
On-Demand Strategy Annotations Revisited:

An Improved On-Demand Evaluation Strategy∗

M. Alpuente† S. Escobar† B. Gramlich‡ S. Lucas†

Abstract

In functional languages such as OBJ*, CafeOBJ, and Maude, symbols
are given strategy annotations that specify (the order in) which subterms
are evaluated. Syntactically, strategy annotations are given either as lists
of natural numbers or as lists of integers associated to function symbols
whose (absolute) values refer to the arguments of the corresponding sym-
bol. A positive index prescribes the evaluation of an argument whereas
a negative index means “evaluation on-demand”. These on-demand in-
dices have been proposed to support laziness in OBJ-like languages. While
strategy annotations containing only natural numbers have been imple-
mented and investigated to some extent (regarding, e.g., termination, con-
fluence, and completeness), fully general annotations (including positive
and negative indices) are disappointingly under-explored to date.

In this paper, we first point out a number of problems of current pro-
posals for handling on-demand strategy annotations. Then, we propose
a solution to these problems by keeping an accurate track of annotations
along the evaluation sequences. We formalize this solution as a suitable
extension of the evaluation strategy of OBJ-like languages (which only
consider annotations given as natural numbers) to on-demand strategy
annotations. Our on-demand evaluation strategy (ODE) overcomes the
drawbacks of previous proposals and also has better computational prop-
erties. For instance, we show how to use this strategy for computing
(head-)normal forms. We also introduce a transformation which allows
us to prove termination of the new evaluation strategy by using standard
rewriting techniques. Finally, we present two interpreters of the new strat-
egy together with some encouraging experiments which demonstrate the
usefulness of our approach.

Keywords: Declarative programming, demandedness, lazy evaluation,
OBJ, on-demand strategy annotations

∗This work has been partially supported by the EU (FEDER) and the Spanish MEC under
grant TIN2007-68093-C02-02, and Generalitat Valenciana GVPRE/2008/113.

†DSIC, TU Valencia, Spain. Emails: {alpuente,sescobar,slucas}@dsic.upv.es
‡Fakultät für Informatik, TU Wien, Austria. Email: gramlich@logic.at

1

1 Introduction

Eager rewriting-based programming languages such as Lisp, OBJ*, CafeOBJ,
ELAN, or Maude evaluate expressions by innermost rewriting. Since nonter-
mination is a frequent problem of innermost reduction, syntactic annotations
have been used in OBJ-like programming languages—OBJ2 [FGJM85], OBJ3
[GWM+00], CafeOBJ [FN97], and Maude [CDE+07]—to (hopefully) avoid non-
termination. These annotations can also improve the efficiency of computa-
tions (e.g., by reducing the number of attempted matchings or avoiding useless
or duplicated reductions) [Eke00]. Syntactic annotations have been generally
specified as sequences of integers associated to function symbols called local
strategies. Local strategies are used in OBJ programs for guiding the evaluation
strategy (abbr. E-strategy): When considering a function call f(t1, . . . , tk), only
the arguments whose indices are present as positive integers in the local strategy
for f are evaluated (following the specified order), and when 0 is encountered,
then the evaluation at the root position is attempted.

Example 1 Consider the following Maude (functional1) modules NAT and
LIST-NAT defining sorts Nat and LNat with symbols 0 and s for expressing nat-
ural numbers, and symbols nil (the empty list) and . for the construction of
lists. Note that Maude gives a default strategy (1 2 · · · ar(f) 0) to each symbol
f , which is not given an explicit strategy. The reserved word protecting can
be understood as module reuse. In this paper, infix symbols such as . , are
right-associative, and thus written without extra parenthesis.

fmod NAT is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
ops _+_ _-_ _*_ : Nat Nat -> Nat .
op _^2 : Nat -> Nat .
vars X Y : Nat .
eq 0 + Y = Y . eq 0 - Y = 0 .
eq s(X) + Y = s(X + Y) . eq s(X) - 0 = s(X) .
eq 0 * Y = 0 . eq s(X) - s(Y) = X - Y .
eq s(X) * Y = Y + (X * Y) . eq X ^2 = X * X .

endfm

fmod LIST-NAT is
protecting NAT .
sort LNat .
op nil : -> LNat .
op _._ : Nat LNat -> LNat [strat (1 0)] .

1In Maude, local strategies are only considered for functional modules, where termination
and confluence are assumed. In this paper, we are only interested in termination of the
evaluation relation, since we adopt a non-deterministic evaluation strategy and confluence is
not necessary.

2

op from : Nat -> LNat .
op take : Nat LNat -> LNat .
vars X N : Nat . var XS : LNat .
eq from(X) = X . from(s(X)) .
eq take(0, XS) = nil .
eq take(s(N), X . XS) = X . take(N,XS) .

endfm

The strategy (1 0) for symbol . guarantees that the resulting program is ter-
minating2. �

Unfortunately the absence of some indices in the local strategies can jeopar-
dize some computational properties, e.g. the ability to compute normal forms.

Example 2 The evaluation of the term take(s(0),from(0)) w.r.t. the pro-
gram in Example 1 using Maude3 yields the following:

Maude> red take(s(0),from(0)) .
result Nat: 0 . take(0,from(s(0)))

Due to the absence of natural number 2 in the strategy (1 0) for the symbol
. , the contraction of the redex take(0,from(s(0))) is not possible and the

evaluation stops. �

The problems related to the correctness and completeness of computations
when (only) positive annotations have been used are discussed in [AEL04,
Luc01a, NO01, OF00]. A number of solutions have been proposed:

1. Perform a layered normalization: when the evaluation stops due to the
replacement restrictions imposed by the strategy annotations, it is enabled
again over certain inner parts of the resulting term until a normal form is
reached (if there exists any) [Luc02a];

2. Transform the program so that values, i.e., constructor ground terms, can
be computed [AEL04]; and

3. Extend strategy annotations with negative indices, which enable some
extra, on-demand evaluation [NO01, OF00].

For the term “0 . take(0,from(s(0)))” of Example 2, solutions 1 and 2 ac-
complish the rewriting of the subterm take(0,from(s(0))) into nil, yielding
the final term “0 . nil”.

2The interested reader can prove the termination of this specification automatically, e.g. by
using the tool MU-TERM available at http://www.dsic.upv.es/∼slucas/csr/termination/
muterm.

3We use the Maude interpreter version 2.1.1 [CDE+07] available at http://maude.cs.uiuc.
edu.

3

http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu

In this paper, we show how solution 3 above, based on negative (or on-
demand) strategy annotations, can improve program properties such as com-
pleteness or termination as compared to using (only) positive strategy annota-
tions. We formalize a well-defined computational model for such negative an-
notations that outperforms previous proposals [OF00, NO01, FKW00, Luc01a].
Note that such a formalization is a difficult error-prone task, as evidenced by the
many mistakes and deficiencies of previous proposals. Before going into details,
let us motivate in the following subsections how negative indices can improve
Maude strategy annotations.

1.1 Motivation for on-demand evaluation

1.1.1 Using negative indices in strategy annotations

Let us consider a concrete example where negative (on-demand) annotations
allow us to achieve correctness and completeness, whereas other techniques that
only use positive annotations do not.

Example 3 (Example 1 cont’d) The following modules FRAC, LIST-FRAC, and
PI implement the well-known infinite series expansion to approximate π/4:

π

4
= 1− 1

3
+

1
5
− 1

7
+ . . .

fmod FRAC is
protecting NAT .
sort IntFrac .
op 1/_ : Nat -> IntFrac . op -1/_ : Nat -> IntFrac .

endfm

fmod LIST-FRAC is
protecting FRAC .
sort LIntFrac .
op nil : -> LIntFrac .
op _._ : IntFrac LIntFrac -> LIntFrac .

endfm

fmod PI is
protecting LIST-NAT .
protecting LIST-FRAC .
op pi : Nat -> LIntFrac .
ops seriesPos seriesNeg : Nat LNat -> LIntFrac .
vars N X Y : Nat . var XS : LNat .
eq seriesPos(0,XS) = nil .
eq seriesPos(s(N),X . Y . XS) = 1/ Y . seriesNeg(N,XS) .
eq seriesNeg(0,XS) = nil .
eq seriesNeg(s(N),X . Y . XS) = -1/ Y . seriesPos(N,XS) .
eq pi(N) = seriesPos(N,from(0)) .

endfm

4

The evaluation of the term pi(s(s(0))) should yield the approximation 1 − 1
3

to π/4, denoted by the term “ 1/ s(0) . -1/ s(s(s(0))) . nil”. However,
we get:

Maude> red pi(s(s(0))) .
result LIntFrac: seriesPos(s(s(0)), 0 . from(s(0)))

The problem is that the absence of index 2 in the strategy for symbol . of sort
LNat in Example 1 disallows the evaluation of subterm “ from(s(0))” in the
term “ seriesPos(s(s(0)), 0 . from(s(0)))”, thus disabling the application
of the second equation4 of seriesPos. We can informally say that a rewriting
step on subterm “ from(s(0))” in “ seriesPos(s(s(0)), 0 . from(s(0)))”
is demanded by the above equation because the root symbol from differs from
the root symbol . at the same position in the left-hand side of the equation.
This demand–driven evaluation mode, which would be specified by including the
index −2 in the strategy (1 −2 0) for symbol . , triggers the following rewrite
step5:

seriesPos(s(s(0)), 0 . from(s(0)))
→ seriesPos(s(s(0)), 0 . s(0) . from(s(s(0))))

Then, the second equation of seriesPos can be applied, since no inner subterm
is demanded by the equation (according to the previous informal definition):

seriesPos(s(s(0)), 0 . s(0) . from(s(s(0))))

→ 1/s(0) . seriesNeg(s(0), from(s(s(0))))

Note that solutions 1 or 2 mentioned above cannot solve this problem, since they
can reduce inner non-reduced subterms but can never reduce the whole term at
the top. Indeed, both solutions 1 and 2 will enter a loop when trying to reduce
every new occurrence of the symbol from (assuming the original strategy (1 0)
for symbol .):

seriesPos(s(s(0)), 0 . from(s(0)))
→ seriesPos(s(s(0)), 0 . s(0) . from(s(s(0))))
→ seriesPos(s(s(0)), 0 . s(0) . s(s(0)) . from(s(s(s(0)))))
→ · · ·

�

1.1.2 Problems with previous on-demand evaluation strategies

As a solution to the incompleteness problem under positive strategy annotations,
the rather intuitive notion of on-demand evaluation has been investigated in
this context (see [AL02] for a survey on demandness in the general context
of programming languages). In [NO01, OF00], negative indices are proposed
to indicate those arguments to be evaluated only ‘on-demand’. However, the
on-demand E-strategy of [NO01, OF00] entails a number of shortages that we
discuss in the following example.

4We use the words rule and equation both in the sense of a rewrite rule.
5We underline the redex reduced at each evaluation step.

5

Example 4 Consider the following program encoding the length function for
lists which uses an auxiliary symbol length’ that does not allow any reduction
on its argument:

fmod LIST-NAT-LENGTH is
protecting LIST-NAT .
op length : LNat -> Nat [strat (-1 0)] .
op length’ : LNat -> Nat [strat (0)] .
var X : Nat . var XS : LNat .
eq length(XS) = length’(XS) .
eq length’(nil) = 0 .
eq length’(X . XS) = s(length’(XS)) .

endfm

The term length(from(0)) is rewritten (in one step) to the term
length’(from(0)). No evaluation is demanded on the argument of length
for enabling this step, since the equation for length does have a variable at its
argument position, and no further evaluation on length’(from(0)) should be
performed due to the absence of indices 1 and −1 in the local strategy (0) of
length’. However, the strategy (-1 0) of function length is treated in such a
way by the models of [OF00, NO01] that the on-demand evaluation of the term
length(from(0)) yields an infinite sequence (whether6 we use the operational
model in [OF00] or whether we use [NO01]). For instance, CafeOBJ7 ends with
a stack overflow (using CafeOBJ’s syntax to represent the program):

LIST-NAT-LENGTH> red length(from(0)) .
Error: Stack overflow (signal 1000)

This is because the negative annotations are implemented as marks on terms
that are propagated through the evaluation and can (inappropriately) initiate
reductions later on; see Example 11 below for further details. In our approach,
we substitute such marks on symbols by a list of already processed annotations,
local to each symbol. �

Other proposals in the literature that use on-demand strategy annotations are
lazy rewriting (LR) [FKW00] and on-demand rewriting (ODR) [Luc01a], though
they are not expressed by using negative annotations. Actually, the inspiration
for the (positive) local strategies of OBJ comes from lazy rewriting (LR), which
uses a strategy to specify the eager evaluation of function arguments, whereas
the default strategy is lazy (or on-demand). On-demand rewriting (ODR) is the
natural extension of context-sensitive rewriting [Luc98] to deal with on-demand
strategy annotations. We demonstrate that the on-demand evaluation strategy
(ODE) introduced in this paper outperforms also these two approaches.

6Actually, the operational models in [OF00] and [NO01] differ and deliver different com-
putations, see Example 12 below.

7Negative annotations are (syntactically) accepted in current OBJ implementations, namely
OBJ3, Maude, and CafeOBJ. However, they have no effect on the computations of OBJ3 and
Maude whereas CafeOBJ manages negative annotations using the model of [OF00].

6

1.2 Plan of the paper

After some preliminaries in Section 2, in Section 3 we recall the previous pro-
posals for dealing with on-demand strategy annotations in OBJ-like languages,
namely the on-demand E-strategy [OF00, NO01], and discuss some drawbacks
regarding the management of demandedness. These previous proposals will
guide the definition in Section 4 of our on-demand evaluation strategy (ODE),
which handles demandedness in the right way. We think it is useful to mo-
tivate our approach by discussing two previous proposals since the involved
problems are quite subtle and have led to various erroneous decisions in the
past. In Section 5, we prove some computational properties of ODE regard-
ing its ability to compute head-normal forms and normal forms. In Section 6,
we compare our reduction model to three representative previous approaches:
(i) the on-demand E-strategy, (ii) lazy rewriting (LR), and (iii) on-demand
rewriting (ODR). Since one of the main purposes of strategy annotations is to
guarantee and prove termination, Section 7 investigates how to formally prove
termination of programs that use our computational model for implementing
negative strategy annotations. In order to prove the practicality of our ideas,
we present in Section 8 two interpreters of the on-demand evaluation strategy
(ODE) together with some encouraging experiments. Section 9 concludes and
summarizes our contributions. The proofs of all technical results are included
in Appendix A.

This paper is a substantially extended and improved version of [AEGL02]. In
particular, the definition of the on-demand evaluation strategy (ODE) has been
improved (it is more restrictive than the previous one while preserving the same
properties), and Sections 6.1 and 6.3 that compare ODE with the on-demand E-
strategy and with the on-demand rewriting (ODR), have been added. Moreover,
in Section 8, two implementations of the on-demand evaluation strategy (ODE)
are benchmarked and compared with different OBJ-family systems (dealing with
negative annotations or not).

2 Preliminaries

In this paper, we follow the standard framework of term rewriting (see [BN98,
TeR03]).

Given a set A, P(A) denotes the set of all subsets of A. Let →⊆ A× A be
an arbitrary binary relation on a set A. We denote the reflexive closure of → by
→=, its transitive closure by →+ and its reflexive and transitive closure by →∗.
An element a ∈ A is an →-normal form, if there exists no b such that a → b.
We say that b is an →-normal form of a (written a →! b), if b is an →-normal
form and a →∗ b. We say that → is terminating iff there is no infinite sequence
a1 → a2 → a3 · · ·. We say that → is confluent if, for every a, b, c ∈ A, whenever
a →∗ b and a →∗ c, there exists d ∈ A such that b →∗ d and c →∗ d.

Throughout the paper, X denotes a countable set of variables and F denotes
a signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed arity

7

given by a function ar : F → N. We denote the set of terms built from F and
X by T (F ,X). Var(t) is the set of variables in t. A term is said to be linear if
it has no multiple occurrences of a single variable. A k-tuple t1, . . . , tk of terms
is written t. The number k of elements of the tuple t will be clear from the
context.

We will extensively use labeled terms in this paper: Given a signature F
and a set of labels L, F ×L (or FL) is a new signature of labeled symbols. The
labeling of a symbol f ∈ F for a given λ ∈ L is denoted by, e.g., fλ or fλ, rather
than 〈f, λ〉; the arity of fλ or fλ is the arity of f .

A substitution is a mapping σ : X → T (F ,X) which homomorphically ex-
tends to a mapping σ : T (F ,X) → T (F ,X). The substitution σ is usually
different from the identity substitution id, i.e., ∀x ∈ X : id(x) = x, for a finite
subset Dom(σ) ⊆ X , called the domain of σ.

Terms are viewed as labeled trees in the usual way. Positions p, q, . . . are
represented by sequences of positive natural numbers used to address subterms
of t. We denote the empty sequence by Λ. By Pos(t) we denote the set of all
positions of a term t. The set of positions of all non-variable symbols in t is
denoted by PosF (t), and PosX (t) is the set of all positions of variables in t.
Given positions p, q, we denote their concatenation by p.q. Positions are ordered
by the standard prefix order ≤. Given a set of positions P and a partial order
≤, minimal≤(P) is the set of minimal positions of P w.r.t. order ≤. If ≤ is
a total order, then min≤(P) (resp. max≤(P)) is the smallest (resp. greatest)
position of P w.r.t. order ≤. For p ∈ Pos(t), the subterm at position p of t is
denoted as t|p, and t[s]p is the term t with the subterm at position p replaced
by s. The symbol labeling the root of t is denoted by root(t).

A rewrite rule is an ordered pair (l, r), written l → r, with l, r ∈ T (F ,X),
l 6∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule is l and r is
the right-hand side (rhs). A term rewriting system (TRS) is a pair R = (F , R)
where R is a set of rewrite rules. L(R) denotes the set of lhs’s of R. A TRS R
is left-linear (LL) if for all l ∈ L(R), l is a linear term. Given R = (F , R), we
take F as the disjoint union F = C] D of symbols c ∈ C, called constructors,
and symbols f ∈ D, called defined functions, where D = {root(l) | l → r ∈ R}
and C = F−D. A TRS R = (C] D, R) is a constructor system (CS) if for all
f(l1, . . . , lk) → r ∈ R, li ∈ T (C,X), for 1 ≤ i ≤ k.

An instance σ(l) of a lhs l ∈ L(R) by any substitution σ is called a redex. A
term t ∈ T (F ,X) rewrites to s (at position p), written t

p→R s (or just t → s),
if t|p = σ(l) and s = t[σ(r)]p, for l → r ∈ R, p ∈ PosF (t), and substitution σ.
A term is a head-normal form if it does not reduce (in finitely many steps) to a
redex.

In this paper, we do not consider AC symbols (neither rewriting modulo any
equational theory) nor TRSs that are not left-linear or are not constructor sys-
tems, though they are supported by many of the OBJ-like languages. Strategy
annotations are explicitly prohibited for AC symbols (see [FR99, GM04]) and
the completeness of evaluation with positive (and negative) strategy annotations
is known to hold only for left-linear and constructor systems (see [Luc02a]).

8

3 Rewriting with strategy annotations

In this section, we recall the current proposals for dealing with positive and nega-
tive (on-demand) strategy annotations in OBJ-like languages. The acquaintance
gained from the discussion will guide the definition of our computational model
in Section 4 below.

A local strategy for a k-ary symbol f ∈ F is a sequence ϕ(f) of integers taken
from {−k, . . . ,−1, 0, 1, . . . , k} which are given in parentheses and put together
by juxtaposition. The empty list is denoted by nil. We sometimes write i : L
instead of (i L) to denote a list composed of an integer i and the rest of the list
L. We write abs(i) for the absolute value of an integer i. Note that repeated
indices are allowed in local strategies as well as indices with the same absolute
value (i −i), e.g. ϕ(f) = (0 1 −1 1 0 −1). Let LZ be the set of all lists
consisting of integers and LZ

n be the set of all lists of integers whose absolute
values do not exceed n ∈ N. Similarly, LN is the set of all lists consisting of
naturals and LN

n its restriction to naturals that do not exceed n ∈ N. We define
an order v between sequences of integers as follows: L v L′ if L is embedded
into L′; formally: (i) nil v L, for every L, (ii) (i1 i2 · · · im) v (j1 j2 · · · jn) if
i1 = j1 and (i2 · · · im) v (j2 · · · jn), and (iii) (i1 i2 · · · im) v (j1 j2 · · · jn)
if i1 6= j1 and (i1 i2 · · · im) v (j2 · · · jn). For instance, (1 4) v (2 1 3 4) but
(4 1) 6v (2 1 3 4).

A mapping ϕ that associates a local strategy ϕ(f) to every f ∈ F is called
an E-strategy map [Nag99, NO01, OF00]. In this paper, we assume that the
default strategy (i.e., when no explicit strategy is provided) given to a symbol f
is (1 2 · · · ar(f) 0). For simplification, the default strategy given to a constant
c (i.e., ar(c) = 0) is nil if c is a constructor symbol, and (0) if c is a defined
symbol. The extension of an order v to a strategy map is defined as follows:
ϕ v ϕ′ if for all f ∈ F , ϕ(f) v ϕ′(f). In other words, ϕ v ϕ′ means that, for
all symbols f ∈ F , ϕ(f) is embedded into ϕ′(f).

The semantics of rewriting under a given E-strategy map ϕ is usually given
by means of a mapping evalϕ : T (F ,X) → P(T (F ,X)) from terms to the set
of its computed values (technically E-normal forms).

3.1 Rewriting with positive E-strategy maps

In [Nag99], Nagaya describes the mapping evalNϕ for positive E-strategy maps
ϕ (i.e., E-strategy maps where negative indices are not allowed) by using a
reduction relation on pairs 〈t, p〉 of labeled terms t and positions p. Given an
E-strategy map ϕ for F , we use the signature8 FN

ϕ = {fL | f ∈ F , L ∈ LN
ar(f),

and L v ϕ(f)} and labeled variables XN
ϕ = {xnil | x ∈ X}. An E-strategy map

ϕ for F is extended to a mapping from T (F ,X) to T (FN
ϕ ,XN

ϕ) by introducing

8Note that Nagaya (as well as Nakamura and Ogata) use FLN and XLN instead of FN
ϕ and

XN
ϕ (or FZ

ϕ and XZ
ϕ), i.e., they do not consider the restriction to L v ϕ(f) as we do. Using

terms over FN
ϕ (FZ

ϕ) does not cause loss of generality and it actually provides a more accurate
framework for formalizing and studying the strategy, since these terms are the only class of
terms involved in the computations.

9

.

||yy
yy

$$HHH
HH

0 from

��
s

��
0

Figure 1: The positive part (full frame) of the term 0 . from(s(0)) according
to the term with strategy annotations 0nil .(1 0) from(1 0)(s(1 0)(0nil)).

the local strategy associated to each symbol as a subscript of the symbol. The
mapping erase : T (FN

ϕ ,XN
ϕ) → T (F ,X) removes labels from symbols in the

obvious way. We define the set of positive positions of a term s ∈ T (FN
ϕ ,XN

ϕ)
as PosN

P (s) = {Λ} ∪ {i.PosN
P (s|i) | root(s) = fL, i ∈ L, and i > 0}.

Example 5 For the OBJ program and the E-strategy map ϕ of Example 1, we
have

s = ϕ(0 . from(0)) = 0nil .(1 0) from(1 0)(0nil).

