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Abstract. We consider the problem of computing additively approx-
imate Nash equilibria in non-cooperative two-player games. We pro-
vide a new polynomial time algorithm that achieves an approximation
guarantee of 0.36392. Our work improves the previously best known
(0.38197 + ε)-approximation algorithm of Daskalakis, Mehta and Pa-
padimitriou [6].

First, we provide a simpler algorithm, which also achieves 0.38197. This
algorithm is then tuned, improving the approximation error to 0.36392.
Our method is relatively fast, as it requires solving only one linear pro-
gram and it is based on using the solution of an auxiliary zero-sum game
as a starting point.

1 Introduction

A Nash equilibrium of a bimatrix game is a pair of strategies, such that no
player has an incentive to deviate (unilaterally). In a series of works [8, 4, 2], it
was established that computing a Nash equilibrium is PPAD-complete even for
two-player games. The focus has since then been on algorithms for approximate
equilibria.

In this work we use the notion of additive approximation and consider the
problem of computing approximate Nash equilibria in bimatrix games. Under
the usual assumption that the payoff matrices are normalized to be in [0, 1]n×n,
we say that a pair of strategies is an ε-Nash equilibrium if no player can gain
more than ε by unilaterally deviating to another strategy. In [3] it was proved
that it is PPAD-complete to find an ε-Nash equilibrium when ε is of the or-
der 1

poly(n) . For constant ε however, the problem is still open. In [11], it was

shown that for any constant ε > 0, an ε-Nash equilibrium can be computed in
subexponential time (nO(log n/ε2)). As for polynomial time algorithms, it is fairly
simple to obtain a 3/4-approximation (see [9] for a slightly better result) and
even better a 1/2-approximation [5]. Recently, an improved approximation for
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ε = 3−
√

5
2 + ζ ≈ 0.38197 + ζ for any ζ > 0 was obtained by Daskalakis, Mehta

and Papadimitriou [6].
We provide two new algorithms for approximate Nash equilibria. The first one

achieves exactly the same factor as [6] but with a simpler and faster technique.
The second one, which is an extension of the first and has a more involved
analysis, achieves an improved approximation of 0.36392. Both algorithms are
based on solving a single linear program in contrast to [6], which may require to

solve up to n
O( 1

ζ2
)

linear programs for a (0.38197 + ζ)-approximation.
The main idea of our algorithms is as follows: we first find an equilibrium

(say x∗, y∗) in the zero-sum game R−C, where R and C are the payoff matrices
of the two players. If x∗, y∗ is not a good solution for the original game, then the
players take turns and switch to appropriate strategies. Roughly speaking, the
probabilities of switching are chosen such that the incentives to deviate become
the same for both players. As a result, these probabilities are particular functions
in the parameters of the underlying problem. The final part of the analysis then
is to choose among these functions so as to minimize the approximation error.
The intuition behind using the auxiliary zero-sum game R−C is that a unilateral
switch from x∗, y∗ that improves the payoff of one player cannot hurt the other,
as explained in the proof of Theorem 1. We should note that the use of certain
zero-sum games has also been considered in [10] for obtaining well-supported
approximate equilibria, which is a stronger notion of approximation.

In an independent work, Spirakis and Tsaknakis [13] have obtained another
algorithm achieving an improved approximation of 0.3393. Their technique is
also based on linear programming but seems unrelated to ours, and requires
solving a polynomial number of linear programs.

2 Notation and Definitions

Consider a two person game G, where for simplicity the number of available
(pure) strategies for each player is n. Our results still hold when the players do
not have the same number of available strategies. We will refer to the two players
as the row and the column player and we will denote their n×n payoff matrices
by R, C respectively. Hence, if the row player chooses strategy i and the column
player chooses strategy j, the payoffs are Rij and Cij respectively.

