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Abstract

It is well known that the two simple algorithms for the classic bin packing problem,NF andWF

both have an approximation ratio of2. However,WF seems to be a more reasonable algorithm, since it

never opens a new bin if an existing bin can still be used.

Using resource augmented analysis, where the output of an approximation algorithm, which can use

bins of sizeb > 1, is compared to an optimal packing into bins of size1, we give acomplete analysisof

the asymptotic approximation ratio ofWF and ofNF, and use it to show thatWF is strictly better than

NF for any1 < b < 2, while they have the same asymptotic performance guarantee for allb ≥ 2, and

for b = 1.

1 Introduction

Bin packing has been extensively studied in both the offline and the online environments and has numerous

applications [8, 11, 7, 4, 3]. In the basic problem, the goal is to pack a sequence of items of sizess1, s2, . . .,

wheresi ∈ (0, 1], into a minimum number of unit-capacity blocks, calledbins, such that the total size

of the items in each bin does not exceed 1. An item is identified with its index, and for a set of items

X ⊆ {1, 2, . . .}, we denotes(X) =
∑

j∈X

sj . ThusX can be packed in a bin ifs(X) ≤ 1. If the problem is

online, then the items must be packed irrevocably one by one, while future items are unknown at the time of

packing. The goal is to minimize the number of bins containing at least one item, also calledusedbins. The

operation of assigning a first item to a new bin is calledopeninga new bin.

For an algorithmA, we denote its cost, i.e., the number of used bins in its packing, on an inputI, by

A(I) (or simplyA). The cost of an optimal solutionOPT, for the same input, is denoted byOPT(I) (or

OPT). Theasymptotic approximation ratioallows to compare the costs for inputs for which the optimal cost

is sufficiently large. The asymptotic approximation ratio ofA,RA is defined as follows.

RA = lim
N→∞

(
sup

I:OPT(I)≥N

ALG(I)
OPT(I)

)
.
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In this paper we only consider the asymptotic approximation ratio, which is the common measure for bin

packing algorithms. Thus we use the term approximation ratio throughout the paper, with the meaning of

asymptotic approximation ratio.

In the early days of the study of bin packing, several natural algorithms were introduced. Two such

algorithms areNEXT FIT (NF) andWORST FIT (WF) [7]. The two algorithm were presented as offline

heuristics, but are in fact online algorithms which process the items as a list.NF keeps a single active bin

at each time. If the next unpacked item cannot be packed into the current active bin, then it is closed and

never used again, while a new active bin is opened in order to accommodate the item.WF packs the next

item in a previously opened bin with the minimum total packed size of items if such a bin can accommodate

this item as well. Only if no such bin exists is a new bin opened in order to accommodate the item. Thus

WF is intuitively the better algorithm, thoughNF is more efficient; it is a bounded space algorithm. In fact,

Worst-Fit is provably better than Next-Fit. The following result (see also [2]) actually applies to Next-Fit

compared to any Any-Fit algorithm.

Proposition 1. On any sequence of items,I, NF will use at least as many bins asWF.

Proof. Let BNF(i) denote the bin number whereNF places the item thatWF places as the first in bini. We

show by induction oni thatBNF(i) ≥ i for all i. Both values are1 for i = 1. Suppose it holds for some

valuet. ThenWF opens a new bin,t, with itemj andNF placesj in some bint′ ≥ t. Consider the item,k,

whereWF opens bint + 1. If NF has not already opened bint′ + 1, it has packed all items between itemsj

andk in bin t′. WF cannot have put more items in bint, so bint′ in NF’s packing is at least as full as bint

in WF’s packing. Thus,NF must open bint′ + 1 if it has not already done so. SinceBNF(i) ≥ i for all i,

NF uses at least as many bins asWF.

However, bothWF andNF have approximation ratios of2 [7], so the standard measure does not distin-

guish between these two algorithms.

We use resource augmentation [9, 5] in order to analyze the two algorithms and compare their behavior.

In resource augmentation, an approximation (or online) algorithm is equipped with resources which are

larger than those of an optimal algorithm which is it compared to. For bin packing, resource augmentation

with a ratiob > 1 means that the approximation algorithm may use bins which areb times larger than those

of the optimal algorithm [5]. Specifically, we assume that the algorithm uses bins of size1, while, an optimal

algorithm uses a bin of size1b . Clearly, all item sizes are in(0, 1
b ].