The annotated term is depicted in Figure 1, where the symbols at positive posi-
tions PosN

P (s) are framed. �

Definition 1 [Nag99, Definition 6.1.3] Given a TRS R = (F , R) and a pos-
itive E-strategy map ϕ for F , evalNϕ : T (F ,X) → P(T (F ,X)) is defined as

evalNϕ(t) = {erase(s) ∈ T (F ,X) | 〈ϕ(t), Λ〉 N→!
ϕ〈s, Λ〉}. The binary relation

N→ϕ on T (FN
ϕ ,XN

ϕ) × N∗
+ is defined as follows: 〈t, p〉 N→ϕ〈s, q〉 if and only if

p ∈ PosN
P (t) and either

1. root(t|p) = fnil, s = t, and p = q.i for some i;

2. t|p = fi:L(t1, . . . , tk), with i > 0, s = t[fL(t1, . . . , tk)]p, and q = p.i;

3. t|p = f0:L(t1, . . . , tk), erase(t|p) is not a redex, s = t[fL(t1, . . . , tk)]p, and
q = p; or

4. t|p = f0:L(t1, . . . , tk) = σ(l′), erase(l′) = l, s = t[σ(ϕ(r))]p, and q = p for
some l → r ∈ R and substitution σ. �

Intuitively, an innermost evaluation is performed, which is restricted to (and
follows the order of) those indices included in the E-strategy map. This means
that if a positive index i > 0 is found in the list labeling the symbol at t|p, then
the index is removed from the list, the “target position” is moved from p to p.i,
and the subterm t|p.i is considered next. If 0 is found, then the evaluation of
t|p is attempted: if possible, a rewriting step is performed (note that annotated

10

〈 from(1 0)(0nil), Λ 〉 N→ϕ (2) 〈 from(0)(0nil), 1 〉
N→ϕ (1) 〈 from(0)(0nil), Λ 〉
N→ϕ (4) 〈 0nil .(1 0) from(1 0)(s(1 0)(0nil)), Λ 〉
N→ϕ (2) 〈 0nil .(0) from(1 0)(s(1 0)(0nil)), 1 〉
N→ϕ (1) 〈 0nil .(0) from(1 0)(s(1 0)(0nil)), Λ 〉
N→ϕ (3) 〈 0nil .nil from(1 0)(s(1 0)(0nil)), Λ 〉

Figure 2: Execution of term from(0) by Definition 1.

subterms are propagated through the matching substitution); otherwise, the 0
is removed from the list. In both cases, the evaluation continues at the same
position p.

Example 6 Consider the OBJ program of Example 1. Note that this pro-
gram has only positive annotations. The evaluation of term from(0) produces
the sequence shown in Figure 2 according to Definition 1 (for each step, we
indicate which case of Definition 1 has been considered, frame the index in-
volved, and underline the redex reduced, if any). The evaluation stops at term
“ 0 . from(s(0))”, since no further evaluation step can be performed. Recall
that Figure 1 shows the term “ 0 . from(s(0))” with the symbols at positive
(or reducible) positions framed. �

3.2 The on-demand E-strategy

Ogata and Futatsugi [OF00] proposed the use of negative integers in local strate-
gies. Following Nagaya’s style of description, Nakamura and Ogata [NO01] have
formalized the corresponding evaluation mapping evalZϕ by using a reduction re-
lation. We recall here the latter one since it is more abstract and independent
of the CafeOBJ programming language.

Given an E-strategy map ϕ, we use the signature FZ
ϕ = {f b

L | f ∈ F , L ∈
LZ

ar(f), L v ϕ(f), and b ∈ {0, 1}} and labeled variables X Z
ϕ = {x0

nil | x ∈ X}. An
on-demand flag b = 1 indicates that the term may be reduced if demanded. An
E-strategy map ϕ for F is extended to a mapping from T (F ,X) to T (FZ

ϕ ,X Z
ϕ)

as follows:

ϕ(t) =
{

x0
nil if t = x ∈ X

f0
ϕ(f)(ϕ(t1), . . . , ϕ(tk)) if t = f(t1, . . . , tk)

Given a term s ∈ T (FZ
ϕ ,X Z

ϕ), we define the set of its positive positions as
PosZ

P (s) = {Λ}∪{i.PosZ
P (s|i) | root(s) = f b

L, i ∈ L, and i > 0}, the set of its ac-
tive positions as PosZ

A(s) = {Λ}∪{abs(i).PosZ
A(s|i) | root(s) = f b

L and either b =

11

length

��_ _ _�
�

�
�

_ _ _from

��__�
�

�
�__0

length’

��
from

��
0

Figure 3: The positive and negative positions (full and dashed frame, respec-
tively) of terms length0

(−1 0)(from
0
(1 0)(0

0
nil)) and length’0

(0)(from
0
(1 0)(0

0
nil)).

1, i ∈ {1, . . . , ar(f)} or i ∈ L, i 6= 0}, and the set of its on-demand (or negative)
positions as PosZ

N (s) = PosZ
A(s)− PosZ

P (s).

Example 7 For the OBJ program and the map ϕ of Example 4, we have

s1 = ϕ(length(from(0))) = length0
(−1 0)(from

0
(1 0)(0

0
nil)),

and
s2 = ϕ(length’(from(0))) = length’0

(0)(from
0
(1 0)(0

0
nil)).

Figure 3 shows them with the symbols at positive positions PosZ
P (s1) and PosZ

P (s2),
and on-demand positions PosZ

N (s1) and PosZ
N (s2) framed with a full or dashed

line, respectively. �

The mapping erase : T (FZ
ϕ ,X Z

ϕ) → T (F ,X) removes labels from symbols in
the obvious way. The (partial) function flag : T (FZ

ϕ ,X Z
ϕ) × N∗

+ → {0, 1} re-
turns the flag of the function symbol at a position of the term: flag(t, p) =
b if root(t|p) = f b

L. The map up : T (FZ
ϕ ,X Z

ϕ) → T (FZ
ϕ ,X Z

ϕ) (resp. dn :
T (FZ

ϕ ,X Z
ϕ) → T (FZ

ϕ ,X Z
ϕ)) switches on (resp. switches off) the on-demand flag

of each function symbol in a term simply by applying b = 1 (resp. b = 0),
i.e. up(x0

nil) = dn(x0
nil) = x0

nil, up(f b
L(t1, . . . , tk)) = f1

L(up(t1), . . . , up(tk)), and
dn(f b

L(t1, . . . , tk)) = f0
L(dn(t1), . . . , dn(tk)).

Example 8 For the OBJ program and the map ϕ of Example 4, we have

length0
(−1 0)(up(from0

(1 0)(0
0
nil))) = length0

(−1 0)(from
1
(1 0)(0

1
nil))

and

up(length0
(−1 0)(from

0
(1 0)(0

0
nil))) = length1

(−1 0)(from
1
(1 0)(0

1
nil)).

�

In [NO01], the matching of a term t with the left-hand side l of a rule is
attempted following the top-down and left-to-right order. Let

Pos6=(t, l) = {p ∈ PosF (t) ∩ PosF (l) | root(l|p) 6= root(t|p)}

12

be the set of (common) positions of non-variable disagreeing symbols of terms t
and l. Note that variables in both terms t and l are treated as constants by the
operator Pos6=, and thus no substitution is actually computed. Therefore it may
happen that Pos6=(t, l) = ∅ but t is not an instance of l due to some repeated
variable in l. Then, the map dfl : T (F ,X) → N∗

+∪{>} returns the first position
where the term t and the lhs l differ (on some non-variable positions of the lhs)
or > if each function symbol of the term coincides with l:

dfl(t) =
{

min≤lex
(Pos6=(t, l)) if Pos6=(t, l) 6= ∅

> otherwise

where ≤lex is the lexicographic order on positions: p ≤lex q iff p ≤ q or p =
w.i.p′, q = w.j.q′, i, j ∈ N, and i < j.

Example 9 For the OBJ program and the map ϕ of Example 4, we have l1 =
length(XS), l2 = length’(nil) and l3 = length’(X . XS) with

dfl1(length(from(0))) = > dfl2(length(from(0))) = Λ

dfl3(length(from(0))) = Λ

and
dfl1(length’(from(0))) = Λ dfl2(length’(from(0))) = 1

dfl3(length’(from(0))) = 1

�

Similarly, given a TRS R, the map DFR : T (F ,X) → N∗
+ ∪{>} returns the

first position (w.r.t. the inverse of the lexicographic order, i.e., right-to-left and
bottom-up) where the term differs w.r.t. all lhs’s:

DFR(t) =
{
> if dfl(t) = > for some l → r ∈ R
max≤lex

{dfl(t) | l → r ∈ R} otherwise

Example 10 (Example 9 cont’d) We have DFR(length(from(0))) = >, since
dfl1(length(from(0))) = >, and DFR(length’(from(0))) = max≤lex

({Λ, 1}) =
1. �

Definition 2 [NO01, Definition 4.4] Given a TRS R = (F , R) and an ar-
bitrary E-strategy map ϕ for F , evalZϕ : T (F ,X) → P(T (F ,X)) is defined

as evalZϕ(t) = {erase(s) ∈ T (F ,X) | 〈ϕ(t), Λ〉 Z→!
ϕ〈s, Λ〉}. The binary relation

Z→ϕ on T (FZ
ϕ ,X Z

ϕ) × N∗
+ is defined as follows: 〈t, p〉 Z→ϕ〈s, q〉 if and only if

p ∈ PosZ
A(t) and either

1. root(t|p) = f b
nil, s = t, and p = q.i for some i;

2. t|p = f b
i:L(t1, . . . , tk), i > 0, s = t[f b

L(t1, . . . , tk)]p, and q = p.i;

3. t|p = f b
−i:L(t1, . . . , tk), i > 0, s = t[f b

L(t1, . . . , up(ti), . . . , tk)]p, and q = p;

13

4. t|p = f b
0:L(t1, . . . , tk), s = t[t′]p, q = p where t′ is a term such that

(a) t′ = θ(ϕ(r)) if DFR(erase(t|p)) = >, t|p = θ(l′), erase(l′) = l, and
l → r ∈ R;

(b) t′ = f b
L(t1, . . . , tk) if either (i) DFR(erase(t|p)) = > and erase(t|p)

is not a redex, (ii) DFR(erase(t|p)) = Λ, or (iii) DFR(erase(t|p)) =
p′ 6= Λ and flag(t, p.p′) = 0;

(c) t′ = f b
L(t1, . . . , ti[up(s)]p′′ , . . . , tk) if DFR(erase(t|p)) = p′ = i.p′′,

flag(t, p.p′) = 1, 〈dn(t|p.p′), Λ〉 Z→!
ϕ〈s, Λ〉, and DFR(erase(t|p[s]p′)) =

p′;

(d) t′ = t|p[up(s)]p′ if DFR(erase(t|p)) = p′ 6= Λ, flag(t, p.p′) = 1,

〈dn(t|p.p′), Λ〉 Z→!
ϕ〈s, Λ〉, and either p′ <lex DFR(erase(t|p[s]p′)) or

DFR(erase(t|p[s]p′)) = >. �

Case 1 means that no more annotations are provided and the evaluation is
completed. In case 2, a positive argument index is found and the evaluation
proceeds by selecting the subterm at that argument. In case 3, the subterm at
the argument indicated by the (absolute value of the) negative index is com-
pletely marked with on-demand flags. Case 4 considers the attempt to match
the term against the left-hand sides of the program rules. Case 4(a) applies if
the considered (unlabeled) subterm is a redex (which is, then, contracted). If
the subterm is not a redex, cases 4(b), 4(c) and 4(d) are considered, possibly
involving some evaluation steps on demanded positions. The selected demanded
position for term t (w.r.t. program R) is denoted as DFR(t) (eventually, sym-
bol > is returned if t matches the left-hand side of some rule of the TRS).
According to DFR(t), case 4(b) applies if no demanded evaluation is allowed
(or required). Cases 4(c) and 4(d) apply if on-demand evaluation of the sub-
term t|p.p′ is required, i.e., DFR(t|p) = p′. In both cases, the evaluation is
attempted; if it finishes, then the evaluation of t|p continues according to the
computed value. In case 4(c), after the evaluation of subterm t|p.p′ , position
p.p′ is still demanded, which implies that more evaluation is necessary but un-
feasible, and thus the index 0 is removed. In case 4(d), after the evaluation of
subterm t|p.p′ , position p.p′ is no longer demanded, and thus more evaluation is
needed at another (possibly demanded) position.

3.2.1 Unexpected behavior of the on-demand E-strategy

In the following example, we illustrate in detail why the notion of demandedness
of [NO01], given in Definition 2, does not work for Example 4.

Example 11 (Example 4 cont’d) The on-demand evaluation of term
length(from(0)) following Definition 2 is shown in Figure 4 (at each step,
we indicate which case of Definition 2 has been considered, frame the indices
involved in such steps, and underline the selected redex, if any). In the first re-
duction step, annotation −1 of symbol length is consumed according to case

14

3 of Definition 2 and, thus, the subterm from0
(1 0)(0

0
nil) is marked with the

on-demand (superscript) flag, i.e., up(from0
(1 0)(0

0
nil)) = from1

(1 0)(0
1
nil). An-

notation 0 of length is considered and the whole term is rewritten using rule
length(Z) = length’(Z), according to case 4(a) of Definition 2. Then, anno-
tation 0 of length’ is processed and the whole term length’(from(0)) is not
a redex, thus an on-demand position is sought. Here, the function DFR, which
calculates demanded positions, returns position 1 as shown in Example 10. Since
this position is marked with the on-demand flag, case 4(c) or 4(d) is applied and
the evaluation of term from(0) at position 1 is initiated (using a different rewrit-
ing subsequence). The term from(0) is evaluated into “ 0 . from(s(0))” and
the term “ length’(0 . from(s(0)))” is re-evaluated. The cycle of demand-
ing the evaluation of the first argument of length’ is repeated again and again.

The point is that, within the labeled term length’0
(0)(from

1
(1 0)(0

1
nil)), the

strategy does not recognize that the (activated) on-demand flag on symbol from
does not stem from the local annotation for length’. That is, the strategy
does not record the origin of on-demand flags. Hence, it (unnecessarily) eval-
uates the argument of length’. Moreover, at this point, the evaluation does
not correspond to the ‘intended’ meaning of the strategy annotations that the
programmer may have in mind (since the specific annotation (0) for length’
forbids reductions on its argument). �

The problem is that the on-demand E-strategy does not keep track of the origin
of the on-demand flags, i.e., the strategy does not recognize whether an on-
demand flag stems from the annotations of symbols. This could be fixed either
by resetting the on-demand flags w.r.t. the current annotations of symbols after
each rewriting step or by keeping track of the origin of on-demand flags. In this
paper, we solve the problem by keeping a sort of memory of each processed
index, i.e., by keeping track of the origin of on-demand marks.

3.2.2 Differences between the two models of the on-demand E–
strategy

The two existing definitions for the on-demand E-strategy (namely Nakamura
and Ogata’s [NO01] and Ogata and Futatsugi’s [OF00]) sensibly differ. For
instance, Nakamura and Ogata select a demanded position for evaluating a
given term t by taking the maximum (according to the lexicographic order on
positions) of all positions demanded on t by each rule of the TRS. However,
in the selection of demanded positions of Ogata and Futatsugi’s definition, the
order of the rules in the program is extremely important.

Example 12 Consider the following module with the function greater than or
equal to between natural numbers, denoted by geq, and the (auxiliary) non-
terminating9 function foo:

fmod NAT-FOO is
9Note that the function foo may be replaced by a terminating but computationally expen-

sive expression and, thus, we use a non-terminating function only for motivational purposes.

15

〈 length0
(-1 0)

(from0
(1 0)(0

0
nil)), Λ 〉

Z→ϕ (3) 〈 length
0
(0)

(from1
(1 0)(0

1
nil)), Λ 〉

Z→ϕ (4a) 〈 length’
0
(0)

(from1
(1 0)(0

1
nil)), Λ 〉∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈 from0
(1 0)

(00
nil), Λ 〉

Z→ϕ (2) 〈 from
0
(0)(0

0
nil

), 1 〉
Z→ϕ (1) 〈 from

0
(0)

(00
nil), Λ 〉

Z→ϕ (4a) 〈 0
0
nil .

0
(1 0)

from0
(1 0)(s

0
(1 0)(0

0
nil)), Λ 〉

Z→ϕ (2) 〈 0
0
nil

.0
(0) from

0
(1 0)(s

0
(1 0)(0

0
nil)), 1 〉

Z→ϕ (1) 〈 0
0
nil .

0
(0)

from0
(1 0)(s

0
(1 0)(0

0
nil)), Λ 〉

Z→ϕ (4b) 〈 0
0
nil .

0
nil from

0
(1 0)(s

0
(1 0)(0

0
nil)), Λ 〉

Z→ϕ (4d) 〈 length’
0
(0)

(01
nil .

1
nil from

1
(1 0)(s

1
(1 0)(0

1
nil))), Λ 〉

Z→ϕ (4a) 〈 s
0
(1 0)

(length’0
(0)(from

1
(1 0)(s

1
(1 0)(0

1
nil)))), Λ 〉

Z→ϕ (2) 〈 s
0
(0)(length’

0
(0)

(from1
(1 0)(s

1
(1 0)(0

1
nil)))), 1 〉

Z→ϕ · · ·

Figure 4: Execution of term length(from(0)) by Definition 2.

protecting NAT .
op foo : -> Nat .
eq foo = foo .

endfm
fmod NAT-GEQ is
protecting NAT .
protecting BOOL .
protecting NAT-FOO .
vars X Y : Nat .
op geq : Nat Nat -> Bool [strat (-2 -1 0)] .
eq geq(s(X),s(Y)) = geq(X,Y) .
eq geq(X,0) = true .

endfm

Consider the term geq(foo,0 + 0). According to Ogata and Futatsugi’s defini-
tion of the on-demand E-strategy, an infinite reduction sequence is started, since
position 1 is the leftmost demanded position in the first rule of the program, and
thus it is selected, which triggers a non-terminating evaluation sequence. For
instance, CafeOBJ ends with a stack overflow:

16

NAT-GEQ> red geq(foo,0 + 0) .
Error: Stack overflow (signal 1000)

However, Nakamura and Ogata’s definition of on-demand E-strategy (Definition
2) selects position 2 as demanded (according to the inverse of the lexicographic
order) and, after the evaluation, the second rule is applied, thus obtaining true
(see case 4(d) in Definition 2). Note that exactly the inverse behavior can be
obtained by adding equation10 “ eq geq(0,X) = true .” before the other two
and using term geq(0 + 0,foo), i.e., Nakamura and Ogata’s definition does
not terminate whereas Ogata and Futatsugi’s definition terminates. Thus, both
definitions produce different E-normal forms. �

In this paper, we follow the strategies fixed by the user instead, and thus proceed
according to the strategy (−2 −1 0) for geq that determines that the second
argument must be selected when both the first and the second arguments are
demanded, thus the evaluation of term geq(foo, 0 + 0) terminates, whereas
it does not terminate for term geq(0 + 0,foo), which is the intended behavior
associated to the strategy (−2 −1 0). See Remark 1 below for further details
about the impact of the order of evaluation.

3.2.3 Inconsistency of the on-demand E-strategy

The computational description of on-demand strategy annotations in Definition
2 involves recursive steps, as shown in Figure 4. A single reduction step on a
(labeled) term t may involve the application of more than one reduction step on
subterms of t (as it is defined in steps 4(c) and 4(d) of Definition 2). In fact, the
definition of a single rewriting step depends on testing whether an expression
is irreducible, which is just negation of reducibility, as shown in the following
example.

Example 13 Consider the following program:
fmod INCONSISTENCY is
sort S .
ops a g : -> S .
op f : S -> S [strat (-1 0)] .
eq f(a) = a .
eq g = f(g) .

endfm

Let us consider the term t = f(g) in its annotated form ϕ(t) = f0
(−1 0)(g

0
(0)).

According to Definition 2, we have the following rewriting sequence where index
−1 of the strategy list of f activates superscript 1 in symbol g:

〈 f0
(−1 0)(g

0
(0)), Λ 〉 Z→ϕ〈 f0

(0)(g
1
(0)), Λ 〉

10This equation does not correspond to the greater than or equal to function but we use it
only for motivational purposes.

17

There is no more single (or simple) step for the resulting term s = f0
(0)(g

1
(0))

and only cases 4(c) or 4(d) of Definition 2 could be applied to s. However, the
application of cases 4(c) or 4(d) implies testing whether g0

(0) has a normal form

w.r.t. Z→ϕ or not, and this raises a contradiction:

1. If g0
(0) had a normal form, then it would be of the form

f0
(0)(· · · f

0
(0)((g

1
(0)) · · ·). But by Definition 2, there is a possible step re-

ducing g1
(0) in such normal form. Thus, we have a contradiction.

2. If g0
(0) did not have a normal form, then f0

(−1 0)((g
0
(0)) would not have

one either, since 〈 g0
(0), Λ 〉 Z→ϕ〈 f0

(−1 0)(g
0
(0)), Λ 〉. But if f0

(−1 0)(g
0
(0))

does not have a normal form, then there must exist a next rewriting
step and this step must reduce g0

(0). However, there is no next step for
〈 f0

(−1 0)(g
0
(0)), Λ 〉 according to Definition 2 (because g0

(0) does not have a
normal form by assumption) and then we have a contradiction.

�

The problem is that the strategy is defined recursively and it makes use of
“negative information” associated to its own definition. In this paper, we do
not give a recursive definition of the evaluation strategy but put some sort of
“negative information” explicitly as a mark on top of symbols.

In the following, we provide a correct and practical framework for implement-
ing and studying OBJ computations, which may integrate the most interesting
features of modern evaluation strategies with on-demand syntactic annotations.

4 Improving rewriting under on-demand strat-
egy annotations: the on-demand evaluation
strategy (ODE)

The drawbacks of existing operational models for arbitrary strategy annotations
discussed so far can be summarized as follows:

1. the one-step reduction relation is, in general, contradictory (see Example
13);

2. the mechanization of demandedness by using negative annotations (via
the marking of terms with flag 0 or flag 1) enables evaluation steps that
should not be allowed (see Example 11), since

3. it does not properly keep track of the origin of the marks (lack of memory,
see Example 11); and

4. the order between on-demand annotations fixed by the user is not used in
the selection of on-demand positions (see Example 12).

18

Here, we want to discuss an extra drawback that further motivates our improved
definition. Let us illustrate it by means of an example.

Example 14 Consider the following OBJ program defining the function lower-
than or equal-to between natural numbers, denoted by lt, and the non-terminating
function foo defined in Example 12:

fmod NAT-LT is
protecting NAT .
protecting BOOL .
protecting NAT-FOO .
op lt : Nat Nat -> Bool [strat (-2 -1 0)] .
vars X Y : Nat .
eq lt(0,s(Y)) = true .
eq lt(s(X),s(Y)) = lt(X,Y) .

endfm

Consider the term t = lt(foo,0), which is a head-normal form, since no pos-
sible evaluation could enable the term to match the left-hand side of a rule due
to subterm 0 at position 2. Neither Nakamura and Ogata’s nor Ogata and Fu-
tatsugi’s formulations are able to avoid evaluations on t. For instance, CafeOBJ
ends with a stack overflow:

NAT-LT> red lt(foo,0).
Error: Stack overflow (signal 1000)

Nevertheless, by exploiting the standard distinction between constructor and de-
fined symbols of a signature in the presence of a TRS, it is easy to detect that
no rule for lt could ever be applied. That is, 0 is a constructor symbol in the
input term t and, hence, it cannot be reduced for improving the matching of t
against the left-hand side of the rule for lt. See [AFJV97, AL02, MR92] for
a more detailed motivation and formal discussion of the use of these ideas for
defining and using demand-driven strategies. �

In the following, we propose a refined (and fixed) definition of the on-demand
E-strategy which takes into account all previous considerations.