A mixed strategy for a player is a probability distribution over the set of his
pure strategies and will be represented by a vector x = (x1, x2, ..., xn)T , where
xi ≥ 0 and

∑
xi = 1. Here xi is the probability that the player will choose his

ith pure strategy. The ith pure strategy will be represented by the unit vector ei,
that has 1 in the ith coordinate and 0 elsewhere. For a mixed strategy pair x, y,
the payoff to the row player is the expected value of a random variable which
is equal to Rij with probability xiyj . Therefore the payoff to the row player is
xT Ry. Similarly the payoff to the column player is xT Cy.

A Nash equilibrium [12] is a pair of strategies x∗, y∗ such that no player has an
incentive to deviate unilaterally. Since mixed strategies are convex combinations
of pure strategies, it suffices to consider only deviations to pure strategies:



Definition 1. A pair of strategies x∗, y∗ is a Nash equilibrium if:

(i) For every pure strategy ei of the row player, eT
i Ry∗ ≤ (x∗)T Ry∗, and

(ii) For every pure strategy ei of the column player, (x∗)T Cei ≤ (x∗)T Cy∗.

Assuming that we normalize the entries of the payoff matrices so that they
all lie in [0, 1], we can define the notion of an additive ε-approximate Nash
equilibrium (or simply ε-Nash equilibrium) as follows:

Definition 2. For any ε > 0, a pair of strategies x∗, y∗ is an ε-Nash equilibrium
iff:

(i) For every pure strategy ei of the row player, eT
i Ry∗ ≤ (x∗)T Ry∗ + ε, and

(ii) For every pure strategy ei of the column player, (x∗)T Cei ≤ (x∗)T Cy∗ + ε.

In other words, no player will gain more than ε by unilaterally deviating
to another strategy. A stronger notion of approximation was introduced in [4],
namely ε-well-supported equilibria. We do not consider this approximation con-
cept here. See [10] for new results on well-supported equilibria.

3 A (3−

√

5

2
)-approximation

In this section, we provide an algorithm that achieves exactly the same factor
as in [6], which is (3 −

√
5)/2, but by using a different and simpler method. In

the next section we show how to modify our algorithm in order to improve the
approximation.

Given a game G = (R, C), where the entries of R and C are in [0, 1], let
A = R − C. Our algorithm is based on solving the zero-sum game (A,−A) and
then modifying appropriately the solution, if it does not provide a good approx-
imation. It is well known that zero-sum games can be solved efficiently using
linear programming. The decision on when to modify the zero-sum solution de-
pends on a parameter of the algorithm α ∈ [0, 1]. We first describe the algorithm
parametrically and then show how to obtain the desired approximation.

Algorithm 1

Let α ∈ [0, 1] be a parameter of the algorithm.

1. Compute an equilibrium (x∗, y∗) for the zero-sum game defined by the matrix
A = R − C.

2. Let g1, g2 be the incentives to deviate for the row and column player respec-
tively if they play (x∗, y∗) in the game (R, C), i.e., g1 = maxi=1,...,n eT

i Ry∗−
(x∗)T Ry∗ and g2 = maxi=1,...,n (x∗)T Cei − (x∗)T Cy∗. WLOG, assume, that
g1 ≥ g2 (the statement of the algorithm would be completely symmetrical if
g1 < g2).

3. Let r1 ∈ argmaxei
eT
i Ry∗ be an optimal response of the row player to the

strategy y∗. Let b2 ∈ argmaxei
rT
1 Cei be an optimal response of the column

player to the strategy r1.



4. Output the following pair of strategies, (x̂, ŷ), depending on the value of g1

with respect to the value of α:

(x̂, ŷ) =

{
(x∗, y∗), if g1 ≤ α
(r1, (1 − δ2) · y∗ + δ2 · b2), otherwise

where δ2 = 1−g1

2−g1

.

Theorem 1. Algorithm 1 outputs a max{α, 1−α
2−α}-approximate Nash equilib-

rium.

Proof. If g1 ≤ α (recall that we assumed g1 ≥ g2), then clearly (x∗, y∗) is an
α-approximate Nash equilibrium.