Our results. We show that the approximation ratio ofWF,RWF(b), is:

RWF(b) =





2b
3b−2 , for b ∈ [1, 2]

1
b−1 , for b ∈ [2,∞)

We show that the approximation ratio ofNF,RNF(b), is:

2t2bb− 2t2b − 4tb + 2 + 2btb
t2bb + 2btb − t2b − 3tb − 2 + 2b

,

wheretb = b 1
b−1c. Thus, forb > 2, tb = 0 and the ratio becomes1b−1 . If tb = 1

b−1 , i.e.,b = 1 + 1
k for some

integerk ≥ 1, the ratio becomes2b . Moreover, in the casetb = 1, i.e., 3
2 < b ≤ 2, we get the ratio4b−4

5b−6 , for
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tb = 2, i.e., 4
3 < b ≤ 3

2 , we get the ratio6b−7
5b−6 , for tb = 3, i.e., 5

4 < b ≤ 4
3 , we get the ratio24b−28

17b−20 etc. In the

caseb = 1 we havetb = ∞, and the approximation ratio is2.

For the analysis we use weight functions, which are related to the weight function originally introduced

for the analysis ofFIRST FIT (FF) [8, 11]. We use clever generalizations of this type of weight function to

achieve tight bounds for all values ofb.

Previous work. Resource augmentation for bin packing was studied by Csirik and Woeginger [5]. They

have studied bounded space bin packing, where a constant number of bins can be available at any time to

receive new items (active bins). If the maximum number of open bins is reached, and a new bin needs to

be used, one of the active bins must be closed and never used again. They defined a functionρ(b), and

extended the Harmonic algorithms of [10] for the case ofb > 1. The worst case ratio of this algorithm

comes arbitrary close to a certain boundρ(b). They also proved that no online bounded space algorithm can

have an approximation ratio smaller thanρ(b) in the worst case. Unbounded space resource augmented bin-

packing was studied in [6], where improved algorithms are designed, and lower bounds for general online

bin packing algorithms are proved.

2 Some easy cases for the analysis ofNF and WF

In this section, we show some simple bounds on the approximation ratio of the two algorithms. These

bounds are in fact tight in a part of the intervals. The more difficult cases are discussed later.

Lemma 2. The approximation ratios ofNF andWF are at most 1
b−1 , and at most2b for b ≤ 2.

Proof. Since no item has a size of more than1
b , every bin except for possibly the last opened bin has a total

size of items of at least1− 1
b = b−1

b . Since a bin of an optimal packing can contain a total of at most1
b , an

approximation ratio of at most1b−1 follows.

On the other hand, since for bothWF andNF, the sum of items in two consecutive bins is more than

1, if q bins are opened, the total size of items is more thanq−1
2 , so these items require more thanb(q−1)

2

bins in a packing into bins of size1b , that is, at leastbq2 for b ≤ 2, and an approximation ratio of at most2
b

follows.

We next show that in the caseb ≥ 2, bothWF andNF have an approximation ratio of exactly1b−1 , i.e.,

the approximation ratio forb = 2 is 1, it is monotonically decreasing, and tends to zero asb grows.

Theorem 3. Let b ≥ 2. The approximation ratio of bothNF andWF is 1
b−1 .

Proof. By Lemma 2, we only need to prove a lower bound. The following lower bound construction is valid

for both algorithms forb ≥ 2. Let N be a large integer. Letp = b(b − 2)Nc + 1. Then(b − 2)N < p ≤
(b− 2)N + 1 or 2 + p

N > b and p
N ≤ b− 2 + 1

N .

The sequence consists ofN batches ofp + 1 items, each of which contains an item of size1
b , followed

by p items of size 1
Nb . The total size of the items of one batch is1

b + p
Nb . A new item of size1

b cannot be

added to a bin which contains all items of one batch since the total size would be at least2
b + p

Nb > 1.

Both WF and NF need to open a new bin for every large item, and then all small items are packed

together with the larger item.
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In an optimal packing into a bins of size1b , N bins are completely filled with items of size1b . Each bin

can receiveN smaller items, thusp additional bins are used. The approximation ratio is at leastN
N+p ≥

1
1+b−2+ 1

N

= 1
b−1+ 1

N

, which tends to 1
b−1 for largeN .

We next consider the approximation ratio ofNF for cases whereb = 1 + 1
t , for some integert ≥ 2.

Theorem 4. Let b = 1 + 1
t for an integert ≥ 2. The approximation ratio ofNF is exactly2

b .

Proof. Let N ≥ t be a large integer and consider an input withNt batches of four jobs, of the sizestt+1 ,
t

(t+1)N , 1
t+1 , t

(t+1)N . We claim thatNF uses two new bins for each batch, and these bins have a total packed

size of tN+t
(t+1)N and N+t

(t+1)N , respectively. ForN ≥ t, both of these total packed sizes are less than1. Indeed,

the third item cannot be packed into a bin of the first type sincetN+t
(t+1)N + N

N(t+1) > 1, and the first item

cannot be packed into a bin of the second type sinceN+t
(t+1)N + tN

(t+1)N > 1 as well. Thus2Nt bins are used.

