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Abstract

We study the following variant of the bin packing problem. We are given a set of items, where each
item has a (non-negative) size and a color. We are also given an integer parameterk, and the goal is to
partition the items into a minimum number of subsets such that for each subsetS in the solution, the
total size of the items inS is at most 1 (as in the classical bin packing problem) and the total number of
colors of the items inS is at mostk (which distinguishes our problem from the classical version). We
follow earlier work on this problem and study the problem in both offline and online scenarios.

1 Introduction

In theCLASS CONSTRAINED BIN PACKING PROBLEM(CCBP), we are given a set of itemsI = {1, 2, . . . , n},
where each item has a size and a color associated with it. The size of itemi is denoted bysi, and we assume
thatsi ∈ [0, 1]. The color of itemi is denoted byci (so if i andj have the same color thenci = cj). The set
of items of one color is also called acolor class. We assume that each color has a positive integer associated
with it, that is, ci ∈ N. We are also given a (non-negative) integer parameterk. A feasible solution is
a partition ofI into subsetsS1, . . . , Sm such that for eachi = 1, 2, . . . , m, the following two conditions
hold:

∑
j∈Si

sj ≤ 1 andSi has items from at mostk color classes (i.e.,| ⋃
j∈Si

{cj}| ≤ k). The goal of

CCBP is to find a feasible solution that minimizes the number of subsets in the partition. We denote byq

the total number of color classes in the instance. Note that ifq = n, the resulting problem is equivalent to
the bin packing problem with cardinality constraints [9, 10, 1, 2, 8, 5, 6]. If all items are of at mostk color
classes, i.e.,q ≤ k, we get the classical bin packing problem [3]. We refer the reader to the previous work
on CCBP [14, 16, 19] for details on the applications of this packing problem in Video on Demand, storage
management and other fields.

For an algorithmA, we denote its cost on an inputX byA(X), and ifX is clear from the context, we
simply useA. An optimal offline algorithm (that in the case of comparison to online algorithms, knows
the complete sequence of items) is denoted byOPT. For minimization problems, the (asymptotic) approx-
imation ratio (competitive ratio for online algorithms) of an algorithmA is the infimumR ≥ 1 such that
for any inputX, A(X) ≤ R · OPT(X) + c holds, wherec is a constant independent of the input. An
(asymptotic) polynomial time approximation scheme is a family of approximation algorithms such that for
everyε > 0 the family contains a polynomial time algorithm with an (asymptotic) approximation ratio of
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1 + ε. We abbreviatepolynomial time approximation schemeby PTAS andasymptotic polynomial time
approximation schemeby APTAS, which is also called an asymptotic PTAS. A fully polynomial time ap-
proximation scheme (FPTAS) is a PTAS whose time complexity is polynomial not only in the number of
itemsn but also in1

ε . Similarly, an AFPTAS is an APTAS whose time complexity is polynomial not only in
the number of itemsn but also in1

ε . An algorithm which has an approximation ratio of at mostR is called an
R-approximation, or anR-approximate solution. For online algorithms, such an algorithm (of competitive
ratio at mostR) is calledR-competitive.

In this paper, we consider both the offline version ofCCBP and its online version. It is known that the
classical bin packing problem admits an APTAS [4] and an AFPTAS [7]. Furthermore, bin packing with
cardinality constraints, admits an APTAS [2] and an AFPTAS [6]. A natural question is whetherCCBP,
which is a generalization of both these problems, admits an APTAS (and possibly an AFPTAS as well). The
problem is clearly NP-hard by the hardness of classical bin packing. Moreover, Shachnai and Tamir showed
that already the problem with identical sized items is NP-hard in the strong sense [14, 15]. In [14], they
designed an algorithm which uses the smallest possible number of bins, but allows to use slightly larger bins
of size1+ε. Such an algorithm is called a dual PTAS. The time complexity of this dual PTAS is polynomial
in n for constant values ofq. Xavier and Miyazawa [19] designed an APTAS for constant values ofq. This
raises the question of whether seeingq as a parameter rather than as a constant changes the complexity of
the problem. We answer this question affirmatively and show that this more general case does not admit an
APTAS for any value ofk. We close the offline problem by designing an AFPTAS for the case of constant
q; due to our hardness result, there is no APTAS for the case of arbitrary values ofq (unless P=NP), and
hence our scheme is best possible.

In Section 2, we consider this special case of the offline problem, whereq is a constant, and present
our AFPTAS for it, improving upon the APTAS (for this special case) of Xavier and Miyazawa [19]. To
do so, we present a different way to handle the small items. Whereas the scheme of [19] tries all possible
packing of the large items, and for each of them solves a linear program for the packing of the small items,
we construct one linear program that considers both large and small items. We use methods that are similar
to the ones recently developed in [6], that were used to develop an AFPTAS for bin packing with cardinality
constraints.

In Section 3 we show our hardness result on the approximability ofCCBP for every constant value ofk,
namely, that the asymptotic approximation ratio of any algorithm forCCBP is at least1 + 1

10k for any value
of k (if q is seen as a parameter of the problem).

Regarding the online version of the problem, previous studies [16, 19] analyze two variants of theFIRST

FIT (FF) heuristic. The first one is simply calledFF. Whenever a new item arrives,FF tries to pack it in an
existing bin (if it fits both with respect to the number of colors in the bin and its size), and if this is indeed
possible, it packs the item in the first such bin. The second variant is calledCOLOR SETS FIRST FIT(CSFF).
In this variant, color classes are partitioned online into sets ofk colors (where the firstk colors that ever
appear are the first color set, the nextk colors that ever appear are the second color set, and so forth), and
each such color set has its own dedicated bins. When a new item arrives we applyFF, considering only the
bins of the color set that contains the color of the new item. Another natural algorithm is calledCOLOR SETS

NEXT FIT (CSNF). This algorithm partitions the input into color sets exactly asCSFF, but each color set is
packed usingNEXT FIT rather than first fit, that is, each color set uses a single active bin, and whenever a
new item cannot be packed there, the bin is closed and a new active bin is opened.

The online version of the problem was first studied in [16], where the case of identical sized items was
considered. They showed that the competitive ratio of bothCSFF andFF is at most 2. A matching lower
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bound for some cases was presented. Note that the value of the lower bound fork = 2 is 3
2 . Since items

have identical sizes, the casek = 1 can be solved trivially by aNEXT FIT (NF) approach on each color. In
Sections 4.1 and 4.2 we show that the competitive ratio of bothFF and CSFF for k = 2 is exactly 2, for
identical items. We further show that it is strictly above 2, namely, at least9

4 , for items of arbitrary sizes.
We present a lower bound of approximately 1.5652 on the competitive ratio of any online algorithm for
k = 2 (acting on items of arbitrary size) in Section 4.3. Note that the lower bound of van Vliet [18] on the
competitive ratio of any algorithm for classical bin packing is 1.5401.

The online problem was studied further in [19] where algorithms for arbitrary sizes of items were stud-
ied. It was shown that the competitive ratio ofCSFF it at most 3. Xavier and Miyazawa [19] designed a
different algorithm that is based on a partition into three classes according to size, and showed that its com-
petitive ratio is at most2.75. It was shown that the competitive ratios of these two algorithms cannot be
below2.7 and 8

3 , respectively, for large enough values ofk.
In Section 5.1 we analyzeCSFF further and show that its competitive ratio is at most3 − 1

k . Thus, we
conclude that the competitive ratio ofCSFFfor k = 2 lies in the interval[94 , 5

2 ]. In Section 5.2, we design an
improved online algorithm fork = 3 (of competitive ratio107

42 ≈ 2.547619), that is based on a partition of
items into three sets as in [19], but allows combining items of different sets. Moreover, our algorithm uses
an unusual rule, where tiny items are sometimes combined with a very large item in a bin.

