Tight results for Next Fit and Worst Fit with resource augmentation

Joan Boyar Leah Epstein Asaf Levirt

Abstract

It is well known that the two simple algorithms for the classic bin packing probNRmand WF
both have an approximation ratio 2f However,WF seems to be a more reasonable algorithm, since it
never opens a new bin if an existing bin can still be used.

Using resource augmented analysis, where the output of an approximation algorithm, which can use
bins of sizeb > 1, is compared to an optimal packing into bins of sizeve give acomplete analysief
the asymptotic approximation ratio W F and of NF, and use it to show thaWF is strictly better than
NF for any1 < b < 2, while they have the same asymptotic performance guarantee torafl, and
forb = 1.

1 Introduction

Bin packing has been extensively studied in both the offline and the online environments and has numerous
applications [8, 11, 7, 4, 3]. In the basic problem, the goal is to pack a sequence of items ef sizes .,
wheres; € (0,1], into a minimum number of unit-capacity blocks, calleiths, such that the total size
of the items in each bin does not exceed 1. An item is identified with its index, and for a set of items
X C{1,2,...},wedenotes(X) = > s;. ThusX can be packed in a bin §(X') < 1. If the problem is
online, then the items must be pacjkegj irrevocably one by one, while future items are unknown at the time of
packing. The goal is to minimize the number of bins containing at least one item, alsowsstdains. The
operation of assigning a first item to a new bin is catipeéninga new bin.

For an algorithmA, we denote its cost, i.e., the number of used bins in its packing, on anfinpyt
A(I) (or simply A). The cost of an optimal solutio®pT, for the same input, is denoted I®PT(I) (or
OPT). Theasymptotic approximation ratiallows to compare the costs for inputs for which the optimal cost
is sufficiently large. The asymptotic approximation ratiohfR 4 is defined as follows.

R4 = lim < sup ALG(I)) .

N=oo \ .opT(1)>n OPTU)
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In this paper we only consider the asymptotic approximation ratio, which is the common measure for bin
packing algorithms. Thus we use the term approximation ratio throughout the paper, with the meaning of
asymptotic approximation ratio.

In the early days of the study of bin packing, several natural algorithms were introduced. Two such
algorithms areNEXT FIT (NF) andWoRsST FIT (WF) [7]. The two algorithm were presented as offline
heuristics, but are in fact online algorithms which process the items as &lkskeeps a single active bin
at each time. If the next unpacked item cannot be packed into the current active bin, then it is closed and
never used again, while a new active bin is opened in order to accommodate th&\itfepacks the next
item in a previously opened bin with the minimum total packed size of items if such a bin can accommodate
this item as well. Only if no such bin exists is a new bin opened in order to accommodate the item. Thus
WEF is intuitively the better algorithm, thoudgkF is more efficient; it is a bounded space algorithm. In fact,
Worst-Fit is provably better than Next-Fit. The following result (see also [2]) actually applies to Next-Fit
compared to any Any-Fit algorithm.

Proposition 1. On any sequence of itemig,NF will use at least as many bins &gF.

Proof. Let By g(i) denote the bin number whelg places the item thal/F places as the first in bin We
show by induction orni that B g(¢) > ¢ for all i. Both values are for i = 1. Suppose it holds for some
valuet. ThenWF opens a new bin, with item j andNF places; in some bint’ > ¢. Consider the iten,
whereWF opens birt + 1. If NF has not already opened hin+ 1, it has packed all items between itegns
andk in bin¢’. WF cannot have put more items in hinso bint’ in NF's packing is at least as full as bin
in WF’s packing. ThusNF must open birt’ + 1 if it has not already done so. Siné&\g (i) > i for all 7,
NF uses at least as many bins\&$-. O

However, bothWF andNF have approximation ratios @f[7], so the standard measure does not distin-
guish between these two algorithms.

