
Speed Scaling with a Solar Cell

Nikhil Bansal1, Ho-Leung Chan2, and Kirk Pruhs2 ⋆

1 IBM T.J. Watson Research, P.O. Box 218, Yorktown Heights, NY.
nikhil@us.ibm.com

2 Computer Science Department, University of Pittsburgh.
{hlchan,kirk}@cs.pitt.edu

Abstract. We consider the setting of a device that obtains it energy
from a battery and some regenerative source such as a solar cell. We
consider the speed scaling problem of scheduling a collection of tasks with
release times, deadlines, and sizes so as to minimize the energy recharge
rate of the regenerative source. This is the first theoretical investigation
of speed scaling for devices with a regenerative energy source. We show
that the problem can be expressed as a polynomial sized convex program.
We show that using the KKT conditions, one can obtain an efficient
algorithm to verify the optimality of a schedule. We show that the energy
optimal YDS schedule, is 2-approximate with respect to the recharge
rate. We show that the online algorithm BKP is O(1)-competitive with
respect to recharge rate.

1 Introduction

Chip manufacturers such as Intel, AMD and IBM have made it a priority to
redesign their chips to consume less power and to provide various hardware and
software capabilities for power management. All of these chip manufacturers
make chips that use dynamic speed scaling as a power management technique.
Typically, the power consumed varies as the cube of the processor speed, and
hence this can yield significant energy/temperature reductions.

The first theoretical investigation of speed scaling algorithms was in the
seminal paper by Yao, Demers and Shenker [15]. They considered the problem
of feasibly scheduling a collection of jobs with arbitrary release times, deadlines
and sizes to minimize the energy consumed, and gave both offline and online
algorithms. Subsequently, there has been a lot of work on improving these results
and extending them to optimize various other objectives such as, flow time,
throughput and so on [6, 3, 4, 7, 10, 1, 14, 16, 13, 2, 12].

All of these theoretical investigations of speed scaling as an energy manage-
ment technique involve problems where the goal is to minimize the total energy
used. This would be the appropriate objective if the energy source was a bat-
tery, and the goal was to extend the battery’s lifetime. But some devices, most
notably some sensors, also contain technologies that allow then to harvest en-
ergy from their environment. The most common energy harvesting technology
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is solar cells. Some sensors also contain technology that allows then to scavenge
energy from ambient vibrations. To give some feel for state of technology, batter-
ies can store about 1 Joule of energy per cubic millimeter, while solar cells can
provide approximately 100 micro-Watt per square centimeter in bright sunlight,
and vibration devices can provide nano-Watts per cubic millimeter.

In this paper we initiate a study of speed scaling for energy management
in devices that contain both a battery and an energy harvesting device, which
we will henceforth assume for simplicity is a solar cell. Our goal is understand
how the presence of a solar cell will affect the resulting speed scaling problems.
For simplicity, we assume that the solar cell generates energy at a fixed rate
(although many of a our results apply to a more general setting). We consider
the deadline feasibility problem introduced in [15] because it is the most studied,
and probably the best understood, speed scaling problem in the literature. We
consider the objective minimizing the recharge rate, subject to the deadline
feasibility constraint.

1.1 Related Results

Before explaining our results, let us recap what is known about speed scaling with
a deadline feasibility constraint on battery only devices. The standard assump-
tion is that when the processor is run at speed s, then the power consumption is
P (s) = sα for some constant α > 1 [9, 3, 11]. For CMOS based devices, which will
likely remain the dominant technology for the near term future, the well known
cube-root rule is that the speed s is roughly proportional to the cube-root of
the power P , or equivalently, P (s) = s3. [15] gave an optimum greedy algorithm
YDS. For the online version, they gave an algorithm AVR and showed that the
competitive ratio of AVR is at most 2α−1αα. It was recently shown that AVR
is in fact (2 − ǫ)αα competitive, where ǫ goes to zero as α increases. [15] also
proposed another algorithm OA, which was shown by [3] to be αα competitive.
[3] gave another online algorithm BKP and showed that is was 2(α/(α− 1))αeα

competitive(this is the best known competitive ratio for large α). It is also known
that any algorithm must have competitive ratio of at least eα−1/α [5] and hence
the result cannot be improved substantially. Improved results for the practically
interesting cases of α = 2 and α = 3 have also been obtained recently [5].