In Section 5.3 we show a general reduction to online (classical) bin packing algorithms under some
conditions on these algorithms, that allows to convert such an algorithm into an algorithm forCCBP, with a
loss of at most 1 in the asymptotic competitive ratio. This, together with the algorithm in Section 5.2 (that
can be applied to any value ofk) allows us to find improved algorithms for all values ofk, giving an overall
upper bound of 2.63492.

The next table summarizes our results.

Upper bound Lower bound

Offline algorithms, constantq AFPTAS Strongly NP-hard
(generalizes bin packing)

Offline algorithms, arbitraryq 2.6349 1 + 1
10k (unless P=NP)

Online algorithms,k = 2 2.5 1.5652
Online algorithms, arbitraryk 2.6349 (2.54762 for k = 3) 2 [16]

CSFF, k = 2 2.5 2.25
CSFF, FF k = 2, equal sized items 2 [16] 2

CSFF, arbitraryk 3− 1
k 2 [16]

2 An AFPTAS for the offline problem with constant q

In this section we improve the APTAS of Xavier and Miyazawa [19] for constant values ofq, by incorpo-
rating the column-generation technique of Karmarkar and Karp [7] into the scheme of [19], together with
simplified version of the methods of [6] for dealing with small items. Note that the assumption of a constant
q also means thatk is a constant, since we may assumek ≤ q (otherwise, the problem reduces to classical
bin packing). Letε > 0 be such that1ε is an integer andε ≤ 1/3. Our scheme is valid for anyk ≥ 1.
A scheme fork = 1 can be constructed also from applying the scheme of [7] for every color class sepa-
rately. Since any solution must pack every color class independently, and there is a constant number of color
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classes, this immediately results in an AFPTAS.

Scheme overview.The general structure of the AFPTAS is as follows. We separate the items into large
and small ones, and use linear grouping ([4]) on each color class separately. After the grouping, there is a
constant number of rounded sizes of items of each color. The pair consisting of the rounded size of the item
and its color, is called the type of the item. We define packing patterns on the types of items, taking into
account the properties that a bin may contain items of at mostk different colors, and that the total rounded
size of packed items of a bin is at most1. If the items of the pattern have less thank colors, still the pattern
would have exactlyk colors associated with it. We define a packing of the large rounded items, where the
small items are seen as fractional items, that is, we only keep track of the total size of the small items of
each color. However, the linear program has a variable for every pair of a colorp and a subsetT of k colors,
which corresponds to the total size of small items of colorp which are to be packed into bins with patterns
whose colors areT . The packing is defined via a linear program which determines the number of copies
of each pattern. The linear program is solved approximately using the column generation technique of [7].
For that, we apply an FPTAS for the knapsack problem, which tests the approximate feasibility of a dual
solution. Given a solution to the primal linear program, we transform it into a basic solution which costs
no more than the given solution, and then in order to give an output solution, we round up all fractional
components, and pack small items greedily, while the small remaining items are packed into dedicated bins.
We next describe the details of our scheme and its analysis.

Linear Grouping. We say that an item islarge if its size is at leastε and otherwise it issmall. We assume
that the set of colors in the instance is denoted byQ = {1, 2, . . . , q}. We denote byLp the set of large items
of color p, and byS the set of small items. We first apply linear grouping (originally introduced in [4]) on
the large items of each color class separately. That is, for everyp = 1, 2, . . . , q we partitionLp into 1

ε2 parts
Lp

1, . . . , L
p
1/ε2 such that the following two conditions hold:d|Lp|ε2e = |Lp

1| ≥ |Lp
2| ≥ · · · ≥ |Lp

1/ε2 | =
b|Lp|ε2c, and moreoverLp

1 contains the|Lp
1| largest items ofLp, and for everyt = 2, 3, . . . , 1/ε2, Lp

t

contains the|Lp
t | largest items ofLp \ (

t−1⋃
j=1

Lp
j ). Note that these two conditions uniquely define the partition

of the large items up to the allocation of equal sized items of a common color. In the case|Lp| < 1/ε2, we
modify the partition so that eachLp

j has up to one item, andLp
1 is empty.

Lemma 1 For everyp = 1, 2, . . . , q, |Lp
1| ≤ 3ε2|Lp \ Lp

1| holds.

Proof If Lp
1 is empty, it is clearly true. Otherwise,|Lp

1| = d|Lp|ε2e ≤ |Lp|ε2 + 1, and |Lp \ Lp
1| ≥

|Lp| − |Lp|ε2 − 1. It is enough to prove that for a valueX ≥ 1
ε2 , we haveXε2 + 1 ≤ 3ε2(X(1− ε2)− 1).

This is equivalent toX ≥ 1+3ε2

2ε2−3ε4 (since2ε2 > 3ε4 for anyε ≤ 1
3 ) and holds since1

ε2 ≥ 1+3ε2

2ε2−3ε4 for any
ε ≤ 1

3 . ¤
Next we round the size of the large items. For everyp = 1, 2, . . . , q and everyj ≥ 2 we let therounded

up sizeof the items ofLp
j to bemaxi∈Lp

j
si, and we lets′i denote the rounded up size of itemi (where for

an itemi such thati /∈
q⋃

p=1

1/ε2⋃
j=2

Lp
j we lets′i = si). Note that if|Lp| < 1

ε2 , then we haves′i = si for every

i ∈ Lp. We letL′ =
q⋃

p=1

1/ε2⋃
j=2

Lp
j andI ′ = L′ ∪ S, where the size of itemi ∈ I ′ is the rounded up sizes′i.

The setL′ can be seen as a multi-set of items, where all items ofL′ are of at mostq( 1
ε2 − 1) distinct types,
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where atypeis specified by a pair of a size and a color,(v, p). LetH denote the set of distinct types of items
in L′. We enumerateH by {ψ1, ψ2, . . .}. It is not difficult to see thatOPT(I ′) ≤ OPT(I), since for any item
in a setLp

j for which rounding was applied (forj ≥ 2), its rounded up size is no larger than the original size
of any item inLp

j−1, andI ′ does not contain the setsLp
1. LetΓ denote the set of all subset ofk colors, that is

Γ = {Q′ ⊆ Q : |Q′| = k}. We enumerateΓ by {κ1, κ2, . . .}, and note that|Γ| = O(qk), that is a constant.

Bin configuration. A configuration of a bin represents a possible packing of a subset of items ofL′ into a
bin. It is a |H| + 1-tuple, where thei-th component, for1 ≤ i ≤ |H| states the number of items of type
ψi which are packed into this bin, and the|H| + 1-th component is a member ofΓ, κj . Every positive
componenti must satisfy that the color ofψi is in κj . A configurationC is therefore a subset of items of
L′ of at mostk colors, whose total size is at most1. The set of colorsκj , whichC has associated with it,
is denoted byCol(C) and according to the above definition, the colors of the large items ofC belong to
Col(C) (butCol(C) may possibly contain additional colors). These are thek allowed colors for a bin with
configurationC. We denote the set of all configurations byC. Note that two configurationsC1 andC2, that
have the same configuration of large items, butCol(C1) 6= Col(C2), are seen as two distinct configurations.

We note that|C| = O(|H||H| · |Γ|) = O(( q
ε
2)(

q
ε
2) · qk), that is an exponential function of1ε , and therefore

we cannot enumerateC in polynomial time.