Suppose g1 > α. We will estimate the satisfaction of each player sepa-
rately. Suppose b1 is an optimal response for the row player to ŷ, i.e., b1 ∈
argmaxei

eT
i Rŷ. The row player plays r1, which is a best response to y∗. Hence

b1 can be better than r1 only when the column player plays b2, which hap-
pens with probability δ2. Formally, the amount that the row player can earn by
switching is at most:

bT
1 Rŷ − rT

1 Rŷ = (1 − δ2)(b
T
1 Ry∗ − rT

1 Ry∗) + δ2(b
T
1 Rb2 − rT

1 Rb2)

≤ δ2 · bT
1 Rb2 ≤ δ2 = 1−g1

2−g1

The first inequality above comes from the fact that r1 is a best response to
y∗ and the second comes from our assumption that the entries of R and C are
in [0, 1].

Consider the column player. The critical observation is that the column player
also benefits (when he plays y∗) from the switch of the row player from x∗ to r1.
In particular, since (x∗, y∗) is an equilibrium for the zero-sum game (R−C, C −
R), the following inequalities hold:

(x∗)T Rej−(x∗)T Cej ≥ (x∗)T Ry∗−(x∗)T Cy∗ ≥ eT
i Ry∗−eT

i Cy∗, ∀ i, j = 1, ..., n
(1)

If ei = r1, we get from (1) that rT
1 Cy∗ ≥ rT

1 Ry∗ − (x∗)T Ry∗ + (x∗)T Cy∗.
But we know that rT

1 Ry∗ − (x∗)T Ry∗ = g1, which implies:

rT
1 Cy∗ ≥ g1 + (x∗)T Cy∗ ≥ g1 (2)

Inequality (2) shows that any deviation of the row player from x∗, y∗, that im-
proves his payoff, guarantees at least the same gain to the column player as well.
Now we can estimate the incentive of the column player to change his strategy.
He plays ŷ while he would prefer to play an optimal response to x̂ which is b2.
Since b2 is played with probability δ2, by switching he could earn:

x̂T Cb2 − x̂T Cŷ = rT
1 Cb2 − rT

1 Cŷ
= rT

1 Cb2 − ((1 − δ2)r
T
1 Cy∗ − δ2 · rT

1 Cb2)
= (1 − δ2)(r

T
1 Cb2 − rT

1 Cy∗)

≤ (1 − δ2)(1 − g1) = δ2 = 1−g1

2−g1



The last inequality above follows from (2). The probability δ2 was chosen so as
to equalize the incentives of the two players to deviate in the case that g1 > α.
It is now easy to check that the function (1 − g1)/(2 − g1) is decreasing, hence
the incentive for both players to deviate is at most (1 − α)/(2 − α). Combined
with the case when g1 ≤ α, we get a max{α, 1−α

2−α}-approximate equilibrium.

In order to optimize the approximation factor of Algorithm 1, we only need
to equate the two terms, α and 1−α

2−α , which then gives:

α2 − 3α + 1 = 0 (3)

The solution to (3) in the interval [0, 1] is α = 3−
√

5
2 ≈ 0.38197. Note that

α = 1 − 1/φ, where φ is the golden ratio. Since α is an irrational number, we
need to ensure that we can still do the comparison g1 ≤ α to be able to run
Algorithm 1 (note that this is the only point where the algorithm uses the value
of α). But to test g1 ≤ 3−

√
5/2, it suffices to test if (3−2g1)

2 ≥ 5 and clearly g1

is a polynomially sized rational number. Concerning complexity, zero-sum games
can be solved in polynomial time by linear programming. All the other steps of
the algorithm require only polynomial time. Therefore, Theorem 1 implies:

Corollary 1. We can compute in polynomial time a 3−
√

5
2 -approximate Nash

equilibrium for bimatrix games.