4.1 Labeling terms

Two important points in our formulation are the use of two lists of annota-
tions for each symbol (instead of only one as in the on-demand E-strategy of
Definition 2) and a special flag for avoiding recursive definitions of the strategy.

The function ⊕ defines the concatenation of two sequences of numbers.
Given a E-strategy map ϕ, we use the signature

F]
ϕ = ∪{fL1|L2 , fL1|L2

| f ∈ F and L1, L2 ∈ LZ
ar(f) s.t. (L1 ⊕ L2 v ϕ(f))}

and labeled variables X]
ϕ = {xnil|nil | x ∈ X} for marking ordinary terms

t ∈ T (F ,X) as terms t ∈ T (F]
ϕ,X]

ϕ). Overlining the root symbol of a subterm

19

means that no evaluation is required for that subterm and the control goes back
to the parent. The auxiliary list L1 in the subscript L1 | L2 is interpreted as
a kind of memory of previously considered annotations; indeed, we will call it
the memory list. We use f] to denote f or f for a given symbol f ∈ F . The
operator ϕ is extended to a mapping from T (F ,X) to T (F]

ϕ,X]
ϕ) as follows:

ϕ(t) =
{

xnil|nil if t = x ∈ X
fnil|ϕ(f)(ϕ(t1), . . . , ϕ(tk)) if t = f(t1, . . . , tk)

Also, the operator erase : T (F]
ϕ,X]

ϕ) → T (F ,X) drops labels from terms.

Example 15 For the OBJ program and the map ϕ of Example 4, we have

ϕ(length(from(0))) = lengthnil|(−1 0)(fromnil|(1 0)(0nil|nil)).

�

4.2 On-demand matching

We define the set of demanded positions of t ∈ T (F ,X) w.r.t. l (a lhs of a rule
defining root(t)), i.e., the set of (positions of) maximal disagreeing subterms,
as:

DPl(t) =
{

minimal≤(Pos6=(t, l)) if minimal≤(Pos6=(t, l)) ⊆ PosD(t)
∅ otherwise

Note that we exploit the standard distinction between constructor and defined
symbols of a signature by restricting the attention only to disagreeing positions
that correspond to defined symbols (by using PosD(t)). Note that the use of
minimal≤ in DPl(t) only considers the topmost different positions between a
term t and a lhs l, not even the demanded positions, and is not related to the
use of min<lex

in Section 3.2, which selects only one position among all the
demanded positions.

Example 16 (Example 14 cont’d) Consider the lhs’s l1 = lt(0,s(Y)) and
l2 = lt(s(X),s(Y)). For the term

t1 = lt(foo,0),

we have DPl1(t1) = ∅ and DPl2(t1) = ∅, i.e., no position is demanded by l1 or
l2 because of a constructor conflict with subterm 0 at position 2. For the term

t2 = lt(foo,0 + 0),

we have DPl1(t2) = {1, 2} and DPl2(t2) = {1, 2}, i.e. positions 1 and 2 are
demanded by l1 and l2 because both positions are rooted by defined symbols.
Finally, for

t3 = lt(0,foo),

we have DPl1(t3) = {2} but DPl2(t3) = ∅, i.e. position 2 is demanded by l1 but
not by l2 because of a constructor conflict with l2. �

20

The following notion is auxiliary. We define the list of lookout indices of a
labeled symbol f]

L1|L2
as

lookout(f]
L1|L2

) =
{

L1 if L1 6= nil
L2 if L1 = nil

Intuitively, the lookout indices of a symbol f are those already processed, or
those in the sequence ϕ(f), if no annotation has been processed yet. We define
the set of positive positions of a term s ∈ T (F]

ϕ,X]
ϕ) as

PosP (s) = {Λ} ∪ {i.PosP (s|i) | i > 0 and lookout(root(s)) contains i},

the set of active positions as

PosA(s) = {Λ} ∪ {i.PosA(s|i) | i > 0 and lookout(root(s)) contains i or − i},

and the set of on-demand (or negative) positions as PosN (s) = PosA(s) −
PosP (s). Note that PosP (s) ⊆ PosA(s) for all s ∈ T (F]

ϕ,X]
ϕ); moreover,

PosP (s) = PosA(s) if the labels in s contain no negative number. By abuse,
symbols rooting subterms at positive and on-demand positions are called pos-
itive and on-demand symbols, respectively. We also define the set of positions
with empty annotation list as

Posnil(s) = {p ∈ Pos(s) | root(s|p) = fL|nil}.

Example 17 For the annotated term

t1 = length’nil|(1 0)(fromnil|(1 0)(0nil|nil)),

we have PosP (t1) = PosA(t1) = {Λ, 1, 1.1}, and Posnil(t1) = {1.1}. For the
annotated term

t2 = length’nil|(−1 0)(fromnil|nil(0nil|nil)),

we have PosP (t2) = {Λ}, PosA(t2) = {Λ, 1}, and Posnil(t2) = {1, 1.1}. For the
annotated term

t3 = length’nil|(0)(fromnil|(1 0)(0nil|nil)),

we have PosP (t3) = {Λ}, PosA(t3) = {Λ}, and Posnil(t3) = {1.1} Finally, for
the annotated term

t4 = length’(−1)|(0)(fromnil|(1 0)(0nil|nil)),

we have PosP (t4) = {Λ}, PosA(t4) = {Λ, 1}, and Posnil(t4) = {1.1}. Figure 5
shows these four terms with the positive and on-demand symbols framed with a
full or dashed line, respectively. �

21

length’(1)|(0)

��
fromnil|(1 0)

��
0nil|nil

length’nil|(−1 0)

��_ _ _ _ _�
�

�
�_ _ _ _ _

fromnil|nil

��
0nil|nil

length’nil|(0)

��
fromnil|(1 0)

��
0nil|nil

length’(−1)|(0)

��_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

fromnil|(1 0)

��_ _ _�
�

�
�_ _ _

0nil|nil

t1 t2 t3 t4

Figure 5: The positive and the on-demand symbols (full and dashed frame,
respectively) of the terms of Example 17.

Then, the set of active demanded positions of a term t ∈ T (F]
ϕ,X]

ϕ) w.r.t. l (a
lhs of a rule defining root(erase(t))) is defined as follows:

ADPl(t) =

D ∩ PosA(t) if D ∩ (PosP (t) ∪ Posnil(t)) = ∅
where D = DPl(erase(t))

∅ otherwise

and the set of active demanded positions of t ∈ T (F]
ϕ,X]

ϕ) w.r.t. TRS R as

ADPR(t) = ∪{ADPl(t) | l → r ∈ R ∧ root(erase(t)) = root(l)}.

Note that the restriction of active demanded positions to non-positive and non-
empty positions is consistent with the intended meaning of strategy annotations,
since empty positions would have been evaluated before and positive (but not
empty) positions will be evaluated later.

Example 18 (Example 17 cont’d) Consider the lhs l = length’(nil). For
the annotated term t1, we have DPl(erase(t1)) = {1} but ADPl(t1) = ∅, since
position 1 is demanded by l but it is a positive position, as shown in Example
17. For the annotated term t2, we have ADPl(t2) = ∅, since position 1 is again
demanded by l but it is rooted by a symbol with an empty annotation list. For the
annotated term t3, we have ADPl(t3) = ∅, since position 1 is again demanded
by l but it is not an active position, as shown in Example 17, because no index 1
or −1 appears in the memory list of symbol length’. Finally, for the annotated
term t4, we have ADPl(t4) = {1}. �

4.3 Selection of the demanded redex

When ADPl(s) contains more than one active demanded position, we use an
order ≤s to select the redex position, where s ∈ T (F]

ϕ,X]
ϕ). This is related to

the min≤lex
and max≤lex

functions used in Section 3.2. In contrast to Section
3.2, however, the order ≤s is based on the annotations fixed by the user. The
intuitive idea is that every time we have either ϕ(f) = (· · · i · · · j · · ·), ϕ(f) =
(· · · −i · · · j · · ·), ϕ(f) = (· · · i · · · −j · · ·), or ϕ(f) = (· · · −i · · · −j · · ·) for
i, j ∈ N and i 6= j, then we can say that any position p ∈ i.Pos(s|i) is preferable
(for the user) to any position q ∈ j.Pos(s|j), for a term s such that root(s) = f ;

22

in symbols, p ≤s q. Given a term s ∈ T (F]
ϕ,X]

ϕ), the total order11 ≤s between
active positions of s is defined as:

(1) Λ ≤s p for all p ∈ PosA(s);

(2) if i.p, i.q ∈ PosA(s) and p ≤s|i q, then i.p ≤s i.q; and

(3) if i.p, j.q ∈ PosA(s), i 6= j, and the leftmost occurrence of i or −i appears
before the leftmost occurrence of j or −j in the list lookout(root(s)), then
i.p ≤s j.q.

Example 19 (Example 16 cont’d) Recall that ϕ(lt) = (−2 −1 0) and ϕ(+) =
(1 2 0). For the term t2 = lt(foo,0 + 0) and its annotated version

ϕ(t2) = ltnil|(−2 −1 0)(foonil|(0), 0nil|nil +nil|(1 2 0) 0nil|nil)

we have that PosP (ϕ(t2)) = {Λ} and PosA(ϕ(t2)) = {Λ, 1, 2, 2.1, 2.2}. Then,
since the user specified that the second argument of lt is preferable to the first
one and the first argument of + is preferable against the second one, we have
that

Λ <ϕ(t2) 2 <ϕ(t2) 2.1 <ϕ(t2) 2.2 <ϕ(t2) 1.

�

Now, we are able to define the set of demanded positions which would be
considered for reduction. We define the set ODR(s) of on-demand positions of
a term s ∈ T (F]

ϕ,X]
ϕ) w.r.t. TRS R as follows:

ODR(s) =
{

∅ if ADPR(s) = ∅
{min≤s(ADPR(s))} otherwise

Note that the ODR is a deterministic strategy due to min≤s .

Example 20 (Example 19 cont’d) For t2 = lt(foo,0 + 0), we have
ODR(ϕ(t2)) = {2} with ADPR(ϕ(t2)) = {1, 2}. �

Remark 1 Note that the order relation provided by the user is important in
our computational model and can determine program properties; see [Eke00] for
the same point w.r.t. positive annotations. Recall Example 12 with

eq geq(s(X),s(Y)) = geq(X,Y) .
eq geq(X,0) = true .

For each strategy (1 2 0), (2 1 0), (1 −2 0), (−2 1 0), and (−1 −2 0) for symbol
geq, calls geq(foo,0 + 0) and geq(0 + 0,foo) do not terminate. However,
for each strategy (−1 2 0), (2 −1 0) and (−2 −1 0), call geq(foo,0 + 0) does
terminate but call geq(0 + 0,foo) does not.

Intuitively, there is an implicit evaluation order in the rules for symbol geq
that suggests reducing first the second argument and then, possibly, the first

11A more general notion that captures this idea is given in [Ohl02, Def. A.1.4].

23

argument. Thus, we should include index 2 in the strategy for geq because its
evaluation is necessary, and index −1 (instead of index 1) because its evaluation
is (only) sometimes necessary. Alternatively, we can include indices −1 and −2,
but imposing an explicit order between them, i.e., with (−2 −1 0).

It is worth noting that some sophisticated lazy strategies try to find out this
implicit evaluation order12 automatically from the rules, see for instance [Esc03,
EMT05]. This is an interesting line of research which is outside the scope of the
paper. Here we adopt a simpler user-guided approach, which is coherent with
the use of strategies in OBJ-like languages.

4.4 A new reduction model for on-demand evaluation
strategies

In order to avoid the generation of different rewriting subsequences in Definition
2, we use symbols f to mark non-evaluable positions. This helps the evalua-
tion of a demanded position to come back to the position which demanded a
particular evaluation. Given a term t ∈ T (F]

ϕ,X]
ϕ) and a position p ∈ Pos(t),

mark(t, p) is the term s with every symbol f between p and the root (excluding
them) marked as f , in symbols Pos(s) = Pos(t) and ∀q ∈ Pos(t), if Λ < q < p
and root(t|q) = fL1|L2 , then root(s|q) = fL1|L2

, otherwise root(s|q) = root(t|q).

Example 21 Consider the program of Example 3 and the term

t = seriesPos(1 2)|(0)(s(1)|nil(s(1)|nil(0nil|nil)),
0nil|nil .(1 −2)|nil fromnil|(1 0)(snil|(1 0)(0nil|nil)))

When we mark the position 2.2 in t, we have that symbol . at position 2,
i.e., “ .(1 −2)|nil”, gets marked with a bar, i.e., “ .(1 −2)|nil”, to denote that this
symbol is in the middle of a demanded computation and is non-evaluable (i.e.,
when the execution strategy considers this subterm, then it must jump to the
position above it):

mark(t, 2.2)
= seriesPos(1 2)|(0)(s(1)|nil(s(1)|nil(0nil|nil)),

0nil|nil .(1 −2)|nil fromnil|(1 0)(snil|(1 0)(0nil|nil)))

�

Finally, we define a binary relation]→ϕ on the set T (F]
ϕ,X]

ϕ)× N∗
+, such that

a single reduction step on a (labeled) term t does not involve the application of
recursive reduction steps on t.

Definition 3 (On-demand evaluation strategy (ODE)) Given a TRS
R = (F , R) and an arbitrary E-strategy map ϕ for F , eval]ϕ : T (F ,X) →
P(T (F ,X)) is defined as eval]ϕ(t) = {erase(s) ∈ T (F ,X) | 〈ϕ(t), Λ〉]→!

ϕ 〈s, Λ〉}.
12This idea is formally expressed with the notion of neededness of a computation. See

[AL02] for a relation of neededness and demandness in programming languages.

24

The binary relation]→ϕ on T (F]
ϕ,X]

ϕ)×N∗
+ is defined as follows: 〈t, p〉]→ϕ 〈s, q〉

if and only if p ∈ PosA(t) and either

1. t|p = fL|nil(t1, . . . , tk), s = t, and p = q.i for some i; or

2. t|p = fL1|i:L2(t1, . . . , tk), i > 0, s = t[fL1⊕i|L2(t1, . . . , tk)]p, and q = p.i;
or

3. t|p = fL1|−i:L2(t1, . . . , tk), i > 0, s = t[fL1⊕−i|L2(t1, . . . , tk)]p, and q = p;
or

4. t|p = fL1|0:L2(t1, . . . , tk) = σ(l′), erase(l′) = l, s = t[σ(ϕ(r))]p, and q = p
for some l → r ∈ R and substitution σ; or

5. t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = ∅, s =
t[fL1|L2(t1, . . . , tk)]p, and q = p; or

6. t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = {p′}, s =
t[mark(t|p, p′)]p, and q = p.p′; or

7. t|p = fL1|L2
(t1, . . . , tk), s = t[fL1|L2(t1, . . . , tk)]p and p = q.i for some i.

�

Cases 1 and 2 of Definition 3 essentially correspond to cases 1 and 2 of
Definitions 1 and 2; that is, (1) no more annotations are provided and the
evaluation is completed, or (2) a positive argument index is provided and the
evaluation proceeds by selecting the subterm at this argument position (note
that the index is stored because, in the future, there can be negative indices
under this positive one). Case 3 only stores the negative index for further use.
Cases 4, 5, and 6 consider the attempt to match the term against the left-hand
sides of the program rules. Case 4 applies if the considered (unlabeled) subterm
is a redex (which is, then, contracted). If the subterm is not a redex, cases 5 and
6 are considered (possibly involving some on-demand evaluation). We use the
lists of indices labeling the symbols for fixing the concrete positions on which it
is safe to allow on-demand evaluations; in particular, the first (memoizing) list
is crucial for achieving this (by means of the function lookout and the order ≤s

used in the definition of the set ODR(s) of on-demand positions of a term s).
Case 5 applies if no demanded evaluation is allowed (or required). Case 6 applies
if the on-demand evaluation of the subterm t|p.p′ is required, i.e., ODR(t|p) =
{p′}. In this case, the symbols lying on the path from t|p to t|p.p′ (excluding
the ending ones) are overlined. Then, the evaluation process continues on term
t|p.p′ (with the overlined symbols above it). Once the evaluation of t|p.p′ is
completed, the only possibility is the repeated (but possibly idle) application
of steps issued according to the last case 7 which sends the evaluation process
back to position p (which originated the on-demand evaluation) using overlined
symbols f .

25

Example 22 Consider the modules of Example 3 with the strategy (1 -2 0)
for symbol . of sort LNat. Figure 6 shows the first steps of the evaluation
sequence of the term pi(s(s(0))) via eval]ϕ (for each step, we indicate which
case of Definition 3 has been used, we frame the indices involved in that step,
and we underline the redex reduced, if any). We continue until the symbol .
is obtained at the top. That evaluation sequence corresponds to the following
(much simpler) general rewriting sequence:

pi(s(s(0)))
→ seriesPos(s(s(0)), from(0))
→ seriesPos(s(s(0)), 0 . from(s(0)))
→ seriesPos(s(s(0)), 0 . s(0) . from(s(s(0))))

→ 1/s(0) . seriesNeg(s(0), from(s(s(0))))

Note that in the step (∗) of Figure 6, i.e., when an on-demand evaluation starts
and the evaluation moves suddenly from position Λ to position 2.2, the symbol
. is overlined, as explained in Example 21. �

In the following example, we illustrate in detail why our notion of demand-
edness does work for Example 4.

Example 23 Consider Examples 4 and 11. The on-demand evaluation of
length(from(0)) under ODE is the following:

〈 lengthnil|(-1 0)(fromnil|(1 0)(0nil|nil)), Λ 〉
]→ϕ 〈 length(−1)|(0)(fromnil|(1 0)(0nil|nil)), Λ 〉
]→ϕ 〈 length’nil|(0)(fromnil|(1 0)(0nil|nil)), Λ 〉
]→ϕ 〈 length’nil|nil(fromnil|(1 0)(0nil|nil)), Λ 〉

In the first step, negative annotation −1 of length is recorded for further use
according to case 3 of Definition 3. Annotation 0 of length is processed and
the whole term is rewritten using rule length(Z) = length’(Z), according to
case 4 of Definition 3. Then, annotation 0 of length’ is reached but the whole
term cannot be rewritten since it is not a redex and demanded positions are
computed. However, there are no demanded positions, since the memoizing
list of strategy annotations for length’ is empty (see ADPl(t3) in Example 18
above). Therefore, we obtain length’(from(0)) as the computed value of the
evaluation, according to case 5 of Definition 3. �

In the following Section, we study different properties of the on-demand evalu-
ation strategy (ODE).

5 Properties of the on-demand evaluation strat-
egy (ODE)

We first give a general property stating the uselessness of repeated indices in a
strategy map by defining a mapping || || : T (F]

ϕ,X]
ϕ) → T (F]

ϕ,X]
ϕ) that removes

redundant non-zero indices.

26

〈 pinil|(1 0)(snil|(1 0)(snil|(1 0)(0nil|nil))), Λ 〉
]→

ϕ (2)
〈 pi(1)|(0)(snil|(1 0)(snil|(1 0)(0nil|nil))), 1 〉

]→
ϕ (2)

〈 pi(1)|(0)(s(1)|(0)(snil|(1 0)(0nil|nil))), 1.1 〉
]→

ϕ (2)
〈 pi(1)|(0)(s(1)|(0)(s(1)|(0)(0nil|nil))), 1.1.1 〉

]→
ϕ (1)

〈 pi(1)|(0)(s(1)|(0)(s(1)|(0)(0nil|nil))), 1.1 〉
]→

ϕ (5)
〈 pi(1)|(0)(s(1)|(0)(s(1)|nil (0nil|nil))), 1.1 〉

]→
ϕ (1)

〈 pi(1)|(0)(s(1)|(0)(s(1)|nil(0nil|nil))), 1 〉
]→

ϕ (5)
〈 pi(1)|(0)(s(1)|nil (s(1)|nil(0nil|nil))), 1 〉

]→
ϕ (1)

〈 pi(1)|(0)(s(1)|nil(s(1)|nil(0nil|nil))), Λ 〉
]→

ϕ (4)
〈 seriesPosnil|(1 2 0)(s(1)|nil(s(1)|nil(0nil|nil)), fromnil|(1 0)(0nil|nil)), Λ 〉

]→
ϕ (2)

〈 seriesPos(1)|(2 0)(s(1)|nil (s(1)|nil(0nil|nil)), fromnil|(1 0)(0nil|nil)), 1 〉
]→

ϕ (1)
〈 seriesPos(1)|(2 0)(s(1)|nil(s(1)|nil(0nil|nil)), fromnil|(1 0)(0nil|nil)), Λ 〉

]→
ϕ (2)

〈 seriesPos(1 2)|(0)(s(1)|nil(s(1)|nil(0nil|nil)), fromnil|(1 0)(0nil|nil)), 2 〉
]→

ϕ (2)
〈 seriesPos(1 2)|(0)(s(1)|nil(s(1)|nil(0nil|nil)), from(1)|(0)(0nil|nil)), 2.1 〉

]→
ϕ (1)

〈 seriesPos(1 2)|(0)(s(1)|nil(s(1)|nil(0nil|nil)), from(1)|(0)(0nil|nil)), 2 〉
]→

ϕ (4)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .nil|(1 −2 0) fromnil|(1 0)(snil|(1 0)(0nil|nil))), 2 〉

]→
ϕ (2)

〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1)|(−2 0) fromnil|(1 0)(snil|(1 0)(0nil|nil))), 2.1 〉
]→

ϕ (1)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1)|(-2 0) fromnil|(1 0)(snil|(1 0)(0nil|nil))), 2 〉

]→
ϕ (3)

〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|(0) fromnil|(1 0)(snil|(1 0)(0nil|nil))), 2 〉
]→

ϕ (5)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil fromnil|(1 0)(snil|(1 0)(0nil|nil))), 2 〉

]→
ϕ (1)

〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil fromnil|(1 0)(snil|(1 0)(0nil|nil))), Λ 〉
]→

ϕ (6)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil fromnil|(1 0)(snil|(1 0)(0nil|nil))), 2.2 〉 (∗)

]→
ϕ (2)

〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil from(1)|(0)(snil|(1 0)(0nil|nil))), 2.2.1 〉
]→

ϕ (2)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil from(1)|(0)(s(1)|(0)(0nil|nil))), 2.2.1.1 〉

]→
ϕ (1)

〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil from(1)|(0)(s(1)|(0)(0nil|nil))), 2.2.1 〉
]→

ϕ (5)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil from(1)|(0)(s(1)|nil (0nil|nil))), 2.2.1 〉

]→
ϕ (1)

〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil from(1)|(0)(s(1)|nil(0nil|nil))), 2.2 〉
]→

ϕ (5)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil s(1)|nil(0nil|nil) .nil|(1 −2 0) · · ·), 2.2 〉

]→
ϕ (2)

〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil s(1)|nil (0nil|nil) .(1)|(−2 0) · · ·), 2.2.1 〉
]→

ϕ (1)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil s(1)|nil(0nil|nil) .(1)|(-2 0) · · ·), 2.2 〉

]→
ϕ (3)

〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil s(1)|nil(0nil|nil) .(1 −2)|(0) · · ·), 2.2 〉
]→

ϕ (5)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil s(1)|nil(0nil|nil) .(1 −2)|nil · · ·), 2.2 〉

]→
ϕ (1)

〈 seriesPos(1 2)|(0)(. . . ,0nil|nil . (1 −2)|nil s(1)|nil(0nil|nil) .(1 −2)|nil · · ·), 2 〉
]→

ϕ (7)
〈 seriesPos(1 2)|(0)(. . . ,0nil|nil .(1 −2)|nil s(1)|nil(0nil|nil) .(1 −2)|nil · · ·), Λ 〉

]→
ϕ (4)

〈 1/nil|(1 0) s(1)|nil(0nil|nil) .nil|(1 −2 0) . . . , Λ 〉

Figure 6: On-demand evaluation of term pi(s(s(0))) by Definition 3.