1.2 Our Results

We consider both the offline and online versions of the minimum recharge rate
problem. In Section 3 we show that the offline problem can be expressed as a con-
vex program and hence can be solved to any desired accuracy by using standard
techniques such as the Ellipsoid Method. We then explore this convex program
further in Section 4. We analyze the consequences of the KKT conditions for
optimality for this program and obtain an equivalent set of combinatorial prop-
erties that are both necessary and sufficient for a solution to be optimal. This



gives us several insights into the structure of an optimum solution and also al-
lows us to obtain an efficient test to determine whether a solution is optimum
or not.

In Section 5, we show that the YDS algorithm, which is optimal for the
no-recharge case, is in fact a 2-approximation for the minimum recharge rate
problem. We also show that this bound is tight. In the special case when the
release times and deadlines of jobs are similarly ordered, we show that YDS is
optimal. Finally, in Section 6, we consider the online setting, and show that the
BKP algorithm is O(1) competitive for the problem. In particular, BKP achieves
a competitive ratio of 4( α

α−1
)αeα.

In summary, our results seem to suggest that speed scaling algorithms that
perform well when the energy source is a battery, should also perform reason-
ably well when there is also a regenerative energy source. As evidence of this,
the optimal energy schedule YDS, is an O(1)-approximate schedule for recharge
rate, and the algorithm BKP is O(1)-competitive for both energy and recharge
rate. The KKT conditions reveal that cutting the recharge-rate optimal sched-
ule at the points where the battery is empty, partitions the schedule into energy
optimal YDS schedules. So there is some relationship between energy optimal
and recharge-rate optimal schedules. However, computing the recharge-rate op-
timal schedule is still seemingly much harder than computing an energy optimal
schedule because it is not clear how to partition the work amongst these YDS
subschedules of the recharge-rate optimal schedule.

1.3 Formal Problem Statement

We consider a system that consists of a battery that can be charged at a rate of
R, i.e. the energy reserve of the battery increases by R units per unit time, from
an external source such as a solar cell. The battery is used to run a processor.

The input is a collection of jobs, where each job i has an integer release time
ri when it arrives into the system, an integer work wi that must be performed
to complete the job, and an integer deadline di by which this work must be
completed. In the online version of the problem, the scheduler learn about job i
at time ri. At this point it also learns wi and di. A schedule specifies at each time
which job is run, and at what speed. Note that if the processor runs at speed s,
the power is consumed at rate R − sα. Thus the energy level at any time t′ is
∫ t′

t=0
(R−s(t)α)dt. We say that a schedule is feasible if the system never runs out

of power. That is, at any time the energy level of the battery is non-negative.
In the minimum recharge rate problem, that we consider in this paper, the goal
is to construct a feasible schedule that minimizes the recharge rate R required.
An online algorithm A is c-competitive, or equivalently has competitive ratio c,
if with recharge rate R, A misses the deadline of some job, then this instance is
not feasibly schedulable with recharge rate R/c.

We assume that the energy level of the battery at t = 0 is 0. This is without
loss of generality; given an instance I with battery level E0 at t = 0, we can
construct another instance I′ with battery level 0 at t = 0 and with all the jobs



in I shifted forward in time by E0/R units. We also assume that there is no
upper bound on the amount of energy that the battery can hold.

2 Preliminaries

We begin by reviewing the algorithms YDS and BKP for energy efficient schedul-
ing, as well as the KKT conditions for convex programming.