Constructing the linear program. For eachh = (v, p) ∈ H and a configurationC, we denote byn(h, C)
the number of items with typeh in C, and we denote byn(h) the number of items of typeh in L′. We
(approximately) solve the following linear program where for each configurationC, we have a variable
xC indicating the number of bins that we pack using configurationC. Moreover, for any subsetT ⊆
{1, 2, . . . , q} of exactlyk colors, and a colorp ∈ T , we have a variableYp,T indicating the total size of
the small items of colorp that we pack into bins with some configurationC such thatCol(C) = T . We
implicitly setYp,T = 0 if p /∈ T . We denote the set of small items of colorp by Sp.

min
∑

C∈C
xC

s.t.
∑

C∈C
n(h,C)xC ≥ n(h) ∀h ∈ H

∑
C:Col(C)=T

(
1− ∑

h=(v,p)∈H

n(h,C) · v
)

xC ≥
∑
p∈T

Yp,T ∀T ⊆ Q : |T | = k

∑
T⊆Q:|T |=k

Yp,T ≥
∑

i∈Sp

s′i ∀p ∈ Q

xC ≥ 0 ∀C ∈ C
Yp,T ≥ 0 ∀p ∈ Q, ∀T ⊆ Q : |T | = k.

Note that this linear program has an exponential number of variables (exponential as a function of1
ε ), and

hence we will not write it down explicitly, however we will be able to solve it approximately within a factor
of 1 + ε. Denote by(x∗, y∗) an approximate (within a factor of1 + ε) basic solution to this linear program,
and letx̃C = dx∗Ce for all C. Our scheme returns a solution that packsx̃C bins with configurationC. Each
item of the rounded up instance is later replaced by the corresponding item ofI. We can clearly pack the

items of
q⋃

p=1

1/ε2⋃
j=2

Lp
j in these bins (some slots reserved to such items may remain empty). Note that for every

p, the total size assigned to small items of colorp is at least the total size of these small items.
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The column generation technique.To solve the above linear program approximately we invoke the column
generation technique of Karmarkar and Karp [7]. We next elaborate on this technique. The linear program
may have an exponential number of variables but it has a polynomial number of constraints (neglecting
the non-negativity constraints). Instead of solving the linear program we solve its dual program (that has
a polynomial number of variables but possibly an exponential number of constraints). The variablesαh

correspond to the item types inH, their intuitive meaning can be seen as weights of these items. The
variablesβT correspond to subsets ofk colors that are packed in a common bin, i.e., subsets that can act as
a setCol(C) of some configurationC. The variablesγp correspond to colors, and their intuitive meaning
can be seen as weights per unit of size of the small items of this color.

max
∑

h∈H

n(h)αh +
q∑

p=1
(

∑
i∈Sp

s′i)γp

s.t.
∑

h∈H

n(h,C)αh +

(
1− ∑

h=(v,p)∈H

n(h,C)v

)
βCol(C) ≤ 1 ∀C ∈ C

−βT + γp ≤ 0 ∀p ∈ Q, ∀T ⊆ Q : |T | = k, p ∈ T

αh ≥ 0 ∀h ∈ H

βT ≥ 0 ∀T ⊆ Q : |T | = k

γp ≥ 0 ∀p ∈ Q.

To be able to apply the ellipsoid algorithm, in order to solve the above dual problem within a factor of
1 + ε, it suffices to show that there exists a polynomial time algorithm (polynomial inn and 1

ε ) such
that for a given solutiona∗ = (α∗, β∗, γ∗), which is a vector of length at mostq

ε2 + qk + q (since there
are |H| = q

ε2 variables of typeαh, less thanqk variables of typeβT and |Q| = q variables of type
γp), decides whethera∗ is close enough to a feasible dual solution. More precisely, it should either pro-

vides a configurationC ∈ C such that
∑

h∈H

n(h,C)α∗h +

(
1− ∑

h=(v,p)∈H

n(h,C)v

)
β∗Col(C) > 1 or out-

puts that such an approximate infeasibility evidence does not exist, that is, for all configurationsC ∈ C,
∑

h∈H

n(h,C)α∗h +

(
1− ∑

h=(v,p)∈H

n(h,C)v

)
β∗Col(C) ≤ 1 + ε holds. In such a case,a

∗
1+ε satisfies all the

constraints of the first family in the dual program, and there is a polynomial number of other constraints that
can be checked efficiently.

Approximated separation oracle for the dual linear program. Such a configurationC can be found
using an FPTAS for theKNAPSACK problem. This is so because for eachT ⊆ Q such that|T | = k, we
need to solve the following problem: given itemsH where for eachh = (v, p) ∈ H there is a volume
α∗h − vβ∗T and a sizev, the goal is to pack a multiset of the items of the types ofH (where an item can
appear multiple times but at most a given number of times) whose total size is at most 1, so that the total
volume is maximized. If our FPTAS to theKNAPSACK problem finds a solution with total volume greater
than1− β∗T then this solution is a configuration whose constraint in the dual linear program is not satisfied,
and we can continue with the application of the ellipsoid algorithm. Otherwise, since the FPTAS is an
approximation within a factor of1 + ε, we get that the maximum volume is at most(1 + ε)(1 − β∗T ).
We show that in this case, all the constraints of the dual linear program are satisfied by the solutiona∗

1+ε .
This clearly holds for the second type of constraints. To show this for the first type of constraints, consider
a configurationC ∈ C. We have

∑
h=(v,p)∈H

(α∗h − vβ∗Col(C))n(h,C) ≤ (1 + ε)(1 − β∗Col(C)), therefore
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∑
h∈H

n(h,C) α∗h
1+ε +

(
1− ∑

h=(v,p)∈H

n(h,C)v

)
β∗

Col(C)

1+ε ≤ 1− β∗Col(C) +
β∗

Col(C)

1+ε < 1.

Bounding the cost of(x∗, y∗). We note thatOPT(I ′) induces a feasible solution to the primal linear program
(xC is the number of bins with configurationC in OPT(I ′), andYp,T is the total size of the items inSp such
thatOPT(I ′) packs in bins with color setT ). Therefore, since(x∗, y∗) is an(1 + ε)-approximated solution
to the primal linear program, we conclude that

∑
C∈C

x∗C ≤ (1 + ε)OPT(I ′).

Rounding the primal solution. Given the(1 + ε)-approximated solution to the primal linear program,
we find a basic feasible solution to this linear program, which is not worse than the approximated solution
we obtained (in terms of their objective function values). Hence, without loss of generality we assume
that (x∗, y∗) is a basic feasible solution which is an(1 + ε)-approximated solution. We note that in the
primal linear program there are at most|H|+ q + qk inequality constraints (in addition to the non-negativity
constraints), and therefore in a basic solution such as(x∗, y∗), there are at most|H|+q+qk basic variables.
Since all non-basic variables are set to zero, we conclude that the number of fractional components in
(x∗, y∗) is at most|H|+q+qk. Therefore,

∑
C∈C

x̃C ≤
∑

C∈C
x∗C +|H|+q+qk ≤ (1+ε)OPT(I ′)+|H|+q+qk.

Packing L1 =
q⋃

p=1
Lp

1. We next bound the increase of the cost caused by the largest items in each color

class in dedicated bins. Recall thatL′ = L \ L1. Then, the solution defined bỹx packs the items ofL′.
We pack each item ofL1 in a separate (dedicated) bin. We note thatOPT(I ′) ≥ ∑

i∈L′
s′i, since the size of

a large item is at leastε, using Lemma 1, we get that for everyp, |Lp
1| ≤ 3ε2|Lp \ Lp

1| ≤ 3ε · ∑
i∈Lp\Lp

1

s′i.