27

Given a list L of integers, let ||L|| be the list without repeated non-zero
indices, i.e., we keep only the leftmost occurrence of each index i ∈ Z − {0}
appearing in L. Given an E-strategy map, let ||ϕ|| be the E-strategy map
obtained from ϕ by removing repeated non-zero indices for each symbol f ∈ F .
Note that ||ϕ|| v ϕ, for every E-strategy map ϕ. For an E-strategy map ϕ and
a term t ∈ T (F]

ϕ,X]
ϕ), we define || || : T (F]

ϕ,X]
ϕ) → T (F]

ϕ,X]
ϕ) as ||xnil|nil|| =

xnil|nil for x ∈ X and ||f]
L1|L2

(t1, . . . , tn)|| = f]
L′

1|L′
2
(||t1||, . . . , ||tn||) such that

L′1 ⊕ L′2 = ||L1 ⊕ L2||, L′1 v L1, and L′2 v L2.

Theorem 1 Let R be a TRS and ϕ be an E-strategy map. Let t, s ∈ T (F]
ϕ,X]

ϕ).
Then, 〈t, Λ〉]→∗

ϕ 〈s, Λ〉 if and only if 〈||t||, Λ〉]→∗
||ϕ|| 〈||s||, Λ〉.

5.1 Comparison with Nagaya’s model

Now, we compare our ODE with the Nagaya’s evaluation strategy using only
positive indices to show that ours is a sound extension. We define a mapping
b cN : T (F]

ϕ,X]
ϕ) → T (FN

ϕ ,XN
ϕ) that removes negative indices and transforms

terms T (F]
ϕ,X]

ϕ), used by our ODE strategy, into terms T (FN
ϕ ,XN

ϕ), used by
Nagaya’s strategy.

Given a list L of integers, let bLc be the list without negative indices. Given
an E-strategy map, let bϕc be the E-strategy map obtained from ϕ by removing
all negative indices for each symbol f ∈ F . Note that bϕc v ϕ, for all E-
strategy map ϕ. For an E-strategy map ϕ and a term t ∈ T (F]

ϕ,X]
ϕ), we

define b cN : T (F]
ϕ,X]

ϕ) → T (FN
ϕ ,XN

ϕ) as bxnil|nilcN = xnil for x ∈ X and
bf]

L1|L2
(t1, . . . , tn)cN = fbL2c(bt1cN, . . . , btncN).

The following theorem shows that, for positive strategy annotations, each
reduction step with]→ϕ exactly corresponds to Nagaya’s original relation N→ϕ

of Section 3.1.

Theorem 2 Let R be a TRS and ϕ be a positive E-strategy map. Let t, s ∈
T (F]

ϕ,X]
ϕ), p ∈ PosP (t), and q ∈ PosP (s). Then, 〈t, p〉]→ϕ 〈s, q〉 if and only if

〈btcN, p〉 N→ϕ〈bscN, q〉.

Proof. Straightforward according to Definitions 1 and 3. 2

5.2 Meaningful negative annotations

In the following, we show that for E-strategy maps ϕ whose positive part (the
sublists of positive indices) bϕc is canonical, extra negative annotations can
be completely disregarded. We first introduce the notion of canonical strategy
maps, then a mapping b c : T (F]

ϕ,X]
ϕ) → T (F]

ϕ,X]
ϕ) that removes negative

indices (note that the mapping b c does not transform terms between different
domains, as the mapping b cN does), and finally the notion of an alternating
strategy map.

28

Sometimes, it is interesting to get rid of the order among indices in lo-
cal strategies and, then, we use replacement maps [Luc98]. Given a signa-
ture F , a mapping µ : F → P(N) is a replacement map (or F-map) if for
all f ∈ F , µ(f) ⊆ {1, . . . , ar(f)} [Luc98]. The set of µ-replacing (or sim-
ply replacing) positions Posµ(t) of a term t is: Posµ(t) = {Λ}, if t ∈ X and
Posµ(t) = {Λ} ∪

⋃
i∈µ(f) i.Posµ(t|i), if root(t) = f . Let MF be the set of

all F-maps. The order v on MF , i.e., the set of all F-maps, is: µ v µ′ if
for all f ∈ F , µ(f) ⊆ µ′(f). The lattice (P(N),⊆, ∅, N,∪) induces a lattice
(MF ,v, µ⊥, µ>,t): The minimum (maximum) element is µ⊥ (µ>), given by
µ⊥(f) = ∅ (µ>(f) = {1, . . . , ar(f)}) for all f ∈ F . The lub t is given by
(µ t µ′)(f) = µ(f) ∪ µ′(f) for all f ∈ F .

Given a TRS R, µcan
R is the canonical replacement map, i.e., the most re-

strictive replacement map which ensures that the non-variable subterms of the
left-hand sides of the rules of R are replacing. Note that µcan

R is easily obtained
from R: for all f ∈ F , for all i ∈ {1, . . . , ar(f)}, i ∈ µcan

R (f) iff ∃l ∈ L(R) and
p ∈ PosF (l) such that root(l|p) = f and p.i ∈ PosF (l) [Luc98, Luc02a]. Let
CMR = {µ ∈ MF | µcan

R v µ} be the set of replacement maps which are less
than or equally restrictive as µcan

R [Luc98].
Given an E-strategy map ϕ, let µϕ be the following replacement map given

by µϕ(f) = {abs(i) | i ∈ ϕ(f)∧ i 6= 0}. We say that ϕ is a canonical E-strategy
map (and, slightly abusing notation, we write ϕ ∈ CMR) if µϕ ∈ CMR.

For an E-strategy map ϕ and a term t ∈ T (F]
ϕ,X]

ϕ), we define
b c : T (F]

ϕ,X]
ϕ) → T (F]

ϕ,X]
ϕ) as bxnil|nilc = xnil|nil for x ∈ X and

bf]
L1|L2

(t1, . . . , tn)c = f]
bL1c|bL2c(bt1c, . . . , btnc).

Given an E-strategy map ϕ, we say ϕ is an alternating strategy map if
whenever index i appears in ϕ(f) for f ∈ F , then index −i does not appear in
ϕ(f), and vice versa.

Theorem 3 Let R be a TRS and ϕ be an alternating E-strategy map such that
bϕc ∈ CMR. Let t, s ∈ T (F]

ϕ,X]
ϕ), p ∈ PosA(t), and q ∈ PosA(s). Then,

〈t, p〉]→ϕ 〈s, q〉 if and only if 〈btc, p〉]→=
bϕc 〈bsc, q〉.

This result means that negative annotations are only meaningful if the positive
indices do not include all indices in the canonical replacement map of the TRS.
This motivates when and why we should use negative annotations (as it was
suggested in Remark 1 above, and also in [AL02]):

1. the i-th argument of a symbol f is annotated with index i if all occurrences
of f in the left-hand side of the rules contain a non-variable i-th argument;

2. if all occurrences of f in the left-hand side of the rules have a variable i-th
argument, then the argument is not annotated;

3. in any other case, index −i is given to f .

This is specially interesting when termination can be proved for those positive
and negative annotations but cannot be proved for the canonical map including

29

only positive annotations, since adding negative annotations to those positive
annotations may yield termination while providing completeness; Example 3
illustrates such a situation. This has also implications on the execution time,
as shown in Table 2 in Section 8.

The following result is a consequence of Theorems 2 and 3.

Corollary 1 Let R be a TRS and ϕ be an alternating E-strategy map such
that bϕc ∈ CMR. Let t, s ∈ T (F]

ϕ,X]
ϕ), p ∈ PosA(t), and q ∈ PosA(s). Then,

〈t, p〉]→ϕ 〈s, q〉 if and only if 〈btcN, p〉 N→=
bϕc〈bscN, q〉.

5.3 Ensuring head-normal forms

Example 23 above shows that restricting the evaluation by using on-demand
strategy annotations can result in terms which are not even head-normal forms
w.r.t. →R, e.g., term length’(from(0)) is a normal form w.r.t. →ϕ but
is not a normal form (and also not a head-normal form) w.r.t. the general
rewriting relation →R. The following result establishes conditions ensuring
that the normal forms computed by the on-demand strategy (ODE)]→ϕ are
ordinary head-normal forms w.r.t. →R.

Theorem 4 Let R = (F , R) = (C] D, R) be a left-linear CS and ϕ be an
E-strategy map such that ϕ ∈ CMR and ϕ(f) ends with 0 for all f ∈ D. Let
t ∈ T (F ,X). If s ∈ eval]ϕ(t), then s is a head-normal form of t.

Left-linearity (LL) and constructor system (CS) conditions cannot be dropped,
as [Luc98, Nag99] has shown for positive annotations and [Luc01a] has shown
for on-demand rewriting (ODR). The following two counterexamples are an
adaptation of the ones in [Luc01a]. Note that the models in [OF00, NO01]
are neither able to compute the head-normal forms in the following examples,
since the considered programs do not fulfill the LL and CS conditions, which
are implicitly required by [OF00, NO01].

Example 24 Consider the following TRS R from [Luc01a] which is not a CS:
fmod NONCS is
sort S .
ops a b : -> S .
op f : S -> S [strat (-1 0)] .
op g : S S -> S [strat (1 2 0)] .
var X : S .
eq f(g(X,a)) = a .
eq g(a,b) = g(b,a) .

endfm

The term t = f(g(a,b)) is not a head-normal form since we have

f(g(a,b))→ f(g(b,a))→ a.

30

However, the head-normal form a of t is not computed by]→ϕ :

〈fnil|(-1 0)(gnil|(1 2 0)(anil|nil, bnil|nil)), Λ〉
]→ϕ 〈f(−1)|(0)(gnil|(1 2 0)(anil|nil, bnil|nil)), Λ〉
]→ϕ 〈f(−1)|nil(gnil|(1 2 0)(anil|nil, bnil|nil)), Λ〉

Note that 1 6∈ Pos6=(f(g(a,b)), f(g(x,a))), i.e., position 1 of t is not de-
manded by lhs f(g(x,a)). �

Example 25 Consider the following TRS R from [Luc01a] which is not left-
linear:

fmod NONLEFTLINEAR is
sort S .
ops a b : -> S .
op f : S -> S [strat (-1 -2 0)] .
var X : S .
eq f(X,X) = X .
eq a = b .

endfm

Term t = f(a,b) is not a head-normal form since we have

f(a,b)→ f(b,b)→ b.

However, the head-normal form b of t is not computed by]→ϕ :

〈fnil|(-1 −2 0)(anil|nil, bnil|nil), Λ〉
]→ϕ 〈f(−1)|(-2 0)(anil|nil, bnil|nil), Λ〉
]→ϕ 〈f(−1 −2)|(0)(anil|nil, bnil|nil), Λ〉
]→ϕ 〈f(−1 −2)|nil(anil|nil, bnil|nil), Λ〉

Note that 1 6∈ Pos6=(f(a,b), f(x,x)), i.e., position 1 of t is not demanded by
the lhs f(x,x). �

Theorem 4 suggests the following extension of the normalization via ϕ-
normalization procedure of solution 1 in Section 1 to obtain normal forms of
a term t: given an E-strategy map ϕ and s = f(s1, . . . , sk) ∈ eval]ϕ(t), the
evaluation of s proceeds by (recursively) normalizing s1, . . . , sk using the terms
collected in eval]ϕ as intermediate values. It is not difficult to see that confluence
and the termination of the TRS R (w.r.t.]→ϕ) guarantee that this procedure
actually describes a normalizing strategy (see [Luc01a, Luc02a]).

In the following section, we show that the on-demand strategy (ODE) improves
(i) Nakamura and Ogata’s model, (ii) lazy rewriting (LR), a popular demand-
driven technique to perform lazy functional computations which inspired the
development of local strategies in OBJ, and (iii) on-demand rewriting (ODR),
the natural extension of context-sensitive rewriting to deal with on-demand
strategy annotations.

31

6 Comparison with other techniques dealing with
on-demand annotations

In the following we show that our on-demand strategy (ODE) is strictly more
restrictive than all previous proposals. The reasons are:

1. First, we are able to stop some useless computations thanks to the con-
structor test performed in DPl(t) and the non-positive and non-empty
position test performed in ADPl(t).

2. Second, we always follow the order of evaluation specified by the user’s
strategy, and thus we can have termination where other proposals do not.

Note that this last statement can also be interpreted in the opposite way, thus
meaning that we can get stuck because the user provided a malicious strategy.
However, in such a situation, we are still coherent with the user’s intention.

The on-demand evaluation strategy introduced in Nakamura’s thesis [Nak02,
Chapter 5] is another proposal for on-demand evaluation that splits a local strat-
egy into two sequences: one specifying an order of arguments to be reduced,
and the other specifying an order of arguments to be matched with the lhs of a
rewrite rule. This approach of splitting into positive and “on-demand” annota-
tions was already considered by the on-demand rewriting [Luc01a], introduced
in Section 6.3 below, and it is contrary to our approach of allowing the user full
control on the order of evaluation. That is, in Nakamura’s approach [Nak02,
Chapter 5], on-demand annotations cannot be attached to the position of the
index 0, which determines when the whole term should be checked for evalua-
tion and a strategy of our framework mixing positive indices, negative indices
and several indices 0 cannot be specified in Nakamura’s approach, as shown in
the following example.

Example 26 Consider the following two versions of this simple program that
differ only in the position where negative annotation −2 is placed.

fmod TEST1 is
sort S .
var Y : S .
ops a b c : -> S .
op f : S S -> S

[strat (-2 0 1 0) .
eq f(a,Y) = a .
eq f(b,c) = b .
op g : -> S .
eq g = a .
op foo : -> S.
eq foo = foo .

endm

fmod TEST2 is
sort S .
var Y : S .
ops a b c : -> S .
op f : S S -> S

[strat (0 1 -2 0) .
eq f(a,Y) = a .
eq f(b,c) = b .
op g : -> S .
eq g = a .
op foo : -> S.
eq foo = foo .

endm

Our on-demand evaluation strategy (ODE) will provide two different behav-
iors for term t = f(g,foo): for theory TEST1 the computation of term t never

32

stops whereas for theory TEST2 the computation of term t stops and returns
term a. However, if you disconnect negative annotations from indices 0 and
positive annotations, as in Nakamura’s approach, then you will always get the
non-terminating behavior of theory TEST1. Nakamura’s approach would be sim-
ilar to having all the negative annotations pasted right before each index 0, i.e.,
strategy (−2 0 1 −2 0) for symbol f. �

Nevertheless, Nakamura’s approach is quite similar to Nakamura and Ogata’s
strategy [NO01], compared below with our approach, and suffers the same in-
consistencies of Nakamura and Ogata’s strategy that we have shown in Sec-
tion 3.2.3.

6.1 Nakamura and Ogata’s model

In Section 3.2, we have introduced Nakamura and Ogata’s model for arbitrary
strategy annotations [NO01]. In the following, we relate their model to ours.

A defined function symbol f ∈ D is completely defined [TeR03] if it does
not occur in any ground term in normal form, that is to say that functions are
reducible on all ground terms (of appropriate sort). A TRS R is completely
defined [TeR03] if each defined symbol of the signature is completely defined.

Let ϕ be a strategy map. We say ϕ is in lexicographic order if for each f ∈ F
and for each i, j ∈ Z such that ϕ(f) = (· · · i j · · ·), we have that |i| ≤ |j|. We
say ϕ is standard if for each f ∈ D, ϕ(f) has only one occurrence of index 0 at
the end. We say that a term l is in ϕ-order if for each pair of active positions
p1, p2 ∈ PosA(ϕ(l)) such that p1 ≤ϕ(l) p2, if p2 is a non-variable position,
i.e., p2 ∈ PosF (l), then p1 is also a non-variable position, i.e., p1 ∈ PosF (l).
Intuitively, the term l is in ϕ-order if it follows with non-variable positions the
evaluation order fixed by the strategy ϕ. We say that a TRS R is in ϕ-order
if every l ∈ L(R) is. For an E-strategy map ϕ and a term t ∈ T (F]

ϕ,X]
ϕ),

we define b cZ : T (F]
ϕ,X]

ϕ) → T (FZ
ϕ ,X Z

ϕ) as bxnil|nilcZ = xnil for x ∈ X and
bf]

L1|L2
(t1, . . . , tn)cZ = f1

L2
(bt1cZ, . . . , btncZ).

Theorem 5 Let R be a left-linear completely defined CS and ϕ be a standard
E-strategy map in lexicographic order such that ϕ ∈ CMR. Let R be in ϕ-order.
Let t, s ∈ T (F]

ϕ,X]
ϕ). Then, 〈t, Λ〉]→!

ϕ 〈s, Λ〉 if and only if 〈btcZ, Λ〉 Z→!
ϕ〈bscZ, Λ〉.

Note that we cannot relate one Z→ϕ-step to one]→ϕ -step due to the recursive

calls to Z→ϕ in Definition 2. Requiring R to be completely defined is necessary,
as it was shown in Example 14 with term lt(foo,0), and then we have to
restrict ourselves also to the conditions of Theorem 4 to ensure that every Z→ϕ-
normal form is a head-normal form. Moreover, we have to restrict ourselves
to a strategy ϕ in lexicographic order because Z→ϕ always selects the minimum
demanded position w.r.t. such lexicographic order for each lhs. And we have
to restrict ourselves to a TRS in ϕ-order because Z→ϕ selects the maximum
position among the demanded positions collected from all lhs’s. A canonical

33

strategy is also necessary because of inappropriate propagations of on-demand
flags in Z→ϕ. Note that Example 3 satisfies all these properties and Theorem 5
can be applied, ensuring that evaluations are equivalent. However, Examples 4,
12, and 14 do not satisfy these properties, i.e., the strategy is not canonical in
Example 4, the program is not in ϕ-order in Example 12, and the program is
not completely defined in Example 14.

6.2 Lazy rewriting (LR)

In lazy rewriting (LR) [FKW00, Luc02b], reductions are performed on a partic-
ular kind of labeled terms. Nodes (or positions) of a term t are labeled with e
for the so-called eager positions and with ` for the so-called lazy ones. Labeled
terms are terms in T (FL,XL) where L = {e, `}. Given t ∈ T (FL,XL) and
p ∈ Pos(t), if root(t|p) = xe (= x`) or root(t|p) = fe (= f `), then we say that
p is an eager (resp. lazy) position of t.

Given a replacement map µ ∈ MF and s ∈ T (F ,X), labelµ(s) denotes the
following intended labeling of s:

(1) the topmost position Λ of labelµ(s) is eager;

(2) given a position p ∈ Pos(labelµ(s)) and i ∈ {1, . . . , ar(root(s|p))}, the
position p.i of labelµ(s) is lazy if i 6∈ µ(root(s|p)), or is eager, otherwise.

Example 27 Consider the program of Example 3 (viewed as a TRS) and the
replacement map µ given by µ(.) = {1} and µ(f) = {1, . . . , ar(f)} for any
other f ∈ F . Then, the labeling of

s = seriesPos(s(s(0)),0 . from(s(0)))

is
t = labelµ(s) = seriesPose(se(se(0e)),0e .e from`(se(0e))).

All positions are eager positions except position 2.2 which is lazy. Figure 7 shows
all the eager and lazy positions framed by a full or dashed line, respectively. �

Given t ∈ T (FL,XL), erase(t) is the term in T (F ,X) that results from
removing the labels of t. As remarked above, given t ∈ T (FL,XL), a position
p ∈ Pos(t) is eager (resp. lazy) if root(t|p) is labeled with e (resp. `). The
so-called active positions of a labeled term t ∈ T (FL,XL), denoted by Act(t),
are those positions which are always reachable from the root of the term via a
path of eager positions.

Example 28 (Example 27 cont’d) Positions Λ, 1, 1.1, 1.1.1, 2 and 2.1 are active
in term t of Example 27; positions 2.2.1 and 2.2.1.1 are eager but not active,
since position 2.2 above is lazy in t. See Figure 7. �

In lazy rewriting, the set of active nodes may increase as reduction of labeled
terms proceeds. Each lazy reduction step on labeled terms may have two different
effects:

34

seriesPos

xxqqqqqq
''NNN

NNN

s

��

.

$$III
II

wwpppppppp

s

��

0
_ _ _�
�

�
�_ _ _

from

��
0 s

��
0

Figure 7: Eager and lazy positions (full and dashed frame, respectively) in the
term seriesPos(s(s(0)),0 . from(s(0))) w.r.t. lazy rewriting (LR).

1. changing the “activation” status of a given position within a term, or

2. performing a rewriting step (always on an active position).

The activation status of a lazy position immediately below an active position
within a (labeled) term can be modified if the position is ‘essential’, i.e., ‘its
contraction may lead to new redices at active nodes’ [FKW00].

Definition 4 (Matching modulo laziness [FKW00]) Let l ∈ T (F ,X) be a
linear term, t ∈ T (FL,XL), and p be an active position of t. Then, l matches
modulo laziness s = t|p if either l ∈ X , or l = f(l1, . . . , lk), s = fe(s1, . . . , sk)
and, for all i ∈ {1, . . . , k}, if p.i is eager, then li matches modulo laziness si. If
position p.i is lazy and li 6∈ X , then position p.i is called essential. �

If p is an active position in t ∈ T (FL,XL) and l → r is a rewrite rule of a left-
linear TRS R such that l matches modulo laziness t|p giving rise to an essential

position q of t and t|q = f `(t1, . . . , tk), then we write t
A→ t[fe(t1, . . . , tk)]q for

denoting the activation of position p.
Lazy rewriting reduces active positions. Let p be an active position of t ∈

T (FL,XL), u = t|p and l → r be a rule of a left-linear TRS R such that l

matches erase(u) using substitution σ, then, t
R→µ s, where s is obtained from

t by replacing t|p in t by labelµ(r) with all its variables instantiated according
to σ but preserving its label according to labelµ(r) (see [Luc02b] for a formal
definition).

Example 29 (Example 27 cont’d) Some A→ and R→µ steps for term
t = seriesPose(se(se(0e)),0e .e from`(se(0e))) are (we underline the re-

35

dex reduced and frame the superscript involved in each step):

seriesPose(se(se(0e)),0e .e from ` (se(0e)))
A→ seriesPose(se(se(0e)),0e .e frome(se(0e)))
R→µ seriesPose(se(se(0e)),0e .e se(0e) . ` from`(se(se(0e))))
A→ seriesPose(se(se(0e)),0e .e se(0e) .e from`(se(se(0e))))

Note that this last term is an A→-normal form, since the symbol from` is under
a variable position in the corresponding lhs seriesPos(s(N),X . Y . XS). �

Definition 5 (Lazy rewriting) [FKW00] The lazy term rewriting relation on
labeled terms (LR) is LR→µ = A→ ∪ R→µ and the evaluation LR-evalµ(t) of a
term t ∈ T (F ,X) using LR is given by LR-evalµ(t) = {erase(s) ∈ T (F ,X) |
labelµ(t) LR−→!

