such that

E(i0) = E(i0+s) (20)

for any s ≥ 0.

Eq. (20) implies that, for any x ∈ Σ∗ with |x| ≥ k + i0, D(x) can be linearly represented

by some matrices in {D(y) : k ≤ |y| ≤ k+i0}. Therefore, if Eq. (18) holds for |x| ≤ n4+k−1,

then so does it for any x ∈ Σ∗. We have proved this theorem.

18

Remark 3. We analyze the complexity of computation in Theorem 11. As in [35], we assume

that all the inputs consist of complex numbers whose real and imaginary parts are rational

numbers and that each arithmetic operation on rational numbers can be done in constant

time. Still we denote n = n1+n2. Note that in time O(in4) we check whether or not Eq. (18)

holds for x ∈ Σ∗ with |x| = i. Because the length of x to be checked in Eq. (18) is at most

n4 + k, the time complexity for checking whether the two multi-letter QFAs are equivalent is

O(n3(1 + 2 + . . .+ (n4 + k)), that is at most O(n12 + k2n4 + kn8).

5. Concluding remarks

In this paper, we have considered several issues concerning multi-letter QFAs. Our tech-

nical contributions mainly contain the following two aspects: (1) we have shown that (k+1)-

letter QFAs are strictly more powerful than k-letter QFAs, that is, (k + 1)-letter QFAs can

accept some regular languages unacceptable by any k-letter QFA, and some examples of reg-

ular languages unacceptable by multi-letter QFAs have been provided. We have known that

multi-letter QFAs are strictly more powerful than MO-1QFAs [27], but they are not com-

parable to MM-1QFAs [24, 1] since the language a∗b∗ can be accepted with bounded error

by MM-1QFAs but cannot be accepted by multi-letter QFAs, and the language (a + b)∗b

shows the opposite direction. Moreover, a∗b(a2)∗a cannot be accepted by MM-1QFAs and

by multi-letter QFAs with bounded error. (2) We have proved that a k1-letter QFA A1 and

another k2-letter QFA A2 for accepting unary languages are equivalent if and only if they

are (n1 + n2)
4 + k − 1-equivalent, and the time complexity of this computing method is

O(n12 + k2n4 + kn8), where n = n1 + n2, n1 and n2 are the numbers of states of A1 and A2,

respectively, and k = max(k1, k2).

The method presented in the paper may be generalized to deal with more general cases.

Another issue worthy of consideration is concerning the state complexity of multi-letter QFAs

compared with the usual 1QFAs for accepting some languages (for example, unary regular

languages [37, 32]). Also, the power of measure-many multi-letter QFAs, as the relation

between MM-1QFAs and MO-1QFAs, is worth being clarified. Whether or not measure-

many multi-letter QFAs can recognize non-regular languages may also be considered in the

future.

Acknowledgements

The authors are very grateful to the two referees and Professor Okhotin for their invalu-

able comments and suggestions that helped greatly to improve the quality of the original

manuscript. Also, we thank our group of quantum computing of SYSU for finding some

mistakes in the original manuscript.

19

References

[1] A. Ambainis, R. Freivalds, One-way quantum finite automata: strengths, weak-

nesses and generalizations, in: Proceedings of the 39th Annual Symposium on Foun-

dations of Computer Science, IEEE Computer Society Press, Palo Alfo, California,

USA, 1998, pp. 332-341. Also quant-ph/9802062, 1998.

[2] M. Amano, K. Iwama, Undecidability on Quantum Finite Automata, in: Proceed-

ings of the 31st Annual ACM Symposium on Theory of Computing, Atlanta, Geor-

gia, USA, 1999, pp. 368-375.

[3] A. Ambainis, A. Kikusts, M. Valdats, On the class of languages recognizable by

1-way quantum finite automata, in: 8th International Symposium on Theoretical

Aspects of Computer Science (STACS’2001), Lecture Notes in Computer Science,

Vol. 2010, Springer, Berlin, 2001, pp. 75-86.

[4] A. Bertoni, C. Mereghetti, B. Palano, Quantum Computing: 1-Way Quantum

Automata, in: Proceedings of the 9th International Conference on Developments

in Language Theory (DLT’2003), Lecture Notes in Computer Science, Vol. 2710,

Springer, Berlin, 2003, pp. 1-20.

[5] A. Brodsky, N. Pippenger, Characterizations of 1-way quantum finite automata,

SIAM Journal on Computing 31 (2002) 1456-1478. Also quant-ph/9903014, 1999.

[6] A. Belovs, A. Rosmanis, and J. Smotrovs, Multi-letter Reversible and Quantum

Finite Automata, in: Proceedings of the 13th International Conference on Develop-

ments in Language Theory (DLT’2007), Harrachov, Czech Republic, Lecture Notes

in Computer Science, Vol. 4588, Springer, Berlin, 2007, pp. 60-71.

[7] E. Bernstein, U. Vazirani, Quantum complexity theory, SIAM Journal on Comput-

ing 26 (5) (1997) 1411-1473.