Summing the last inequality for allp we get that|L1| ≤ 3ε · ∑
i∈L′

s′i ≤ 3εOPT(I ′). Therefore, packing the

items inL1 in separate bins adds at most3εOPT(I ′) to the cost of̃x. So the resulting solution costs at most
(1 + 4ε)OPT(I ′) + |H|+ q + qk.

Packing the small items.Consider a color setT (T ⊆ Q and|T | = k). Then the solution(x̃, Y ∗) allocates
space for small items. More precisely, for a bin that is packed according to configurationC, whose color

set isT and its available space isσ(C) =

(
1− ∑

h=(v,p)∈H

n(h, C)v

)
(after packing all the large items), we

define a space for small items of colorp to bezp(C) = σ(C) · Yp,TP
p′∈T

Yp′,T
. Note that forp /∈ T this implies

zp(C) = 0. By the second constraint of the primal linear program, the sum of valuesσ(C) over all bins of
the solution that are according to a configuration whose set of colors isT , is at least

∑
p′∈T

Yp′,T . Thus the

total size allocated in such bins for small items of colorp is at leastYp,T .
We pack the items ofSp into the available spaces allocated for them using Next-Fit. Specifically, for

every bin packed by some configurationC, we place items fromSp until we exceed a total ofzp(C). This
packing is possibly invalid, and at most one item ofSp needs to be removed from the bin. We apply this
to all colors inT and all bins (with color setT ). The process is stopped if no items or no spaces are left.
Recall that(x∗, y∗) is a feasible solution to the primal linear program, and all allocated spaces for colorp

are filled completely, unless all items are assigned. Thus, at the end of this procedure, we are left with no
small items that needs to be packed. This means that for every bin, and each color that is allocated space

7



in this bin, there is at most one item that needs to be removed from the bin to allow the packing to become
valid. Therefore, since the size of each small item is at mostε, the total size of the removed small items is
at mostkε ·∑C∈C x∗C ≤ kε(1 + ε)OPT(I ′) ≤ 2kεOPT(I ′), where the last inequality holds becauseε ≤ 1.

For everyp = 1, 2, . . . , q, we pack the remaining small items of colorp in dedicated bins (dedicated
only to this color), using Next-Fit. We note that the number of bins that are not full up to a level of1 − ε

is at mostq (by the area guarantee of the Next-Fit algorithm when applied to items with sizes less than
ε). Therefore, the number of additional dedicated bins is at most2kεOPT(I′)

1−ε + q ≤ 3kεOPT(I ′) + q. This
concludes the presentation of the AFPTAS for fixed values ofq.

Theorem 1 If the number of colors in the instance is a fixed constant, the above scheme is an AFPTAS for
CCBP.

Proof The number of bins used by our solution is at most(1+4ε)OPT(I ′)+|H|+q+qk+3kεOPT(I ′)+q ≤
(1+(3k+4)ε)OPT(I ′)+ |H|+2q+qk. Since|H| ≤ q

ε2 andk, q are constant, we conclude that the additive
error term|H|+ 2q + qk is a constant, and hence by scalingε by a factor of3k + 4 we obtain an AFPTAS
as required.

The time complexity of our scheme is dominated by the linear grouping and rounding of the sizes of
large items, which can be done inO( n

ε2 ). This is because the application of the ellipsoid algorithm on the
dual problem takes a polynomial number of iterations in the number of variables of the dual linear program,
and the encoding of the coefficients (that is, a polynomial function ofq

ε2 + q + qk, log n andmax
si>0

log 1
si

),

which is a polylogarithmic number of iterations. Each iteration consists of at mostqk applications of the
FPTAS for the knapsack problem where the number of items is|H| = q

ε2 which is a constant. Hence, it takes
a constant time for each iteration of the ellipsoid algorithm, and the resulting primal solution is obtained in
polylogarithmic time. ¤

In the next section we show that our result is best possible in the sense that without the assumption of a
fixed constant number of colors in the instance,CCBPdoes not have an asymptotic approximation scheme,
that is, an AFPTAS or even an APTAS (already for fixed values ofk).

3 Hardness of approximation whenq is not fixed

In this section we show that for each constant value ofk, it is NP-hard to approximateCCBP with an
asymptotic approximation ratio strictly smaller than1 + 1

10k , and therefore without the assumption thatq is
a constant,CCBPdoes not have an APTAS (or AFPTAS).

Theorem 2 Fix a value ofk. If k ≥ 2, then the offlineCCBP problem does not have an approximation
algorithm with an asymptotic approximation ratio strictly smaller than1 + 1

10k unlessP = NP . If k = 1,
then the offlineCCBPproblem does not have an approximation algorithm with an asymptotic approximation
ratio strictly smaller than3

2 unlessP = NP .

Proof We will show this claim via a reduction from thePARTITION problem defined as follows. We are

given n non-negative rational numbersa1, a2 . . . , an such that
n∑

i=1
ai = 1. The goal is to check whether

there is a subsetS ⊆ {1, 2, . . . , n} such that
∑
i∈S

ai = 1
2 . We construct the following instance ofCCBP. The

bin size is scaled to bek− 1
2 . Sizes of items are defined according to this bin size. There are2n(k− 1) + n
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color classes denoted byA1, . . . , A2n(k−1), B1, . . . , Bn. For everyi = 1, 2, . . . , 2n(k − 1), the color class
Ai consists of a single item of size 1. For everyi = 1, 2, . . . , n, the color classBi hasn items, where the
r-th item of this color class denoted bybr

i has sizear. To prove the claim it suffices to show that if the
PARTITION instance is feasible, then the optimal solution to the instance ofCCBPcosts at most2n, whereas
if the PARTITION instance is infeasible, then the cost of the optimal solution toCCBP is at least2n+ n

5k . For
k = 1, a stronger result can be proved, namely, the cost of the optimal solution toCCBP is at least3n.

We first prove the claim fork = 1. In this case, only the setsBi exist. If thePARTITION instance is
feasible, then each color class requires two bins. However, if the instance is infeasible, since each bin can
contain items of a single color, at least three bins are necessary for each color. Therefore, at least3n bins
are used.

Next, we prove the claim fork ≥ 2. First, assume that thePARTITION instance is feasible. That is,
we assume that there is a subsetS ⊆ {1, 2, . . . , n} such that

∑
i∈S

ai = 1
2 . We construct a solution to the

CCBP instance as follows. For everyp = 1, 2, . . . , n we pack in bin2p − 1 the items of color classes
A(2p−2)(k−1)+1, A(2p−2)(k−1)+2, . . . , A(2p−1)(k−1) (altogether these are items ofk − 1 color classes, with a
total size ofk − 1), and in addition, the set{br

p : r ∈ S} of items of one color class (with total size12 ) is
packed into the same bin, which gives a total ofk color classes. Forp = 1, 2, . . . , n, we pack in bin2p the
items of color classesA(2p−1)(k−1)+1, A(2p−1)(k−1)+2, . . . , A2p(k−1) and also the items{br

p : r /∈ S}. We
conclude that all items can be packed in2n bins. Informally, in this case every bin receivesk− 1 of the unit
sized items, and every setBi is partitioned into two parts of equal size, to be split into two bins.