We use resource augmentation [9, 5] in order to analyze the two algorithms and compare their behavior.
In resource augmentation, an approximation (or online) algorithm is equipped with resources which are
larger than those of an optimal algorithm which is it compared to. For bin packing, resource augmentation
with a ratiob > 1 means that the approximation algorithm may use bins which inees larger than those
of the optimal algorithm [5]. Specifically, we assume that the algorithm uses bins df svbée, an optimal
algorithm uses a bin of sizk. Clearly, all item sizes are if0, 7).
Our results. We show that the approximation ratio WfF, Ry g(b), is:

2b
35 for bell,2]

Rwr(®) =4
b—1 >

We show that the approximation ratio NF, R\g(b), is:

for  be2,00)

212b — 22 — Aty + 2 + 20ty
t2b + 2bty, — t2 — 3t — 2+ 2b

wheret, = | 15 |. Thus, forb > 2, ¢, = 0 and the ratio becomeg-. If t;, = ;1;,i.e.,b =1+ 1 for some
integerk > 1, the ratio become. Moreover, in the casg = 1, i.e.,3 < b < 2, we get the ratic2=2, for
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ty=2,i.e.,3 <b< 3 wegettheratid?=_, fort, = 3,i.e.,2 < b < 1, we get the ratid22=2% etc. In the
caseb = 1 we havet, = oo, and the approximation ratio &

For the analysis we use weight functions, which are related to the weight function originally introduced
for the analysis oFIRST FIT (FF) [8, 11]. We use clever generalizations of this type of weight function to
achieve tight bounds for all values bf
Previous work. Resource augmentation for bin packing was studied by Csirik and Woeginger [5]. They
have studied bounded space bin packing, where a constant number of bins can be available at any time to
receive new items (active bins). If the maximum number of open bins is reached, and a new bin needs to
be used, one of the active bins must be closed and never used again. They defined a fhctemd
extended the Harmonic algorithms of [10] for the casé of 1. The worst case ratio of this algorithm
comes arbitrary close to a certain boys{d). They also proved that no online bounded space algorithm can
have an approximation ratio smaller tha() in the worst case. Unbounded space resource augmented bin-
packing was studied in [6], where improved algorithms are designed, and lower bounds for general online
bin packing algorithms are proved.

2 Some easy cases for the analysis NF and WF

In this section, we show some simple bounds on the approximation ratio of the two algorithms. These
bounds are in fact tight in a part of the intervals. The more difficult cases are discussed later.

Lemma 2. The approximation ratios dflF and WF are at mostb_%, and at mos% forb < 2.

Proof. Since no item has a size of more th?,revery bin except for possibly the last opened bin has a total
size of items of at leadt — % = "‘Tl Since a bin of an optimal packing can contain a total of at n};oah
approximation ratio of at mosgt%l follows.

On the other hand, since for botiiF andNF, the sum of items in two consecutive bins is more than
1, if ¢ bins are opened, the total size of items is more thgh so these items require more thﬂﬁ‘rl)
bins in a packing into bins of siz#, that is, at Ieasf’g for b < 2, and an approximation ratio of at mo%t
follows. O

We next show that in the case> 2, bothWF andNF have an approximation ratio of exactly, i.e.,
the approximation ratio fas = 2 is 1, it is monotonically decreasing, and tends to zeré g=ows.

Theorem 3. Letb > 2. The approximation ratio of botNF and WF is ﬁ

Proof. By Lemma 2, we only need to prove a lower bound. The following lower bound construction is valid
for both algorithms fob > 2. Let N be a large integer. Let = [(b — 2)N| + 1. Then(b — 2)N < p <
(b—2)N+1lor2+ £ >bandf <b—2+ 3.

The sequence consists dfbatches op + 1 items, each of which contains an item of si})z,e‘ollowed
by p items of sizes;. The total size of the items of one batchlis- 2. A new item of size} cannot be
added to a bin which contains all items of one batch since the total size would be %theq%g > 1.