An optimal packing into bins of size1b = t
t+1 usesNt bins for the items of the first type,N bins for the

items of the third type, and2t bins for the other items.

Thus, the approximation ratio is at least2Nt
Nt+2t+N , which tends to 2t

t+1 = 2
b for largeN .

3 A complete analysis ofNEXT FIT

In this section, we analyzeNF for values ofb which satisfyt+2
t+1 < b < t+1

t , for some integert ≥ 1. An

alternative definition oft is t = b 1
b−1c. These are the missing cases forNF.

We define the following weight function of the items. In both the analysis ofNF and the analysis ofWF

for the additional cases, we use piecewise linear functions defined on(0, 1
b ]. Thus the weight of an item is

only based on its size. For a setX ⊆ {1, 2, . . .}, and any functiong : (0, 1
b ] → R, we letg(X) =

∑
i∈X

g(si).

Let Ii, for 0 ≤ i ≤ t be defined as

Ii =
(

i(1− 1
b
),

t− i + 1
b

− (t− i)
]

,

and letJi, for 1 ≤ i ≤ t be defined as

Ji =
(

t− i + 2
b

− (t− i + 1), i(1− 1
b
)
]

.

Note that for anyi, i(1− 1
b ) < t−i+1

b − (t− i) holds sinceb < t+1
t , and t−i+2

b − (t− i + 1) < i(1− 1
b )

holds sinceb > t+2
t+1 . For i ≥ 1, Ji ∪ Ii = ( t−i+2

b − (t − i + 1), t−i+1
b − (t − i)], andI0 = (0, t+1

b − t],
therefore

⋃
1≤i≤t

Ji ∪
⋃

0≤i≤t
Ii = (0, 1

b ].

We define the weight functionw as follows.

w(x) =





x + i((t + 1)− t+2
b ) , for x ∈ Ii, 0 ≤ i ≤ t

2x− i( t+1
b − t) , for x ∈ Ji, 1 ≤ i ≤ t

In the proofs of Claim 5 and Lemma 7, the breakpoints between theI ’s andJ ’s are considered. We let

p2i denote the pointi(1− 1
b ) for 0 ≤ i ≤ t andp2i+1 is t−i+1

b − (t− i), for 0 ≤ i ≤ t. These breakpoints
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arepj for 1 ≤ j ≤ 2t, while p0 andp2t+1 are the boundaries of the domain of the functionw. Note that by

definition,1− p2i = p2(t−i+1)+1, for 1 ≤ i ≤ t, and1− p2i+1 = p2(t−i+1), for 1 ≤ i ≤ t. We analogously

definep2t+2 = (t + 1)(1 − 1
b ) andp2t+3 = t−(t+1)+1

b − (t − (t + 1)) = 1. We havep2t+3 + p0 = 1 and

p2t+2 + p1 = 1, and thuspj + p2t+3−j = 1 for any0 ≤ j ≤ 2t + 3. We also letw(0) = 0.

Claim 5. The functionw is continuous and monotonically increasing in(0, 1
b ].

Proof. Sincew is piecewise linear, with positive slopes, it is sufficient to prove that it is continuous at

breakpoints.

The value of the function forp2i = i(1− 1
b ) for 1 ≤ i ≤ t is

2i(1− 1
b
)− i(

t + 1
b

− t) = i(t + 2− t + 3
b

),

while the value forp2i + ε, for a sufficiently small value ofε, is

i(1− 1
b
) + ε + i((t + 1)− t + 2

b
) = i(t + 2− t + 3

b
) + ε.

In the second case, the value of the function forp2i+1 for 0 ≤ i ≤ t− 1 is

t− i + 1
b

− (t− i) + i((t + 1)− t + 2
b

) = i(t + 2− t + 3
b

) +
t + 1

b
− t

while the value forp2i+1 + ε, for a sufficiently small value ofε, is

2(
t− i + 1

b
− (t− i) + ε)− (i + 1)(

t + 1
b

− t) = i(t + 2− t + 3
b

) +
t + 1

b
− t + 2ε.

Thus the function is continuous and therefore, monotonically increasing.

Lemma 6. LetX be a set of items such thats(X) ≤ 1
b , thenw(X) ≤ t2b+tb−t2−2t+1

b .

Proof. Consider a setX. We first show that we can assume without loss of generality that all items come

from the intervalsI0, I1 andJ1.

