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Abstract

This paper concerns learning binary-valued functions defined on
IR, and investigates how a particular type of ‘regularity’ of hypotheses
can be used to obtain better generalization error bounds. We derive
error bounds that depend on the sample width (a notion similar to that
of sample margin for real-valued functions). This motivates learning
algorithms that seek to maximize sample width.
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1 Introduction

1.1 The idea of width

It has proven useful, when using the sign of a real-valued function for binary
classification, to use functions that achieve a ‘large margin’ on a labeled
training sample (since better generalization error bounds are possible, and
because such classifiers are also more robust). For general binary-valued
functions, not arising in this way from real-valued functions, it is not possible
to use the margin. This paper investigates how an alternative notion of
‘regularity’ of binary-valued functions with respect to a training sample can
analogously be used to guide the selection of a ‘good’ classifier from the class.

The key concept is that of sample width of a function. Informally, a function
f : IR → {−1, 1} has a sample width γ with respect to a sample of real
numbers, each labeled with 1 or −1, if γ is the largest number such that for
each point x of the sample, we have not only that f(x) matches the label
associated with x, but, also, f is constant in an interval of length 2γ centered
on each of the sample points. In a sense, then, the function f not only fits
the data, but does so in a ‘simple’ or ‘robust’ (or perhaps even ‘convincing’)
way. Here, we show how generalization error bounds on such hypotheses can
be derived that depend explicitly on the sample width, improving (that is,
decreasing) with the sample width.

1.2 Notation

Let the domain be X = [0, B], for a finite B > 0. If A is a logical expression
that can be evaluated to true or false, then we denote by I{A} the indicator
function which takes the value 1 or 0 whenever the statement A is true
or false, respectively. We denote by 〈a, b〉 a generalized interval set of the
form [a, b], (a, b), [a, b) or (a, b]. For an interval set R we write IR(x) as
the indicator function for the statement x ∈ R or when the set is known
explicitly to be R = 〈a, b〉 then we write I〈a, b〉. For any a ∈ IR, sgn(a) = +1
or −1 if a > 0 or a ≤ 0, respectively. By a binary function h on X we
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mean a function which maps from X to Y = {−1, +1}. For simplicity, we
allow functions h that have only simple discontinuities, i.e., at any point
x the limits h(x+) ≡ limz→x+ h(z) from the right and similarly from the
left h(x−) exist (but are not necessarily equal). We assume that the set of
discontinuities is countable.

For x ∈ X, define the width of h on x by

ωh(x) = h(x) sup{a ≥ 0 : h(z) = h(x), x − a ≤ z ≤ x + a}.

Let Z = X × Y . A finite sample ζ is an element of Zm (so it may include
repetitions), and m is known as the length of the sample. For a sample
ζ ∈ Zm, the sample width of h, denoted ωζ(h), is defined as min(x,y)∈ζ y ωh(x).
So, if ωζ(h) = γ > 0, then this implies that for each (x, y) in the sample, h
is constant on an interval of the form 〈x− γ, x + γ〉. This definition of width
resembles the notion of sample margin of a real-valued function f (see for
instance [2]) which is defined as mζ(f) ≡ min(x,y)∈ζ yf(x).

Following a form of the PAC model of computational learning theory [4, 9, 6],
we assume that some number, m, of labeled data points (x, b) (where x ∈ X
and b ∈ Y ) are generated independently at random according to a fixed
probability distribution P on Z = X × {−1, 1} and that we ‘learn’ about
P from the sample. (Note that this model includes as a special case the
situation in which x is drawn according to a fixed distribution µ on X and
the label b is then given by b = t(x) where t is some fixed function from X
to Y .)

For a sample ζ ∈ Zm, we define by the γ-width error (or, simply, γ-error of
a binary function h to be the following quantity:

Lγ
ζ (h) =

1

m

m
∑

i=1

I{yiωh(xi) < γ}

and we let
L(h) = P{y h(x) < 0} = P{h(x) 6= y}

be the probability that h misclassifies a randomly drawn pair (x, y) ∈ X×Y .
This is known as the generalization error of h. It is the probability of an error
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if we use the hypothesis h to predict the label y from x, for an element (x, y)
of Z drawn according to P .

What we would like to be able to do is to infer that a hypothesis that fits
a large randomly-drawn sample well (in the sense that it has small γ width
error for a suitably large value of γ on a large Pm-random sample) will in fact
have small generalization error (and will therefore have a high probability of
correctly predicting the label y associated with x for a P -random (x, y) ∈ Z).
The type of result we aim to derive, therefore is one of the following type:
for any γ, δ > 0 and any probability distribution P , with Pm probability at
least 1 − δ, a random sample ζ ∈ Zm will be such that for all h ∈ H,

L(h) < Lγ
ζ (h) + ǫ(m, γ, δ),

where ǫ(m, γ, δ) → 0 as m → ∞ and where ǫ decreases as γ increases. (The
product probability measure Pm is used because the m elements of the sample
are generated independently and identically, according to P .)