The algorithm YDS. Given an instance I, let the density of any time interval
[t, t′] be defined as den(t, t′) = w(t, t′)/(t′ − t), where w(t, t′) is the total size of
jobs with release time at least t and deadline at most t′. Intuitively, den(t, t′) is
the minimum average speed at which any feasible algorithm must work during
the interval [t, t′]. YDS applies the following steps until all jobs are scheduled:
Let [t, t′] be the highest density interval. The speed is set to den(t, t′) during
[t, t′]. Then the instance is modified such that times [t, t′] did not exist. That is,
all deadlines di > t are modified d′

i = max{t, di − (t′ − t)}, and all release times
ri > t are modified to r′i = max{t, ri− (t′− t)}, and the process is repeated. The
jobs are scheduled in the earliest deadline first order.

We note that each job is run at fixed speed in the YDS schedule. This speed
is fixed with respect to time, but may be different for different jobs. Moreover,
if job i runs at speed s, then the speed at any time during [ri, di] is at least s.

Another useful (but non-algorithmic) view of YDS is the following. Start
with an arbitrary schedule, and keep improving the schedule as follows until no
longer possible: If some job i runs at time t when the processor speed is s, and
there is some other time t′ where job i can run (i.e. ri ≤ t′ ≤ di) but the speed
at t′ is less than s, then move infinitesimally small work of job i from t to t′.

The algorithm BKP. At any time t and t1 < t ≤ t2, let w(t, t1, t2) be the total
size of jobs that have release time at least t1, deadline at most t2 and have been
released by time t. Intuitively, it is an estimation for the density of the interval
[t1, t2] based on the jobs released by t. Let v(t) be defined by

v(t) = max
t′>t

w(t, t− (e − 1)(t′ − t), t′)

e(t′ − t)

Then, at any time t, BKP runs at speed e · v(t) and processes the unfinished job
with earliest deadline. BKP is known to be 2( α

α−1)αeα-competitive [3].

The KKT conditions. Consider a convex program

minf0(x) s.t.

fi(x) ≤ 0 i = 1, . . . , n

Assume the functions fi are all differentiable. Let λi, i = 1, . . . , n be a variable
(Lagrangian multiplier) associated with fi. Then the necessary KKT conditions
for solutions x and λ to be primal and dual optimal are:

fi(x) ≤ 0 i = 1, . . . , n (1)



λi ≥ 0 i = 1, . . . , n (2)

λifi(x) = 0 i = 1, . . . , n (3)

∇f0(x) +

n
∑

i=1

λi∇fi(x) = 0 (4)

We refer to the above four equations as Condition 1, 2, 3 and 4 of the KKT condi-
tions, respectively. Condition 3 is commonly known as complementary slackness.
If the program is strictly feasible, i.e., there is some point x where fi(x) < 0 for
i = 1, . . . , n, then these conditions are also sufficient [8].

3 Convex Programming Formulation

In this section, we give a convex program to find the minimum recharge rate,
which implies that the problem can solved optimally in polynomial time. For
simplicity of description, we give a pseudo-polynomial sized time indexed for-
mulation, but as we show later the size can be made polynomial.

Let I be any job sequence. Recall that the release time, size and deadline of
a job i are denoted as ri, wi and di, respectively. Without loss of generality, we
assume that the release time and deadline of each job are integers. Let wi,j be
the amount of work done on job i during time [j − 1, j]. Then, minimizing the
recharge rate R can be written as the following program CP.

minR s.t.

wi −
∑

t:ri<t≤di

wi,t ≤ 0 ∀i = 1, 2, . . . (5)

∑

t:t≤j

(
∑

x:rx<t≤dx

wx,t)
α − Rj ≤ 0 ∀j = 1, 2, . . . (6)

−wi,j ≤ 0 ∀i, j = 1, 2, . . . (7)

The constraints (5) enforce that each job is completed. Constraints (6) enforce
that the battery is non-negative at any integral time. We need to show that the
optimal solution for CP gives the minimum recharge rate. This is not completely
obvious since CP does not explicitly enforce that the battery does not run out
of energy at some non-integral time.