Consider an itemj of Ii for i > 1. Replace this item withi items of sizesj

i . The resulting items have a

size in (
1− 1

b
,
t− i + 1

bi
− t− i

i

]
⊆ I1,

sincet−i+1
bi − t−i

i ≤ t
b−(t−1) is equivalent tot−i+1−bt ≤ ti−tbi or bt(i−1) ≤ ti−t+i−1 = (t+1)(i−1).

Usingi > 1, we get that this is equivalent tob ≤ t+1
t which clearly holds. The total weight of the new items

is thereforei · ( sj

i + t + 1− t+2
b ), which is equal to the weight of the original item.

Consider an itemj of Ji for i > 1. Replace this item withi items of sizesj

i . The resulting items have a

size in( t−i+2
bi − t−i+1

i , 1− 1
b ] ⊆ J1, sincet−i+2

bi − t−i+1
i ≥ t+1

b − t is equivalent tot− i+2− bt+ ib− b ≥
ti + i− tbi or

b(t + 1)(i− 1) ≥ ti− t + 2i− 2 = (t + 2)(i− 1).

Usingi > 1, we get that this is equivalent tob ≥ t+2
t+1 which clearly holds. The total weight of the new items

is thereforei · (2 sj

i − ( t+1
b − t)), which is equal to the weight of the original item.
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Let KJ andKI denote the subsets of items inX, of sizes inJ1 and inI1, respectively, and letkJ = |KJ |
andkI = |KI |.

w(X) =
∑

j∈X

sj +
∑

j∈KJ

sj − kJ(
t + 1

b
− t) + kI((t + 1)− t + 2

b
).

Clearly,
∑

j∈KJ
sj ≤ 1

b −
∑

j∈KI
sj ≤ 1

b − kI(1− 1
b ) and

∑
j∈KJ

sj ≤ kJ(1− 1
b ).

We consider two cases. If1b − kI(1 − 1
b ) ≤ kJ(1 − 1

b ), we havekI + kJ ≥ 1
b−1 , and sincekI andkJ

are integers and1
b−1 is not, we getkI + kJ ≥ d 1

b−1e = t + 1. Thus using
∑

j∈X sj ≤ 1
b we get,

w(X) ≤ 1
b

+
1
b
− kI(1− 1

b
)− kJ(

t + 1
b

− t) + kI((t + 1)− t + 2
b

)

=
2
b
− (kI + kJ)(

t + 1
b

− t) ≤ 2
b
− (t + 1)(

t + 1
b

− t) =
t2b + tb− t2 − 2t + 1

b
.

If 1
b − kI(1 − 1

b ) ≥ kJ(1 − 1
b ), we havekI + kJ ≤ 1

b−1 , and sincekI andkJ are integers, we get

kI + kJ ≤ b 1
b−1c = t. Thus

w(X) ≤ 1
b

+ kJ(1− 1
b
)− kJ(

t + 1
b

− t) + kI((t + 1)− t + 2
b

) =
1
b

+ (kI + kJ)((t + 1)− t + 2
b

)

≤ 1
b

+ t((t + 1)− t + 2
b

) =
t2b + tb− t2 − 2t + 1

b
.

We next analyze the weight in bins ofNF. For that, we define a modified weight functionw′ by w′(x) =
w(x) − w̃(x), wherew̃(x) = x. Denote the bins used byNF by B1, B2, . . . , Bk′ , wherek′ = NF, that is,

Bi is the set of items packed into thei-th bin. For a binBi let γi = s(Bi) denote the total size of items in

Bi, and letτi denote the size of the first item ever packed intoBi. For a binBi (i < k′) we define a new

weight

f(Bi) = w̃(Bi) + w′(τi+1) = s(Bi) + w′(τi+1).

If k′ is odd then letk = k′− 1 and otherwisek = k′− 2. Thusk is even andNF ≤ k + 2. Let n denote

the number of items in the input. Clearly,

k∑

i=1

f(Bi) <
n∑

j=1

w̃(sj) +
n∑

j=1

w′(sj) =
n∑

j=1

w(sj).

Lemma 7. Let i < k. Thenf(Bi) + f(Bi+1) ≥ t2 + 2t + 2− (t+1)(t+2)
b .