2 A related problem: learning with γ-regular

functions

In this section, we look at a different problem which has some resemblance
to the main one of this paper, as described above. We do so for two reasons:
first, to see what sort of generalization error bound is obtained, so that the
one we obtain for the main problem can be compared with it; and, secondly,
because it uses the ‘standard’ VC-theory of learning, which the reader can
contrast with the rather different approach used to solve our main problem.

In this paper, we regard a binary function as being highly regular, or simple,
with respect to a training sample, if it has long constant-value runs cen-
tered on the points of the sample. What would be an appropriate sample-
independent counterpart to this? Perhaps the obvious approach is to re-
gard a binary function as simple if it is piecewise constant, with the small-
est ‘piece’ being of at least a certain length. Explicitly, let us say that
h : [0, B] → {−1, 1} is γ-regular if for every x ∈ [0, B], there is an interval
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R = 〈a, a+2γ〉 such that x ∈ R and h is constant on R (so that h(z) = h(x)
for all z ∈ R). (The fact that we take R to be of length 2γ rather than γ
is so as to enable easier comparison with the sample-width based results we
will obtain.)

A moment’s thought shows that this type of regularity does not imply large
sample-width, because for the latter, we require the long constant-value seg-
ments to be centered on the sample points, which will fail to be the case if
a sample point happens to be near the end-point of one of the intervals R
of the type described above. Nonetheless, it does seem to be a comparable
sample-independent version of the ‘width at least γ’ property.

The following result bounds the generalization error of functions h : X → Y
in terms of their regularity and their error on the sample, which is

1

m

m
∑

i=1

I{h(xi) 6= yi}.

What it shows, informally speaking, is that if we have a function that agrees
well with the values on a random sample and which, moreover, is γ-regular
for a large value of γ, then (with high probability) the function has small
generalization error.

Theorem 1 Let B > 0 and denote the domain by X = [0, B] with range
Y = {−1, +1} and let Z = X × Y . Let P be a probability distribution on
Z and suppose that δ ∈ (0, 1). Then, with Pm-probability at least 1 − δ,
ζ ∈ Zm is such that for any function h : X → Y and for all γ ∈ (0, B/2], if
h : X → Y is γ-regular, then

P{h(x) 6= y} <
1

m

m
∑

i=1

I{h(xi) 6= yi} + ǫ(m, γ, δ),

where, defining k(γ) by

k(γ) =

⌊

B

4γ
+

1

2

⌋

,

ǫ(m, γ, δ) denotes
√

8

m

(

2k(γ) ln

(

em

k(γ)

)

+ ln

(

2k(γ)+2

δ

))

.
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Proof: First, let us fix γ ∈ (0, B/2]. Clearly, if h is γ-regular, then the points
at which it changes its value must be at least distance 2γ apart. Suppose
the set {x : h(x) = 1} is a union of r intervals. Then the set {x : h(x) = 0}
is a union of at least r− 1 intervals. Together, these two sets partition [0, B]
and the intervals are all of length at least 2γ. Hence B ≥ (r + (r − 1))2γ, so
r ≤ B/(4γ) + 1/2. So the set of γ-regular functions is contained in the set
Hγ of all functions on [0, B] that are indicator functions of unions of no more
than k(γ) = ⌊B/(4γ) + 1/2⌋ intervals. Now we can apply some results from
the standard theory of learning [6, 10, 4, 2]. Those results tell us that, for
any probability distribution P on Z = X × Y , and any δ ∈ (0, 1), we have
the following: with Pm-probability at least 1 − δ, ζ ∈ Zm is such that for
any h ∈ Hγ (and, therefore, for any γ-regular function h : X → Y ),

P{h(x) 6= y} <
1

m

m
∑

i=1

I{h(xi) 6= yi} + ǫ0(m, γ, δ),

where

ǫ0(m, γ, δ) =

√

8

m

(

ln ΠHγ
(2m) + ln

(

4

δ

))

,

and where ΠH(2m) is the growth function of a class H : X → Y of functions,
evaluated at 2m. (See [10, 6, 2] for instance.)

So far, this requires γ to be fixed in advance. We can easily modify the
result to obtain a bound that simultaneously applies for all γ. To do so, for
γ ∈ (0, B/2] and δ ∈ (0, 1), let E(γ, δ) be the set (or event)

E(γ, δ) = {(x, y) ∈ Z : ∃h ∈ Hγ with P{h(x) 6= y} ≥
1

m

m
∑

i=1

I{h(xi) 6= yi}+ǫ0(m, γ, δ)}.