Both WF and NF need to open a new bin for every large item, and then all small items are packed
together with the larger item.



In an optimal packing into a bins of si%e N bins are completely filled with items of si%e Each bin
can receivelV smaller items, thug additional bins are used. The approximation ratio is at @@%{ >

1 _ 1 i 1
T b_1+%,whlch tends to, = for large V. O

We next consider the approximation ratioNdF for cases wheré =1 + % for some integet > 2.
Theorem 4. Letb =1+ % for an integert > 2. The approximation ratio dNF is exactly%.

Proof. Let N > t be a large integer and consider an input wifh batches of four jobs, of the sizgg,

(t+t1)N’ t-‘,l-l’ (t+1) . We claim thatNF uses two new bins for each batch, and these bins have a total packed

size of (fff)t and (t]if)tN, respectively. FoV > t, both of these total packed sizes are less thdndeed,

the third item cannot be packed into a bin of the first type s@%’«g@ + N t+1) > 1, and the first item

cannot be packed into a bin of the second type St% + t+1 oy > 1 aswell. Thug Nt bins are used.
An optimal packing into bins of S|z§ t+1 usesNt bins for the items of the first typéy bins for the

items of the third type, an2k bins for the other items.

Thus, the approximation ratio is at leagt>5 -, which tends to24 = # for large N. O

3 A complete analysis oNEXT FIT

In this section, we analyzBF for values ofb which satisfy’:3 < b < 2, for some integet > 1. An
alternative definition of ist = | -1 |. These are the missing cases IR.

We define the following weight function of the items. In both the analysiefind the analysis dVF
for the additional cases, we use piecewise linear functions definéd gh Thus the weight of an item is

only based on its size. For a s§tC {1,2,...}, and any function : (0, ] — R, we letg(X) = > g(s;).
i€ex

Let I;, for 0 < ¢ < t be defined as

1. t—i+1

I = <¢(1—b),b—(t—z‘)} ,

and letJ;, for 1 < ¢ < t be defined as
—1+2 1
J; = (t?_(ti+1),i(1b)] .

Note that for any, i(1 — ) < =t — (+ —4) holds since < L, and™=:2 — (t —i +1) < i(1— )
holds sinceh > ﬁﬁ Fori > 1, ;UL = (52 —(t—i+1),= ’+1 — (t —i)], andly = (0, H2 — ¢,

therefore |y J;U U I = (0, .
1<e<t 0<i<t
We define the weight functiow as follows.

. r+i((t+1)—52),  for z€l;, 0<i<t
wl\xr) =
20 —i(BL —1) for e J;, 1<i<t

In the proofs of Claim 5 and Lemma 7, the breakpoints betwee'shend.J’s are considered. We let
p2; denote the point(1 — 3) for 0 < i < ¢ andpg;41 is =5 — (¢ — i), for 0 < i < t. These breakpoints
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arep; for 1 < j < 2¢, while py andps;+1 are the boundaries of the domain of the functienNote that by
definition,1 — pa; = pa—ir1)41, for 1 <4 <t,andl — pai1 = pyp—i41), for 1 <i < t. We analogously
definepaiyo = (¢ +1)(1 — §) andpaets = % —(t—=(t+1)) = 1. We haveps, 13 + po = 1 and

pat2 + p1 = 1, and thup; + pa3—; = 1 forany0 < j < 2t + 3. We also letw(0) = 0.

Claim 5. The functionw is continuous and monotonically increasing(in ;.