µ s}.

In the following, we show that each evaluation step of the on-demand strat-
egy (ODE) is included into some evaluation steps of lazy rewriting. First,
we give some definitions auxiliary for Theorem 6 below. Given a term t ∈
T (F]

ϕ,X]
ϕ) and p ∈ Pos(t), we translate the labeling of terms in T (F]

ϕ,X]
ϕ) into

the labeling of T (FL,XL) by considering only positive annotations and trans-
forming overlined symbols and the symbol at the position under consideration
into eager symbols, as follows:

lazyp
ϕ(t) = ρ′′p(ρ′t(labelµbϕc (erase(t)))) where

(1) b ∈ {e, `},

(2) ρ′t(f
b(t1, . . . , tn)) =

{
fe(ρ′s1

(t1), . . . , ρ′sn
(tn)) if t = fL1|L2

(s1, . . . , sn)
f b(ρ′s1

(t1), . . . , ρ′sn
(tn)) if t = fL1|L2(s1, . . . , sn)

(3) ρ′′p(s) = s[fe(s1, . . . , sk)]p for s|p = f b(s1, . . . , sk)

We define the order ≤lazy between terms T (FL,XL) by extending the following
order to terms in the obvious way: fe ≤lazy fe, f ` ≤lazy fe, and f ` ≤lazy f `

for all f ∈ F .

Example 30 Consider Example 4 with the E-strategy map ϕ(.) = (1),
ϕ(length) = (−1 0), ϕ(length’) = (0), and ϕ(f) = (1 · · · ar(f) 0) for any
other f ∈ F . Let us consider the term t = length’(from(0)). The labeling
using ϕ is

ϕ(t) = length’nil|(0)(fromnil|(1 0)(0nil|nil))

and its version transformed into LR is

lazyΛ
ϕ(t) = lengthe(from`(0e)).

However, we also have

lazy1
ϕ(t) = lengthe(frome(0e)),

which corresponds to the activated term obtained in Example 31 below. �

36

The following theorem shows that each evaluation step of the on-demand
strategy (ODE) corresponds to some evaluation steps of lazy rewriting. Also,
it shows that lazy rewriting (potentially) activates as many symbols (within a
term) as our strategy does (we use the order ≤lazy for expressing this fact).

Theorem 6 Let R be a left-linear TRS and ϕ be an E-strategy map. Let t ∈
T (F]

ϕ,X]
ϕ), p ∈ PosA(t) and µ = µbϕc . If 〈t, p〉]→ϕ 〈s, q〉 and p ∈ Act(lazyp

ϕ(t)),

then q ∈ Act(lazyq
ϕ(s)) and lazyp

ϕ(t) LR−→∗
µ s′ for s′ ∈ T (FL,XL) such that

lazyq
ϕ(s) ≤lazy s′.

Note that lazy rewriting is defined only for left-linear TRSs (see Definition
4). Note also that one]→ϕ -step may correspond to zero LR−→∗

µ -steps because
of those]→ϕ -steps dealing only with annotations/marks on symbols; and can

correspond to more than one LR−→∗
µ -step because a demanded evaluation needs

only one]→ϕ -step (i.e., when ODR(t) = {p′}) when several activation A→-steps
may be necessary to make position p active. In general, our strategy is more
restrictive than LR as the following example shows.

Example 31 Consider the program R (as a TRS) and the E-strategy map ϕ
of Example 4. Consider the replacement map µ = µbϕc , i.e., µ(length) =
µ(length’) = ∅, µ(.) = {1} and µ(f) = {1, . . . , ar(f)} for any other f ∈ F .
Note that if no positive annotation is provided for an argument of a symbol, then
LR freely demands this argument. In Example 40 below, we prove that R is]→ϕ -
terminating. However, LR enters an infinite reduction sequence starting with
the term labelµ(length(from(0))) (we underline the redex reduced and frame
the superscript involved at each step):

lengthe(from`(0e))
R→µ length’e(from ` (0e))
A→ length’e(frome(0e))
R→µ length’e(0e .e from`(se(0e)))
R→µ se(length’e(from ` (se(0e)))
A→ se(length’e(frome(se(0e)))
LR→µ · · ·

That is, in contrast to]→ϕ (where ϕ(length’) = (0)), LR can evaluate position
1 in the term length’(from(0)). �

By Theorems 4 and 6, we have the following result relating completeness of
both strategies.

Theorem 7 Let R be a left-linear completely defined CS and ϕ be an E-strategy
map such that ϕ ∈ CMR and ϕ(f) ends with 0 for all f ∈ D. If t ∈ T (F ,X)
and 〈ϕ(t), Λ〉]→!

ϕ 〈s, Λ〉, then lazyΛ
ϕ(t) LR−→!

µ lazyΛ
ϕ(s).

37

The complete definedness condition as well as those of Theorem 4 are necessary
to ensure that every]→ϕ -normal form is a head-normal form with a construc-
tor symbol at the top. We can use Example 14 with term lt(foo,0) as a
counterexample. Note that the opposite direction of the Theorem cannot be
proved because LR does not follow any particular order for activating symbols
in contrast to]→ϕ . However, we can also provide the following result.

Theorem 8 Let R be a left-linear completely-defined CS and ϕ be an E-strategy
map such that ϕ ∈ CMR and ϕ(f) ends with 0 for all f ∈ D. Let R be

]→ϕ -terminating. Let t ∈ T (F ,X). Then, 〈ϕ(t), Λ〉]→!
ϕ 〈s, Λ〉 if and only if

lazyΛ
ϕ (t) LR−→!

µ lazyΛ
ϕ (s).

6.3 On-demand rewriting (ODR)

A replacement map µ ∈ MF specifies which arguments of symbols in F may
be reduced. In context-sensitive rewriting (CSR [Luc98]), we (only) rewrite
subterms at replacing positions: t µ-rewrites to s, written t ↪→R(µ) s (or simply
t ↪→µ s or t ↪→ s), if t

p→R s and p ∈ Posµ(t). As we mentioned above, context–
sensitive rewriting inspired the frozen arguments of system modules in Maude
whereas lazy rewriting inspired the local strategies of OBJ and Maude.

Example 32 Consider R in Example 3 and the replacement map
µ(.) = {1} and µ(f) = {1, . . . , ar(f)} for any other f ∈ F (which corre-
sponds to the strategy map ϕ of Example 3). Then, we have:

seriesPos(s(s(0)),from(0)) ↪→µ seriesPos(s(s(0)),0 . from(s(0)))

and this last term cannot be further µ-rewritten. �

The ↪→µ-normal forms are called µ-normal forms. The non-replacing posi-
tions of a term t are denoted by Posµ(t) = Pos(t) − Posµ(t); we also use
Lazyµ(t) = minimal≤(Posµ(t)) which covers the non-replacing positions of t,
i.e., for all p ∈ Posµ(t), there exists q ∈ Lazyµ(t) such that q ≤ p. Given a pair
〈µ, µD〉 of replacement maps µ and µD, on-demand rewriting (ODR) is defined
as an extension of CSR (under µ), where on-demand reductions are also per-
mitted according to µD. Given f ∈ F , each index j ∈ µD(f) aims at enabling
reductions on subterm tj of a function call f(t1, . . . , tj , . . . , tk) if it can eventu-
ally lead to matching a pattern of a rule defining f (i.e., l → r ∈ R such that
root(t) = f). After its formal definition, we will explain the notion and give
an example. The chain of symbols lying at positions above/on p ∈ Pos(t) is
prefix t(Λ) = root(t), prefix t(i.p) = root(t).prefix t|i(p). The strict prefix sprefix
is sprefixt(Λ) = Λ, sprefixt(p.i) = prefix t(p).

Definition 6 (On-demand rewriting [Luc01a]) Let R = (F , R) be a TRS
and µ, µD ∈ MF . Then, t

p
↪→〈µ,µD〉 s (or simply t ↪→〈µ,µD〉 s), if t

p→ s and
either

38

1. p ∈ Posµ(t), or

2. p ∈ PosµtµD (t) − Posµ(t) and there exist e ∈ Posµ(t), p1, . . . , pn ∈
Lazy〈µ,µD〉(t), r1, . . . , rn, t′ ∈ T (F ,X), l → r ∈ R, and substitution σ
such that

(1) e ≤ p, t′ = t[r1]p1 · · · [rn]pn , t′|e = σ(l) and
(2) for all q ∈ Pos(l) s.t. sprefixt|e(q) = sprefixl(q), whenever e.q ≤ p,

we have that l|q 6∈ X .

Here, Lazy〈µ,µD〉(t) = Lazyµ(t) ∩ PosµtµD (t). �

Therefore, given a term t, a rewriting step t
p→ s is on-demand (w.r.t. µ and

µD) if either

(i) t
p

↪→µ s, or

(ii) t
p

↪→µtµD
s and reducing t|p may contribute to a future µ-rewriting step

at µ-replacing position e, using some rule l → r.

Such a contribution is approximated by checking whether the replacement of
some non-µ-replacing maximal subterms of t would eventually make the match-
ing possible (condition 2(1) of Definition 6). On-demand indices in µD determine
the positions (in Lazy〈µ,µD〉(t)) of the subterms of t that can be refined. Note
that the position p on which the rewriting step is performed is always covered
by some position pi ∈ Lazy〈µ,µD〉(t), i.e., pi ≤ p and pi is a position demanded
by the lhs l, which is (possibly) applicable at position e. On the other hand,
the position p is constrained to have no variable position of l covering p (con-
dition 2(2) of Definition 6); otherwise, the reduction at t|p would not improve
the matching.

Example 33 (Example 32 cont’d) Consider the following on-demand replace-
ment map µD(.) = {2} and µ(f) = ∅ for any other f ∈ F (where the union
of µ and µD corresponds to the strategy map ϕ of Example 3). Now we have the
following sequence starting from seriesPos(s(s(0)),from(0)), until symbol
. is obtained at the top:

seriesPos(s(s(0)),from(0))

↪→〈µ,µD〉 seriesPos(s(s(0)),0 . from(s(0)))

↪→〈µ,µD〉 seriesPos(s(s(0)),0 . s(0) . from(s(s(0))))

↪→〈µ,µD〉 s(0) . seriesNeg(s(0),from(s(s(0))))

but
seriesPos(s(s(0)),0 . s(0) . from(s(s(0))))

6↪→〈µ,µD〉 seriesPos(s(s(0)),0 . s(0) . s(s(0)) . from(s(s(s(0)))))

since 2.2.2 6∈ Pos(l) with l = seriesPos(s(N),X . Y . XS). Figure 8 shows
the reducible and demanded parts of the term

“ seriesPos(s(s(0)),0 . from(s(0)))”

w.r.t. on-demand rewriting, framed with a full or dashed line, respectively. �

39

seriesPos

xxqqqqqq
''NNN

NNN

s

��

.

$$III
II

wwpppppppp

s

��

0
_ _ _�
�

�
�_ _ _

from

��
0

_ _�
�

�
�

_ _
s

��_ _�
�

�
�

_ _
0

Figure 8: Reducible and on-demand positions (full and dashed frame, respec-
tively) of term “seriesPos(s(s(0)),0 . from(s(0)))” w.r.t. on-demand
rewriting (ODR).

In the following, we show that each evaluation step of the on-demand strategy
(ODE) is included in (at most) one evaluation step of on-demand rewriting.
Given a term t ∈ T (F]

ϕ,X]
ϕ) and a position p ∈ PosA(t), we say that the tuple

〈t, p〉 is consistent w.r.t. TRS R and strategy map ϕ (or simply consistent) if
there exists s ∈ T (F ,X) such that 〈ϕ(s), Λ〉]→∗

ϕ 〈t, p〉.

Theorem 9 Let R be a left-linear CS and ϕ be an E-strategy map such that
µbϕc(c) = ∅ for c ∈ C. Let µ, µD ∈ MF be such that µ = µbϕc and µtµD = µϕ.
Let t ∈ T (F]

ϕ,X]
ϕ) and p ∈ PosA(t). If 〈t, p〉]→ϕ 〈s, q〉 and 〈t, p〉 is consistent,

then erase(t)
p

↪→=
〈µ,µD〉 erase(s).

Similarly to the LR case, the on-demand strategy (ODE) is more restrictive
than ODR as the following example shows.

Example 34 Consider the program:

fmod TEST is
sort Nat .
op 0 : -> Nat .
op foo : Nat -> Nat .
op f : Nat -> Nat [strat (-1 0)] .
op g : Nat -> Nat [strat (-1 0)] .
var X : Nat .
eq foo = foo .
eq f(X) = 0 .
eq g(0) = 0 .

endfm

40

Consider the TRS underlying this program and the following replacement maps
(whose union corresponds to the strategy map ϕ given in the module) µ(g) =
µ(f) = ∅ and µ(h) = {1, . . . , ar(f)} for each other symbol h; also, µD(g) =
µD(f) = {1} and µD(h) = ∅ for each other symbol h. The term t = g(f(foo))

has a single terminating evaluation sequence using]→ϕ :

〈 gnil|(-1 0)(fnil|(−1 0)(foonil|(0))), Λ 〉
]→ϕ 〈 g(−1)|(0)(fnil|(−1 0)(foonil|(0))), Λ 〉
]→ϕ 〈 g(−1)|(0)(fnil|(-1 0)(foonil|(0))), 1 〉
]→ϕ 〈 g(−1)|(0)(f(−1)|(0)(foonil|(0))), 1 〉
]→ϕ 〈 g(−1)|(0)(0nil|nil), 1 〉
]→ϕ 〈 g(−1)|(0)(0nil|nil), Λ 〉
]→ϕ 〈 g(−1)|(0)(0nil|nil), Λ 〉
]→ϕ 〈0nil|nil, Λ〉

However, even if ODR is able to reproduce the previous terminating reduction
sequence:

g(f(foo)) ↪→〈µ,µD〉 g(0) ↪→〈µ,µD〉 0

the following non-terminating reduction sequence is also possible:
g(f(foo)) ↪→〈µ,µD〉 g(f(foo)) ↪→〈µ,µD〉 · · ·

Note that Λ is a positive position of g(f(foo)) which is eventually rewritten
into redex g(0), and positions 1 and 1.1 of g(f(foo)) are always demanded by
the lhs g(0), whereas only position 1 should be demanded, as it is done in ODE.
�

Moreover, the condition in Theorem 9 that ϕ be an E-strategy map such that
µbϕc(c) = ∅ for c ∈ C cannot be dropped.

Example 35 Consider the following module containing a non-terminating func-
tion inf:

fmod TEST is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat [strat (1 0)] .
op inf : -> Nat .
op f : Nat -> Nat [strat (-1 0)] .
var X : Nat . var XS : LNat .
eq inf = s(inf) .
eq f(s(X)) = 0 .

endfm

Consider the TRS underlying this program and the following replacement maps
(whose union corresponds to the strategy map ϕ): µ(f) = ∅, and µ(h) = {1, . . . ,

41

ar(f)} for all other symbol h; and µD(f) = {1} and µD(h) = ∅ for all other
symbol h. Now the term t = f(inf) has a unique normalizing evaluation se-
quence under ODR:

f(inf) ↪→〈µ,µD〉 f(s(inf)) ↪→〈µ,µD〉 0

Subterm inf of f(s(inf)) is under the variable X of lhs f(s(X) and then it
is not further evaluated. However, the evaluation sequence for]→ϕ is non-
terminating:

〈fnil|(-1 0)(infnil|(0)), Λ〉
]→ϕ 〈f(−1)|(0)(infnil|(0)), Λ〉
]→ϕ 〈f(−1)|(0)(infnil|(0)), 1〉
]→ϕ 〈f(−1)|(0)(snil|(1 0)(infnil|(0))), 1〉
]→ϕ 〈f(−1)|(0)(s(1)|(0)(infnil|(0))), 1.1〉
]→ϕ · · ·

The reason is that we follow the user’s annotations and thus we always eval-
uate the argument of s according to its strategy (1 0) and generate an infinite
computation. �

In Theorem 9, the condition of R being a CS cannot be dropped either. An
argument similar to the one in Example 35 can be used if we consider a defined
symbol at a non-root position of a lhs which is given a positive annotation in
the strategy map.

We have the following result relating completeness of both strategies.

Theorem 10 Let R be a left-linear completely-defined CS and ϕ be an E-
strategy map such that ϕ ∈ CMR, ϕ(f) ends with 0 for all f ∈ D, and
µbϕc(c) = ∅ for c ∈ C. Let R be]→ϕ -terminating. Let µ, µD ∈ MF be such
that µ = µbϕc and µ t µD = µϕ. Let t ∈ T (F ,X). Then, 〈ϕ(t), Λ〉]→!

ϕ 〈s, Λ〉 if
and only if t ↪→!

〈µ,µD〉 erase(s).

To conclude this section, Figure 9 summarizes the precise relationships be-
tween the different strategies, i.e., under which conditions two strategies have
the same behavior. In the following section, we consider an important aspect of
the definition of a suitable (on-demand) execution strategy, namely termination,
and formulate a method for proving termination of the on-demand evaluation
(ODE).

7 Proving termination of programs with nega-
tive annotations by transformation

In [Luc02b] a method for proving termination of LR as termination of context-
sensitive rewriting (CSR [Luc98]) is described. In contrast to LR, context-
sensitive rewriting forbids every reduction on the arguments not included into
µ(f) for a given function call f(t1, . . . , tk). A TRS R is µ-terminating if the

42

Strategies Conditions for equivalence w.r.t.
on-demand evaluation (ODE)

Nagaya’s model P-ϕ (Theo 2)
Nakamura and Ogata’s model (LL, CD, CS)-R, (S, LO, C)-ϕ (Theo 5)

Lazy rewriting (LR) (LL, CD, CS, T)-R, (C, E0)-ϕ (Theo 8)
On-demand rewriting (ODR) (LL, CD, CS, T)-R, (C, E0, C0)-ϕ (Theo 10)

LL Left-linear TRS CS Constructor TRS
CD Completely defined TRS T]→ϕ -terminating TRS
LO Lexicographic order strategy S Standard strategy

P Positive strategy E0 Strategy ended with 0 for
C Canonical strategy each defined symbol

C0 Constructor symbols do not have positive annotations

Figure 9: Summary of the relation between different on-demand strategies and
the on-demand evaluation (ODE).

context-sensitive rewrite relation associated to R and µ is terminating. The idea
of the aforementioned method is simple: given a TRS R and a replacement map
µ, a new TRS R′ and a new replacement map µ′ is obtained in such a way that
µ′-termination of R′ implies LR(µ)-termination of R. Fortunately, there are
a number of different techniques for proving termination of CSR (see [Luc02c,
GM04] for surveys on this topic) and tools such as MU-TERM [Luc06] and
AProVE [GTSKF04]. This provides a formal framework for proving termination
of lazy rewriting (LR).

A simple modification of such transformation provides a sound technique for
proving the ϕ-termination of TRSs for arbitrary strategy annotations ϕ. Here,
as in [Luc01a, Luc02b], by ϕ-termination of a TRS R we mean the absence of
infinite]→ϕ -sequences of terms starting from 〈ϕ(t), Λ〉. As for the transforma-
tion in [Luc02b], the idea is to encode the demandedness information expressed
by the rules of the TRS R together with the (negative) annotations of the E-
strategy map ϕ as new symbols and rules (together with the appropriate mod-
ification/extension of ϕ) in such a way that ϕ-termination is preserved in the
new TRS and E-strategy map, but the negative indices are finally suppressed
(by removing from the lhs of the rules the parts that introduce on-demand com-
putations). We iterate on these basic transformation steps until obtaining a
canonical E-strategy map. In this case, we can stop the transformation and use
the existing methods for proving termination of CSR.

Let ϕ be an arbitrary E-strategy map. Given l → r ∈ R, we define

NegPos(l) = min≤ϕ(l)({p.i ∈ PosF (l) ∩ PosA(l) | −i ∈ ϕ(root(l|p))})

Note that we take the minimum to ensure that the transformed program will
follow the proper evaluation order. Assume that NegPos(l) = {p.i} for some p

43

and i (i.e., NegPos(l) 6= ∅) and let f = root(l|p). Then, R� = (F�, R�) and ϕ�

are as follows: F� = F ∪{fi}, where fi is a new symbol of arity ar(fi) = ar(f),
and

R� = R− {l → r} ∪ {l′ → r, l[x]P → l′[x]P }
where l′ = l[fi(l|p.1, . . . , l|p.ar(f))]p, P = minimal≤({p′ ∈ PosA(l) − PosP (l) |
p.i ≤ϕ(l) p′}), and x is a sequence of new different variables. We let ϕ�(fi) =
(i1 · · · i · · · in) such that ϕ(f) = (i1 · · · − i · · · in), and ϕ�(h) = ϕ(h) for
any other h ∈ F . Informally, if p is a position in a lhs l with a symbol f with
a negative annotation −i and position p.i is a non-variable position in l, then
we transform the rule l → r into l[x]p → l′[x]p and l′ → r; where l′ is l with
a new symbol f ′ at position p such that the annotation −i is converted to i in
the strategy for f ′ and removed from the strategy for f (though we remove all
negative annotations only at the end).

Example 36 Consider the following program with the strategy (1 -2 0) for
symbol . of module LIST-NAT:

fmod LIST-NAT is
...
op _._ : Nat LNat -> LNat [strat (1 -2 0)] .
...

endfm

fmod LIST-NAT-3RD is
protecting LIST-NAT .
vars X Y Z : Nat . var XS : LNat .
op 3rd : LNat -> Nat .
eq 3rd(X . Y . Z . XS) = Z .

endfm

The one-step transformation R� generates the following two rules from l (we
write [.] instead of symbol . 2 or .2):

eq 3rd(X . XS) = 3rd(X [.] XS) .
eq 3rd(X [.] Y . Z . XS) = Z .

Note that the left-most symbol . in l is the one selected for the transformation
because it is the minimum element (w.r.t. orders ≤ϕ(l) and ≤) of the positions
in l with a negative index, i.e.,

{ 1.2, 1.2.2 } = {p.i ∈ PosF (l) ∩ PosA(l) | −i ∈ ϕ(root(l|p))}

and 1.2 ≤ϕ(l) 1.2.2. �

The transformation proceeds in this way (repeatedly constructing R� and ϕ�)
until obtaining R\ = (F \, R\) and ϕ\ such that NegPos(l) = ∅ for each l ∈ R\,
and then we remove all negative annotations from ϕ\. Note that this removal
of negative annotations does not modify the evaluation behavior of R\, as it is
proved in Theorem 3.

44

Example 37 (Example 36 cont’d) The final transformed program R\ is:

fmod LIST-NAT-NONEG is
...
op _._ : Nat LNat -> LNat [strat (1 0)] .
op _[.]_ : Nat LNat -> LNat [strat (1 2 0)] .
...

endfm

fmod LIST-NAT-3RD-NONEG is
protecting LIST-NAT-NONEG .
vars X Y Z : Nat . var XS : LNat .
op 3rd : LNat -> Nat .
eq 3rd(X . XS) = 3rd(X [.] XS) .
eq 3rd(X [.] Y . XS) = 3rd(X [.] Y [.] XS) .
eq 3rd(X [.] Y [.] Z . XS) = Z .

endfm

�

Finally, we can state a sufficient condition for]→ϕ -termination as]→ϕ\,R\ -
termination in the transformed program R\.

Theorem 11 (Termination) Let R be a CS and ϕ be a standard E-strategy
map. If the relation]→ϕ\,R\ is terminating, then the relation]→ϕ,R is also
terminating.