We next assume that thePARTITION instance is infeasible. We fix an optimal solutionOPT to CCBP.
If the color classBi is partitioned into at least two bins, then we call itpartial color class, and all other
color classes (including theAi classes) are calledfull color classes. Note that each bin inOPT has at most
k − 1 full color classes, since the total size of items of each full class is1, and the bin size isk − 1

2 . The
remainder of the proof is based on the property that since thePARTITION instance is infeasible, a color class
Bi cannot be split into two bins, where each bin contains, in addition to the items ofBi, exactlyk − 1 full
color classes. So one of the following three options must occur, where each one of the options leads to an
increased number of bins compared to the case where thePARTITION instance is feasible. The first option
is that many such sets are full, leading to a large number of bins with a total size of items of onlyk − 1,
rather thank − 1

2 . The second option is that many such setsBi are split into two parts of different size. We
show later that this leads to partially occupied bins as well. The third option is that many setsBi are spread
over at least three bins. In this last case, since the number of colors in a bin is limited tok, a large number
of color classes with multiple parts would result in a large number of bins. We next split the set of possible
solutions into these three options, we consider each option, and prove the claim that each option leads to a
large number of packed bins.

First, assume that there are at leastn
5 full color classes amongB1, . . . , Bn. Then, there are at least

2n(k − 1) + n
5 full color classes in total (asAi is always a full color class), and thereforeOPT uses at least

2n(k−1)+n
5

k−1 = 2n+ n
5(k−1) ≥ 2n+ n

5k bins. Therefore, in the remainder of the proof we can assume without
loss of generality that the number of full color classes amongB1, . . . , Bn is at mostn5 .

We next note that if there exists a partial color classBi such that the elements ofBi are packed in exactly
two bins ofOPT, and each of these two bins hask− 1 full color classes (in addition to the items ofBi), then
thePARTITION instance is feasible, since the space left for items ofBi in each one of the two bins is exactly
1
2 . Therefore, if we have a partial color classBi, then its elements are packed in at least three bins or at least
one of the bins (that contains at least one element ofBi) contains at mostk − 2 full color classes.
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We next consider the case where there are at least2n
5 partial color classes such that each of these classes

is partitioned into at least three bins ofOPT (recall that we assume that there are at mostn
5 full color

classes amongB1, . . . , Bn and therefore there are at least4n
5 partial colors). We let apart be a maximal

subset of a color class that is packed byOPT into a common bin. Then, the number of parts is at least
2n(k − 1) + n

5 + 22n
5 + 32n

5 = 2nk + n
5 . Since each bin inOPT has at mostk parts, we conclude that

the number of bins is at least2n + n
5k . Therefore, in the remainder of the proof we can assume that there

are at most2n
5 partial color classes such that each of them is partitioned into at least three bins inOPT.

By our assumptions we conclude that there are at least2n
5 color classes amongB1, B2, . . . , Bn that OPT

packs each of them into exactly two bins. Without loss of generality, assume thatOPT packs each one of
the color classesB1, B2 . . . , B2n/5 into exactly two bins. We define themain binof a color classBi for
i ∈ {1, . . . , 2n

5 } as a bin that contains a total size more than1
2 of the items of this color class. Such a bin

must exist since the items ofBi are partitioned into exactly two bins, and cannot be shared equally due to
the infeasibility of thePARTITION instance. The subset of items of a colorBi which are packed in the main
bin of this color class are called themain partof this color class.

For thei-th bin packed byOPT, let ti denote the number of color classes for which their main part is

packed into this bin. We have
OPT∑
i=1

ti ≥ 2n
5 .

If a bin hast main parts of partial colors, then in the caset ≥ 2 it has at mostk − t full colors, since
it cannot have items of more thank color classes. Ift = 1, it can have at mostk − 2 full colors, due
to space constraints. In both cases, the number of full colors is at mostk − 1 − t

2 . If t = 0, then the
number of full colors is again at mostk − 1 = k − 1 − t

2 . The number of full colors is at least2n(k − 1),

so we have2n(k − 1) ≤
OPT∑
i=1

(
k − 1− ti

2

)
= OPT(k − 1) − n

5 . Rearranging the last inequality gives

OPT≥ 2n + n
5(k−1) ≥ 2n + n

5k . ¤

4 Lower bounds for online algorithms andk = 2

In this section we provide lower bounds on the performance guarantees of specific algorithms as well as a
lower bound on the performance of any online algorithm. We focus on the casek = 2.

4.1 Lower bound of 2 on the competitive ratio ofFF when applied to equal size items

We note that Shachnai and Tamir [16] proved a lower bound of3
2 on the competitive ratio of any online

algorithm for the case of equal size items andk = 2. Their upper bound of 2 for the competitive ratio ofFF

applies for all values ofk (for equal sized items). We show in what follows that their upper bound is tight
already for the casek = 2.

Theorem 3 The competitive ratio ofFF for the casek = 2 and equal sized items is exactly 2.

Proof The upper bound follows from [16], and we next prove the lower bound. LetN be a large integer.
The (common) size of the items isε = 1

32N .
In the instance there are2N color classes. Forn = 1, 2, . . . , N , the total size of the elements of color

classXn is 1
2 + 2nε, and the total size of elements of color classYn is 1

2 − 2(n − 1)ε. The items arrive
according to the following order. First the items ofX1 ∪ Y1, then the items ofX2 ∪ Y2 and so on. The order
of the items satisfies also the following condition. For everyn, the last pair of items ofXn ∪ Yn has one
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item from each of these two color classes. This order of the items ensures that for each value ofn, the items
of Xn ∪ Yn will be packed in exactly two bins (that will not be used by other items). Therefore,FF uses two
bins for every value ofn, and in total, a set of2N bins.

An optimal solution packs the items ofXn ∪ Yn+1 in a bin (forn = 1, 2, . . . , N − 1), since the total
size of these items, for the relevant values ofn, is exactly one. One other bin is used for the items ofY1, and
one additional bin for the items ofXN . Therefore, the total cost of the optimal solution isN + 1. Hence,
the competitive ratio ofFF for the case ofk = 2 and equal sized items is at least2N

N+1 , and this lower bound
approaches 2 asN tends to infinity. ¤

Remark 1 The same construction of lower bound of 2 holds also forCSFF(for the case ofk = 2 and equal
sized items).

Remark 2 Similar constructions give a lower bound of 2 forFF and CSFF for every fixed value ofk ≥ 2
and equal sized items.

4.2 Lower bound of9/4 on the competitive ratio of CSFF for the casek = 2

In this section we show that application of the same algorithm on non-identical sized items increases the
competitive ratio strictly above 2. We show that the lower bound of 2 shown in the previous section on the
competitive ratio ofCSFFwhenk = 2 can be increased above 2, if items are not necessarily all of the same
size.

Theorem 4 The competitive ratio ofCSFFwhen applied toCCBPwith k = 2 is at least94 .

Proof Let N be a large even integer. Letε = 1
22N+3 . The instance is defined as follows. The firstN

items are of different colors and each of them has sizeε. TheseN items are denoted byA1, . . . , AN . The
colors of these items are never used again. Forn = 1, 2, . . . , N (starting withn = 1) the next items are as
follows: there are items of sizeε from two color classesBn andCn such that the total size of the items in
Bn is 1

2 − (2n + 1)ε and the items of colorCn have total size(2n+1 + 1)ε. Then, there are the following
additional items: itemXn of size 1

2 + 2nε and of colorBn, itemYn of size 1
2 + 2nε and of colorCn, and

itemZn of size 1
2 − 2n−1ε and colorCn. This completes the subsequence corresponding to the value ofn.

All items for a given value ofn are given consecutively, and after thatn is increased by 1. The process is
repeated untiln = N + 1 and stops after the items defined forn = N .