Proof. Recall the breakpointspi of the weight functionw. Let Y, Z be such thats(Bi) ∈ Y = (py, py+1]
ands(Bi+1) ∈ Z = (pz, pz+1], wherey, z ≤ 2t + 2. Note thati + 1 < k′, thus the binBi+1 is not the

last bin, and an item was packed into binBi+2, soτi+2 is well-defined. We haveτi+1 > 1 − s(Bi) and

τi+2 > 1− s(Bi+1).
By definition,1 − s(Bi) ∈ [p2t+2−y, p2t+3−y) and1 − s(Bi+1) ∈ [p2t+2−z, p2t+3−z). We next show

y + z ≥ 2t + 2. Usings(Bi) + s(Bi+1) > 1, we getpy+1 + pz+1 > 1. Sincepy+1 = 1 − p2t+2−y, we
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get pz+1 > p2t+2−y. Therefore,z + 1 > 2t + 2 − y or z + y > 2t + 1. Sincez, y are integers, then

z + y ≥ 2t + 2. If one ofz andy is odd and the other one is even, thenz + y ≥ 2t + 3.

We next calculate

f(Bi) + f(Bi+1) = s(Bi) + s(Bi+1) + w′(τi+1) + w′(τi+2).

Consider a binB`, wherè ∈ {i, i+1}, ands(B`) ∈ (pv, pv+1] (hencev ∈ {y, z}). Note that sincew′ is
a continuous piecewise linear function whose slopes are non-negative, we conclude thatw′ is monotonically

non-decreasing function, and hencef(B`) = s(B`) + w′(τ`+1) ≥ s(B`) + w′(1− s(B`)). We next obtain

a lower bound onf(B`), this bound depends on the parity ofv.

• If v is even, thenw′(1− s(B`)) = 2t+2−v
2 (t + 1− t+2

b ), and

s(B`)+w′(1−s(B`)) ≥ v

2
(1−1

b
)+

2t + 2− v

2
(t+1− t + 2

b
) = (t+1)(t+1− t + 2

b
)+

v

2
(
t + 1

b
−t).

• If v is odd, then

s(B`)+w′(1− s(B`)) ≥ s(B`)+1− s(B`)− 2t + 3− v

2
(
t + 1

b
− t) = 1− 2t + 3− v

2
(
t + 1

b
− t).

We consider three cases depending on the parity ofy andz, and in each of these cases, we show that

f(Bi) + f(Bi+1) ≥ t2 + 2t + 2− (t+2)(t+1)
b .

• Both y and z are odd. In this case, usingt+1
b − t > 0 andy + z ≥ 2t + 2,

f(Bi) + f(Bi+1) ≥ 1− 2t + 3− y

2
(
t + 1

b
− t) + 1− 2t + 3− z

2
(
t + 1

b
− t)

= 2 +
y + z − 4t− 6

2
(
t + 1

b
− t)

≥ 2− (t + 2)(
t + 1

b
− t) = t2 + 2t + 2− (t + 2)(t + 1)

b
.

• The sum of y and z is odd. Consider the case wherey is odd andz is even, the other case is

symmetric. In this case we havey + z ≥ 2t + 3. Sincet+1
b − t > 0, we conclude the following:

f(Bi) + f(Bi+1) ≥ 1− 2t + 3− y

2
(
t + 1

b
− t) + (t + 1)(t + 1− t + 2

b
) +

z

2
(
t + 1

b
− t)

= t2 + 2t + 2− (t + 2)(t + 1)
b

+ (
y + z − 2t− 3

2
)(

t + 1
b

− t)

≥ t2 + 2t + 2− (t + 2)(t + 1)
b

.

• Both y and z are even. If y + z ≥ 2t + 4, then

f(Bi) + f(Bi+1)

≥ (t + 1)(t + 1− t + 2
b

) +
y

2
(
t + 1

b
− t) + (t + 1)(t + 1− t + 2

b
) +

z

2
(
t + 1

b
− t)

≥ 2t2 + 4t + 2− 2(t + 1)(t + 2)
b

+ (t + 2)(
t + 1

b
− t) = t2 + 2t + 2− (t + 1)(t + 2)

b
.
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Otherwise, since the sum ofz andy is even, and2t + 2 ≤ y + z ≤ 2t + 3, theny + z = 2t + 2.

f(Bi) + f(Bi+1)

≥ s(Bi) + s(Bi+1) +
2t + 2− y

2
(t + 1− t + 2

b
) +

2t + 2− z

2
(t + 1− t + 2

b
)

≥ 1 +
4t + 4− y − z

2
(t + 1− t + 2

b
) = 1 + (t + 1)(t + 1− t + 2

b
)

= t2 + 2t + 2− (t + 1)(t + 2)
b

.

Theorem 8. The approximation ratio ofNF for t+2
t+1 < b < t+1

t is exactly

2t2b− 2t2 − 4t + 2 + 2bt
t2b + 2bt− t2 − 3t− 2 + 2b

.