Note that the opposite does not hold, as shown in the following example.

Example 38 Consider the module LIST-NAT-3RD of Example 36 with the fol-
lowing extra lines:

op g : -> Nat .
eq g = 3rd(0 . g . 0 . nil) .

For the term g, Figure 10 shows its evaluation sequence according to]→ϕ , which
corresponds to the (rather simple) general rewriting sequence:

g→ 3rd(0 . g . 0 . nil)→ 0

No other sequence can be computed13 for term g using]→ϕ . If we add the two
lines defining symbol g to the module LIST-NAT-3RD-NONEG of Example 37, we
have an evaluation sequence from term g using the relation]→ϕ that corresponds

13 The TRS without symbol g, i.e., the TRS in Example 36, is terminating and we can prove
it using the technique of this section, the proof is similar to the one in Figure 11. However,
the TRS including symbol g is terminating but we cannot prove it with the transformation
technique of this section.

45

〈 gnil|(0), Λ 〉
]→ϕ 〈 3rdnil|(1 0)(0nil|nil .nil|(1 −2 0)

gnil|(0) .nil|(1 −2 0)

0nil|nil .nil|(1 −2 0) nilnil|nil), Λ 〉
]→ϕ 〈 3rd(1)|(0)(0nil|nil .nil|(1 −2 0)

gnil|(0) .nil|(1 −2 0)

0nil|nil .nil|(1 −2 0) nilnil|nil), 1 〉
]→ϕ 〈 3rd(1)|(0)(0nil|nil .(1)|(−2 0)

gnil|(0) .nil|(1 −2 0)

0nil|nil .nil|(1 −2 0) nilnil|nil), 1.1 〉
]→ϕ 〈 3rd(1)|(0)(0nil|nil .(1)|(-2 0)

gnil|(0) .nil|(1 −2 0)

0nil|nil .nil|(1 −2 0) nilnil|nil), 1 〉
]→ϕ 〈 3rd(1)|(0)(0nil|nil .(1 −2)|(0)

gnil|(0) .nil|(1 −2 0)

0nil|nil .nil|(1 −2 0) nilnil|nil), 1 〉
]→ϕ 〈 3rd(1)|(0)(0nil|nil .(1 −2)|nil

gnil|(0) .nil|(1 −2 0)

0nil|nil .nil|(1 −2 0) nilnil|nil), 1 〉
]→ϕ 〈 3rd(1)|(0)(0nil|nil .(1 −2)|nil

gnil|(0) .nil|(1 −2 0)

0nil|nil .nil|(1 −2 0) nilnil|nil), Λ 〉
]→ϕ 〈 0nil|nil, Λ 〉

Figure 10: Evaluation of term g of Example 38

46

to the following (infinite) ordinary rewriting sequence (recall from Example 37
that ϕ(.) = (1 0) and ϕ([.]) = (1 2 0)):

g → 3rd(0 . g . 0 . nil)
→ 3rd(0 [.] g . 0 . nil)
→ 3rd(0 [.] 3rd(0 . g . 0 . nil) . 0 . nil)
→ 3rd(0 [.] 3rd(0 [.] g . 0 . nil) . 0 . nil)→ · · ·

�

Then, since the transformed program does not include any negative anno-
tation, we can use µ-termination of CSR to approximate N→ϕ-termination, see
[Luc01b] for further details. It is well-known that CSR does not completely cap-
ture the ϕ-termination property of an OBJ program with only positive strategy
annotations, since the order between positive indices included in a strategy does
not appear in a replacement map. Thus, the technique proposed in the paper
does not completely capture the ϕ-termination of an OBJ program with on-
demand strategy annotations. In the following, we show how some examples
used along the paper can be proved terminating by this technique.

Example 39 Consider the module PI in Example 3 with the strategy (1 −2 0)
for symbol . , i.e., the only change is the following line in module LIST-NAT:

fmod LIST-NAT is
...
op _._ : Nat LNat -> LNat [strat (1 -2 0)] .
...

endfm

Then, the transformed program R\ is (we show only the changes in module
LIST-NAT and the module PI, which is the only one transformed):

fmod LIST-NAT is
...
op _._ : Nat LNat -> LNat [strat (1 0)] .
op _[.]_ : Nat LNat -> LNat [strat (1 2 0)] .
...

endfm

fmod PI-NONEG is
protecting LIST-NAT .
protecting LIST-FRAC .
op pi : Nat -> LIntFrac .
ops seriesPos seriesNeg : Nat LNat -> LIntFrac .
vars N X Y : Nat . var XS : LNat .
eq seriesPos(0,XS) = nil .
eq seriesPos(s(N),X . XS) = seriesPos(s(N),X [.] XS) .
eq seriesPos(s(N),X [.] Y . XS) = 1/ Y . seriesNeg(N,XS) .
eq seriesNeg(0,XS) = nil .

47

Figure 11: Output of AProVE for the proof of termination of the transformed
program of Example 39

eq seriesNeg(s(N),X . XS) = seriesNeg(s(N),X [.] XS) .
eq seriesNeg(s(N),X [.] Y . XS) = -1/ Y . seriesPos(N,XS) .
eq pi(N) = seriesPos(N,from(0)) .

endfm

The µϕ\-termination of R\ is automatically proved by the tools MU-TERM14

and AProVE15. Figure 11 shows the outcome of the tool AProVE. �

Example 40 Consider the module LIST-NAT-LENGTH of Example 4. Our trans-
formation returns the original module with only the following change in module
LIST-NAT:

fmod LIST-NAT is
...
op _._ : Nat LNat -> LNat [strat (1 0)] .
...

endfm
14Available at http://www.dsic.upv.es/∼slucas/csr/termination/muterm.
15Available at http://www-i2.informatik.rwth-aachen.de/AProVE/.

48

http://www.dsic.upv.es/~slucas/csr/termination/muterm
http://www-i2.informatik.rwth-aachen.de/AProVE/

Figure 12: Output of MU-TERM for the proof of termination of the transformed
program of Example 40

The µϕ\-termination of module LIST-NAT-LENGTH can be automatically proved,
e.g., by the tool MU-TERM as shown in Figure 12. More precisely, termina-
tion of each module is proved separately and then a modularity result is applied
[GL02]. �

8 Experiments

In order to demonstrate the practicality of the on-demand evaluation strategy
(ODE) proposed in this paper, two interpreters have been implemented, one in
Haskell (version 6.4 available at http://www.haskell.org/ghc) and the other
one in Full Maude (version 2.1.1.a available at http://maude.cs.uiuc.edu).
The first system is called OnDemandOBJ and is described in [AEL03] and the

49

http://www.haskell.org/ghc
http://maude.cs.uiuc.edu

PI LIST-NAT-LENGTH
OnDemandOBJ 659 ms. < 1 ms.
ODMaude 675 sec. 10 ms.
CafeOBJ 370 ms. overflow
Maude unavailable unavailable

Table 1: Execution of call pi((3^2)^2) and length(from(0)).

second system is called ODMaude and is described in [DEL04]. Both systems
are publicly available at http://www.dsic.upv.es/users/elp/soft.html.

Tables 1 and 2 show the runtimes16 of the benchmarks for the different OBJ-
family systems. CafeOBJ (version 1.4.6 available at http://www.ldl.jaist.
ac.jp/Research/CafeOBJ/system.html) is developed in Lisp at the Japan Ad-
vanced Institute of Science and Technology (JAIST); Maude (version 2.1.1 avail-
able at http://maude.cs.uiuc.edu/) is developed in C++ and maintained by
the University of Illinois at Urbana-Champaign. Maude provides only com-
putations with positive annotations whereas CafeOBJ provides computations
with negative annotations as well, using the on-demand evaluation of [OF00].
OnDemandOBJ and ODMaude compute with negative annotations using the on-
demand evaluation strategy (ODE) provided in this paper. That is, they com-
pute the same and the only difference is how are they implemented. In Table 1,
mark overflow indicates that the execution raised a memory overflow without
computing the associated normal form (see Example 4), whereas the mark un-
available in Tables 1 and 2 indicates that the program cannot be executed in such
an OBJ implementation. Note that since Maude is implemented in C++, typical
execution times are close to 0 milliseconds. In ODMaude, programs are executed
using a very näıve implementation of the on-demand strategy (ODE) of Section
4 and thus runtimes are much greater. The objective of the implementation in
ODMaude is to give an extremely compact and readable implementation of the
strategy whereas its implementation is improved in OnDemandOBJ.

Table 1 compares the existing OBJ implementations through the evalua-
tion of a concrete term of the module PI of Example 3 and also the term
length(from(0)) of the module LIST-NAT-LENGTH of Example 4. It witnesses
that negative annotations are actually useful in practice because they allow re-
ductions in situations where only positive annotations are not sufficient and has
better computational properties than previous proposals.

On the other hand, Table 2 illustrates the interest17 of using negative anno-
tations to improve the behavior of programs:

• the benchmark NAT eager represents the module NAT of Example 1 en-
coding functions + , - , * , and ^2 over natural numbers using only
positive annotations. Every k-ary symbol f is given a strategy (1 2 · · · k 0)

16The average of 10 executions measured in a AMD Athlon XP machine running Fedora
Core 3.

17We exclude ODMaude from this comparison because runtimes are extremely high, more
than 30 minutes for NAT neg and NAT lazy.

50

http://www.dsic.upv.es/users/elp/soft.html
http://www.ldl.jaist.ac.jp/Research/CafeOBJ/system.html
http://www.ldl.jaist.ac.jp/Research/CafeOBJ/system.html
http://maude.cs.uiuc.edu/

NAT eager NAT can NAT neg NAT lazy
OnDemandOBJ 406 ms. 1005 ms. < 1 ms. < 1 ms.

500 ms. 2059 ms. 2050 ms. 1750 ms.
CafeOBJ 170 ms. 460 ms. < 1 ms. < 1 ms.

540 ms. 850 ms. 830 ms. 850 ms.
Maude 1 ms. 10 ms. unavailable unavailable

2 ms. 12 ms. unavailable unavailable

Table 2: Execution of terms 0 - (((3 ^2)^2)^2) and
(((3 ^2)^2)^2) - (((3 ^2)^2)^2).

(this corresponds to default strategies in Maude) yielding ϕ(+) = (1 2 0),
ϕ(-) = (1 2 0), ϕ(*) = (1 2 0), and ϕ(^2) = (1 0). Note that this
module NAT is terminating as a TRS (i.e., without any annotation).

• The benchmark NAT can is similar to NAT eager, but canonical positive
strategies are provided: the i-th argument of a symbol f is annotated
only if there is an occurrence of f in the left-hand side of a rule having
a non-variable i-th argument; otherwise, the argument is not annotated
(see [AL02]), i.e., we have ϕ(+) = (1 0), ϕ(-) = (1 2 0), ϕ(*) = (1 0),
and ϕ(^2) = (0).

• The benchmark NAT neg is similar to NAT can, though canonical arbitrary
strategies are provided: now (from left-to-right), the i-th argument of a
defined symbol f is annotated if all occurrences of f in the left-hand side
of the rules contain a non-variable i-th argument; if all occurrences of f
in the left-hand side of the rules have a variable i-th argument, then the
argument is not annotated; in any other case, annotation −i is given to f
(see Remark 1 and [AL02]), i.e., we have ϕ(+) = (1 0), ϕ(-) = (1 −2 0),
ϕ(*) = (1 0), and ϕ(^2) = (0).

• The benchmark NAT lazy is similar to NAT neg, but each positive annota-
tion is replaced by its negative counterpart, i.e., we have ϕ(+) = (−1 0),
ϕ(-) = (−1 −2 0), ϕ(*) = (−1 0), and ϕ(^2) = (0).

Then, for instance, the first term runs in less time when using program NAT neg
than using programs NAT eager and NAT can, which do not include negative
annotations. For the second (more general) term, NAT eager runs faster than
other programs (because it does not replicate computations due to the equation
of symbol ^2) but we can observe that NAT neg does not significantly increase
the runtimes w.r.t. NAT can. Moreover, we can see that NAT lazy, which uses
only negative annotations, has similar runtimes to NAT can and NAT neg in
CafeOBJ and it is even better in OnDemandOBJ.

51

9 Conclusions

We have provided a suitable extension of the positive evaluation strategy of
OBJ-like languages to general (positive as well as negative) annotations. This
extension is conservative, i.e., programs which only use positive strategy anno-
tations and that are executed under our strategy behave exactly as if they were
executed under the standard OBJ evaluation strategy (Theorems 1 and 2). The
main contributions of the paper are:

(a) the definition of a suitable and well-defined approach to demandedness via
E-strategies (see Examples 4, 11, 13, 12, 14, 23, 31, and 34 for motivation
regarding the inadequacy of the model in the previous proposals),

(b) the demonstration of the computational properties associated to the on-
demand evaluation strategy (ODE) (Theorem 2, Corollary 1, and Theo-
rem 4),

(c) the definition of techniques for analyzing termination under strategy an-
notations (Theorem 11),

(d) the experimental results of Section 8 which demonstrate that our approach
is better suited for implementation.

We have shown that our on-demand evaluation strategy (ODE) improves the
three most important evaluation strategies dealing with on-demand annotations,
and we have also provided conditions for the equivalence of ODE w.r.t. the other
three:

• on-demand evaluation with negative annotations of Nakamura and Ogata
[NO01] as well as Ogata and Futatsugi [OF00] (Theorem 5),

• lazy rewriting (LR) [FKW00], a popular, demand-driven technique to per-
form lazy functional computations which inspired the development of on-
demand strategies in OBJ (Theorems 6, 7, and 8), and

• on-demand rewriting (ODR) [Luc01a], which extends the context–sensitive
rewriting of [Luc98] by also considering “negative annotations” and which
does not directly apply to OBJ and is not comparable to LR (Theorems
9 and 10).

The reader might think that the computational model introduced by negative
annotations is too complex, e.g. arguing that a program with such a negative
(lazy) behavior is difficult to understand by somebody else than its author
and thus, vulnerable to programming errors. However, we have (hopefully)
proved that the computational model is very intuitive (up to the complexity
associated to user-defined strategies) and automatically driven by the order
among (positive and negative) annotations given by the user. Note that this
was not achieved yet by previous proposals dealing with negative annotations.

Let us conclude by summarizing the modus operandi : Given a TRS R and
a strategy map ϕ, if the positive indices in the strategy ϕ do not cover all the

52

non-variable positions in the left-hand sides (this idea is captured by the notion
of canonical replacement map [Luc98], see page 29 above), then we have to add
positive or negative indices to recover completeness, i.e., we add indices until a
canonical replacement map is obtained. This is exactly the problem shown in
Example 3. Once completeness is ensured, if termination can be proved for the
original program but it cannot be proved for the program annotated with only
positive indices, then we must shift some positive annotations into negative ones,
since they can preserve termination while achieving completeness for broader
classes of programs. Where and why shall we use negative annotations?

• If for each occurrence of a symbol f in the left-hand side of the rules, the
i-th argument contains a non-variable term, then f must be annotated
with positive index i.

• If for each occurrence of a symbol f in the left-hand side of the rules, the
i-th argument is a variable, then f must not be annotated with positive
index i nor negative index −i.

• If the two previous cases do not apply, negative index −i is given to f .

Alternatively, in many situations we can work without any positive index at
all, using only negative indices (see Table 2 in Section 8 for some practical
examples).

As future work, we plan to extend the program transformation developed
in [AEL04], which provides completeness of the evaluation strategy for positive
strategy annotations, to the case of on-demand strategy annotations.

References

[AEGL02] M. Alpuente, S. Escobar, B. Gramlich, and S. Lucas. Improving on-
demand strategy annotations. In M. Baaz and A. Voronkov, editors,
Proc. 9th Int. Conf. on Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR’02), volume 2514 of Lecture Notes
in Computer Science, pages 1–18, Tbilisi, Georgia, 2002. Springer-
Verlag, Berlin.

[AEL03] M. Alpuente, S. Escobar, and S. Lucas. OnDemandOBJ: a labo-
ratory for strategy annotations. In J.L. Giavitto and P.E. Moreau,
editors, Proc. of the 4th International Workshop on Rule-Based
Programming, RULE 2003, volume 86.2 of Electronic Notes in The-
oretical Computer Science. Elsevier Sciences Publisher, 2003.

[AEL04] M. Alpuente, S. Escobar, and S. Lucas. Correct and complete (pos-
itive) strategy annotations for OBJ. In F. Gadducci and U. Monta-
nari, editors, Proc. of the 4th International Workshop on Rewriting
Logic and its Applications, WRLA 2002, volume 71 of Electronic
Notes in Theoretical Computer Science. Elsevier Sciences Publisher,
2004.

53

[AFJV97] M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of
Lazy Functional Logic Programs. In Proc. of the ACM SIGPLAN
Conf. on Partial Evaluation and Semantics-Based Program Manip-
ulation, PEPM’97, volume 32, number 12 of ACM Sigplan Notices,
pages 151–162. ACM Press, New York, 1997.

[AL02] S. Antoy and S. Lucas. Demandness in rewriting and narrow-
ing. In M. Comini and M. Falaschi, editors, Proc. of the 11th
Int’l Workshop on Functional and (Constraint) Logic Programming
WFLP’02, volume 76 of Electronic Notes in Theoretical Computer
Science. Elsevier Sciences Publisher, 2002.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. All About
Maude: A High-Performance Logical Framework, volume 4350 of
Lecture Notes in Computer Science. Springer-Verlag, 2007.

[DEL04] F. Durán, S. Escobar, and S. Lucas. On-demand evaluation for
maude. In S. Abdennadher and C. Ringeissen, editors, 5th Inter-
national Workshop on Rule-Based Programming, RULE’04, volume
124 of Electronic Notes in Theoretical Computer Science, pages 25–
39. Elsevier Sciences Publisher, 2004.

[Eke00] Steven Eker. Term rewriting with operator evaluation strategies.
In C. Kirchner and H. Kirchner, editors, Proc. of the 2nd Interna-
tional Workshop on Rewriting Logic and its Applications, WRLA
98, volume 15 of Electronic Notes in Theoretical Computer Science.
Elsevier Sciences Publisher, 2000.

[EMT05] Santiago Escobar, José Meseguer, and Prasanna Thati. Natural
narrowing for general term rewriting systems. In J. Giesl, editor,
Proc. of 16th International Conference on Rewriting Techniques
and Applications, RTA’05, volume 3467 of Lecture Notes in Com-
puter Science, pages 279–293. Springer-Verlag, Berlin, 2005.

[Esc03] S. Escobar. Refining weakly outermost-needed rewriting and nar-
rowing. In D. Miller, editor, Proc. of 5th International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Pro-
gramming, PPDP’03, pages 113–123. ACM Press, New York, 2003.

[FGJM85] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Prin-
ciples of OBJ2. In Proc. of 12th Annual ACM Symp. on Principles
of Programming Languages (POPL’85), pages 52–66. ACM Press,
New York, 1985.

54

[FKW00] W. Fokkink, J. Kamperman, and P. Walters. Lazy rewriting on
eager machinery. ACM Transactions on Programming Languages
and Systems, 22(1):45–86, 2000.

[FN97] K. Futatsugi and A. Nakagawa. An overview of CAFE specification
environment – an algebraic approach for creating, verifying, and
maintaining formal specification over networks –. In 1st Interna-
tional Conference on Formal Engineering Methods, 1997.

[FR99] M.C.F. Ferreira and A.L. Ribeiro. Context-sensitive ac-rewriting.
In P. Narendran and M. Rusinowitch, editors, Proc. of 10th In-
ternational Conference on Rewriting Techniques and Applications,
RTA’99, volume 1631 of Lecture Notes in Computer Science, pages
173–181. Springer-Verlag, Berlin, 1999.

[GL02] B. Gramlich and S. Lucas. Modular termination of context-sensitive
rewriting. In C. Kirchner, editor, Proc. of 4th International ACM
SIGPLAN Conference on Principles and Practice of Declarative
Programming, PPDP’02. ACM Press, New York, 2002.

[GM04] J. Giesl and A. Middeldorp. Transformation techniques for context-
sensitive rewrite systems. Journal of Functional Programming,
14:329–427, 2004.

[GTSKF04] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Au-
tomated termination proofs with AProVE. In V. van Oostromn,
editor, Proc. of 15th International Conference on Rewriting Tech-
niques and Applications, RTA’04, volume 3091 of Lecture Notes in
Computer Science, pages 210–220. Springer-Verlag, Berlin, 2004.

[GWM+00] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ. In J. Goguen and G. Malcolm,
editors, Software Engineering with OBJ: Algebraic Specification in
Action, pages 3–167. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2000.

[Luc98] S. Lucas. Context-sensitive computations in functional and func-
tional logic programs. Journal of Functional and Logic Program-
ming, 1998(1):1–61, 1998.

[Luc01a] S. Lucas. Termination of on-demand rewriting and termination
of OBJ programs. In Proc. of 3rd International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming,
PPDP’01, pages 82–93. ACM Press, New York, 2001.

[Luc01b] S. Lucas. Termination of Rewriting With Strategy Annotations. In
R. Nieuwenhuis and A. Voronkov, editors, Proc. of 8th International
Conference on Logic for Programming, Artificial Intelligence and
Reasoning, LPAR’01, volume 2250 of Lecture Notes in Artificial
Intelligence, pages 669–684. Springer-Verlag, Berlin, 2001.

55

[Luc02a] S. Lucas. Context-sensitive rewriting strategies. Information and
Computation, 178(1):294–343, 2002.

[Luc02b] S. Lucas. Lazy rewriting and context-sensitive rewriting. In
M. Hanus, editor, Proc. of the 10th Int’l Workshop on Functional
and (Constraint) Logic Programming WFLP’01, volume 64 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier Sciences
Publisher, 2002.

[Luc02c] S. Lucas. Termination of (Canonical) Context-Sensitive Rewrit-
ing. In S. Tison, editor, Proc. of 13th International Conference
on Rewriting Techniques and Applications, RTA’02, volume 2378
of Lecture Notes in Computer Science, pages 296–310. Springer-
Verlag, Berlin, 2002.

[Luc06] Salvador Lucas. Proving termination of context-sensitive rewriting
by transformation. Inf. Comput., 204(12):1782–1846, 2006.

[MR92] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Program-
ming with Functions and Predicates: The language Babel. Journal
of Logic Programming, 12(3):191–224, 1992.

[Nag99] T. Nagaya. Reduction Strategies for Term Rewriting Systems. PhD
thesis, School of Information Science, Japan Advanced Institute of
Science and Technology, March 1999.

[Nak02] M. Nakamura. Evaluation strategies for term rewriting systems.
PhD thesis, School of Information Science, Japan Advanced Insi-
tute of Science and Technology, 2002.

[NO01] M. Nakamura and K. Ogata. The evaluation strategy for head
normal form with and without on-demand flags. In K. Futatsugi,
editor, Proc. of the 3rd International Workshop on Rewriting Logic
and its Applications, WRLA 2000, volume 36 of Electronic Notes
in Theoretical Computer Science. Elsevier Sciences Publisher, 2001.

[OF00] K. Ogata and K. Futatsugi. Operational semantics of rewriting with
the on-demand evaluation strategy. In Proc. of 2000 International
Symposium on Applied Computing, SAC’00, pages 756–763. ACM
Press, New York, 2000.

[Ohl02] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-
Verlag, Berlin, 2002.

[TeR03] TeReSe, editor. Term Rewriting Systems. Cambridge University
Press, Cambridge, 2003.