CSFFusesN
2 bins to pack the itemsA1, A2, . . . , AN . Afterwards, for each value ofn, the color classes

Bn andCn form a color set, andCSFFuses four bins to pack the items of such a color set. Therefore, the
total cost ofCSFFis 9N

2 .
To prove the claim it suffices to show a feasible solution which uses2N +4 bins. This is done as follows.

For each value ofn = 1, 2, . . . , N we pack the color classBn together with the itemAn using one bin. This
is a feasible packing because the total size of the items of colorBn is exactly1

2 − (2n + 1)ε + 1
2 + 2nε =

1 − ε and therefore the total size of the items that we pack into this bin is exactly 1. For each value of
n = 1, 2, . . . , N − 4 we pack in one bin the items of colorCn with sizeε together withYn (which is of
colorCn as well) and itemZn+4 (that has a different color, so in total there are items of exactly two colors
in the bin). This bin is feasible with respect to total size, since the total size of the items in this bin is exactly
(2n+1 + 1)ε + 1

2 + 2nε + 1
2 − 2(n+4)−1ε < 1. We pack itemsZ1, Z2, Z3, Z4 in four dedicated bins, and we

pack the remaining items of color classesCN , CN−1, CN−2, CN−3 (the small items and theYi items) using
four additional bins (one bin for each such color class, that would contain one larger item and all smaller
items of the same color), clearly these bins are feasible, and the claim follows. ¤
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4.3 Lower bound against any online algorithm for the case ofk = 2

For arbitrary item sizes andk = 2 there are two previously known lower bounds. The first one follows from
classical bin packing. SinceCCBP is its generalization, the lower bound for the former problem holds also
for CCBP. This gives a lower bound of1.54014 due to van Vliet [18]. The other lower bound is of3

2 because
CCBPwith arbitrary sizes generalizes the problem with identical sizes, and therefore the lower bound of [16]
holds also for this problem. We next show how to combine the methods of the two lower bounds to obtain
an improved result forCCBPwith arbitrary sized items andk = 2.

Theorem 5 Any online algorithm forCCBPwith k = 2 has a competitive ratio of at least 1.5652.

Proof Letε > 0 be a small enough number (ε ≤ 1
1000 is sufficiently small), and letN be a large integer. The

sequence consists of at most four steps (sub-sequences), where a set of items is introduced at each step, and
then depending on the output of the algorithm at this time, the adversary decides whether it would continue
to the next step (otherwise, the sequence ends). The first step has2N items each of sizeε. Moreover, each
of them has a different color from the set{1, 2, . . . , 2N}. All additional items, of the second, third and
fourth steps will share a new color,2N + 1. The second step consists of12N items, each of which has size
1
7 + ε. These last items are called items of typeA. The third step consists of12N items, each of which has
size 1

3 + ε, and these items are called items of typeB. The fourth step consists of12N items, each of which
has a size12 + ε, and these items are called items of typeC.

We next find the cost of the optimal solution at the end of each step. After the first step, we have
OPT = N , since any pair of items can be packed in one bin. After the second step, each set of six items of
typeA can be packed together in a bin. Moreover, since all items of typeA have the same color, any such
set can be combined with an additional item of sizeε. So it is possible to pack all items in2N bins, and so
OPT = 2N . After the third step we haveOPT = 6N because we can pack two items of typeB with two
items of typeA and an additional item of sizeε in one bin (such an additional item is packed only in2N of
the6N bins). At the end of the fourth stepOPT = 12N because a bin can accommodate three items of the
three types,A, B andC, and an additional item of sizeε in 2N of the bins.

We denote byX0 the number of bins with two items at the end of the first step (so at the end of this
step there are exactly2N − 2X0 bins with one item in each, and these are the bins that can be used by the
next steps). We use patterns in the analysis. Apattern is a vector, consisting of three components, which
corresponds to a way that a bin is packed, with respect to the number of items of typesA, B andC, which it
contains. A bin corresponds to apatternp = (p1, p2, p3), if it hasp1 items of typeA, p2 items of typeB and
p3 items of typeC. A pattern may contain non-zero components corresponding to numbers of items of types
B andC. In such a case, the spaces allocated to such items (that do not necessarily arrive) remain empty
if the sequence is stopped before their arrival. We say that a patternp = (p1, p2, p3) dominates a pattern
q = (q1, q2, q3) if they correspond to bins opened for the same step (i.e., the smallest non-zero component
is the same component in the two patterns) and for everyi = 1, 2, 3, qi ≤ pi holds. A patternp which no
pattern dominates it (except forp), is called dominant. Since we only use inequalities in the linear program
which counts the number of items (i.e., it is possible for an optimal packing to add items in order to get a
sufficient number of items for a given pattern), it is never profitable for an offline algorithm to use a pattern
which is not dominant, so only the dominant patterns are listed in the sequel. In addition, we remove the
pattern(4, 1, 0), since the variables are not necessarily integral, and a bin packed according to this pattern
can be replaced by two halves of bins packed according to(6, 0, 0) and(2, 2, 0).

The following variables count the number of bins with a given packing pattern of items of typesA, B

andC. We denote byX1 the number of bins that the online algorithm packs six items of typeA, i.e., bins
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packed according to the pattern(6, 0, 0). We denote byX2 the number of bins that the online algorithm
packs three items of typeA and an item of typeC, i.e., bins packed according to the pattern(3, 0, 1). We
denote byX3 the number of bins that the online algorithm packs with two items of typeA and two items
of typeB, i.e., bins packed according to the pattern(2, 2, 0). We denote byX4 the number of bins that the
online algorithm packs with one item of typeA, one item of typeB and one item of typeC, i.e., bins packed
according to the pattern(1, 1, 1). We denote byX5 the number of bins that the online algorithm packs with
two items of typeB, i.e., bins packed according to the pattern(0, 2, 0). We denote byX6 the number of bins
that the online algorithm packs with one item of typeB and one item of typeC, i.e., bins packed according
to the pattern(0, 1, 1). Finally, we denote byX7 the number of bins that the online algorithm packs with one
item of typeC, i.e., bins packed according to the pattern(0, 0, 1). The four first packing patterns correspond
to bins that are used already after the typeA items arrive. The next two patterns correspond to bins that are
used if the typeB items arrive. The last pattern corresponds to bins that are used only after the typeC items
arrive.

By a counting argument, the following three constraints must hold:6X1 + 3X2 + 2X3 + X4 ≥ 12N

(counting the number of items of typeA), 2X3+X4+2X5+X6 ≥ 12N (typeB), andX2+X4+X6+X7 ≥
12N (type C). We denote byR the competitive ratio of the online algorithm. Then, the following four
additional constraints must hold:2N − X0 ≤ RN (comparing the cost of the algorithm and the optimal
algorithm at the end of the first step),X0 + X1 + X2 + X3 + X4 ≤ R · 2N (comparing the cost of the
algorithm and the optimal algorithm at the end of the second step),X0 +X1 +X2 +X3 +X4 +X5 +X6 ≤
R · 6N (comparing the cost of the algorithm and the optimal algorithm at the end of the third step), and
X0 +X1 +X2 +X3 +X4 +X5 +X6 +X7 ≤ R ·12N (comparing the cost of the algorithm and the optimal
algorithm at the end of the fourth step). In addition to these constraints all variables (X0, X1, . . . , X7, R)
need to be non-negative and we would like to minimizeR. Letting xi = Xi

N , andx8 = R, We get the
following linear program such that its optimum is clearly a lower bound on the competitive ratio of any
online algorithm.