Proof. Let D denote the set of items. By Lemma 6,w(D) ≤ t2b+tb−t2−2t+1
b OPT. By Lemma 7 and the

definition ofk,

w(D) ≥ k

2
· t2b + 2bt− t2 − 3t− 2 + 2b

b
≥ (NF− 2)

t2b + 2bt− t2 − 3t− 2 + 2b

2b
.

Thus

NF ≤ 2t2b− 2t2 − 4t + 2 + 2bt
t2b + 2bt− t2 − 3t− 2 + 2b

OPT + 2.

For the lower bound, letN be a large integer, divisible byt. Let ε = t+1− t+2
b

4N . The input first contains

N batches. Each of these batches consists of four items of the following sizes:1
b , ε, 1− 1

b , ε. Every bin will

contain an item of size1b or 1− 1
b , followed by an item of sizeε.

Next, the following sequence of additional items is repeatedb t+1−tb
t(tb+2b−t−3)Nc times (note thatt+1−tb >

0 andtb + 2b− t− 3 > 0, by the definition oft and usingb > 1).

These are one item of size1b , 4N + 1 items of sizeε, one item of sizet+1
b − t and an additional4N + 1

items of sizeε.

Note thatt+1
b − t > 0 and that(4N + 1)ε = 4N

t+1− t+2
b

4N + ε = t + 1− t+2
b + ε. Since1

b + t+1
b − t +

t+1− t+2
b + ε = 1+ ε, each item of sizet+1

b − t or 1
b , including the first such item of this part of the input,

starts a new bin.

The number of bins used byNF is at least2N + 2 t+1−tb
t(tb+2b−t−3)N − 2.

Note that t+1−tb
t(tb+2b−t−3) < 1

t , since this is equivalent totb+2b−t−3+tb−t−1 > 0 or tob(t+1) > t+2,

which holds by the definition oft.

Note that there are at mostN + t+1−tb
t(tb+2b−t−3)N items of size1

b , N items of size1 − 1
b , at most

t+1−tb
t(tb+2b−t−3)N items of sizet+1

b − t, and at most2N + 2(4N + 1)( t+1−tb
t(tb+2b−t−3)N) items of sizeε.

We next consider a packing into bins of size1
b . There are at mostN + t+1−tb

t(tb+2b−t−3)N bins with one item

of size 1
b . Since(1− 1

b )t ≤ 1
b , t items of size1− 1

b are packed into one bin, resulting inNt bins. Each such

8



bin can either receive an item of size1
b − t(1− 1

b ) = t+1
b − t, or at least

⌊
t+1
b − t

ε

⌋
=


t+1
b − t

t+1− t+2
b

4N

 ≥ 4N
t + 1− bt

bt + b− t− 2
− 1

items of sizeε.

Therefore, the total number of items of sizeε which are combined into existing bins is at least
(

N

t
− t + 1− tb

t(tb + 2b− t− 3)
N

)
· (4N t + 1− bt

bt + b− t− 2
− 1)

=
tb + 2b− t− 3− t− 1 + tb

t(tb + 2b− t− 3)
N · (4N t + 1− bt

bt + b− t− 2
− 1)

=
2(tb + b− t− 2)
t(tb + 2b− t− 3)

N · (4N t + 1− bt

bt + b− t− 2
− 1) =

8N2(t + 1− bt)
t(bt + 2b− t− 3)

− 2(tb + b− t− 2)
t(tb + 2b− t− 3)

N .

Therefore, the number of remaining items of sizeε is at most2N + 2 t+1−tb
t(tb+2b−t−3)N + 2(tb+b−t−2)

t(tb+2b−t−3)N .

We havet + 1− tb < tb + 2b− t− 3 andtb + b− t− 2 < tb + 2b− t− 3, so the number of remaining

items is at most2N + 4N
t < 6N , for anyt ≥ 1. Sincet+1− t+2

b < t+1− t+2
(t+1)/t = t2+2t+1−t2−2t

t+1 = 1
t+1 .

Therefore, since1b ≥ 1
t+1 , at least4N items of sizeε can share a bin, so two new bins are sufficient for the

remaining items of sizeε.

We get a ratio of at least
2N+2( t+1−tb

t(tb+2b−t−3)
N)−2

N+ t+1−tb
t(tb+2b−t−3)

N+N
t

+2
, which tends to 2t2b−2t2−4t+2+2bt

t2b+2bt−t2−3t−2+2b
for large enough

values ofN .