Lemma 1. The optimal solution R for CP is the minimum recharge rate to

complete all jobs in I.

Proof. Constraints (5) guarantee that each job is completed. Consider any time j
and let Ej−1 and Ej be the energy in the battery at time j−1 and j, respectively.
Let s =

∑

i:ri<j≤di
wi,j be the speed during [j − 1, j] and let R′ = sα. Then for

any w ∈ [0, 1], at time j − 1 + w the energy in the battery is Ej−1 + w(R−R′).
If R − R′ ≥ 0, then Ej−1 + w(R − R′) ≥ Ej−1 ≥ 0; else if R − R′ < 0, then
Ej−1 +w(R−R′) ≥ Ej−1 + (R−R′) = Ej ≥ 0. Hence, if Ej−1 ≥ 0 and Ej ≥ 0,



then the battery is not depleted at any time during [j − 1, j]. This implies that
the schedule returned by CP is feasible. Conversely, every feasible schedule must
satisfy the constraints stated in CP. Hence R is the minimum recharge rate. ⊓⊔

Theorem 1. The recharge-rate problem can be solved by a convex program.

Proof. Lemma 1 shows that the problem can be solved by CP. It remains to show
that CP is convex. The objective function as well as the constraints (5) and (7)
are linear, and hence convex. For constraints (6), we note that the function
f(x) = xα is convex and the sum of convex functions is also convex. Hence, the
constraints (6) are also convex. ⊓⊔

Since CP is convex, we can apply the standard methods to determine R to
any desired accuracy. We remark that CP has pseudo-polynomial size as the
number of variables and equations are depend upon the time horizon. However,
given the insight provided by the KKT conditions in the next section, we can
reduce the size to polynomial by considering only those time points that are
the release time or deadline of a job. We can redefine wi,j to be the work done
on job i between the (j − 1)-th and j-th time points. We also need to modify
the left size of (6) such that the speed during that interval is

∑

i wi,j divided
by the length of the interval. The resulting convex program gives the minimum
recharge rate.

4 Recognizing an Optimal Schedule

We now study the consequences of the KKT conditions when applied to CP and
the structural properties they impose on an optimal solution. This will lead to
a simple algorithm to recognize an optimal schedule.

For our convex program CP, the constraints are differentiable and strictly
feasible, so the KKT conditions are both necessary and sufficient for a solution
to be optimal. Associate a dual variable αi for the equation for job i in constraints
(5) of CP. Associate a dual variable βj for the equation for time j in constraints
(6). Associate a dual variable γi,j for the equation for job i and time j in (7).
Now consider the four KKT conditions 1-4. Condition 1 states that the optimal
solution satisfies the constraints of CP (and hence is feasible). Condition 2 states
that αi, βj and γi,j are non-negative. For Condition 3, the equations become

αi



wi −
∑

t:ri<t≤di

wi,t



 = 0 ∀i = 1, 2, . . . (8)

βj





∑

t:t≤j

(
∑

x:rx<t≤dx

wx,t)
α − Rj



 = 0 ∀j = 1, 2, . . . (9)

γi,jwi,j = 0 ∀i, j = 1, 2, . . . (10)

Equation (9) implies that βj is positive only if the battery is empty at time j.
Equation (10) implies that γi,j is zero if job i is processed during [j − 1, j].



We now consider Condition 4. We list out separately the terms corresponding
to each partial derivative in the gradient. When the derivative is taken with
respect to R, we obtain that

1 −
∑

j

jβj = 0 (11)

When the derivative is taken with respect to variable wi,j, we obtain that

αi + γi,j = α(
∑

x:rx<j≤dx

wx,j)
α−1(

∑

t:j≤t

βt) ∀i, j = 1, 2, . . . (12)

Note that
∑

x:rx<j≤dx
wx,j is the speed of the schedule during [j − 1, j]. Hence,

the above equation gives a relationship of how the speed depends on α, β and γ.

As we now show, these KKT conditions are equivalent to the following com-
binatorial properties that a schedule must satisfy.