Proof. Sincew is piecewise linear, with positive slopes, it is sufficient to prove that it is continuous at
breakpoints.
The value of the function fopy; = i(1 — ) for1 <i < tis
1 Lt+1 t+3

22‘(1—5)—1( ; —t) = (t+2—T),

while the value fop; + ¢, for a sufficiently small value of, is

i(1-%)+a+i((t+1)—$) i+ 2-%

In the second case, the value of the functionggr  for 0 <i <t —1is

t—i1+4+1 ) . t+2 ) t+3 t+1
— (=) +i(t+1) - —) =it +2— ——) + —— —
b b b b
while the value fops; 11 + ¢, for a sufficiently small value of, is
t—i+1 . ) t+1 t+3 t+1
2(————-(t—-i)+e)—(t+1)(——-t)=i(t+2— — )+ —— —t + 2.
b b b b
Thus the function is continuous and therefore, monotonically increasing. O

Lemma 6. Let X be a set of items such thatX) < 1, thenw(X) < EoHb—=2+1,

Proof. Consider a seX. We first show that we can assume without loss of generality that all items come
from the intervaldy, I; and.J;.

Consider an itenj of I; for i > 1. Replace this item with items of size=~. The resulting items have a
sizein

(1 1 t—i+1 t—1 c.

b b

sincel=Ftl 1=t < L_(1—1)is equivalenttd—i+1—bt < ti—tbiorbt(i—1) < ti—t+i—1 = (t+1)(i—1).
Usingi > 1, we get that this is equivalent to< ﬂ which clearly holds. The total weight of the new items
is thereforei - (2 + ¢ + 1 — 42), which is equal to the weight of the ongmal item.

Consider an itej of .J; for i > 1. Replace this item with items of size’2. The resulting items have a
sizein(i=52 — =t 1 2] C Uy, sincel=t2 — =L > L g s eqU|vaIenttct—z+2 bt +ib—b >
tt+1— tbz or

bt+1)(i—1)>ti—t+2i—2=(t+2)(i—1).

Usingi > 1, we get that this is equivalent to> iﬁ which clearly holds. The total weight of the new items

is thereforei - (222 — (42 — ¢)), which is equal to the weight of the original item.
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Let Ky andK; denote the subsets of itemsin of sizes inJ; and inl;, respectively, and let; = | K|
andkr = ‘K[|
t+2

w(X) = 25j+ Z Sj—k(](%—t)‘i‘kl((t‘i‘l)—T).
jEX JEK

—p)andys g sp < kg(1— ).
1 — 3), we havek; + k; > 2, and sincei; andk,

1 1
Clearly’Z]GKJ Sj S b ZjGK[ Sj S b
We consider two cases. #f— k(1 — 1) < ky

are integers ang; is not, we gek; + k; > [;27] =t + 1. Thus usingy" .  s; < ; we get,
1 1 1 t+1 t+2
< 4= _ S 2 -~
wX) < g —ki(l=3) =k =)+ k((E+1) - ——)
2 t+1 2 t+1 t2b+th—t> —2t+ 1
= g_(k’]-i-/ﬁ])(ib —t)ﬁg—(ﬁ'l)(ib —t) = b -

If + —kr(1—1%) > ks(1— 1), we havek; + k; < 71, and sincek; andk; are integers, we get
kr+ky < Lﬁj =t. Thus

1 1 t+1 t+2 1 t+2
wX) < k=) k(g =) F (D) = ) = 5 (R k(1) = )
1 t+42 o+th—t2 -2t +1
< — — = .
< AUt =) ;
m

We next analyze the weight in bins Nf~. For that, we define a modified weight functiehby w’(z) =
w(z) — w(x), wherew(x) = z. Denote the bins used WyF by By, Bs, ..., By, wherek’ = NF, that is,
B, is the set of items packed into tl¢h bin. For a binB; let v; = s(B;) denote the total size of items in
B;, and letr; denote the size of the first item ever packed iBto For a binB; (i < k') we define a new
weight

f(Bi) = 0(Bi) + w'(Ti41) = s(By) + w'(1i41).