4 A complete analysis ofWORSTFIT

In order to complete the analysis ofWF, we need to consider the case1 < b < 2. In this case, we will show

a tight bound of 2b
3b−2 on the approximation ratio. Thus it is monotonically decreasing in this case as well,

and the approximation ratio as a function ofb is continuous atb = 2.

Theorem 9. For any1 < b < 2, the approximation ratio ofWF is 2b
3b−2 .

Proof. We start with the lower bound. LetN be an even large integer. Letε = 2−b
Nb . The input consists ofN

batches. Each batch starts with an item of size1
b− 1

2 , which is followed byd2N b−1
2−be+1 items of sizeε. The

total size of the items in a single batch is at least1
b − 1

2 +(2N b−1
2−b +1) · 2−b

Nb = 1
b − 1

2 +2− 2
b + 2−b

Nb > 3
2− 1

b .

For large enoughN , this total size is also less than1. Thus each batch ofd2N b−1
2−be+ 2 items is packed into

a separate bin (once a new bin is opened, the worst fit of the next items of the batch is this new bin, and the

total size of a batch together with the large item of the next batch exceeds1).

After theseN batches, there ared3b−2
2−b Ne additional pairs of items, each of which consists of items of

sizes1
2 andε. Once again,WF packs each pair of items into a dedicated bin.

The number of bins used byWF is at leastN + d3b−2
2−b Ne ≥ N + 3b−2

2−b N = N 2b
2−b .

Note that there areN items of size1
b − 1

2 , d3b−2
2−b Ne items of size1

2 , and at mostN(2N b−1
2−b + 2) +

3b−2
2−b N + 1 = 2N2 b−1

2−b + N b+2
2−b + 1 items of sizeε.
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We next consider a packing into bins of size1
b . There areN bins with one item of size1b − 1

2 and one

item of size1
2 . The other items of size12 are packed into additional bins. A bin which already contains

(only) an item of size12 can receive additionalN2 items of sizeε, since1
2 + 2−b

Nb
N
2 = 1

b .

The number of items of sizeε which can be packed with the remaining items of size1
2 is at least

(N 3b−2
2−b −N)N

2 ≥ (N 4(b−1)
2−b )N

2 = 2(b−1)N2

2−b . Hence, only at mostN b+2
2−b +1 unpacked small items remain.

New bins are used for the remaining small items. One bin can hold at leastb N
2−bc items, sinceb N

2−bc ·
2−b
Nb ≤ 1

b . The remaining items require at mostd
b+2
2−b

N+1

b N
2−b

c e ≤ d
b+2
2−b

N+1
N

2−b
−1

e = d (b+2)N+2−b
N−2+b e ≤ (b+2)N+2−b

N−2+b +

1 = (b+3)N
N−2+b ≤ 2(b + 3) ≤ 10 additional bins (since1 < b < 2).

We get a ratio of at least
N 2b

2−b
3b−2
2−b

N+10
, which tends to 2b

3b−2 for large enough values ofN .

To prove the upper bound, we use a weight function. In order to define this function, we first define a

threshold rule forWF. Consider a setA, which contains items of a total size1− α (for someα ≥ 0). The

threshold rule forWF is that the largest item inA, has a size of at leastα.

The motivation for this threshold rule is that a bin is opened byWF for an item of sizeα, only if all

previously opened bins have a total packed size larger than1 − α. Note that in the results of [8] forFF, a

threshold rule is used as well, only in the case ofFF, a similar situation implies thatall items will have a

size of at leastα, while for WF this is not necessarily the case.

We will consider a weight function for which the following three properties hold. The first property is

that if the total size of items in a setA is at least1 − α, andA satisfies the threshold rule, that is, the size

of the largest item inA is at leastα, thenw(A) ≥ 1. The second property is that if the total size of items is

only 1− α− β (for someβ > 0), but the threshold rule is satisfied forα (that is, the size of the largest item

in A is at leastα, rather thanα + β), thenw(A) ≥ 1− `β, where

` = sup
0<x≤ 1

b

w(x)/x.

We only consider functionsw where` is finite.

The last property which is required is that for any setB, which contains items of a total size of at most
1
b , it holds thatw(B) ≤ R, whereR is the approximation ratio2b

3b−2 .

Given a weight functionw which satisfies the three properties, we consider only bins of weight strictly

smaller than 1. That is, we remove all bins with weight at least 1 and consider the remaining bins. We define

the coarseness of bini, ci, (see the analysis ofFF in [1]) as the maximum value such that there exists a bin

j < i which has a total size of items of1− ci, that is, the maximum empty space in any preceding bin. We

let c1 = 0. Since all bins we consider have a total weight of items smaller than1, for bin i, the total size of

items is some value1 − αi, where the largest item packed in bini has a size ofαi − βi, for someβi > 0.