Lemma 2. Let I be any job sequence and S be a schedule for I. Then, S is

optimal if and only if it satisfies the following 4 properties.

1. S completes all jobs and the battery is not depleted at any integral time.

2. There exists time T > 0 such that the battery has zero energy at T and no

job with deadline after T is processed before T .

3. Let T be the smallest time satisfying Property 2. Let 0 = t0 < t1 < . . . <
tk = T be times up to T such that the battery has zero energy. Then, for

each interval [ty−1, ty], y = 1, . . . , k, the work processed during [ty−1, ty] is

scheduled using the YDS schedule.

4. There exists multipliers m1, m2, . . . , mk−1 ≥ 1 for t1, t2, . . . , tk−1 with the

following property. Let si,y denote the speed that job i is processed during

[ty−1, ty]. Then, if i is processed during both [ty−1, ty] and [ty′−1, ty′ ], y < y′,
we have si,y′/si,y = mymy+1 · · ·my′−1.

Remark: We note that the multipliers m1, . . . , mk−1 are independent of the jobs,
and hence the ratios siy′/siy are identical for each job i.

Proof. We first show sufficiency, that is, if S satisfies the 4 properties stated
in Lemma 2, then S also satisfies the KKT conditions for CP and hence S is
optimal. We then show that these properties are also necessary. In particular,
we show that if S does not satisfy these properties, then there is another feasible
schedule with a smaller recharge rate, implying that S is not optimal. We now
give the details.

Consider the values of wi,j and R implied by S. The first property above
implies that wi,j and R satisfy the constraints of CP and hence Condition 1 of
the KKT conditions. The remaining three properties allow us to determine the
values of α, β and γ satisfying Condition 2, 3 and 4 of the KKT conditions. We
first give some intuition. Assume job i is processed during [j−1, j] for some time
j. By (10) it follows that γi,j = 0 and by (12) it follows that if

∑

t:j≤t βt > 0,



then the speed during [j − 1, j] is

∑

x:rx<j≤dx

wx,j =

(

αi

α
∑

t:j≤t βt

)1/(α−1)

(13)

Note that αi is a constant for job i. Hence, if job i is processed during [j − 1, j]
with speed s and is processed during [j′ − 1, j′] with speed s′, then we have
that s′/s = (

∑

t:j≤t βt)
1/(α−1)/(

∑

t:j′≤t βt)
1/(α−1), or equivalently

∑

t:j≤t βt =

(s′/s)α−1
∑

t:j′≤t βt. It means that in any optimum schedule, when a job is pro-
cessed during two different time intervals, the ratio of speeds should be deter-
mined by the values of β. Note that this is exactly what property 4 in Lemma 2
also guarantees. This allows us set the values β can be set consistently. We now
give the calculation to derive α, β and γ from the properties of Lemma 2.

Consider t1 < . . . < tk = T and m1, . . . , mk−1 as defined by the third and
fourth property of Lemma 2. We set βj to zero for all j /∈ {t1, . . . , tk}. Note that
it satisfies requirement (9) of the KKT conditions. For j ∈ {t1, . . . , tk}, we set
βj such that they satisfy the following system of linear equations.

∑

t:ty≤t

βt = (my)α−1
∑

t:ty+1≤t

βt y = 1, . . . , k − 1 (14)

1 −

k
∑

y=1

tyβty
= 0 (15)

This system has a unique non-negative solution, as (14) can be written as βty
=

((my)α−1 − 1)
∑

t:ty+1≤t βt. Hence, by considering the equation from y = k − 1
down to y = 1, we can express each of βtk−1

, . . . , βt1 in terms of βtk
. Substituting

these expressions into (15), we obtain a unique solution for βtk
, as well as βty

for y = k − 1, . . . , 1. Note that βtk
> 0 and βty

≥ 0 for y = k − 1, . . . , 1. This
completely specifies β. Note that by (15), the values of β satisfy requirement
(11) of the KKT conditions.