4 An Improved Approximation

In this section we obtain a better approximation of 1/2 − 1/(3
√

6) ≈ 0.36392
by essentially proposing a different solution in the cases where Algorithm 1 ap-
proaches its worst case guarantee. We first give some motivation for the new
algorithm. From the analysis of Algorithm 1, one can easily check that as long
as g1 belongs to [0, 1/3] ∪ [1/2, 1], we can have a 1/3-approximation if we run
the algorithm with any α ∈ [1/3, 1/2). Therefore, the bottleneck for getting a
better guarantee is when the maximum incentive to deviate is in [1/3, 1/2]. In
this case, we will change the algorithm so that the row player will play a mix of
r1 and x∗. Note that in Algorithm 1, the probability of playing r1 is either 0 or
1 depending on the value of g1. This probability will now be a more complicated
function of g1, derived from a certain optimization problem. As for the column
player, we again compute b2 which is now the best response to the mixture of
r1 and x∗- not only to r1. Then we compute an appropriate mixture of b2 and
y∗. Again, the probability of playing b2 is chosen so as to equate the incentives
of the two players to defect. Finally we should note that our modification will
be not on [1/3, 1/2] but instead on a subinterval of the form [1/3, β], where β is
derived from the optimization that we perform in our analysis.

Algorithm 2

1. Compute an equilibrium (x∗, y∗) for the zero-sum game defined by the matrix
A = R − C.



2. As in Algorithm 1, let g1, g2 be the incentives to deviate for the row and
column player respectively if they play (x∗, y∗) in the original game, i.e., g1 =
maxi=1,...,n eT

i Ry∗ − (x∗)T Ry∗ and g2 = maxi=1,...,n (x∗)T Cei − (x∗)T Cy∗.
WLOG, assume, that g1 ≥ g2.

3. Let r1 ∈ argmaxei
eT
i Ry∗ be an optimal response of the row player to the

strategy y∗.
4. The row player will play a mixture of r1 and x∗, where the probability of

playing r1 is given by:

δ1 = δ1(g1) =







0, if g1 ∈ [0, 1/3]
∆1(g1), if g1 ∈ (1/3, β]
1, otherwise

where ∆1(g1) = (1 − g1)
(

−1 +
√

1 + 1
1−2g1

− 1
g1

)

.

5. Let b2 be an optimal response of the column player to ((1−δ1)x
∗+δ1r1), i.e.,

b2 ∈ argmaxei
((1 − δ1)x

∗ + δ1r1)
T Cei. Let also h2 = (x∗)T Cb2−(x∗)T Cy∗,

i.e., the gain from switching to b2 if the row player plays x∗.
6. The column player will play a mixture of b2 and y∗, where the probability

of playing b2 is given by:

δ2 = δ2(δ1, g1, h2) =







0, if g1 ∈ [0, 1/3]
max{0, ∆2(δ1, g1, h2)}, if g1 ∈ (1/3, β]
1−g1

2−g1

, otherwise

where ∆2(δ1, g1, h2) = δ1−g1+(1−δ1)h2

1+δ1−g1

.

7. Output (x̂, ŷ) = ((1 − δ1)x
∗ + δ1r1, (1 − δ2)y

∗ + δ2b2).

In our analysis, we will take β to be the solution to ∆1(g1) = 1 in [1/3, 1/2],
which coincides with the root of the polynomial x3 −x2 − 2x+1 in that interval
and it is:

β =
1

3
+

√
7

3
cos

(
1

3
tan−1

(

3
√

3
))

−
√

21

3
sin

(
1

3
tan−1

(

3
√

3
))

(4)

Calculations show 0.445041 ≤ β ≤ 0.445042. The emergence of β in our analysis
arises in the proof of Lemma 1.

Remark 1. The actual probabilities δ1 and δ2 as well as the number β can be
irrational numbers. However, for any constant ε > 0, we can take approxima-
tions of high enough accuracy of all the square roots that are involved in the
calculations so that the final loss in the approximation ratio will be at most ε.
From now on, for ease of exposition, we will carry out the analysis of Algorithm
2, as if we can compute exactly all the expressions involved.