We always have(αi − βi) > ci, as otherwiseWF would pack this item in the binj for which the maximum

in the definition ofci is achieved.

We haveci+1 ≥ αi > ci + βi. Let Wi be the total weight of bini, then we haveWi ≥ 1− `βi.

If WF usesn bins, the total weight is
n∑

i=1
Wi ≥ n− `(

n∑
i=1

βi).

We calculate
n∑

i=1
βi.

n∑
i=1

βi ≤ βn +
n−1∑
i=1

(ci+1 − ci) ≤ βn + cn ≤ αn < 1. The total weight of all bins is

10



therefore at leastWF− ` (note that this inequality holds even when we also consider the bins of weight at

least 1, which were removed earlier).

Assume that the third property is satisfied. Each ofOPT’s bins is filled to at most1b . Hence, the total

weight in each ofOPT’s bins is at most 2b
3b−2 , so 2b

3b−2 OPT is an upper bound on the total weight, and

WF− ` ≤ 2b
3b−2 OPT. Thus in order to prove the theorem, it suffices to show a weight functionw for which

the three properties hold, and the value of` is bounded by a fixed constant.

Define the following weight function:

w(x) =





2b
3b−2x , for x ∈ (0, 1

b − 1
2 ]

4b
3b−2x− 2−b

3b−2 , for x ∈ (1
b − 1

2 , 1
2 ]

1 , for x ∈ (1
2 , 1

b ]

For x ≤ 1
2 , w(x) ≥ 2b

3b−2x, since2bx ≥ 2 − b for x ≥ 1
b − 1

2 . The function is continuous and

monotonically non-decreasing. We next show that this functionw satisfies the three required properties.

Lemma 10. LetA be a set of items of total size1− α (α ≥ 0), where the largest item inA, i, has a size of

at leastα. Thenw(A) ≥ 1.

Proof. If si > 1
2 , we are done.

If si ≤ 1
b − 1

2 , then1 − α ≥ 1 − si ≥ 3
2 − 1

b = 3b−2
2b . All items belong to the first case of the weight

function, so we get a total weight of at least2b
3b−2 · 3b−2

2b = 1.

We are left with the case1b − 1
2 < si ≤ 1

2 . In this case, the total weight is at least2b
3b−2(1 − α − si) +

4b
3b−2si − 2−b

3b−2 ≥ 2b
3b−2(1− 2si) + 4b

3b−2si − 2−b
3b−2 = 1.

Lemma 11. LetA be a set of items, of a total size1−α− β (for someβ > 0), which satisfies the threshold

rule for α. Thenw(A) ≥ 1− `β.

Proof. Add a dummy item of sizeβ. The threshold rule forWF is still kept with α, and the new total

size of items is1 − α. Let W denote the total weight of original items, andW ′, the total weight after the

modification. By Lemma 10,W ′ ≥ 1. We haveW = W ′ − w(β). By the definition of̀ , w(β) ≤ `β, and

the claim follows.

Lemma 12. Let B a set of items which can be packed into a bin of size1
b (i.e., s(B) ≤ 1

b ). Thenw(B) ≤
2b

3b−2 .

Proof. If the bin contains an item of sizey > 1
2 , let t ≤ 1

b − y ≤ 1
b − 1

2 = 2−b
2b be the total size of other

items, each of which has weight2b
3b−2 times its size. The total weight is at most1 + ( 2b

3b−2)(2−b
2b ) = 2b

3b−2 .

Otherwise, if the bin contains exactly one item of size1
b − 1

2 < y ≤ 1
2 , then the total weight is at most

4b
3b−2y − 2−b

3b−2 + (1
b − y) 2b

3b−2 ≤ 2b
3b−2 − 2−b

3b−2 + (1
b − 1

2) 2b
3b−2 = 2b

3b−2 , where the inequality holds since the

maximum of the left side is obtained fory = 1
2 .

Finally, if the bin contains at least two items in the interval(1
b − 1

2 , 1
2 ], such that their total size isy, then

the total weight ofB is at most 4b
3b−2 · y − 2 · 2−b

3b−2 + 2b
3b−2 · (1

b − y) = 2b
3b−2y − 4

3b−2 + 2b
3b−2 + 2

3b−2 ≤
2

3b−2 − 4
3b−2 + 2b

3b−2 + 2
3b−2 = 2b

3b−2 .
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The value of̀ is 2, since 2b
3b−2 ≤ 2, 4b

3b−2x− 2−b
3b−2 ≤ 2x for anyx ≤ 1

2 , and clearly1 < 2x for x > 1
2 .
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