To calculate the values of α, we consider each job i. Let [ji − 1, ji] be the
earliest time interval during which i is processed. Then, αi is set to

αi = α(
∑

x:rx<ji≤dx

wx,ji
)α−1(

∑

t:ji≤t

βt). (16)

Note that αi ≥ 0. As all jobs are completed by S, the KKT condition given
by (8) is satisfied for any value of α. Finally, to calculate the values of γ, we
consider any job i and any time j, ri < j ≤ di. We set γi,j to

γi,j = α(
∑

x:rx<j≤dx

wx,j)
α−1(

∑

t:j≤t

βt) − αi. (17)

This guarantees that the KKT conditions specified by (12) are satisfied. It re-
mains to show that γi,j ≥ 0 and (10) is satisfied. This is trivially true if i has



not been processed until time tk, because γi,j = 0 in that case. If i has been
processed by time tk, recall that [ji−1, ji] is the first interval that i is processed.
Consider any time [j − 1, j] such that ri < j ≤ di. Let y and y′ be values that
ty−1 < ji ≤ ty and ty′−1 < j ≤ ty′ . Then, by (17) and (14) we have that

γi,j = α(
∑

x:rx<j≤dx

wx,j)
α−1(

∑

t:j≤t

βt) − αi

= α

(

∑

x:rx<j≤dx
wx,j

mymy+1 . . .my′−1

)α−1

(mymy+1 . . .my′−1)
α−1(

∑

t:ty′≤t

βt) − αi

= α

(

∑

x:rx<j≤dx
wx,j

mymy+1 . . .my′−1

)α−1

(
∑

t:ty≤t

βt) − αi (18)

If i is processed during [j − 1, j], then by property 4 in Lemma 2, the speed
∑

x:rx<j≤dx
wx,j equals mymy+1 . . .my′−1 times that during [ji − 1, ji]. Hence,

(18) implies that

γi,j = α(
∑

x:rx<ji≤dx

wx,ji
)α−1(

∑

t:ji≤t

βt) − αi

which is identically equal to 0 by (16). Thus the KKT conditions given by (10) are
satisfied in this case. Finally consider the case when i is not processed during
[j − 1, j]. By property 3 in Lemma 2, the schedule during [ty−1, ty] is a YDS
schedule. Hence, it must be that the speed

∑

x:rx<j≤dx
wx,j is at least as large

as mymy+1 . . .my′−1 times the speed during [ji − 1, ji]. By (18) and (16), this
implies that γi,j ≥ 0 if i is not processed during [j − 1, j]. This completes the
proof that the 4 properties above implies the KKT conditions.

We now show that the properties in Lemma 2 are necessary. The first property
is clearly necessary for any feasible solution. For the second property, first we
note that the battery must be empty at least once at some time t > 0, otherwise
the recharge rate can be easily reduced. Now, consider all the times t when the
battery is 0. If the second property is not satisfied, then for every such t, there
is some job that has deadline after t, but receives some processing by t. Then,
it is easy to see that by moving (appropriately chosen) infinitesimally small
quantities of this work further in time results in another feasible schedule with
a smaller recharge rate. For the third property, assume that the work during
some interval [ty−1, ty] is not scheduled according to YDS. Since the energy
remaining at any time j such that ty−1 < j < ty is strictly positive, there
is some infinitesimally small movement of work such that after the movement,
the total energy consumed during [ty−1, ty] decreases and the energy at each
intermediate time remains positive. This also implies that the energy remaining
becomes positive at t′y for all y′ > y. Now for each ty′ such that y′ < y, there is
some job with deadline after ty′ and processed by ty′ . We move an infinitesimally
small amount of this work further in time, which results in a schedule with a
smaller recharge rate. For the fourth property, our previous discussion shows
that it is implied by the KKT conditions, hence it is necessary. ⊓⊔



Hence, to determine whether a schedule S minimizes the recharge rate, we can
simply check for the above 4 properties. This gives our main result for this
section.