min x8

s.t. xi ≥ 0 0 ≤ i ≤ 8

6x1 + 3x2 + 2x3 + x4 ≥ 12

2x3 + x4 + 2x5 + x6 ≥ 12

x2 + x4 + x6 + x7 ≥ 12

x0 + x8 ≥ 2

−x0 − x1 − x2 − x3 − x4 + 2x8 ≥ 0

−x0 − x1 − x2 − x3 − x4 − x5 − x6 + 6x8 ≥ 0

−x0 − x1 − x2 − x3 − x4 − x5 − x6 − x7 + 12x8 ≥ 0

Using a standard LP-solver we get that the optimum is approximately 1.565217. ¤

5 Online algorithms

In this section, we analyze online algorithms forCCBP. For large values ofk, we would like to use modifica-
tions of the algorithmHARMONIC [11]. This algorithm partitions online the input into independent streams,
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and packs each such stream in separate bins. The streams are of items of size in intervals of the type( 1
i+1 , 1

i ]
for 1 ≤ i ≤ M , and there is one last interval of items no larger than1M+1 . We refer to this type of packing
as harmonic packing. For intervals of relatively large items, the constraint on the number of colors in a bin is
satisfied immediately. This property can be exploited for the design of algorithms forCCBP. Modifications
of HARMONIC [11, 12, 13], allow to combine several types of large items. As long as such a bin, where
different types of items are combined, contains a small number of items, it can also satisfy the constraint on
the number of colors, therefore, such algorithms are useful for our purposes as well. One major difference
with previous algorithms is that we sometimes combine items of the smallest class of items, i.e., of the last
interval, with very large items. The reason for this is that unlike standard bin packing, where a very small
item does not occupy much space, and small items are packed very densely usingNF, here any packing of
small items (including optimal packings of such items) can result in very empty bins, containingk items of
different colors. To deal with this, we allow to combine small items with a large item, of a color in the same
color set, but only if it has a very specific size.

Our plan is to consider separately the small values ofk, and then to consider larger values ofk. We first
show in Section 5.1 thatCSFF is (2 + k−1

k )-competitive algorithm. This ratio is small fork = 2 and it is
in fact the best algorithm we present for the casek = 2. For k = 3 we present an improved algorithm in
Section 5.2, which is shown to be107

42 ≈ 2.547619-competitive. Afterwards we show a general reduction
from online bin packing algorithms which results a good competitive ratio for large values ofk.

To prove upper bounds on the competitive ratio, we use the technique of weighting functions. This
technique was originally introduced by Ullman [17]. We use the following theorem, see Seiden [13].

Theorem 6 Consider a bin packing algorithm. Letw1, w2 be two weight measureswi : (0, 1] → R+
0 .

Assume that for every input, there exists a valuei (i = 1 or i = 2) such that the number of bins used by the
algorithmALG is at mostXi(σ) + c for some constantc, whereXi(σ) is the sum of weights of all items in
the sequence according to weight measurewi. Denote byWi > 0 the supremum amount of weight that can
be packed into a single bin according to measurewi (i = 1, 2). Then the competitive ratio of the algorithm
is at mostmax(W1,W2).

Proof Given an input, leti be the value that satisfies the theorem for this input. ClearlyOPT (σ) ≥ Xi(σ)
Wi

.
We getALG ≤ Xi(σ) + c ≤ WiOPT + c. ¤

5.1 Analysis ofCSFF

Theorem 7 CSFFis a (2 + k−1
k )-competitive algorithm.

Proof We assign weights to items as follows. Consider a color classC, where the total size of items in this
class isSC , then the total weight that we assign toC is max{2SC , 1

k}. This total weight is split among the
items inC according to the specific size of each item, and in proportion to its size. That is, an item with size
a in C has a weight ofa

SC
·max{2SC , 1

k}.
We first argue that the total weight of the items plus 1 is an upper bound on the cost ofCSFF. To see

this, consider a color set which is not the last color set ever defined, for which the total size of items is
S. If this color set results in a single bin, then still each color class in this color set has a total weight of
at least1k , and in total it is at least 1. Now assume that at least two bins are used for this color set. By
definition of weight, the total weight of the items in this color set is at least2S. If FF, executed on a set of
items, results in at least two bins, then the sum of item sizes in every (not necessarily consecutive) pair of
bins is larger than 1. Letλ be the cost ofFF on the color set. Consider all pairs of bins, and letηi denote
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the total size packed into thei-th bin. Then
∑

1≤i≤λ−1

∑
i<j≤λ(ηi + ηj) > λ(λ−1)

2 . On the other hand,∑
1≤i≤λ−1

∑
i<j≤λ(ηi + ηj) = (λ− 1)

∑
1≤i≤λ

ηi = (λ− 1)S. Thusλ < 2S and so2S is a an upper bound

on the total number of bins used byFF when applied to item set with items of total sizeS. The very last
color set is the only one that may contain less thank colors, and for that color set the total weight may be
smaller than1, if it results in a single bin. If it results in at least two bins, then the proof above hold for
this color set as well. We conclude that the total weight of the items plus1 is an upper bound on the cost of
CSFF.

To prove the theorem, it suffices to show that when we consider one bin ofOPT, the total weight of the
items in this bin is at most2 + k−1

k . To see this we note that for a color classC whose total sizeS is at
most 1

2k (called a small color class), the total weight of the items inC is 1
k ≤ 2S + 1

k , and for a color class
C whose total sizeS is larger than1

2k , the total weight of the items inC is at most2S. When we fix a bin
of OPT, the total weight of the items in this bin is at most twice their total size plus1

k times the number of
small color classes in this bin. There are two cases: if all color classes of items in this bin are small, then
the total weight of the items in these color classes is at most 1, and the claim holds. Otherwise, there is at
least one large color class used byOPT in this bin, and in this case the total weight is at most2 + k−1

k , as we
claimed. ¤

5.2 An improved algorithm for the casek ≥ 3

Our algorithm is based on online partitioning of the items according to size. The algorithm is defined for
anyk ≥ 3. The algorithm is based on the idea of the algorithmREFINED HARMONIC of Lee and Lee [11]
andMODIFIED HARMONIC of Ramanan et al. [12] for the packing of relatively large items, combined with
CSFF for the packing of small items. That is, roughly speaking, items are partitioned into large items, of
size larger than14 , and small items, of size at most1

4 . The large items are partitioned into medium items, of
size at most11

18 , which are packed using methods similar to those ofREFINED HARMONIC [11]. The largest
large items, of size more than23 , are packed in dedicated bins. Small items are usually packed usingCSFF,
with some exceptions. A small item which was not assigned to a color set yet can be combined with an item
of the same color, and size in(11

18 , 2
3 ], in a bin, possibly with some additional small items of the same color.

In such a case, the color of the small item is not assigned to a color set at this time. The algorithm tries to
combine such small items with a large item even if their color was assigned to a color set, and in addition, if
the large item is the one arriving later, the algorithm tries to push it into the very first bin of the color set, to
be combined with the small items there. Naturally, this is possible only if the bin contains a small total size
of items. In what follows, we give a complete definition of the algorithm.

Unlike the standard analysis of such algorithms, since we useCSFF for some items, we define weights
that in some cases depend on the specific packing rather than depending just on the size of items. Moreover,
our algorithm tries to pack together the smallest items and the largest items in common bins. This last
property of the algorithm is non-standard for online bin packing algorithms.

We define several intervals, where the input items are partitioned into several independent streams ac-
cording to size. Items of size in an intervalI will be calledI-items.