[8] P. Benioff, The computer as a physical system: a microscopic quantum mechanical

Hamiltonian model of computers as represented by Turing machines, Journal of

Statistic Physics 22 (1980) 563-591.

[9] K. Culik II, J. Karhumäki, On the equivalence problem for deterministic multitape

automata and transducers, in: Proceedings of the 6th Annual Symposium on Theo-

retical Aspects of Computer Science (STACS’1989), Paderborn, Germany, February

16-18, 1989, pp. 468-479.

[10] C. S. Calude, M. J. Dinneen, K. Svozil, Reflections on quantum computing, Com-

plexity 6 (1) (2000) 35-37.

20

http://arxiv.org/abs/quant-ph/9802062
http://arxiv.org/abs/quant-ph/9903014

[11] C. S. Calude, B. Pavlov, Coins, Quantum Measurements, and Turing’s Barrier,

Quantum Information Processing 1 (1-2) (2002) 107-127.

[12] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quan-

tum computer, Proceedings of the Royal Society of London Series A 400 (1985)

97-117.

[13] D. Deutsch, Quantum computational networks, Proceedings of the Royal Society of

London Series A 400 (1985) 73-90.

[14] R.P. Feynman, Simulating physics with computers, International Journal of Theo-

retical Physics 21 (1982) 467-488.

[15] D.K. Faddeev, V.N. Faddeeva, Computational Methods of Linear Algebra, Freeman,

San Francisco, 1963.

[16] L.K. Grover, A fast quantum mechanical algorithm for database search, in: Proceed-

ings of the 28th Annual ACM Symposium on Theory of Computing, Philadelphia,

Pennsylvania, USA, 1996, pp. 212-219.

[17] J. Gruska, Quantum Computing, McGraw-Hill, London, 1999.

[18] M. Hirvensalo, Quantum Computing, second edition, Springer, Berlin, 2004.

[19] M. Hirvensalo, Improved Undecidability Results on the Emptiness Problem of Prob-

abilistic and Quantum Cut-Point Languages, in: Proceedings of the 33rd Interna-

tional Conference on Current Trends in Theory and Practice of Computer Science

(SOFSEM’2007), Harrachov, Czech Republic, Lecture Notes in Computer Science,

Vol. 4362, Springer, Berlin, 2007, pp. 309-319.

[20] J. Hromkovič, One-way multihead deterministic finite automata, Acta. Informatica

19 (1983) 377-384.

[21] V. Halava, T. Harju, J. Karhumäki, Undecidability in ω-Regular Languages, Fun-

damenta Informaticae 73 (1-2) (2006) 119-125.

[22] T. Harju, J. Karhumäki, Decidability of the Multiplicity Equivalence of Multitape

Finite Automata, in: Proceedings of the 22nd Annual ACM Symposium on Theory

of Computing, Baltimore, Maryland, USA, 1990, pp. 477-481.

[23] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Language, and

Computation, Addison-Wesley, Massachusetts, 1979.

[24] A. Kondacs, J. Watrous, On the power of finite state automata, in: Proceedings

of the 38th IEEE Annual Symposium on Foundations of Computer Science, Miami

Beach, Florida, USA, 1997, pp. 66-75.

21

[25] L.Z. Li, D.W. Qiu, Determination of equivalence between quantum sequential ma-

chines, Theoretical Computer Science 358 (2006) 65-74.

[26] L.Z. Li, D.W. Qiu, Determining the equivalence for one-way quantum finite au-

tomata, Theoretical Computer Science 403 (2008) 42-51.

[27] C. Moore, J.P. Crutchfield, Quantum automata and quantum grammars, Theoreti-

cal Computer Science 237 (2000) 275-306. Also quant-ph/9707031, 1997.

[28] A. Paz, Introduction to Probabilistic Automata, Academic Press, New York, 1971.

[29] D.W. Qiu, Characterization of Sequential Quantum Machines, International Jour-

nal of Theoretical Physics 41 (2002) 811-822.

[30] D.W. Qiu, Automata theory based on quantum logic: reversibilities and pushdown

automata, Theoretical Computer Science 386 (2007) 38-56.

[31] D.W. Qiu, L.Z. Li, An overview of quantum computation models: quantum au-

tomata, Frontiers of Computer Science in China 2 (2)(2008) 193-207.

[32] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1, Springer-

Verlag, Berlin, 1997.

[33] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer, SIAM Journal on Computing 26 (5) (1997) 1484-

1509.

[34] A. Salomaa, Computation and Automata, Cambridge University Press, Cambridge,

1985.

[35] W.G. Tzeng, A Polynomial-time Algorithm for the Equivalence of Probabilistic

Automata, SIAM Journal on Computing 21 (2) (1992) 216-227.

[36] A.C. Yao, Quantum circuit complexity, in: Proceedings of the 34th IEEE Sympo-

sium on Foundations of Computer science, 1993, pp. 352-361.

[37] S. Yu, Regular Languages, In: G. Rozenberg, A. Salomaa (Eds.), Handbook of

Formal Languages, Springer-Verlag, Berlin, 1998, pp. 41-110.

22

http://arxiv.org/abs/quant-ph/9707031