Theorem 2. Let I be any job sequence. Given a schedule S, we can determine

in polynomial time whether S minimizes the recharge rate.

Proof. Properties 1, 2 and 3 of Lemma 2 can be checked easily in polynomial
time. To check Property 4 we can write as system of linear equations as follows.
Let i be a job that is processed in both [ty−1, ty] and [ty′−1, ty′ ] for some y < y′

with speed si,y and si,y′ respectively. We include an equation lnmy + lnmy+1 +
. . . + lnmy′−1 = ln(si,y′/si,y). By considering all jobs and time intervals, we
obtain a set of linear equations with variables of the type lnmy . There is a
solution to these equations if and only if Property 4 is satisfied. ⊓⊔

5 Performance of YDS

In this section, we analyze the YDS schedule and show that it requires a recharge
rate at most 2 times that of the optimum schedule, and that this bound is the
best possible. Later we show that YDS is optimum for instances where the job
deadlines and release times are ordered similarly.

Let I be any job sequence, and let OPT denote some optimum schedule. We
first state a simple observation used to lower bound the energy usage of OPT.

Lemma 3. Consider the YDS schedule for I. Let s be any speed and t be any

time such that YDS has a speed at least s at t and has a speed strictly less than

s immediately after t. Let Ja be the set of all jobs YDS has processed using a

speed at least s until time t. Then, the energy usage of OPT for processing jobs

in Ja by time t is at least that of YDS.

Proof. We first notice that all jobs in Ja have deadlines at most t and are actually
completed by YDS by time t. Furthermore, in the YDS schedule for I, jobs in Ja

are processed identically as they would be in the YDS schedule for the instance
Ja, i.e. instance I with jobs in I \ Ja removed. Therefore, YDS completes Ja

using the minimum amount of energy. OPT needs to complete Ja by time t and
must use at least the same amount of energy. ⊓⊔

We are now ready to prove the main result of this section.

Theorem 3. YDS is a 2-approximation for minimizing the recharge rate.

Proof. For any schedule if E(t) denotes the energy usage until time t, then by
definition, the recharge rate required is maxt E(t)/t. Consider some instance
where OPT has recharge rate r, but YDS is infeasible even with recharge rate
2r. Let t′ be the earliest time when YDS runs out of energy, and let t be the
earliest time after t′ when the speed of YDS falls below r1/α. Consider the times
during [0, t′] where speed of YDS is ≥ r1/α, and let E be the total energy used



during these times. Since YDS is working at speed strictly less than r1/α during
other times in [0, t′], it follows that the total energy used by YDS during [0, t′]
is strictly less than E + rt′.

We now apply Lemma 3 at time t with s = r1/α, and define Ja accordingly.
As the energy used by YDS for jobs in Ja is at least E + (t − t′)r, it follows
that the energy usage of OPT on jobs in Ja is at least E +(t− t′)r. However, as
OPT has recharge rate r, it follows that rt ≥ E + (t − t′)r and hence E ≤ rt′.
However as the total energy used by the YDS during the interval [0, t′] is strictly
less than E + rt′, this implies that the total energy used by YDS is strictly less
than 2rt′ which contradicts the assumption that YDS ran out of energy at t′

with recharge rate 2r. ⊓⊔

We remark that the YDS schedule can be computed in O(n2 logn) time [14],
where n is the number of jobs. Therefore, this gives a polynomial time constant
factor approximation algorithm for the recharge rate minimization problem. We
also note that the above bound for YDS cannot be improved.

Observation 1 The approximation ratio of YDS is at least 2 for the minimum

recharge rate problem.