If ¥ is odd then lek = k'’ — 1 and otherwisé& = k' — 2. Thusk is even andNF < k + 2. Letn denote
the number of items in the input. Clearly,

k n

> f(Bi) < i"f)(sg') + zn:w/(Sj) => w(s)).
7=1 7j=1

=1 = = 7j=1
Lemma7. Leti < k. Thenf(B;) + f(Biy1) > t2 +2t +2 — w

Proof. Recall the breakpoints; of the weight functionw. LetY, Z be such thas(B;) € Y = (py, py+1]
ands(B;y1) € Z = (pz, p-+1), Wherey, z < 2t + 2. Note thati + 1 < &/, thus the binB;; is not the
last bin, and an item was packed into ¥, », sor; 9 is well-defined. We have;;; > 1 — s(B;) and
Tit2 > 1-— S(Bi+1).

By definition, 1 — s(B;) € [pait2—y, P2t+3—y) @NA1 — s(Bit1) € [par2—z, P2r+3—2). We next show
y+ 2z > 2t + 2. Usings(B;) + s(Bi+1) > 1, we getp, 1 + p.+1 > 1. Sincepyy1 = 1 — parpo—y, WE



getp.41 > patyo—y. Thereforez +1 > 2t +2 —yorz+y > 2t + 1. Sincez,y are integers, then
z 4y > 2t + 2. If one of z andy is odd and the other one is even, thes y > 2t + 3.
We next calculate

f(Bi) + f(Biy1) = s(Bi) + s(Biy1) + w'(7i1) + w'(Tit2).

Consider a birB,, where/ € {i,i+1}, ands(By) € (py, py+1] (hencev € {y, z}). Note that sincev’ is
a continuous piecewise linear function whose slopes are non-negative, we concludeghmaonotonically
non-decreasing function, and hent@;) = s(By) + w'(1e+1) > s(By) + w'(1 — s(By)). We next obtain
a lower bound orf(By), this bound depends on the parityof

e If vis even, thenv/(1 — s(By)) = 24£2=2(¢t + 1 — &2), and

1, 2t4+2— t+2 t+2 t+1
dB@+ﬂK1—s@ﬂ»gi%O—g}+——§——gﬁ+l——z—):(t+D@+1— 5 )+%( 5 —t).

e |f vis odd, then

2t+3—-v,t+1

( _2t+3—v t+1_t
2 b

2 (b )

s(By) +w' (1—5(By)) > s(By) +1—s(By) — t)y=1

We consider three cases depending on the parityaridz, and in each of these cases, we show that
F(Bi) + f(Bit1) > 2 4 2t 4 2 — 20,

e Both y and z are odd. In this case, usiné@—1 —t>0andy +z > 2t + 2,

204+3—y t+1 204+3—2,t+1
f(Bi)+ f(Bix1) > 1-— 5 ( b —t)+1- 5 ( 5 —1)
Ytz —4at—6 t+1
= 2 —t
+ 2 ( b )
t+1 t+2)(t+1
> 2—(t+2)(—g—t):t2+2t+2—(+)b(+).

e The sum ofy and z is odd.  Consider the case wheteis odd andz is even, the other case is
symmetric. In this case we hayet z > 2¢ + 3. Since% —t > 0, we conclude the following:

AU+3—y t+1 t4+2. oz t+1
FB) + f(Bi) 2 1= 2= =) + (t+ Dt + 1= =) + S (= — 1)
t4+2)(t+1 —2—3 t+1
= ﬂ+%+2—"+)(+)44y+2 3X + —1)
b 2 b
1
> R+2r+z—“+2gﬁ%).

e Both y and z are even. If y + z > 2t 4 4, then

f(Bi) + f(Bit1)

t+2 t+1 t+2 t+1
2 U+U@+1——Fﬁ+%F3*—ﬂ+@+U@+1—4Fﬁ+§F@*—ﬂ

20t +1)(t+2 t+1 t+1)(t+2
229+#+2—(+;(+)+@+%(z—@=#+m+2—(+1f+).