Note that for g1 ∈ [ 13 , 1
2 ] and δ1 ∈ [0, 1] the denominators that appear in the

functions ∆1, ∆2 do not vanish. The following lemma ensures that x̂ is a valid
strategy.



Lemma 1. For g1 ∈ (1/3, β] we have ∆1(g1) ∈ [0, 1].

The proof of Lemma 1 is based on showing that the function ∆1 is increasing
in [1/3, β] and that it maps [1/3, β] to [0, 1]. Due to lack of space we omit it in
this version.

Now we bound the incentives of players to deviate. Let F be the following
function:

F (δ1, g1, h2) :=
(δ1 (1 − g1 − h2) + h2) (1 − (1 − δ1)h2)

1 + δ1 − g1
(5)

Lemma 2. The pair of strategies (x̂, ŷ) is a λ-Nash equilibrium for game (R, C)
with

λ ≤







g1 if g1 ≤ 1/3

maxh2∈[0,g1]

{
F (δ1, g1, h2) if ∆2(δ1, g1, h2) ≥ 0
(1 − δ1)g1 if ∆2(δ1, g1, h2) < 0

if g1 ∈ (1/3, β]

1−g1

2−g1

if g1 > β

(6)

Proof. In the case that g1 ∈ [0, 1/3] ∪ [β, 1], the answer follows from the proof
of Theorem 1. The interesting case is when g1 ∈ [1/3, β].

Case 1: g1 ≤ 1/3
(x̂, ŷ) = (x∗, y∗) which is by definition a g1-approximate Nash equilibrium.

Case 2a: g1 ∈ (1/3, β] and ∆2(δ1, g1, h2) ≥ 0
Recall that Lemma 1 implies x̂ is a valid strategy in Case 2. Observe, that

δ2(g1, δ1, h2) = ∆2(g1, δ1, h2) = δ1−g1+(1−δ1)h2

1+δ1−g1

≤ 1 is a valid probability, and
therefore ŷ is a valid mixed strategy too.

We estimate the incentive for the row player to deviate from x̂. If b1 is an
optimal response to ŷ, then the gain from switching is at most:

bT
1 Rŷ − x̂T Rŷ = (b1 − x̂)T Rŷ =

= δ2(b1 − x̂)T Rb2 +(1 − δ2)(b1 − x̂)T Ry∗

≤ δ2(1 − x̂T Rb2) +(1 − δ2)(b1 − x̂)T Ry∗

= δ2(1 − δ1r
T
1 Rb2 − (1 − δ1)(x

∗)T Rb2) +(1 − δ2)(b1 − δ1r1 − (1 − δ1)x
∗)T Ry∗

By (1) we have (x∗)T Rb2 ≥ (x∗)T Cb2 − (x∗)T Cy∗ + (x∗)T Ry∗ ≥ h2. Also
r1 is a best response to y∗, hence (b1 − r1)

T Ry∗ ≤ 0 and (b1 − x∗)T Ry∗ ≤ g1.
Therefore, the gain from deviating is at most:

bT
1 Rŷ − x̂T Rŷ ≤ δ2(1 − (1 − δ1)h2) + (1 − δ2)(1 − δ1)g1 = EST1.

We now estimate the incentive of the column player to switch. The best
response to x̂ for the column player is b2, which is played with probability δ2.
Thus the incentive to deviate from ŷ is:

x̂T Cb2 − x̂T Cŷ = (1 − δ2)(x̂
T Cb2 − x̂T Cy∗)

= (1 − δ2)((1 − δ1)(x
∗T Cb2 − x∗T Cy∗) + δ1(r

T
1 Cb2 − rT

1 Cy∗))
≤ (1 − δ2)((1 − δ1)h2 + δ1(1 − g1)) = EST2



The last inequality follows from the definitions of g1 and h2. It remains to

observe that our choice of δ2(δ1, g1, h2) = δ1−g1+(1−δ1)h2

1+δ1−g1

makes these estimates

both equal to F (δ1, g1, h2):

EST1 = EST2 =
(δ1 (1 − g1 − h2) + h2) (1 − (1 − δ1)h2)

δ1 + 1 − g1
= F (δ1, g1, h2).