Then, by what we have just shown, Pm(E(γ, δ)) < δ. Now, for a positive
integer k, k(γ) = k precisely when B/(4k + 2) < γ ≤ B/(4k − 2). So

Pm





⋃

0<γ≤B/2

E(γ, δ/2k(γ))



 = Pm





∞
⋃

k=1

⋃

B/(4k+2)<γ≤B/(4k−2)

E(γ, δ/2k)





≤
∞
∑

k=1

Pk,
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where Pk is the Pm-probability that there is some h belonging to the class
Ik of indicator functions of unions of at most k intervals and which has the
property that

P{h(x) 6= y} ≥
1

m

m
∑

i=1

I{h(xi) 6= yi} +

√

8

m

(

ln ΠIk
(2m) + ln

(

4

δ/2k

))

.

By the argument given above (which invokes standard results from learning
theory), Pk < δ/2k. So we have

Pm





⋃

0<γ≤B/2

E(γ, δ/2k(γ))



 ≤
∞
∑

k=1

δ

2k
= δ.

In other words, with probability greater than 1− δ, for any γ ∈ (0, B/2] and
any γ-regular h : X → Y , we have

P{h(x) 6= y} <
1

m

m
∑

i=1

I{h(xi) 6= yi} + ǫ0(m, γ, δ).

The VC-dimension [10, 6, 4, 2] of Hγ is 2k(γ) and so [10, 6] it follows that
(for m ≥ 2k(γ)),

ln ΠHγ
(2m) ≤ 2k(γ) ln

(

em

k(γ)

)

.

Theorem 1 now follows. �

Given that k(γ) is of order B/γ, if we suppress constants and focus on de-
pendence on m, the bound of Theorem 1 states that with probability at least
1 − δ, we have

P{h(x) 6= y} <
1

m

m
∑

i=1

I{h(xi) 6= yi} + ǫ(m, γ),

where ǫ(m, γ) is of order
√

ln(γm)/(γm). In fact, at the expense of larger
constants, we can use a result of Talagrand [8] (see also [2]) to improve this
to an ǫ that is of order

√

1/(γm).
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3 Bounding generalization error in terms of

width error

3.1 The main theorem

The following result bounds the generalization error of hypotheses in terms
of their sample width error.

Theorem 2 Let B > 0 and denote the domain by X = [0, B] with range
Y = {−1, +1} and let Z = X × Y . Let P be a probability distribution on Z
and suppose that δ ∈ (0, 1). Then, with Pm-probability at least 1− δ, ζ ∈ Zm

is such that for any function h : X → Y and for all γ > 0,

L(h) < Lγ
ζ (h) + ǫ(m, γ, δ),

where

ǫ(m, γ, δ) =

√

8

m

(

2B

γ
ln 3 + ln

(

32B

δγ

))

.

Note that the theorem makes no assumption on any class of hypotheses
nor on its VC-dimension. (The error bound holds simultaneously for any
h : X → Y ). Note also that γ is not prescribed in advance.

The ǫ of Theorem 2 is, if we suppress constants and focus on its dependence
on m, of order

√

1/(γm). Many of the analogous margin-based results for
real-valued functions used in classification have an ǫ that includes also ln m
factors and, additionally, a factor d, where d is the fat-shattering dimension
of the hypothesis space.

As noted, learning with γ-regular functions is a different problem, but it
bears some analogy. In section 2 we obtained the high-probability bound

for all γ ∈ (0, B], for all γ−regular h,

P{h(x) 6= y} <
1

m

m
∑

i=1

I{h(xi) 6= yi} + O
(

√

1/(γm)
)

, (1)
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where, here, the O-notation hides constants and δ-dependence. Theorem 2
gives the bound

for all h : X → Y,

P{h(x) 6= y} < Lγ
ζ (h) + O

(

√

1/(γm)
)

. (2)

These bounds look similar and, noting that Lγ
ζ (h) ≥ 1

m

∑m
i=1 I{h(xi) 6= yi},

it might look as if (2) is weaker than (1). As we have noted, however, the
two problems to which these bounds relate are different (though they are
perhaps analogous). Importantly, it should be observed that (2) is a sample-
based bound that applies to any h : X → Y (and not just those that that are
γ-regular). Even if a function h is not γ-regular, it might still have a large
sample-width on a given sample, and it is this that makes the sample-width
approach useful in practice.

3.2 Proof of the main theorem

Overview

We first give a brief overview. Any binary function h may be represented by
thresholding a real-valued function f , i.e., h(x) = sgn(f(x)). The idea here is
to choose a class F of real-valued functions f whose value f(x) is equivalent
to the width ωh(x) of the corresponding binary functions. Then, the problem
of bounding generalization error in terms of width error can be related to the
previously-studied problem of bounding (classification) generalization error
in terms of margin when real-valued functions are used, through thresholding,
for classification. We can then use a margin-based ‘uniform convergence’
result (Theorem 10.1 of [2]) to obtain generalization error bounds that depend
on the covering number of the related class F . The covering numbers of the
class F we construct are then bounded to provide a final error bound.