56

A Proofs

A.1 Proofs of Section 5

Theorem 1 Let R be a TRS and ϕ be an E-strategy map. Let t, s ∈ T (F]
ϕ,X]

ϕ).
Then, 〈t, Λ〉]→∗

ϕ 〈s, Λ〉 if and only if 〈||t||, Λ〉]→∗
||ϕ|| 〈||s||, Λ〉.

Proof. We consider the more general situation of p ∈ PosA(t) instead of Λ. Let
us consider that 〈t, p〉]→n

ϕ 〈s, p〉 and 〈||t||, p〉]→m
||ϕ|| 〈s

′, p〉. We prove n ≥ m and
s′ = ||s|| by induction on n. If n = 0, then t = s, m = 0, and s′ = s, since no
step on ||t|| can be done with ||ϕ|| whenever no step on t can be done with ϕ.
For n > 0, 〈t, p〉]→ϕ 〈t′, q〉

]→n−1
ϕ 〈s, p〉 and we consider different cases:

• If t|p = fL1|i:L2(t1, . . . , tk), i 6= 0, and root(||t|p||) is not of the form fL′
1|i:L′

2
,

then i ∈ L1, since the occurrence in L1 cancels out the current num-
ber i. Let t′ = t[fL1⊕i|L2(t1, . . . , tk)]p. If i < 0, then, by definition,
〈t, p〉]→ϕ 〈t′, p〉. If i > 0, then root(t|p.i) = gL|nil, since subterm t|p.i has
already been evaluated, and, by definition, 〈t, p〉]→ϕ 〈t′, p.i〉]→ϕ 〈t′, p〉. In
both cases, ||t|| = ||t′|| and no step on]→||ϕ|| is necessary. Finally, the
conclusion follows by induction hypothesis.

• If t|p = fL1|0:L2(t1, . . . , tk), then root(||t|p||) is also of the form fL′
1|0:L′

2
. It

is easy to see that ODR(t|p) = ODR(||t|p||), since PosP (t) = PosP (||t||),
PosN (t) = PosN (||t||), and Posnil(t) = Posnil(||t||). Therefore,
〈||t||, p〉]→||ϕ|| 〈||t

′||, q〉 and the conclusion follows by induction hypothesis.

• For all the remaining cases, 〈||t||, p〉]→||ϕ|| 〈||t
′||, q〉 and by induction hypoth-

esis 〈||t′||, q〉]→m−1
||ϕ|| 〈||s||, p〉. 2

Lemma 1 Let R be a TRS and ϕ be an alternating E-strategy map such that
bϕc ∈ CMR. If t ∈ T (F]

ϕ,X]
ϕ), then ODR(t) = ∅.

Proof. Given l ∈ L(R) such that root(l) = root(erase(t)), if p ∈ DPl(erase(t)),
then, since ϕ is alternating and bϕc ∈ CMR, either p ∈ PosP (t) or p 6∈ PosA(t).
Thus, ADPl(t) = ∅ for any l ∈ L(R) such that root(l) = root(erase(t)) and
ODR(t) = ∅. 2

Theorem 3 Let R be a TRS and ϕ be an alternating E-strategy map such
that bϕc ∈ CMR. Let t, s ∈ T (F]

ϕ,X]
ϕ), p ∈ PosA(t), and q ∈ PosA(s). Then,

〈t, p〉]→ϕ 〈s, q〉 if and only if 〈btc, p〉]→=
bϕc 〈bsc, q〉.

Proof. By Lemma 1, ODR(t) = ∅ and thus steps 6 and 7 of Definition 3 are
never going to be used. We can remove all the negative annotations from ϕ,

57

i.e., use bϕc instead of ϕ. The steps performed by]→ϕ consuming negative
annotations are simply discarded by]→bϕc . 2

Theorem 4 Let R = (F , R) = (C] D, R) be a left-linear CS and ϕ be an
E-strategy map such that ϕ ∈ CMR and ϕ(f) ends with 0 for all f ∈ D. Let
t ∈ T (F ,X). If s ∈ eval]ϕ(t), then s is a head-normal form of t.

Proof. First, note that it is not possible to have that root(s) = fL|nil for f ∈ F ,
since non-evaluable flags are raised only when a position is demanded and only
for those symbols occurring at positions between the root and the considered
demanded position (excluding both).

We prove the claim by structural induction on s. If s ∈ C or s ∈ X , we
are trivially done. Consider s = f ∈ D, with ar(f) = 0. By assumption, ϕ(f)
ends with 0, thus the last rewriting step was 〈fnil|(0), Λ〉]→ϕ 〈fnil|nil, Λ〉. The
only case when this can happen is when erase(fnil|(0)) = f is not a redex and
ODR(fnil|(0)) = ∅. But this case can only occur if there is no l ∈ L(R) such
that root(l) = f . Hence, s is a head-normal form.

For the induction case, we omit the case root(s) ∈ C which is trivial. Con-
sider root(s) = f ∈ D. By assumption, ϕ(f) ends with 0, thus, there are
terms t′, s′ ∈ T (F]

ϕ,X]
ϕ) such that the last rewriting step was 〈t′, Λ〉]→ϕ 〈s′, Λ〉,

s = erase(s′), root(t′) = fL|(0) and s′ = fL|nil(t′|1, . . . , t′|ar(f)). This can hap-
pen only when erase(t′) is not a redex and ODR(t′) = ∅.

If erase(t′) is not a redex, then s (recall that s = erase(s′) = erase(t′)) is also
not a redex and @l ∈ L(R) and σ ∈ Subst(T (F ,X)) such that s = σ(l). By left-
linearity, there are disagreeing positions in s′ (Pos6=(s, l) 6= ∅ for all l ∈ L(R))
that could be demanded but they are not (ODR(s′) = ODR(t′) = ∅). Note
that if we drop left-linearity then it is possible that s is not a redex but there
is l ∈ L(R) such that Pos6=(s, l) = ∅. In the following, we prove that for each
l ∈ L(R) either Pos6=(s, l) = {Λ}, i.e., root(l) 6= root(s), or p ∈ Pos6=(s, l) and
s|p is a head-normal form. And, by the CS property of the rules, for any position
p > Λ in s that is a head-normal form, no evaluation above it can rewrite the
symbol at position p into the symbol expected at rule l, and thus we conclude
s is a head-normal form.

We have that ODR(s′) = ∅ implies ADPR(s′) = ∅. If ADPR(s′) = ∅, then
either (i) there is no l ∈ L(R) such that root(s) = root(l), i.e., Pos6=(s, l) =
{Λ} for each l ∈ L(R), or (ii) ADPl(s′) = ∅ for each l ∈ L(R) such that
root(s) = root(l). In case (ii), we have that those rules which could be applied
to s have a conflict of positions with s. If ADPl(s′) = ∅ for l ∈ L(R) such
that root(s) = root(l), then either (iii) DPl(s) = ∅, or (iv) DPl(s) 6= ∅ and
DPl(s) ∩ PosA(s′) = ∅, (v) DPl(s) 6= ∅ and DPl(s) ∩ PosP (s′) 6= ∅, or
(vi) DPl(s) 6= ∅ and DPl(s) ∩ Posnil(s′) 6= ∅. In case (iii), if DPl(s) = ∅
but Pos6=(s, l) 6= ∅ 6= {Λ}, then there is a position p ∈ Pos6=(s, l) such that
p ∈ PosC(s) and the conclusion follows. The case (iv) is not possible because
ϕ ∈ CMR. In cases (v) and (vi) we have that there is a position p ∈ DPl(s)
such that p > Λ and the position is disagreeing with l and should be demanded

58

and evaluated. However, by hypothesis, s|p is a head-normal form and the
conclusion follows. 2

A.2 Proofs of Section 6.1

Proposition 1 Let R be a left-linear completely defined CS and ϕ be a standard
E-strategy map in lexicographic order such that ϕ ∈ CMR. Let R be in ϕ-order.
Let t ∈ T (F]

ϕ,X]
ϕ) such that erase(t) is not a redex and root(t) = fL|(0). Let

p ∈ PosA(t) ∩ PosD(erase(t)) such that p > Λ. Then, {p} = ODR(t) if and
only if {p} = DFR(erase(t)).

Proof.
(⇒) If {p} = ODR(t), then p ∈ ADPR(t) and p is the minimum position w.r.t.
the total order ≤t (p = min≤t(ADPR(t))). Since ϕ is in lexicographic order, p
is also the minimum position w.r.t. the total order ≤lex. Since p ∈ ADPR(t),
there is a lhs l ∈ L(R) such that root(erase(t)) = root(l) and p ∈ ADPl(t).
And then, p ∈ DPl(erase(t)) and p ∈ minimal≤(Pos6=(erase(t), l)).

Now, since p ∈ minimal≤(Pos6=(erase(t), l)) and p = min≤t(ADPR(t)), we
have that p = dfl(erase(t)) = min≤lex

(Pos6=(erase(t), l)). Then, for proving
that DFR(erase(t)) = {p} = max≤lex

({dfl(erase(t)) | l → r ∈ R}), we sim-
ply have to prove that for each l′ ∈ L(R) such that l′ 6= l, it is impossible that
dfl′(erase(t)) = {p′} such that p <lex p′. If such p′ = min≤lex

(Pos6=(erase(t), l′))
exists, then p 6∈ Pos6=(erase(t), l′). But then, by the property that R is in ϕ-
order, we have that p ∈ PosF (l) and, by the CS property, p ∈ PosC(erase(t)),
contradicting the assumption that p ∈ PosD(erase(t)). Thus, DFR(erase(t)) =
{p}.

(⇐) If p ∈ DFR(erase(t)), then p = max≤lex
({dfl(erase(t)) | l → r ∈ R}).

SinceR is completely defined, there exists l ∈ L(R) such that Pos6=(erase(t), l) ⊆
PosD(erase(t)). Thus, p ∈ DFl(erase(t)). Since ϕ is standard and ϕ ∈ CMR,
PosP (t) ⊆ Posnil(t), i.e., all positive positions in t have been already evaluated.
By Theorem 4 and since ϕ is standard, for each p ∈ Posnil(t), t|p is a head-
normal form and, by the completely defined property, p ∈ PosC(erase(t)). Thus,
by the CS property, minimal≤(Pos6=(erase(t), l))∩ (PosP (t)∪Posnil(t)) = ∅.
Thus, p ∈ ADPl(t) and p ∈ ADPR(t). Finally, since R is in ϕ-order, for
each position p′ <lex p, we have that p′ ∈ PosF (l) and, by the CS prop-
erty, p′ ∈ PosC(l). Moreover, for any other lhs l′ ∈ L(R) such that p′ ∈
Pos6=(erase(t), l′) − {Λ}, p′ 6∈ DPl′(erase(t)). Thus, ODRR(t) =
{min≤t(ADPR(t))} = {p}. 2

Lemma 2 Let R be a TRS and ϕ be a standard E-strategy map such that
ϕ ∈ CMR. Let t, s, t′, s′ ∈ T (FZ

ϕ ,X Z
ϕ) such that t′ and s′ have more symbols with

the on-demand flag activated than t and s, respectively. Then, 〈t, p〉 Z→ϕ〈s, q〉 if

and only 〈t′, p〉 Z→ϕ〈s′, q〉.

59

Proof. The only case in Definition 2 affected is case 4(c), where
t|p = f b

0:L(t1, . . . , tk), and DFR(erase(t|p)) = p′ 6= > and flag(t, p.p′) = 0.
However, this case is impossible, since ϕ ∈ CMR and ϕ is standard. That is,
ϕ being standard implies that the only index 0 is at the end of any strategy
list and thus every possible on-demand flag has been activated before index 0
at position p in t is reached. And the property ϕ ∈ CMR implies that every
non-variable position in any lhs is covered by a positive or negative position. 2

Theorem 5 Let R be a left-linear completely defined CS and ϕ be a standard
E-strategy map in lexicographic order such that ϕ ∈ CMR. Let R be in ϕ-order.
Let t, s ∈ T (F]

ϕ,X]
ϕ). Then, 〈t, Λ〉]→!

ϕ 〈s, Λ〉 if and only if 〈btcZ, Λ〉 Z→!
ϕ〈bscZ, Λ〉.

Proof. First note that, by Lemma 2, it is not a problem to add more on-demand
flags than the necessary and thus, we can use btcZ without loosing any Z→ϕ-step.

(⇒) By induction on the number n of steps of 〈t, Λ〉]→n
ϕ 〈s, Λ〉.

1. If n = 0, then s = t and root(t) = fL|nil. Thus, btcZ = f1
nil and the

conclusion follows.

2. If n > 0, then we consider the first step 〈t, Λ〉]→ϕ 〈t′, p〉
]→!

ϕ 〈s, Λ〉 and all
its possible cases:

(a) If t = fL1|i:L2(t1, . . . , tk), i > 0, t′ = fL1⊕i|L2(t1, . . . , tk) and p =

i, then btcZ = f1
i:L2

(bt1cZ, . . . , btkcZ) and thus 〈btcZ, Λ〉 Z→ϕ〈bt′cZ, p〉.
We are in the following situation

〈t, Λ〉]→ϕ 〈t′, p〉
]→n′

ϕ 〈t′′, p〉]→ϕ 〈s′, Λ〉]→!
ϕ 〈s, Λ〉

where 〈t′|p, Λ〉]→!
ϕ 〈t′′|p, Λ〉 in n′ steps and n′ < n. Then, by induction

hypothesis, 〈bt′|pcZ, Λ〉 Z→!
ϕ〈bt′′|pcZ, Λ〉 and 〈bs′cZ, Λ〉 Z→!

ϕ〈bscZ, Λ〉, thus
we conclude

〈btcZ, Λ〉 Z→ϕ〈bt′cZ, p〉 Z→∗
ϕ〈bt′′cZ, p〉 Z→ϕ〈bs′cZ, Λ〉 Z→!

ϕ〈bscZ, Λ〉.

(b) If t = fL1|−i:L2(t1, . . . , tk), i > 0, t′ = fL1@−i|L2(t1, . . . , tk) and
p = Λ, then, since bt′cZ raises all on-demand flags at the same time,
〈btcZ, Λ〉 Z→ϕ〈bt′cZ, Λ〉 and, by induction hypothesis,

〈bt′cZ, Λ〉 Z→!
ϕ〈bscZ, Λ〉.

(c) If t = fL1|0:L2(t1, . . . , tk) = σ(l′), erase(l′) = l, t′ = σ(ϕ(r)) for some

l → r ∈ R and substitution σ, and p = Λ, then 〈btcZ, Λ〉 Z→ϕ〈bt′cZ, Λ〉
and, by induction hypothesis, 〈bt′cZ, Λ〉 Z→!

ϕ〈bscZ, Λ〉.

60

(d) If t = fL1|0:L2(t1, . . . , tk), erase(t) is not a redex, ODR(t) = ∅,
t′ = fL1|L2(t1, . . . , tk), and p = Λ, then, since ϕ ∈ CMR and R is
completely defined, we have that root(t) ∈ C and DFR(erase(t)) = Λ.
Thus, 〈btcZ, Λ〉 Z→ϕ〈bt′cZ, Λ〉 and, by induction hypothesis,

〈bt′cZ, Λ〉 Z→!
ϕ〈bscZ, Λ〉.

(e) If t = fL1|0:L2(t1, . . . , tk), erase(t) is not a redex, ODR(t) = {p}, and
t′ = mark(t, p), then, by Proposition 1, DFR(erase(t)) = p and, by
definition, flag(btcZ, p) = 1. Thus, a recursive subsequence for t|p is
going to be started. We are in the following situation

〈t, Λ〉]→ϕ 〈t′, p〉
]→n′

ϕ 〈t′′, p〉]→∗
ϕ 〈s′, Λ〉]→!

ϕ 〈s, Λ〉

where 〈t′|p, Λ〉]→!
ϕ 〈t′′|p, Λ〉 in n′ steps and n′ < n. By induction

hypothesis, 〈bt′|pcZ, Λ〉 Z→!
ϕ〈bt′′|pcZ, Λ〉. By Theorem 4, erase(t′′|p)

is a head-normal form. By the property R is completely defined,
p ∈ PosC(erase(t′′)). And, since R is completely defined, p 6=
DFR(erase(t′′)). Thus, we are in case 4(d) of Definition 2 and, since
erase(s′) = erase(t′′) and the steps 〈t′′, p〉]→∗

ϕ 〈s′, Λ〉 only remove

bars above symbols, 〈btcZ, Λ〉 Z→ϕ〈bs′cZ, Λ〉. Then, by induction hy-

pothesis, 〈bs′cZ, Λ〉 Z→!
ϕ〈bscZ, Λ〉.

(f) We cannot have the case where t = fL1|L2
(t1, . . . , tk).

(⇐) By induction on the number n of steps of this sequence 〈btcZ, Λ〉 Z→!
ϕ〈bscZ, Λ〉

plus the steps of all the subsequences (and their subsequences) demanded inside
this sequence. Note that, since 〈btcZ, Λ〉 Z→!

ϕ〈bscZ, Λ〉 is finite, we know there is
a finite number of recursive subsequences inside other subsequences and thus n
is finite.

1. If n = 0, then bscZ = btcZ and root(btcZ) = f1
nil. Thus, t = fL|nil and the

conclusion follows.

2. If n > 0, then we consider the first step 〈btcZ, Λ〉 Z→ϕ〈bt′cZ, p〉 Z→!
ϕ〈bscZ, Λ〉

and all its possible cases:

(a) If btcZ = f1
i:L(t1, . . . , tk), i > 0, bt′cZ = f1

L(t1, . . . , tk) and p = i, then
〈t, Λ〉]→ϕ 〈t′, p〉. We are in the following situation

〈btcZ, Λ〉 Z→ϕ〈bt′cZ, p〉 Z→n′

ϕ 〈bt′′cZ, p〉 Z→ϕ〈bs′cZ, Λ〉 Z→!
ϕ〈bscZ, Λ〉

where 〈bt′|pcZ, Λ〉 Z→!
ϕ〈bt′′|pcZ, Λ〉 in n′ steps and n′ < n. By induction

hypothesis, 〈t′|p, Λ〉]→!
ϕ 〈t′′|p, Λ〉 and 〈s′, Λ〉]→!

ϕ 〈s, Λ〉. Thus,

〈t, Λ〉]→ϕ 〈t′, p〉
]→∗

ϕ 〈t′′, p〉
]→ϕ 〈s′, Λ〉]→!

ϕ 〈s, Λ〉

61

(b) If btcZ = f1
−i:L(t1, . . . , tk), i > 0, bt′cZ = f1

L(t1, . . . , up(ti), . . . , tk) =
f1

L(t1, . . . , ti, . . . , tk) and p = Λ, then 〈t, Λ〉]→ϕ 〈t′, Λ〉 and, by induc-
tion hypothesis, 〈t′, Λ〉]→!

ϕ 〈s, Λ〉.
(c) If btcZ = f1

0:L(t1, . . . , tk), p = Λ, bt′cZ = θ(ϕ(r)), DFR(erase(t)) = >,
btcZ = θ(l′), erase(l′) = l and l → r ∈ R, then 〈t, Λ〉]→ϕ 〈t′, Λ〉 and,
by induction hypothesis, 〈t′, Λ〉]→!

ϕ 〈s, Λ〉.
(d) If btcZ = f1

0:L(t1, . . . , tk), p = Λ, bt′cZ = f1
L(t1, . . . , tk), and

DFR(erase(t)) = Λ, then root(erase(t)) ∈ C. Note that the case
where DFR(erase(t)) = > and erase(t) is not a redex is not pos-
sible because R is left-linear and the case where DFR(erase(t)) =
p′ 6= Λ and flag(t, p.p′) = 0 is not possible by definition of b cZ.
Thus ODR(t) = ∅ and 〈t, Λ〉]→ϕ 〈t′, Λ〉. By induction hypothesis,
〈t′, Λ〉]→!

ϕ 〈s, Λ〉.
(e) The case where btcZ = f1

0:L(t1, . . . , tk), p = Λ, DFR(erase(t)) =

p′ = i.p′′ for i ∈ N, flag(btcZ, p′) = 1, 〈dn(btcZ|p′), Λ〉 Z→!
ϕ〈w, Λ〉,

DFR(erase(btcZ[w]p′)) = p′, and t′′ = f1
L(t1, . . . , ti[up(w)]p′′ , . . . , tk)

is not possible by Proposition 1 and the property thatR is completely
defined.

(f) If btcZ = f1
0:L(t1, . . . , tk), p = Λ, DFR(erase(t)) = p′ 6= Λ,

flag(btcZ, p′) = 1, 〈dn(btcZ|p′), Λ〉 Z→!
ϕ〈w, Λ〉, bt′cZ = t[up(w)]p′ , and

either p′ <lex DFR(erase(t[w]p′)) or DFR(erase(t[s]p′)) = >, then
p′ ∈ PosD(erase(t)) and, by Proposition 1, ODR(t) = {p′}. By in-
duction hypothesis, 〈t|p′ , Λ〉 Z→!

ϕ〈t′′, Λ〉 such that w = bt′′cZ. The steps
〈t′′, p〉]→∗

ϕ 〈s′, Λ〉 remove just bars above symbols, i.e., erase(t′′) =
erase(s′). Also by induction hypothesis, 〈s′, Λ〉]→!

ϕ 〈s, Λ〉. And thus,

〈t, Λ〉]→ϕ 〈t′, p〉
]→∗

ϕ 〈t′′, p〉
]→∗

ϕ 〈s′, Λ〉]→!
ϕ 〈s, Λ〉

2

A.3 Proofs of Section 6.2

Lemma 3 Let R be a left-linear TRS and ϕ be an E-strategy map. Let t ∈
T (F]

ϕ,X]
ϕ). If ODR(t) = {p}, then (i) ∃l ∈ L(R) such that l matches modulo

laziness labelµbϕc (erase(t)), (ii) root(erase(t)|p) 6= root(l|p) 6∈ X , (iii) for all p′

such that Λ ≤ p′ < p, root(erase(t)|p′) = root(l|p′), and (iv) at least one position
p′ : Λ < p′ ≤ p is declared essential.

Proof. If ODR(t) = {p}, then there exists l ∈ L(R) such that
p ∈ Pos6=(erase(t), l) and root(erase(t)|p) 6= root(l|p) 6∈ X . By minimality, for
all p′ s.t. Λ ≤ p′ < p, root(erase(t)|p′) = root(l|p′). Also, ADPl(erase(t)) ∩

62

PosP (t) = ∅ and ADPl(erase(t)) ∩ Posnil(t) = ∅. That is, for all q ∈
DPl(erase(t)), q 6∈ PosP (t) and then, there is q′ ≤ q such that q′ ∈ PosA(t),
root(labelµbϕc (erase(t))|q′) = f ` and for all q′′ such that Λ ≤ q′′ < q′, symbol
root(labelµbϕc (erase(t))|q′′) is marked as eager. Hence, the conclusion follows
and l matches modulo laziness t. 2

Lemma 4 Let R be a left-linear TRS and ϕ be an E-strategy map. If t, l′, r′ ∈
T (F]

ϕ,X]
ϕ) and l → r ∈ R such that t = σ(l′), erase(l′) = l, and r′ = σ(ϕ(r)),

then l matches erase(t) and, let tϕ = labelµbϕc (erase(t)), there exists θ for LR
such that labelµbϕc (erase(r

′)) = θ(labelµbϕc (r)).