Proof. Let ǫ be an arbitrarily small parameter such that 1/ǫ is an integer. Con-
sider the instance with two jobs, where job 1 has size 1/ǫ1/α, release time 1/ǫ−1
and deadline 1/ǫ and job 2 has size 1/ǫ2 − 1/ǫ, release time 0 and deadline 1/ǫ2.
Consider the schedule that stays idle during 0 to 1/ǫ − 1, finishes job 1 during
[1/ǫ−1, 1/ǫ] consuming energy 1/ǫ, and then works at speed 1 during [1/ǫ, 1/ǫ2]
on job 2. It is easily verified that it is feasible with a recharge rate of 1. YDS on
the other hand, works at speed (1/ǫ2−1/ǫ)/(1/ǫ2−1) ≈ 1− ǫ during [0, 1/ǫ−1]
on job 1. As it needs at least 1/ǫ energy during [1/ǫ−1, 1/ǫ] for job 2, it is easily
verified that a recharge rate of 2 − O(ǫ) is necessary. ⊓⊔

Well-ordered Jobs: We also consider the special case where the jobs are well-

ordered, i.e., for every jobs i1, i2, if the release time of i1 is no later than the
release time of i2, then the deadline of i1 is no later than the deadline of i2. We
can show that YDS is optimal for job sequences that are well-ordered.

Theorem 4. For well-ordered job sequences, YDS minimizes the recharge rate.

Proof. Let E(t) be the energy usage of YDS up to time t, and let R = maxt
E(t)

t

be the recharge rate. Also let T be the latest time such that E(T )
T = R and let

s = R1/α. Note that YDS has speed at least s at T and has speed strictly less
than s immediately after T . Let i be the job that is completed by YDS at T .
Since the job sequence is well-ordered, every job with deadline later than i has
release time at least that of i. By the property of the YDS schedule, these jobs
are scheduled completely after T . It means that every job processed by YDS
until time T has deadline at most T . Any optimum solution OPT also needs to
complete these jobs by time T and the energy usage is at least E(T ). Hence, the
recharge rate of OPT is at least that of YDS. ⊓⊔



6 An Online Algorithm

We now show that the BKP algorithm is constant competitive in the online set-
ting. For any job sequence I, it is known that BKP uses no more than 2( α

α−1)αeα

times the total energy used by YDS [3]. In the following lemma, we show that
in fact at any intermediate time t, the energy usage of BKP up to t is at most
2( α

α−1
)αeα times that of YDS.

Lemma 4. Consider any job sequence I. Let E(t) be the energy usage of YDS up

to time t, and E′(t) be that of BKP. Then, at any time t, E′(t) ≤ 2( α
α−1

)αeαE(t).

Proof. For the proof we define another algorithm ALG, that any time t runs at
speed p(t) = e · maxt1,t2 w(t, t1, t2)/(t2 − t1), where t1 < t ≤ t2 and w(t, t1, t2)
denotes the amount of work that has release time at least t1 and has deadline
at most t2. Recall that the speed of BKP at any time t is no greater than that
of ALG. We will show that at any time t, the energy usage of ALG up to t is no
greater than 2( α

α−1)αeαE(t), which implies the lemma.
It is shown in [3] that ALG is 2( α

α−1)αeα-competitive in total energy usage.
To show that the same guarantee holds for any intermediate time, consider any
job sequence I and any time t. Let I′ be a job sequence constructed based on the
YDS schedule for I: At any time j < t, a job is released with deadline j + 1 and
size equal to the speed of YDS during [j, j + 1], and the last job is released at
time t− 1. As ALG is 2( α

α−1 )αeα-competitive for total energy, the energy usage
of ALG up to t with input I′ is at most 2( α

α−1)αeα times that of YDS for I′.
To argue back about the job sequence I, we note that at any time up to t, YDS
has the same speed for input I and I′. For ALG, we note that at any time i < t,
the quantity p(i) for input I is at most that for input I′, and hence the speed
of ALG for I is at most that for I′. This implies that for I, the energy usage of
ALG up to time t is at most 2( α

α−1)αeα times that of YDS. Since I and t are
arbitrary, the lemma follows. ⊓⊔

By Theorem 3 and Lemma 4 we obtain that

Theorem 5. The BKP algorithm is 4( α
α−1)αeα-competitive for minimizing the

recharge rate.
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