The related class of real functions

For a binary function h on X consider the corresponding set sequence {Ri}i=1,2,...

which satisfies the following properties: (a) [0, B] =
⋃

i=1,2,... Ri and for any
i 6= j, Ri ∩ Rj = ∅, (b) h alternates in sign over consecutive sets Ri, Ri+1,
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(c) Ri is an interval set 〈a, b〉 with possibly a = b (in which case Ri = {a}).
Hence h has the following general form

h(x) = ±
∑

i=1,2,...,

(−1)i
IRi

(x) (3)

Thus there are exactly two functions h corresponding uniquely to each se-
quence of sets Ri, i = 1, 2, . . . .. Unless explicitly specified, the end points
of X = [0, B] are not considered roots of h, i.e., the default behavior is
that outside X, i.e., x < 0 or x > B, the function ‘continues’ with the
same value it takes at the endpoint h(0) or h(B), respectively. Now, asso-
ciate with the set sequence R1, R2, . . . the unique non-decreasing sequence of
right-endpoints a1, a2, . . . which define these sets (the sequence may have at
most repetitions, or runs, of length two except for 0 and B) according to

Ri = 〈ai, ai+1〉, i = 1, 2, . . . .

Note that different choices for 〈 and 〉 (see earlier definition of a generalized
interval 〈a, b〉) give different sets Ri and hence different functions h. For
instance, suppose X = [0, 7] then the following set sequence R1 = [0, 2.4),
R2 = [2.4, 3.6), R3 = [3.6, 3.6] = {3.6}, R4 = (3.6, 7] has a corresponding
end-point sequence a1 = 2.4, a2 = 3.6, a3 = 3.6, a4 = 7. Note that a singleton
set introduces a repeated value in this sequence. As another example consider
R1 = [0, 0] = {0}, R2 = (0, 4.1), R3 = [4.1, 7] with a1 = 0, a2 = 4.1, a3 = 7.

Next, define the corresponding sequence of midpoints

µi =
ai + ai+1

2
, i = 1, 2, . . . .

Define the continuous real-valued function f : X → [−B,B] that corresponds
to h (via the end-point sequence) as follows:

f(x) = ±
∑

i=1,2,...

(−1)i+1(x − ai)I[µi−1, µi] (4)

where we take µ0 = 0. Note that for a fixed sequence of endpoints ai,
i = 1, 2, . . . the function f is invariant to the type of intervals Ri = 〈ai, ai+1〉
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Figure 1: h (solid with right vertical axis) and its corresponding f (dashed
with left vertical axis) on X = [0, B] with B = 800

that h has, for instance, the set sequence [0, a1), [a1, a2), [a2, a3], (a3, B] and
the sequence [0, a1], (a1, a2], (a2, a3], (a3, B] yield different binary functions h
but the same width function f . For convenience, when h has a finite number
n of interval sets Ri, then the sum in (3) has an upper limit of n and we
define an = B. Similarly, the sum in (4) goes up to n − 1 and we define
µn−1 = B.

The connection between γ-width error of binary functions and the ‘margin
error’ in the class F real-valued functions we have constructed is crucial. To
help describe this link, some additional notation is useful. For a probability
distribution P on X ×Y , as above, for f : X → IR, and for ζ ∈ Zm the error
of f on ζ at margin γ is defined as

erγ
ζ (f) =

1

m

m
∑

i=1

I{yif(xi) < γ}.

Note that if h has a width ωh(x) = γ at x, then the corresponding function f
satisfies f(x) = γ. That is, f(x) = wh(x). Also, for all x, h(x) = sgn(f(x)).
It can be seen that, for any ζ,

Lγ
ζ (h) =

1

m

m
∑

i=1

I{yiωh(xi) < γ} =
1

m

m
∑

i=1

I{yif(xi) < γ} = erγ
ζ (f)
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and, for any P ,

L(h) = P{yh(x) < 0} = P{sgn(f(x)) 6= y}.

Note, in particular, that the problem of minimizing the γ-width error over
all binary functions h on X is equivalent to minimizing the margin error (at
margin γ) over this class F of piecewise-linear functions f .

Covering number bounds

We next need to consider covering numbers. For S ⊂ X, let the l∞(S)-
norm be defined as ‖f‖l∞(S) = maxx∈S |f(x)|. For γ > 0, a γ-cover of F

with respect to l∞(S) is a subset F̂ of F with the property that for each
f ∈ F there exists f̂ ∈ F̂ such that for all x ∈ S, |f(x) − f̂(x)| < γ. The
covering number N (F, γ, l∞(S)) is the smallest cardinality of a covering for
F with respect to l∞(S) and the uniform covering number N∞(F, γ,m) is
the maximum of N (F, γ, l∞(S)), over all S with S ⊂ X and |S| = m.