Otherwise, since the sum efandy is even, an@t + 2 < y + z < 2t + 3, theny + z = 2t 4 2.

f(Bi) + f(Bit1)

2t +2 — t+2 204+2 -2 t+2
> s(Bi) +8(Bi1) + 5 (t+ 1 - )+ — (k1 - )
db+4—y— t+2 t+2
> 1++( L- =) =1+ (D)t +1-—2)
t+1)(t+2
— t2+2t+2_w'

b

Theorem 8. The approximation ratio oNF for iﬁ <b< t“ is exactly

202h — 22 — At + 2 + 2bt
2b+2bt —t2 —3t—2+2b

Proof. Let D denote the set of items. By Lemma®(D) < Lb+=E=2i+10p1. By Lemma 7 and the
definition ofk,

E t?b+2bt —t> —3t—2+2b t2b4+ 20t —t2 — 3t —2+2b
wD) > . + 3 + > (NF—2) + 3 +2b
2 b 2b
Thus ) )
2t°b — 2t° — 4t + 2 + 2bt
NF < OPT + 2.
S rat—2_st—212p
+
For the lower bound, lelV be a large integer, divisible by Lete = t+14N . The mput first contains
N batches. Each of these batches consists of four items of the following %I,ZEQ. , €. Every bin will
contain an item of snz% orl — L followed by an item of size.

Next, the following sequence of additional items is repeg j;b:ttbf:g) N | times (note that+1—¢b >
0 andtb + 2b — t — 3 > 0, by the definition of and using > 1).

These are one item of si%e 4N + 1 items of sizes, one item of sizét—1 — t and an additional N + 1
items of sizes.

Note thatt! — ¢ > 0 and that(4N + 1)e = 4N B pe—t4l- =2 4 ¢ Sincej + S —t +
t+1-— % +e =1+¢, each item of sizéb— —tor 5, mcluding the first such item of this part of the input,
starts a new bin.

The number of bins used byF is at leasRNV + 2%]\7 - 2.

Note that% < 1, since this is equivalent td+2b—t —3+tb—t—1 > 0 ortob(t+1) > t+2,
which holds by the definition of.

Note that there are at mog{ + %N items of size;, N items of sizel — f, at most
raas g N items of size}t — ¢, and at moSEN + 2(4N + 1) (yi55 -5y V) items of size-.

We next consider a packing into bins of si?eThere are at mosy + %N bins with one item
of size;. Since(1 — })t < ¢, titems of sizel — 3 are packed into one bin, resulting4h bins. Each such

t+1




bin can either receive an item of size- (1 — ) = 1 — ¢, or at least

Bl _ =l _¢ Sy iRt
- -2 T T — ¢ — 2
AN
items of sizes.
Therefore, the total number of items of sizevhich are combined into existing bins is at least
N t+1—tb t+1—0bt
— - N) UN——M—— —1
(t t(th+2b—t — 3) > ( bt +b—t—2 )
tb+2b—t—3—t—1+1tb t+1—0bt
t(th+2b—t — 3) ( bt+b—t—2 )
o 2tb+b—t—2) N (4N t+1—0bt 1) = 8N2(t+1—bt)  2(tb+b—t—2)
(b +2b—t—3) bt +b—t—2 t(bt+2b—t—3) t(th+2b—t—3)
Therefore, the number of remaining items of size at mosN + 2t(tbtj21b:ttﬂ3)N + t(%ﬁ% tt 23))]\7

We havet + 1 —tb < tb+2b—t—3andtb+b—t—2 < tb+2b—t — 3, so the number of remaining
items is at mos2N + 4¥ < 6N, foranyt > 1. Sincet + 1 — 22 < t4+1— 2. = 24241472 1

t+1)/t t+1 t+1°
Therefore, smc% > t+1’ at leasd NV items of sizes can share a bin, so two new bins are sufficient for the
remaining items of size.