Case 2b: g1 ∈ (1/3, β] and ∆2(δ1, g1, h2) < 0
Then ŷ = y∗ and the best response of the row player is r1. Hence he can improve
his payoff by at most

rT
1 Ry∗ − x̂T Ry∗ = rT

1 Ry∗ − (δ1 · rT
1 Ry∗ + (1 − δ1)((x

∗)T Ry∗)) = (1 − δ1)g1

while the column player can improve by at most

x̂T Cb2 − x̂T Cy∗ = δ1(r
T
1 Cb2 − rT

1 Cy∗) + (1 − δ1)((x
∗)T Cb2 − (x∗)T Cy∗)

By (1) we can see that rT
1 Cy∗ ≥ g1. Hence

x̂T Cb2 − x̂T Cy∗ ≤ δ1(1 − g1) + (1 − δ1)h2

It is easy to check that ∆2(g1, δ1, h2) < 0 implies δ1(1 − g1) + (1 − δ1)h2 <
(1 − δ1)g1. Therefore the maximum incentive to deviate in this case is at most
(1 − δ1)g1. Combining Case 2a and Case 2b, and taking the worst possible case
over the range of h2 (recall that h2 ≤ g2 ≤ g1), we get precisely the expression
in the statement of Lemma 2.

Case 3: g1 > β
Notice that in this case, the players are playing the same strategies as in Algo-
rithm 1, when g1 ≥ α. By the analysis in the proof of Theorem 1, we see that
the maximum incentive is (1 − g1)/(2 − g1). This completes the proof.

We will now argue that our choice of ∆1(g1) is optimal for any g1 ∈ ( 1
3 , β]

and that the expression (6) from Lemma 2 achieves an improvement over Al-
gorithm 1. For this, we need to find the worst possible approximation in Case
2 of Lemma 2. In particular, we need to look at the maxima of the following
function:

P (g1) := min
δ1∈[0,1]

max
h2∈[0,g1]

{
F (δ1, g1, h2) if ∆2(δ1, g1, h2) ≥ 0
(1 − δ1)g1 if ∆2(δ1, g1, h2) < 0

(7)

Lemma 3. The tuple (δ1, h2) = (∆1(g1), g1) is an optimal solution for the ex-
pression P (g1). Furthermore, the maximum of P (g1) over g1 is 1

2 − 1
3
√

6
, i.e.,

the following holds

P (g1) = F (∆1(g1), g1, g1) ∀g1 ∈ [
1

3
,
1

2
] (8)

max
g1∈[ 1

3
,β]

P (g1) =
1

2
− 1

3
√

6
≤ 0.36392. (9)
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Fig. 1. How the approximation factor depends on g1.

The lemma will be proved in Section 5. Given Remark 1, we are now ready
to conclude with the following:

Theorem 2. For any ε > 0, Algorithm 2 computes a (0.36392+ ε)-approximate
Nash equilibrium.

Proof. By Lemma 2 the output of Algorithm 2, (x̂, ŷ) is a pair of mixed strategies
for players, such that the incentive of players to deviate is bounded by (6).
By Lemma 3 we have that for g1 ∈ (1/3, β] the expression (6) is bounded by
1
2 − 1

3
√

6
≤ 0.36392. It is easy to observe, that for other values of g1 the

expression (6) takes only smaller values. In particular, it is at most 1/3 when
g1 ∈ [0, 1/3] and at most 1−β

2−β ≈ 0.3569 when g1 > β. The dependence of the
approximation on the variable g1 is presented in Figure 1.