Theorem 10.1 of [2] (see also [5]) tells us that, for a prescribed γ > 0 and
for a random sample ζ ∈ Zm with m elements drawn i.i.d. according to any
fixed probability distribution P , the probability (with respect to Pm) that
there exists some f ∈ F such that L(sgn(f)) ≥ erγ

ζ (f) + ǫ is no larger than

2N∞(F, γ/2, 2m) exp(−ǫ2m/8).

Given the connection between width error of functions h : X → {−1, 1}
and margin error of corresponding functions in F , this means that, with
probability at least 1 − 2N∞(F, γ/2, 2m) exp(−ǫ2m/8), for all h, we have

L(h) < Lγ
ζ (h) + ǫ.

We now proceed to use this result to obtain useful generalization error bounds
by bounding the covering numbers of F and relaxing the assumption that γ
be prescribed in advance.

For a finite set S ⊂ X, let us compute the covering number of F with respect
to the l∞(S)-norm of f . Our approach is to construct and bound the size of
a covering with respect to the sup-norm ‖f‖∞ on X which clearly also serves
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as a covering with respect to l∞(S). To do that we construct a finite class F̂
of functions as follows: fix γ and denote by N = ⌈B/γ⌉. Let

αj = jγ, 0 ≤ j ≤ N (5)

and denote by A = {αj : 0 ≤ j ≤ N}. Then we define the finite class F̂ as

consisting of all functions f̂ of the following general form

f̂(x) = ±
∑

i=1,2,...

(−1)i+1(x − âi)I〈µ̂i−1, µ̂i〉, (6)

with

âi ∈ A, µ̂0 = 0, µ̂i =
âi + âi+1

2
, i = 1, 2, . . . (7)

where (similar to the end-point sequence ai above) the sequence âi, i =
1, 2, . . . is non-decreasing, may repeat up to two consecutive times (except
for values of 0 and αN) and its length does not exceed 2N . As an extreme
example consider the function

ĥ(x) =

{

−1 if x ∈ A
+1 otherwise,

whose corresponding f̂ has the sequence â1 = 0, â2 = α1, â3 = α1, â4 = α2,
â5 = α2, â6 = α3, . . ., â2N−2 = αN−1, â2N−1 = αN−1, â2N = αN .

Next, we proceed to evaluate the approximation ability of F̂ . Given an f ∈ F
with its end-point sequence ai let âi be any sequence (as in (7)) which also
satisfies |ai − âi| ≤ γ/2. Note that while the sequence âi may have r > 2
repeated consecutive values {âj+s}

r−1
s=0 (for instance, due to a cluster of close

points {aj+s}
r−1
s=0) it is easy to see that the resulting function is equivalent to a

function f̂ in F̂ whose sequence is obtained by replacing this long subsequence
with a new subsequence a′

j of length equal to one (with a′
j = âj) or two (with

a′
j = a′

j+1 = âj) in case r is odd or even, respectively. For convenience,
unless otherwise stated, we will use the original sequence âi (without such
replacement) as the corresponding sequence of f̂ . We denote by µi and µ̂i

the corresponding midpoint sequences, i = 1, 2, . . ., of f and f̂ .

Consider µi−1, µi and µ̂i−1, µ̂i which must satisfy µi−1 ≤ µi µ̂i−1 ≤ µ̂i. Denote
by Gi ≡ {x : min{µi, µ̂i} ≤ x ≤ max{µi, µ̂i}}. There are two cases: (I) the
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intervals Gi−1 and Gi overlap (II) do not overlap. Suppose (II) then denote
by Ei = {x : max{µi−1, µ̂i−1} ≤ x ≤ min{µi, µ̂i}}, i = 1, 2, . . .. Over Ei we
have f(x) = (−1)i+1(x − ai) and f̂(x) = (−1)i+1(x − âi) hence

sup
x∈Ei

|f(x) − f̂(x)| = |ai − âi| ≤ γ/2, i = 1, 2, . . . .

In either case (I) or (II), the worst-case deviation over the interval Gi occurs
when either f increases and f̂ decreases (at a slope of absolute value 1) or
vice versa. Without loss of generality, suppose µi ≤ µ̂i so the latter is true.
Then we have f̂(x) = x − âi and f(x) = −(x − ai+1) so for x ∈ Gi,

|f̂(x) − f(x)| = |(x − âi) −−(x − ai+1)| ≤ |(µ̂i − âi) + (µ̂i − ai+1)|. (8)

By (6) at x = µ̂i the function f̂ changes to −(x− âi+1) thus the right side of
(8) equals

| − (µ̂i − âi+1) + (µ̂i − ai+1)| = |âi+1 − ai+1| ≤ γ/2, i = 1, 2, . . . .

Combining the above, we have

sup
x∈X

|f(x)− f̂(x)| = max
i=1,2,...

max
{

sup
x∈Ei

|f(x)− f̂(x)|, sup
x∈Gi

|f(x)− f̂(x)|
}

≤ γ/2.