Proof. Note that all variables of l′ have the same labeling, i.e., Var(l′) =
{xnil|nil | x ∈ Var(l)}. Note also that, if t = σ(l′), then l matches erase(t)
and there exists θ for LR such that erase(σ(x′)) = erase(θ(x′′)) for erase(x′) =
erase(x′′) = x ∈ Var(l). Finally, θ(labelµbϕc (r)) = labelµbϕc (erase(σ(r))), i.e.
labelµbϕc (erase(r

′)) = θ(labelµbϕc (r)). 2

Theorem 6 Let R be a left-linear TRS and ϕ be an E-strategy map. Let t ∈
T (F]

ϕ,X]
ϕ), p ∈ Pos(t) and µ = µbϕc . If 〈t, p〉]→ϕ 〈s, q〉 and p ∈ Act(lazyp

ϕ(t)),

then q ∈ Act(lazyq
ϕ(s)) and lazyp

ϕ(t) LR−→∗
µ s′ for s′ ∈ T (FL,XL) such that

lazyq
ϕ(s) ≤lazy s′.

Proof. We consider the different cases of Definition 3 separately.

1. If t|p = fL|nil(t1, . . . , tk), s = t and p = q.i for some i, then

lazyp
ϕ(t) LR−→=

µ lazyp
ϕ(t) and lazyq

ϕ(s) ≤lazy lazyp
ϕ(t). Note that

q ∈ Act(lazyq
ϕ(s)) since p = q.i ∈ Act(lazyp

ϕ(t)).

2. If t|p = fL1|i:L2(t1, . . . , tk) with i > 0, s = t[fL1⊕i|L2(t1, . . . , tk)]p and q =
p.i, then lazyp

ϕ(t) = lazyq
ϕ(s), since p, q ∈ PosP (t), and, q ∈ Act(lazyq

ϕ(s)),

since i ∈ µ(f). Thus, we have lazyp
ϕ(t) LR−→=

µ lazyq
ϕ(s).

3. If t|p = fL1|−i:L2(t1, . . . , tk) with i > 0, s = t[fL1⊕−i|L2(t1, . . . , tk)]p and
q = p, then lazyp

ϕ(t) = lazyq
ϕ(s), q ∈ Act(lazyq

ϕ(s)) and

lazyp
ϕ(t) LR−→=

µ lazyq
ϕ(s).

4. If t|p = fL1|0:L2(t1, . . . , tk) = σ(l′), erase(l′) = l, s = t[σ(ϕ(r))]p for some
l → r ∈ R and substitution σ, and q = p, then by Lemma 4, there exists
θ for LR such that lazyp

ϕ(t) R→µ lazyp
ϕ(t)[θ(labelµ(r))]p. By Lemma 4, we

also have that lazyp
ϕ(t)[θ(labelµ(r))]p = lazyp

ϕ(t)[labelµ(erase(σ(ϕ(r))))]p.
Since t|p contains no overlined symbol and p ∈ Act(lazyp

ϕ(t)), then
labelµ(erase(σ(ϕ(r)))) = lazyp

ϕ(σ(ϕ(r))), and we finally get
lazyp

ϕ(t)[θ(labelµ(r))]p = lazyp
ϕ(t)[lazyp

ϕ(σ(ϕ(r)))]p = lazyq
ϕ(s).

63

5. If t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = ∅,
s = t[fL1|L2(t1, . . . , tk)]p, and q = p, then lazyp

ϕ(t) = lazyq
ϕ(s), q ∈

Act(lazyq
ϕ(s)) and lazyp

ϕ(t) LR−→=
µ lazyq

ϕ(s).

6. If t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, ODR(t|p) = {p′},
s = t[mark(t|p, p′)]p, and q = p.p′, then for all p′′ s.t. p ≤ p′′ ≤ p.p′,
root(lazyq

ϕ(s)|p′′) = fe and q ∈ Act(lazyq
ϕ(s)). Thus, the only difference

between lazyp
ϕ(t) and lazyq

ϕ(s) is the activated set of positions between
p and p.p′, i.e., for all p′′ s.t. p < p′′ ≤ p.p′, root(lazyq

ϕ(s)|p′′) = fe

and root(lazyp
ϕ(t)|p′′) = f `. Moreover, we know that there is a lhs l ∈

L(R) such that for all p′′ s.t. Λ < p′′ ≤ p′, root(l|p′′) ∈ F . Thus, by
successive applications of Lemma 3, there are several activation steps of
lazy rewriting and we obtain lazyp

ϕ(t) A−→∗ lazyq
ϕ(s).

7. If t|p = fL1|L2
(t1, . . . , tk), s = t[fL1|L2(t1, . . . , tk)]p, and p = q.i for some i,

then, since lazyq
ϕ(s) ≤lazy lazyp

ϕ(t), we have lazyp
ϕ(t) LR−→=

µ lazyp
ϕ(t). Note

that q ∈ Act(lazyq
ϕ(t)) since q.i ∈ Act(lazyp

ϕ(t)). 2

Theorem 7 Let R be a left-linear completely defined CS and ϕ be an E-strategy
map such that ϕ ∈ CMR and ϕ(f) ends with 0 for all f ∈ D. If t ∈ T (F ,X)
and 〈ϕ(t), Λ〉]→!

ϕ 〈s, Λ〉, then lazyΛ
ϕ(t) LR−→!

µ lazyΛ
ϕ(s).

Proof. By Theorem 6, there is a sequence lazyΛ
ϕ(t) LR−→∗

µ s′ such that
lazyΛ

ϕ(s) ≤lazy s′. By Theorem 4, erase(s′) = erase(s) is a head-normal form.
And by the property R is completely defined, root(erase(s)) ∈ C ∪ X . If
erase(s) = erase(s′) = x ∈ X , then it is clear that s′ = lazyΛ

ϕ(s). Other-
wise, since all positive positions have been evaluated in s′ and a constructor
symbol cannot activate any position, we can speak of normalization instead of
an arbitrary number of steps, i.e., lazyΛ

ϕ(t) LR−→!
µ s′ and s′ = lazyΛ

ϕ(s). 2

Theorem 8 Let R be a left-linear completely-defined CS and ϕ be an E-
strategy map such that ϕ ∈ CMR and ϕ(f) ends with 0 for all f ∈ D. Let R
be]→ϕ -terminating. Let t ∈ T (F ,X). Then, 〈ϕ(t), Λ〉]→!

ϕ 〈s, Λ〉 if and only if

lazyΛ
ϕ (t) LR−→!

µ lazyΛ
ϕ (s).

Proof. We only have to prove the ⇐ implication, since the ⇒ implication is
proved by Theorem 7. We have lazyΛ

ϕ (t) LR−→!
µ w for some term w. Since R is a

left-linear CS, erase(w) is a head-normal form. Since R is completely defined,
root(erase(w)) ∈ C ∪ X . Then, since R is]→ϕ -terminating, we can take any
sequence 〈ϕ(t), Λ〉]→!

ϕ 〈s, Λ〉 for some term s. By Theorem 4, s is a head-normal
form and, since R is completely defined, root(erase(s)) ∈ C ∪ X . Finally, by
Theorem 7, w = lazyΛ

ϕ (s). 2

64

A.4 Proofs of Section 6.3

Given a term t ∈ T (F]
ϕ,X]

ϕ) and a position p ∈ PosA(t), we say p is a stop
position if there is no sequence 〈t, p〉]→∗

ϕ 〈t′, q〉 such that p ≤ q, erase(t) =
erase(t′), and erase(t′|q) is a redex.

Lemma 5 Let R be a TRS and ϕ be an E-strategy map such that µbϕc(c) = ∅
for c ∈ C. Let t ∈ T (F]

ϕ,X]
ϕ) and p ∈ PosA(t). If root(erase(t|p)) ∈ C, then p

is a stop position.

Proof. Immediate, since t|p is a]→ϕ -normal form. 2

Lemma 6 Let R be a left-linear CS and ϕ be an E-strategy map such that
µbϕc(c) = ∅ for c ∈ C. Let t ∈ T (F]

ϕ,X]
ϕ) and p ∈ PosA(t). If 〈t, p〉 is

consistent, then either p ∈ PosP (t) or ∃q ∈ PosP (t) s.t. q < p and either
ODR(t|q) 6= ∅ or, otherwise, if erase(t|q) is a redex, then for all w s.t. q < w ≤
p, w is a stop position.

Proof. By induction on the length n of the evaluation sequence
〈ϕ(s), Λ〉]→n

ϕ 〈t, p〉 for s ∈ T (F ,X).

• (n = 0) It is immediate to see that p = Λ and Λ ∈ PosP (t).

• (n > 0) Let us consider 〈ϕ(s), Λ〉]→n−1
ϕ 〈t′, p′〉]→ϕ 〈t, p〉. The induction hy-

pothesis is: p′ ∈ PosP (t′) or p′ ∈ PosA(t′)−PosP (t′) and ∃q′ ∈ PosP (t′)
s.t. q′ < p′ and either ODR(t′|q′) 6= ∅ or, otherwise, if erase(t′|q′) is a
redex, then for all q′ s.t. q′ < w ≤ p′, w is a stop position. We consider
the different cases of Definition 3 separately:

1. Let t′|p′ = fL|nil(t1, . . . , tk), t = t′ and p′ = p.i for some i. If
p′ ∈ PosP (t′), then p ∈ PosP (t). If p′ ∈ PosA(t′) − PosP (t′) and
q′ = p, then p ∈ PosP (t). If p′ ∈ PosA(t′) − PosP (t′), q′ < p, and
ODR(t|q′) 6= ∅, then the conclusion follows since no symbol occur-
ring above or at position p′ has been changed. If p′ ∈ PosA(t′) −
PosP (t′), q′ < p, and ODR(t|q′) = ∅, then the conclusion follows by
induction since p is also a stop position.

2. Let t′|p′ = fL1|i:L2(t1, . . . , tk), i > 0, t = t′[fL1⊕i|L2(t1, . . . , tk)]p′ and
p = p′.i. If p′ ∈ PosP (t′), then p ∈ PosP (t). If p′ ∈ PosA(t′) −
PosP (t′), q′ < p, and ODR(t′|q′) 6= ∅, then the conclusion follows
since no symbol occurring above or at position p has been changed.
If p′ ∈ PosA(t′)− PosP (t′), q′ < p, ODR(t′|q′) = ∅, and erase(t′|q′)
is a redex, then p is a stop position if p′ is.

3. Let t′|p′ = fL1|−i:L2(t1, . . . , tk), i > 0, t = t′[fL1@−i|L2(t1, . . . , tk)]p′
and p = p′. This case is straightforward since the symbols above and
at position p′ are unchanged.

65

4. Let t′|p′ = fL1|0:L2(t1, . . . , tk) = σ(l′), erase(l′) = l, t = t′[σ(ϕ(r))]p′
for some l → r ∈ R and substitution σ, and p = p′. If p′ ∈ PosP (t′),
then p ∈ PosP (t). Otherwise, p′ ∈ PosA(t′) − PosP (t′) and q′ < p.
If ODR(t|q′) 6= ∅ or ODR(t|q′) = ∅ and erase(t|q′) is not a redex,
then the conclusion follows. Otherwise, erase(t|q′) is a redex.
Here, note that it is impossible that ODR(t′|q′) = ∅ because in
that case, either erase(t′|q′) would not be a redex and, since R is a
left-linear CS, it is impossible that erase(t|q′) becomes a redex; or
erase(t′|q′) would be a redex and p′ a stop position, but, then, no
reduction could be performed at position p′. Thus, ODR(t′|q′) 6= ∅,
ODR(t|q′) = ∅, and erase(t|q′) is a redex. Now, since R is a CS, for
all q′ s.t. q′ < w ≤ p, root(erase(t|w)) ∈ C and, by Lemma 5, w is a
stop position.

5. Let t′|p′ = fL1|0:L2(t1, . . . , tk), erase(t′|p′) is not a redex, ODR(t′|p′) =
∅, t = t′[fL1|L2(t1, . . . , tk)]p′ , and p = p′. Then, it is straightforward
(see Case 3).

6. Let t′|p′ = fL1|0:L2(t1, . . . , tk), erase(t′|p′) is not a redex, ODR(t′|p′) =
{p′′}, t = t′[mark(t′|p′ , p′′)]p′ , and p = p′.p′′. If p′ ∈ PosP (t′),
then p′ < p, ODR(t|p′) 6= ∅, and the conclusion follows. If p′ ∈
PosA(t′) − PosP (t′), q′ < p, and ODR(t′|q′) 6= ∅, then the con-
clusion follows since no symbol above p has been changed. If p′ ∈
PosA(t′) − PosP (t′), q′ < p, ODR(t′|q′) = ∅, and erase(t′|q′) is a
redex, then p is a stop position if p′ is.

7. Let t′|p′ = fL1|L2
(t1, . . . , tk), t = t′[fL1|L2(t1, . . . , tk)]p′ and p′ = p.i

for some i. This case is similar to case 1 above. 2

Theorem 9 Let R be a left-linear CS and ϕ be an E-strategy map such that
µbϕc(c) = ∅ for c ∈ C. Let µ, µD ∈ MF be such that µ = µbϕc and µtµD = µϕ.
Let t ∈ T (F]

ϕ,X]
ϕ) and p ∈ PosA(t). If 〈t, p〉]→ϕ 〈s, q〉 and 〈t, p〉 is consistent,

then erase(t)
p

↪→=
〈µ,µD〉 erase(s).

Proof. We consider only case 4 of Definition 3 since the other cases only manip-
ulate annotations on symbols or compute the next position q to be considered,
which implies a reflexive on-demand rewriting step. Then, by Lemma 6, case 4
can only occur under the following conditions:

1. If p ∈ PosP (t), then we are trivially done.

2. If p ∈ PosA(t) − PosP (t), ∃q ∈ PosP (t) s.t. q < p and ODR(t|q) 6= ∅,
then it is easy to prove that there exist p1, . . . , pn ∈ Lazy〈µ,µD〉(erase(t)),
r1, . . . , rn, t′ ∈ T (F ,X), l → r ∈ R, and a substitution σ such that
t′ = erase(t)[r1]p1 · · · [rn]pn , t′|q = σ(l) and, for all w ∈ Pos(l) s.t.
sprefixerase(t)|q (w) = sprefixl(w) whenever q.w ≤ p, hence we have that
l|w 6∈ X .

66

3. Otherwise, p ∈ PosA(t)−PosP (t), and there is no q ∈ PosP (t) s.t. q < p,
ODR(t|q) = ∅, and erase(t|q) is a redex. Note that, by Definition 3, there
exist q ∈ PosP (t) and l ∈ L(R) s.t. q < p and Pos6=(erase(t|q), l) 6= ∅
because, otherwise, it is impossible that position p 6∈ PosP (t) is used
for reduction. Thus, it is easy to prove that there exist p1, . . . , pn ∈
Lazy〈µ,µD〉(erase(t)), r1, . . . , rn, t′ ∈ T (F ,X), l → r ∈ R, and substi-
tution σ such that t′ = erase(t)[r1]p1 · · · [rn]pn , t′|q = σ(l) and for all
w ∈ Pos(l) s.t. sprefixerase(t)|q (w) = sprefixl(w), whenever q.w ≤ p, we
have that l|w 6∈ X . 2

Theorem 10 Let R be a left-linear completely-defined CS and ϕ be an E-
strategy map such that ϕ ∈ CMR, ϕ(f) ends with 0 for all f ∈ D, and µbϕc(c) =
∅ for c ∈ C. Let R be]→ϕ -terminating. Let µ, µD ∈ MF be such that µ = µbϕc

and µ t µD = µϕ. Let t ∈ T (F ,X). Then, 〈ϕ(t), Λ〉]→!
ϕ 〈s, Λ〉 if and only if

t ↪→!
〈µ,µD〉 erase(s).

Proof. We only have to prove the ⇐ implication, since the ⇒ implication is
proved by Theorem 9. The proof for the ⇒ implication is similar to Theorem
8. 2

A.5 Proofs of Section 7

In the following, we write]→ϕ,R instead of]→ϕ to denote that the TRS R is
used.

Proposition 2 Let R be a CS and ϕ be a standard E-strategy map. Let l → r ∈
R such that NegPos(l) = {p′.j}, f = root(l|p′), and l′ = l[fj(l|p′.1, . . . , l|p′.ar(f))]p′

for the new symbol fj. Let R� be]→ϕ� -terminating. Let t, s ∈ T (F]
ϕ,X]

ϕ) and
p ∈ Pos(t). If 〈t, p〉]→ϕ,R 〈s, q〉, then 〈t, p〉]→+

ϕ�,R� 〈s′, q〉 such that either (i)
s′ and s differ only in some positions Q ∈ Pos(s′) ∩ Pos(s) such that for each
w ∈ Q, 〈s|w, Λ〉]→!

ϕ,R 〈s′|w, Λ〉 or (ii) there exists a position q′ ∈ Pos(s)∩Pos(s′)
such that q > Λ and erase(s) and erase(s′) differ only in the symbol at position
q′.

Proof. We can prove that 〈t, p〉]→ϕ,R 〈s, q〉 implies 〈t, p〉]→ϕ�,R� 〈s, q〉 ex-

cept in the following three cases, where we have that 〈t, p〉]→ϕ,R 〈s, q〉 implies

〈t, p〉]→ϕ�,R� 〈s′, q〉:

1. When t|p = fL1|0:L2(t1, . . . , tk) = σ(l′) for some term l′ such that erase(l′) =
l. In this case, we have that

〈t, p〉]→ϕ,R 〈s, q〉

67

with s = t[σ(ϕ(r))]p for some substitution σ and q = p. For R� however,
we apply rule l[x]P → l′[x]P instead for P = minimal≤({p′′ ∈ PosA(l)−
PosP (l) | p′.j ≤ϕ(l) p′′}), and obtain

〈t, p〉]→ϕ�,R� 〈t′, p〉

for some t′ such that erase(t′) and erase(t) differ only in the symbol at
position p.p′ and annotations have been reset in t′ w.r.t. t. By definition,
every position p′′ <t p.p′.j is positive. By the property ϕ is standard,
every position p′′ is evaluated before position p.p′.j w.r.t. ϕ and R. By
the property R� is]→ϕ� -terminating, we have that

〈t′, p〉]→∗
ϕ�,R� 〈t′′, p.p′.j〉

such that t′′ and t only differ in the symbol at position p.p′, i.e., all anno-
tations in the lists of symbols in t′′ coincide with t, except the symbol at
position p.p′, which is fj . Then, sinceR is a CS and t|p = σ(l′), root(t|p.p′.j

is a constructor symbol and thus, since R is]→ϕ� -terminating,

〈t′′, p.p′.j〉]→∗
ϕ�,R� 〈t′′′, p〉

such that the rule l′ → r can be applied

〈t′′, p〉]→ϕ�,R� 〈s′, p〉.

Note that s′ and s differ only in some positions Q ∈ Pos(s′)∩Pos(s) such
that for each w ∈ Q, 〈s|w, Λ〉]→!

ϕ,R 〈s′|w, Λ〉.

2. When t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, and ODR(t|p) =
{p′.j}. In this case, we have that

〈t, p〉]→ϕ,R 〈s, q〉

with s = t[mark(t|p, p′.j)]p and q = p.p′.j. For R� however, we apply rule
l[x]P → l′[x]P and obtain

〈t, p〉]→ϕ�,R� 〈t′, p〉

for some t′ such that erase(t′) and erase(t) differ only in the symbol at
position p.p′ and annotations have been reset in t′ w.r.t. t. Then, like in
case 1, we have that

〈t′, p〉]→∗
ϕ�,R� 〈t′′, p.p′.j〉

such that t′′ and t only differ in the symbol at position p.p′, i.e., all anno-
tations in the lists of symbols in t′′ coincide with t, except the symbol at
position p.p′, which is fj .

68

3. When t|p = fL1|0:L2(t1, . . . , tk), erase(t|p) is not a redex, and ODR(t|p) =
∅ such that p.p′.j ∈ minimal≤(Pos6=(erase(t|p), l)) and either p.p′.j ∈
PosC(erase(t|p)) or p.p′.j ∈ Posnil(erase(t|p)). In such case, we have
that

〈t, p′〉]→ϕ,R 〈s, q〉

with s = t[fL1|L2(t1, . . . , tk)]p, and q = p. For R� however, we apply rule
l[x]P → l′[x]P and obtain

〈t, p〉]→ϕ�,R� 〈t′, p〉

for some t′ such that erase(t′) and erase(t) differ only in the symbol at
position p.p′ and annotations have been reset in t′ w.r.t. t. However, note
that annotations have not been modified for symbol at position p.p′.j. In
any case p.p′.j ∈ PosC(erase(t|p)) or p.p′.j ∈ Posnil(erase(t|p)), then,
like in case 1, we have that

〈t′, p〉]→∗
ϕ�,R� 〈t′′, p.p′.j〉]→∗

ϕ�,R� 〈t′′′, p〉

such that t′′′ and t only differ in the symbol at position p.p′, i.e., all an-
notations in the lists of symbols in t′′ coincide with t, except the symbol
at position p.p′, which is fj . In the case p.p′.j ∈ PosC(erase(t|p)), rule
l′ → r cannot be applied by the conflict between symbols root(t′′′|p.p′.j)
and root(l|p′.j) and then the conclusion follows. In the case p.p′.j ∈
Posnil(erase(t|p)), rule l′ → r cannot be applied because the symbol
root(t′′′|p.p′.j) has not changed, and then the conclusion follows. 2

Theorem 12 Let R be a CS and ϕ be a standard E-strategy map. Let l → r ∈
R such that NegPos(l) = {p′.j}, f = root(l|p′), and l′ = l[fj(l|p′.1, . . . , l|p′.ar(f))]p′

for the new symbol fj. If the relation]→ϕ�,R� is terminating, then the relation
]→ϕ,R is also terminating.

Proof. By Proposition 2, we can associate a sequence 〈t, p〉]→n′

ϕ�,R� 〈s′, q〉 to

each sequence 〈t, p〉]→n
ϕ,R 〈s, q〉 such that n′ ≥ n. Then, the conclusion follows.

2

Theorem 11 Let R be a CS and ϕ be a standard E-strategy map. If the
relation]→ϕ\,R\ is terminating, then the relation]→ϕ,R is also terminating.

Proof. By Theorem 12 and induction on the number n of transformation steps
〈R0, ϕ0〉, . . . , 〈Rn, ϕn〉, where R0 = R, ϕ0 = ϕ, and Rn = R\, ϕn = ϕ\. 2

69

	Introduction
	Motivation for on-demand evaluation
	Using negative indices in strategy annotations
	Problems with previous on-demand evaluation strategies

	Plan of the paper

	Preliminaries
	Rewriting with strategy annotations
	Rewriting with positive E-strategy maps
	The on-demand E-strategy
	Unexpected behavior of the on-demand E-strategy
	Differences between the two models of the on-demand E--strategy
	Inconsistency of the on-demand E-strategy

	Improving rewriting under on-demand strategy annotations: the on-demand evaluation strategy (ODE)
	Labeling terms
	On-demand matching
	Selection of the demanded redex
	A new reduction model for on-demand evaluationstrategies

	Properties of the on-demand evaluation strategy (ODE)
	Comparison with Nagaya's model
	Meaningful negative annotations
	Ensuring head-normal forms

	Comparison with other techniques dealing with on-demand annotations
	Nakamura and Ogata's model
	Lazy rewriting (LR)
	On-demand rewriting (ODR)

	Proving termination of programs with negative annotations by transformation
	Experiments
	Conclusions
	Proofs
	Proofs of Section 5
	Proofs of Section 6.1
	Proofs of Section 6.2
	Proofs of Section 6.3
	Proofs of Section 7