5 Proof of Lemma 3

Fact 3 The square function is monotone increasing on the positive domain, i.e.,

a − b ≥ 0 ⇔ a2 − b2 ≥ 0 holds for all a, b ∈ R, a, b ≥ 0 (10)

We solved the optimization problem of Lemma 3 in the classic manner, even-
tually leading to the minimizer ∆1(g). This procedure is lengthy, so here we give
an uninspiring but short proof.



Proof of Lemma 3 : Combining (11) and (12) from Lemma 4 below, we
obtain:

F (∆1(g1), g1, g1) = min
δ1∈[0,1]

max
h2∈[0,g1]

{
F (δ1, g1, h2) if ∆2(δ1, g1, h2) ≥ 0
(1 − δ1)g1 if ∆2(δ1, g1, h2) < 0

For ease of exposition, we drop the subscripts of the variables from now on.
Hence we need to prove maxg∈[ 1

3
,β] F (∆1(g), g, g) = 1

2 − 1
3
√

6
≤ 0.36392 where

F (∆1(g), g, g) =

1
4 − 1

4 (1 − 2g)(3 − 2g)(4g − 1) + 2(1 − g)
√

g(1 − 2g)(−1 + 4g − 2g2)

The fact that the radicand of the function ∆1 is nonnegative implies that the
radicand g(1−2g)(−1+4g−2g2) is nonnegative for all g ∈ [1/3, β]. We now prove
that the maximum of F (∆(g), g, g) on [ 13 , β] is assumed in 1/

√
6. Straightforward

calculation leads to

F∗ := F
(

∆(1/
√

6) , 1/
√

6 , 1/
√

6
)

=
1

2
− 1

3
√

6

Fixing g ∈ [1/3, β] (arbitrarily), one finds:

F∗ − F (∆1(g), g, g) =

1

4
− 1

3
√

6
+

1

4
(1 − 2g)(3 − 2g)(4g − 1)

︸ ︷︷ ︸

− 2 (1 − g)
√

g(1 − 2g)(−1 + 4g − 2g2)
︸ ︷︷ ︸

≥ 0 (∗) ≥ 0 (∗∗)

Here (∗) and (∗∗) are implied by the choice of g, i.e., (3 − 2g) ≥ 2(1 − g) ≥
(1 − 2g) ≥ 0, and 4g − 1 ≥ 1/3 > 0 hold. Finally since

√
6 > 2 we have

1
4 − 1

3
√

6
> 1

12 > 0.

The inequalities in (∗) and (∗∗) together with (10) lead (after calculations
which we omit due to lack of space) to the equivalence:

F∗ − F (∆1(g), g, g) ≥ 0 ⇔
(

11
18 + 2

3
√

6
(3 − g) + (1 − g)2

) (

g − 1√
6

)2

≥ 0

Here the second inequality trivially holds since (3 − g) > 0 for g ∈ [1/3, β].

Thus we showed F∗ = F (∆1(1/
√

6), 1/
√

6, 1/
√

6) ≥ F (∆1(g), g, g), proving
the lemma, since g ∈ [1/3, β] was chosen arbitrarily and 1/

√
6 ∈ [1/3, β] is

implied by 0.40 ≤ 1/
√

6 ≤ 0.41 < β.
2

It now remains to prove the following Lemma:

Lemma 4. For every pair (g, δ) ∈ [1/3, β] × [0, 1] we find

F (δ, g, g) = max
h∈[0,g]

{
F (δ, g, h) if ∆2(δ, g, h) ≥ 0
(1 − δ)g if ∆2(δ, g, h) < 0

(11)

F (∆1(g), g, g) = min
d∈[0,1]

F (d, g, g) (12)



Proof. Fix some pair (g, δ) ∈ [1/3, β] × [0, 1]. We rewrite (11) as

F (δ, g, g) ≤
(

max
h∈[0,g]

{
F (δ, g, h) if ∆2(δ, g, h) ≥ 0
(1 − δ)g if ∆2(δ, g, h) < 0

)

≤ max
h∈[0,g]

F (δ, g, g)

(13)
and prove it as follows: Brief calculation together with (1 − g) > 0 lead to
∆2(δ, g, g) = (1 − g)δ/(1 − g + δ) ≥ 0. So there is a h∗ ∈ [0, g], namely h∗ := g,
such that ∆2(δ, g, h∗) ≥ 0. This implies the first inequality in (13).