Thus the class F̂ is a finite γ/2-covering of the infinite class F . We proceed
now to bound the cardinality of F̂ .

From (6), there is a two-to-one correspondence between an f̂ ∈ F̂ (and its
negation −f̂) and the non-decreasing sequence âi, where âi ∈ A, 1 ≤ i ≤ n,
1 ≤ n ≤ 2N , which may have up to two consecutive repetitions (in case the
original sequence âi has a repeated subsequence of length greater than two
we henceforth replace it, as mentioned above, by a sequence with repeated
runs of length no larger than two). Let bi, 1 ≤ i ≤ m − 1 ≤ n be the
sequence obtained from âi by removing all duplicates, 0 and αN (if they
appear). Define the sequence of differences as

ci =







bi/γ i = 1
(bi − bi−1)/γ i = 2, 3, . . . ,m − 1
N − bi−1/γ i = m

which satisfies
∑m

i=1 ci = N . For instance, for the sequence â1 = 0, â2 = â3 =
α4, â4 = αN−3 we have b1 = α4, b2 = αN−3 and c1 = 4, c2 = N − 7, c3 = 3.
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This sequence ci, i = 1, 2, . . . ,m forms an ordered partition (or composition)
of the integer N into m parts. By a classical result (see [1], p.54) the number
of such compositions is exactly

(

N−1
m−1

)

. Clearly, given any such composition
we may construct its corresponding bi sequence and then have 2m−1 possible
ways of duplicating any number bi (this includes the choice of no duplication
at all). The resulting sequence can then be modified by either preceding (or
not) with a 0 or appending (or not) with an αN (thus four possibilities) to
obtain a valid âi sequence with a corresponding function f̂ ∈ F̂ . Negating
to obtain −f̂ also yields a possible function in F̂ . Hence there are exactly

4 · 2 ·
∑

m=1

(

N − 1

m − 1

)

2m−1 = 8
∑

k≥0

(

N − 1

k

)

2k = 8(1 + 2)N−1 = 8 · 3N−1

functions f̂ ∈ F̂ and hence

|F̂ | = 8 · 3N−1 = 8 · 3⌈B/γ⌉−1.

To conclude, we therefore have shown that for any subset S ⊂ X the class
F has a covering number

N (F, γ/2, l∞(S)) ≤ N (F, γ/2, l∞) ≤ |F̂ | = 8 · 3⌈B/γ⌉−1. (9)

This bound therefore gives the following upper bound on the uniform γ/2
covering numbers (which is independent of m): for all m, for any γ > 0,
N∞(F, γ/2,m) < 8 · 3B/γ.

This bound is almost tight since as we next show a lower bound on it grows
at the same rate with respect to B/γ. To obtain the lower bound we use
the fat-shattering dimension. This is a scale-sensitive version of the pseudo-
dimension and was introduced by Kearns and Schapire [7]. Suppose that F is
a set of functions from X to IR and that γ ∈ (0, 1). We say that a finite subset
S = {x1, x2, . . . , xd} of X is γ-shattered if there is r = (r1, r2, . . . , rd) ∈ IRd

such that for every b = (b1, b2, . . . , bd) ∈ {0, 1}d, there is a function fb ∈ F
with fb(xi) ≥ ri + γ if bi = 1 and fb(xi) ≤ ri − γ if bi = 0. We define the
fat-shattering dimension, fatF : IR+ → N ∪ {0,∞}, as

fatF (γ) = max {|S| : S ⊆ X is γ-shattered by F} ,

or fatF (γ) = ∞ if the maximum does not exist. We can fairly easily lower
bound the γ-fat-shattering dimension of our class F . Consider the sample
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Sγ = {xi ≡ α2i+1 : 0 ≤ i ≤ ⌊N/2⌋ − 1} where αi are defined in (5). The
function f ∈ F , whose corresponding sequence ai+1 = α2i, 0 ≤ i ≤ ⌊N/2⌋,
achieves the alternating dichotomy on Sγ, i.e., the corresponding binary func-
tion h(xi) = (−1)i, 0 ≤ i ≤ |Sγ| and its margin on Sγ equals γ. It is simple
to see that for any other dichotomy v ∈ {−1, +1}|Sγ | there exists some f ∈ F
such that its corresponding h satisfies h(xi) = vi, 0 ≤ i ≤ |Sγ| with f having
a margin at least γ on Sγ. Hence

fatF (γ) ≥ |Sγ| =

⌊

N

2

⌋

=

⌊

1

2

⌈

B

γ

⌉⌋

≥

⌊

B

2γ

⌋

Theorem 12.10 of [2] states that for any m ≥ fatF (16ǫ), N∞(F, γ,m) ≥
exp(fatF (16γ)/8). Hence we have

N∞(F, γ/2,m) ≥ efatF (8γ)/8 ≥ e⌊B/16γ⌋/8. (10)

From (9) and (10) we see that the log of the covering number is tightly
estimated to within a constant multiple of B/γ.