+2( t+1—tb N) 2 9
We get a ratio of at least Heb43b—¢-3) which tends to2i-0=2t"—4t+242bt
N+ %N+ 42! 12b+2bt—t2—3t—2+2b

values ofN. n

for large enough

4 A complete analysis oMWORSTFIT

In order to complete the analysisbfF, we need to consider the cakse: b < 2. In this case, we will show
a tight bound ofsb 5 on the approximation ratio. Thus it is monotonically decreasing in this case as well,
and the approximation ratio as a functionba$ continuous ab = 2.

Theorem 9. For any1 < b < 2, the approximation ratio oWF is

3b 2
Proof. We start with the lower bound. Lé{ be an even large integer. Lzet: b The input consists oV
batches. Each batch starts with an item of %I , Which is followed by(QN ] +1 items of SIZQ—: The
total size of the items in a single batch is at Ie?st +(2NH+1)- 2 =1 -1 +2-3+22 >3- L

For large enougiV, this total size is also less thanThus each batch deN” 11 +2 |tems is packed into
a separate bin (once a new bin is opened, the worst fit of the next items of the batch is this new bin, and the
total size of a batch together with the large item of the next batch exdgeds

After theseN batches, there ar[e*{’%fN} additional pairs of items, each of which consists of items of
sizesl ande. Once againWF packs each pair of items into a dedicated bin.

The number of bins used BYF is at IeastN + 222N > N+ 222N =N 2

Note that there ar@V items of size; — %, [3=2N] items of size}, and at mosW( NS 42y 4
B2N +1=2N2L= + N2 4 1items ofS|zes



We next consider a packing into bins of sizeThere areV bins with one item of siz¢ — 1 and one

item of sizel The other items of sizé are packed into additional bins. A bin which already contains

(only) an item of su% can receive addltlonaQ[ items of sizes, smce + 5 20 b N = %

The number of items of size which can be packed with the remalnlng items of s%zds at least
(N3=2 _ NN > (NAL=D) N 200N ence, only at mos 2E2 + 1 unpacked small items remain.
New bins are used for the remaining small items. One bin can hold atUg}%th items, smceb—_bj

C . . b2 vy M2 N4 _
b < 1 The remaining items require at mc{si%%J 1<% o - 1 = ¢ b+2 N+2 b1 < b*ﬁ)_]\;ﬁ by

1= N <ob+3) <10 additional bins (since < b < 2).

We get a ratio of at Ieas;m which tends tof for large enough values a¥.
To prove the upper bound we use a weight function. In order to define this function, we first define a
threshold rule foMWWF. Consider a sefl, which contains items of a total side— « (for somea > 0). The
threshold rule foWF is that the largest item id, has a size of at least
The motivation for this threshold rule is that a bin is openedMly for an item of sizex, only if all
previously opened bins have a total packed size largertham. Note that in the results of [8] fdFF, a
threshold rule is used as well, only in the casd-6f a similar situation implies thatll items will have a
size of at leasty, while for WF this is not necessarily the case.
We will consider a weight function for which the following three properties hold. The first property is
that if the total size of items in a set is at leastl — «, and A satisfies the threshold rule, that is, the size
of the largest item id is at leasty, thenw(A) > 1. The second property is that if the total size of items is
only 1 — « — 3 (for someg > 0), but the threshold rule is satisfied fer(that is, the size of the largest item
in Ais at leasty, rather tharw + 3), thenw(A) > 1 — ¢, where

¢= sup w(x)/z.
0<z<3
We only consider functions where/ is finite.

The last property which is required is that for any Betwhich contains items of a total size of at most
%, it holds thatw(B) < R, whereR is the approximation ratigf_%.