Observe that to prove the second inequality in (13), it suffices to show that

F (δ, g, g) ≥ (1 − δ)g and F (δ, g, g) ≥ F (δ, g, h) for all h ∈ [0, g] (14)

both hold – independently of the value of ∆2. Quick calculation proves the first
inequality of (14): Recall that the choice on (g, δ) implies (1 − g) ≥ 0, 2δg ≥ 0,
and (1 − 2g) ≥ 0, yielding

F (δ, g, g) − (1 − δ)g =
(1 − g) δ

(1 − g) + δ
(2δg + (1 − 2g) ) ≥ 0

To obtain the second inequality of (14), we show that for the chosen δ, g, the
function F (δ, g, h) is monotone non-decreasing on h ∈ [0, g]: Recalling h ≤ g ≤
1/2 we find (1 − 2h) ≥ 0, implying

dF (δ, g, h)

dh
=

(1 − 2h)(1 − δ)2 + gδ(1 − δ)

(1 − g) + δ
≥ 0

This finally proves (14), and thus the second inequality in (13), concluding the
proof of (11). To prove (12) fix some d ∈ [0, 1] arbitrarily and define p(g) :=
g(1 − 2g)(−1 + 4g − 2g2), which is the radicand appearing in F (∆1(g), g, g).
Brief calculation leads to

(F (d, g, g) − F (∆1(g), g, g)) (1 − g + d) =

(4g −1)(1 −g)3 + 2g(1 −2g)(1 −g)d + g(1 −2g)d2

︸ ︷︷ ︸
− 2(1 − g + d)(1 − g)

√

p(g)
︸ ︷︷ ︸

≥ 0 (?) ≥ 0 (??)

To obtain (?), recall 1/3 < β < 1/2 and observe that the restrictions on g, d
imply g, d ≥ 0 as well as (4g − 1) ≥ 0, (1 − g) ≥ 0, and (1 − 2g) ≥ 0. Moreover
we have (1 − g + d) > (1 − g) ≥ 0, showing (??). It can also be easily verified
that p(g) ≥ 0 for the chosen g. Hence exploiting (1 − g + d) > 0 and Fact 3 we
obtain that F (d, g, g)−F (∆1(g), g, g) is nonnegative if and only if the following
quantity is nonnegative:

(
(4g −1)(1 −g)3 + 2g(1 −2g)(1 −g)d + g(1 −2g)d2

)2 − 4(1− g + d)2(1− g)2p(g)

This turns out to be equivalent to:

(
(1 −3g)(1 −g)2 + 2g(1 −2g)(1 −g)d + g(1 −2g)d2

)2 ≥ 0

The last inequality is trivially true, which finally proves (12) since (g, d) ∈
[1/3, β] × [0, 1] were chosen arbitrarily.



6 Discussion

It is worth noticing that the analysis of both presented algorithms is tight.
Tracing all inequalities used, we constructed the following worst-case example,
on which the second algorithm yields a 0.36392-approximation of the equilibrium:

R =





0 α α
α 0 1
α 1 0



 C =





0 α α
α 1 1/2
α 1/2 1



 where α = 1/
√

6.

In general, our algorithms produce solutions with large support. This is to no
surprise, as implied by negative results on the existence of approximate equilib-
rium strategies with small support [1, 7].

The major open question remains whether a polynomial time algorithm for
any constant ε > 0 is possible. It would also be interesting to investigate if our
methods can be modified to yield better approximations.
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