Final steps

We noted earlier that, by Theorem 10.1 of [2], with probability at least
1− 2N∞(F, γ/2, 2m) exp(−ǫ2m/8), for all h : X → {−1, 1}, we have L(h) <
Lγ

ζ (h) + ǫ. Therefore, given the covering number bound we now have the
following: for fixed γ > 0 and for δ ∈ (0, 1), with probability at least 1 − δ,
for every function h : X → {−1, 1},

L(h) < Lγ
ζ (h) +

√

8

m

(

B

γ
ln 3 + ln

(

16

δ

))

. (11)

The result obtained thus far requires γ to be fixed in advance. What we
want instead is a bound that holds simultaneously for all γ. Note that, since
X = [0, B] and by the way the functions in F are defined, we need never
consider a width or margin greater than B. For γ1, γ2 ∈ (0, B) and δ ∈ (0, 1),
let E(γ1, γ2, δ) be the subset of Zm consisting of ζ ∈ Zm for which there exists
some h : X → {−1, 1} with the property that L(h) > Lγ2

ζ (h) + ǫ(m, γ1, δ),
where

ǫ(m, γ, δ) =

√

8

m

(

B

γ
ln 3 + ln

(

16

δ

))

.
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Then we have that for all γ, Pm(E(γ, γ, δ)) ≤ δ, for this is simply the bound
of (11) above, for fixed γ. Furthermore, if 0 < γ1 ≤ γ ≤ γ2 < 1 and
0 < δ1 ≤ δ ≤ 1, then E(γ1, γ2, δ1) ⊆ E(γ, γ, δ).This observation enables us
to argue, following [5], that

Pm





⋃

γ∈(0,B]

E(γ/2, γ, δγ/(2B))



 ≤ Pm





∞
⋃

i=0

⋃

γ∈(2−(i+1)B,2−iB]

E(γ/2, γ, δγ/(2B))





≤ Pm

(

∞
⋃

i=0

E(2−(i+1)B, 2−(i+1)B, δ2−(i+1))

)

≤
∞
∑

i=0

δ2−(i+1) = δ.

So, with probability at least 1 − δ, for all h : X → {−1, 1} and for all
γ ∈ (0, B),

L(h) < Lγ
ζ (h) +

√

8

m

(

2B

γ
ln 3 + ln

(

32B

δγ

))

,

which is exactly the statement of Theorem 2.

As noted after the statement of Theorem 2, our ǫ(m, γ, δ) is of order
√

1/(γm).
Analogous margin-based results for real-valued functions [2] have an ǫ that is
of order

√

d(ln m)2/m where d is the fat-shattering dimension. In the present
context, where d is of order 1/γ, this means that the margin-based bounds in-
volve a term of order

√

(ln m)2/(γm). So the bounds obtained here through
bounding the covering number directly yield better results than those based
on using the fat-shattering dimension.

3.3 A special case

The next result applies to the more specific case where we use a hypothesis
that has Lγ

ζ (h) = 0. (This is sometimes termed the restricted model of
learning [2].
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Theorem 3 Let B > 0 and denote the domain by X = [0, B] with range
Y = {−1, +1} and let Z = X × Y . Let P be a probability distribution on Z
and suppose that δ ∈ (0, 1). Then, with Pm-probability at least 1− δ, ζ ∈ Zm

is such that for for all γ > 0, for any function h : X → Y with the property
that Lγ

ζ (h) = 0, we have

L(h) <
2

m

(

2B

γ
ln 3 + ln

(

32B

δγ

))

.

Proof: It follows from a result in [3] (see also [2, 5] for similar results) that,
for fixed γ, the Pm-probability that there is f ∈ F with erγ

ζ (f) = 0 and
L(sgn(f)) ≥ ǫ is no larger than

2N∞(F, γ/2, 2m)2−ǫm/2.

This means that, with probability at least 1 − 2N∞(F, γ/2, 2m)2−ǫm/2, for
all h : X → Y such that Lγ

ζ (h) = 0, we have L(h) < ǫ. Given the covering
number bound, this means that for fixed γ > 0 and for δ ∈ (0, 1), with
probability at least 1 − δ, for every function h : X → Y which satisfies
Lγ

ζ (h) = 0, we have

L(h) <
2

m

(

B

γ
ln 3 + ln

(

16

δ

))

.

We turn this into a result that holds simultaneously for all γ ∈ (0, B] using
the same technique as in the proof of Theorem 2. The resulting bound is
that stated in Theorem 3. �

Theorem 2 gives the bound

for all h : X → Y, P{h(x) 6= y} < Lγ
ζ (h) + O

(

√

1/(γm)
)

.