Given a weight functionv which satisfies the three properties, we consider only bins of weight strictly
smaller than 1. That is, we remove all bins with weight at least 1 and consider the remaining bins. We define
the coarseness of binc;, (see the analysis &F in [1]) as the maximum value such that there exists a bin
j < i which has a total size of items of— ¢;, that is, the maximum empty space in any preceding bin. We
letc; = 0. Since all bins we consider have a total weight of items smaller théor bin 7, the total size of
items is some valué — «;, where the largest item packed in bihas a size of; — j3;, for someg; > 0.

We always havéa; — (3;) > ¢;, as otherwis&VF would pack this item in the bigi for which the maximum
in the definition ofc; is achieved.

We haver; 11 > a; > ¢; + 5;. LetW; be the total weight of bin, then we havéV; > 1 — ¢3;.

If WF usesn bins, the total weight i~ W; > n — 4(>_ ;).
=1 i=1

n n n—1
We calculated” 5;. > 6; < Bn+ > (cit1 — ¢i) < Bn + ¢n < oy < 1. The total weight of all bins is
=1 =1 i=1
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therefore at leastVF — /¢ (note that this inequality holds even when we also consider the bins of weight at
least 1, which were removed earlier).

Assume that the third property is satisfied. EaciOefr’s bins is filled to at mos% Hence, the total
weight in each ofOPT's bins is at mostBb 51 SO 5~ 2OPT is an upper bound on the total weight, and
WF -1 < 5 OPT Thus in order to prove the theorem, it suffices to show a weight funatitor which
the three propertles hold, and the valu¢ & bounded by a fixed constant.

Define the following weight function:

s for z€(0,1 - 3]
wz) = 5% 55 for =€ (5~ 3, 3]
1 for e (1,1]

Forz < I, w(z) > 325a, since2bz > 2 — b forz > ¢ — 1. The function is continuous and

monotonically non-decreasing. We next show that this funcii@atisfies the three required properties.

Lemma 10. Let A be a set of items of total siZe— o (« > 0), where the largest item id, i, has a size of
at leasta. Thenw(A) > 1.

Proof. If s; > %, we are done.

Ifs; <3—2%thenl—a>1-s >3 —1=232 Alitems belong to the first case of the weight

function, so we get a total weight of at leagts - 352 = 1.

We are left with the casg — 1 < s; < L. In this case, the total weight is at leagt; (1 — o — s;) +

4b 2-b 2% , 4b . 2-b _
335 — 355 = gl —28) + 355 — 355 = L. O

Lemma 11. Let A be a set of items, of a total site- o — 3 (for somes > 0), which satisfies the threshold
rule for a. Thenw(A) > 1 —¢0.

Proof. Add a dummy item of sized. The threshold rule fokWF is still kept with o, and the new total
size of items isl — a. Let W denote the total weight of original items, akd', the total weight after the
modification. By Lemma 10l > 1. We havelV = W’ — w((3). By the definition of/, w(8) < ¢4, and
the claim follows. O

Lemma 12. Let B a set of items which can be packed into a bin of giZee., s(B) < 1). Thenw(B) <
2

3b—2"
Proof. If the bin contains an item of size > 1, lett < 1 —y < 1 — 1 = 222 be the total size of other
items, each of which has weigh$; times its size. The total welght is at mds%r (5225)(52) = 5225

Other\lee if the bin contains exactly one item of s%ze 5 < y < , then the total weight is at most
By~ 52t G- Vae <5 — e+ (G~ )3 = s Where the inequality holds since the
maximum of the left side is obtained fgr— =

Finally, if the bin contains at least two |tems in the mter@l— 5 2 |, such that thelr total size ys then
the total weight ofB is at mostg;'%; -y — 2 2=0 + 32 - (3 —y) = 325 — 505 + 5025 + 303 <

2 4 4 2b 4 _ _2b ]
36—2 ~ 3b—2 ' 3b—2 " 3p-2 ~ 3p-2°
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H H 2b 4b 2—b 1 1
The value ofl is 2, sinceg;75 < 2, ;757 — 53,5 < 2z foranyz < 5, and clearlyl < 2x forz > 3.
O
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