If we simply apply this in the case where Lγ
ζ (h) = 0, we obtain a (high-

probability) generalization bound of order
√

1/(γm). Theorem 3 improves
this to one of order only 1/(γm).
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4 Implications for learning algorithms

4.1 Sample width maximization algorithms

The generalization error bound results, Theorems 2 and 3, have some fairly
practical implications. Consider, in particular, Theorem 3. The error bound
decreases as γ increases; however, as γ increases, the condition that Lγ

ζ (h) = 0
becomes more demanding. This suggests using a learning algorithm which
will maximize the sample width.

Definition 1 Given a hypothesis space H (a set of functions from X to
Y ), we say that a learning algorithm A :

⋃∞
m=1 Zm → H is a sample-width

maximization algorithm for H if for all m and all ζ ∈ Zm, A returns a
hypothesis in H which has zero γ(ζ)-width error on ζ, where

γ(ζ) = max{γ : ∃h ∈ H, Lγ
ζ (h) = 0}.

So, a sample-width maximization algorithm for H will give an output hy-
pothesis that agrees with the classifications of the sample points and achieves
maximum possible width on the sample of all such functions. (There may be
many such hypotheses.) The generalization performance of such an algorithm
can be bounded directly by Theorem 3.

Theorem 4 Suppose that H is the set of binary functions mapping X =
[0, B] to {−1, 1}. Suppose that A is a sample-width maximization algorithm
for H. Given a sample ζ ∈ Zm, let A(ζ) denote the output hypothesis. Then,
for any δ ∈ (0, 1), with probability at least 1 − δ,

L(A(ζ)) <
2

m

(

2B

γ
ln 3 + ln

(

32B

δγ

))

.

Note how important it is that, in Theorem 3, the parameter γ is not pre-
scribed in advance, because γ(ζ) cannot be known a priori.
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If there is no particular fixed hypothesis space from which we must choose
our hypothesis, then it seems natural, given a labeled sample, to take as hy-
pothesis the simplest {−1, 1}-valued function that achieves maximum sample
width. That is, we have the following algorithm for learning binary functions
on X = [0, B].

Algorithm MW:

Input: A sample ζ = {(xi, yi)}
m
i=1, xi ∈ X, yi ∈ Y , 1 ≤ i ≤ m, ordered

according to x1 ≤ x2 ≤ · · · ≤ xm,

1. Locate all set-pairs of consecutive points {{xij , xij+1}}
ℓ
j=1 such that

yij 6= yij+1, 1 ≤ ℓ ≤ m. (These set-pairs can have a non-empty inter-
section).

2. Define the corresponding ℓ midpoints as follows:

νj =
xij + xij+1

2
, 1 ≤ j ≤ ℓ

3. Let h′ be defined as follows:

h′(x) =







yi1 if x ≤ ν1

yij+1 if νj < x ≤ νj+1, 1 ≤ j ≤ ℓ − 1
yiℓ+1 if x ≥ νℓ

Output: h′

It is clear that this is a sample width maximization algorithm. The width γ(ζ)
will depend, of course, on the xi in the sample and on their classifications,
but, certainly, we have γ(ζ) ≥ min1≤i6=j≤m |xi −xj|/2, the minimum distance
between two points in the sample.

4.2 Model selection

‘Model selection’ results for learning with real-valued functions have been
obtained that involve the margin. (See, for instance [2].) In a similar way,
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the error bounds obtained here can lead to analogous results. The bound of
Theorem 2 takes the form

L(h) < E(m, γ, δ, h) = Lγ
ζ (h) + ǫ(m, γ, δ), (12)

where, for fixed m and δ, ǫ(m, γ, δ) decreases as γ increases. A sample-width
maximization algorithm will find h such that Lγ

ζ (h) = 0 and γ is as large
as possible. In general, for any h, and any sample, Lγ

ζ (h) increases as γ
increases. Therefore E(m, γ, δ, h) is the sum of two quantities, one of which
increases and one of which decreases as γ increases and there is hence a
trade-off between the two quantities. This motivates the use of a learning
algorithm A that returns a hypothesis h which minimizes the combination
E(m, γ, δ, h). The (high-probability) generalization error bound for such an
algorithm take the form

L(A(ζ)) ≤ inf
γ

(

Lγ
ζ (h) +

√

8

m

(

2B

γ
ln 3 + ln

(

32B

δγ

))

)

.

5 Conclusions and further work

In general, for learning with binary-valued functions, it is not possible to
consider the margin, as has often proven useful. (The margin can only be
used when the classifiers are thresholded versions of real-valued functions.)
This paper has studied how alternative notions of ‘regularity’ of binary-valued
functions can be used to bound generalization error, and, in particular, has
shown that a sample-based measure of regularity known as the sample width
can be useful. These results suggest ways in which to guide the selection of
a ‘good’ classifier, by selecting those that have high sample width.

This paper only concerns the case in which the domain in an interval on the
real line. Clearly, for other domains, there may be other ways of defining
notions corresponding to sample ‘width’, and we are currently considering
approaches to this.
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