There are six intervals,J1, J2, J3, J4, Ja, andJb, whereJ1 ∪ J2 ∪ J3 ∪ J4 ∪ Ja ∪ Jb = [0, 1].
The definition of the intervals is as follows:

• J1 = (11
18 ≈ 0.6111, 1].

• Ja = (1
2 , 11

18 ].
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• J2 = ( 7
18 ≈ 0.38889, 1

2 ].

• Jb = (1
3 , 7

18 ].

• J3 = (1
4 , 1

3 ].

• J4 = [0, 1
4 ].

The bins created by the algorithm will be of the following types.

• J1-bins, each of which will contain a singleJ1-item, possibly with someJ4-items, which belong to
the color set of the color ofJ1, in the packing of theJ4-items.

• J2-bins, each of which will contain twoJ2-items, except for possibly the last such bin, which may
contain one item.

• J3-bins, each of which will contain threeJ3-items, except for possibly the last such bin, which may
contain one or two items.

• Jbb-bins, each of which contains twoJb-items, except for possibly the last such bin, which may
contain one item.

• Ja bins, each of which contains a singleJa-item.

• Jab-bins, each of which contains aJa-item and aJb-item.

• Ja3-bins, each of which contains aJa-item and aJ3-item.

• Jbs-bins, each of which contains a singleJb-item.

• J3s-bins, each of which contains a singleJ3-item.

• J4-bins, which are packed usingCSFF.

We next define algorithmA3. The algorithm uses variablesNx for x = b andx = 3, to count the number
of items which arrived so far with size in the intervalJx. We initializeNb = N3 = 0. We leti denote the
index of the new item to be packed, and initializei = 0.

If all items were packed, then stop. Otherwise, applyi = i + 1. Let i be the next item to be packed of
sizesi. If i is aJb-item thenNb = Nb + 1. If i is aJ3-item thenN3 = N3 + 1.

• If si ∈ J4, then act as follows.

– If there exists aJ1-bin with an item of the same color as itemi, of size no larger than23 , such
that itemi can be packed there without violating the constraint on the total size, then pack item
i into such a bin.

– Otherwise, pack itemi usingCSFFinto aJ4-bin.

• If si ∈ J3, then act as follows.

– First assume thatN3 is not divisible by16. If there exists aJ3-bin with less than three items,
then pack itemi in this bin. Otherwise (i.e., there is no suchJ3-bin), open a newJ3-bin and
pack the item there.
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– Now assume thatN3 is divisible by16. If there exists aJa-bin, then pack itemi in this bin
(which becomes aJa3-bin). Otherwise, open a newJ3s-bin and pack the item there.

• If si ∈ Jb, act as follows.

– First assume thatNb is not divisible by7. If there exists aJbb-bin with only one item, then pack
item i in this bin. Otherwise, open a newJbb-bin and pack the item there.

– Now assume thatNb is divisible by7. If there exists aJa-bin, then pack itemi in this bin (which
becomes aJab-bin). Otherwise, open a newJbs-bin and pack the item there.

• If si ∈ J2, if there exists aJ2-bin with exactly one item, then pack itemi in this bin. Otherwise, open
a newJ2-bin and pack the item there.

• If si ∈ Ja, if there exists aJbs-bin or aJ3s-bin, choose such a bin and pack the item. In this case
the bin where the item is packed becomes aJab-bin, if it was aJbs-bin, and otherwise aJa3-bin.
Otherwise, open a newJa-bin and pack the item there.

• If si ∈ J1, then act as follows.

– If all the following conditions hold:si ≤ 2
3 , the color of itemi already belongs to a color set of

J4-items, and itemi can be packed into the first bin ever created for this color set, then pack it
there. This bin becomes aJ1-bin.

– Otherwise, open a newJ1-bin and pack the item there.

Note that in the packing ofJ4-items, if aJ4-item is combined with aJ1-item in a bin (possibly containing
additionalJ4-items of the same color), then theJ4-item is not assigned to a color set, unless it already
belongs to a color set. Thus, either it is never assigned to a color set, in which case all theJ4-items of this
color are combined withJ1-items in the same bins, or it is assigned to a color set later, which means that for
at least oneJ4-item of this color, it was no longer possible to combine it into a bin containing aJ1-item of
the same color.

On the other hand, if it is theJ1-item which is inserted into aJ4-bin, then it must be the case that its
color was previously assigned to a color set.

It is not difficult to see that the properties above regarding the contents of each type of bin are satisfied.
In addition, if there is at least oneJ3s-bins or aJbs-bin, then there is noJa-bin, and vice versa, aJa-bin
excludes the existence ofJ3s-bins and ofJbs-bins. The reason for this is that aJ3s-bin or aJbs-bin is created
only if no Ja-bin exists, and on the other hand, aJa-bin is created if noJ3s-bins exist and noJbs bins exist.

Theorem 8 Algorithm A3 is 107
42 ≈ 2.547619-competitive for the casek = 3, and algorithmA3 has a

competitive ratio of at most37
14 − 2

7k for larger values ofk.

Proof We first note that the algorithm returns a feasible solution. This is so because each bin dedicated to
items, which are notJ4-items, has at most three items and therefore it satisfies the constraint on the number
of color classes represented in the bin, and its total size is at most1 (by our partitioning of the large items,
and the definitions of bin types). The small items are packed in feasible bins by the feasibility ofCSFF, and
since we pack aJ1-item in a bin with small items only after checking that the total size will not exceed 1,
and that its color is already assigned to this color set.
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It remains to prove the competitive ratio. To do so we design two weight functions. By the definition of
the algorithm, there are several types of bins in the solution returned by the algorithm. In addition to the first
nine types defined above, we consider separately bins packed byCSFFwhich contain total size more than
3
4 , and bins whose total size of items is at most3

4 , which are two sub-types of bins of the tenth type (i.e., of
J4-bins).

Recall that there is at most one bin of each of the following types of bins:Jbb-bins,J2-bins, andJ3-bins,
which does not contain the complete number of items that this bin should contain (which is two for the first
two types, and three for the third type). Furthermore, sinceCSFFis applied on items of size at most1

4 , there
is at most one bin with a total size of items at most3

4 , given as an output ofCSFF, for each color set. Finally,
we need to consider separately the case where there is at least oneJa-bin (but noJ3s-bins orJbs-bins), and
the case where there are noJa-bins.

We use one weight function,w1, for the case that there are noJa-bins, and a second weight function,
w2, is for the case that such bins may exist.

We assign weights to items as follows. For an itemi of sizesi, we have the following cases. Note that
the weights are a function of the sizes of items. The case ofJ4-items is discussed below, and in that case,
the weight is based not only on the size of an item, but also on the resulting packing (unlike the analysis of
the algorithmsREFINED HARMONIC [11], MODIFIED HARMONIC [12], andHARMONIC++ [13]).

• If si ∈ J1, thenw1(si) = w2(si) = 1.

• If si ∈ Ja, thenw1(si) = 0 andw2(si) = 1.

• If si ∈ J2, thenw1(si) = w2(si) = 1
2 .

• If si ∈ Jb, thenw1(si) = 4
7 andw2(si) = 3

7 .

• If si ∈ J3, thenw1(si) = 3
8 andw2(si) = 5

16 .

Let Mx denote the final number ofJx-bins for all types of bins, and letNx denote the final number of
Jx-items for all types of items.

Lemma 2 If the functionw1 is used, i.e.,Ma = 0, then we have,

M1 =
∑

i∈J1

w1(si),

M2 ≤
∑

i∈J2

w1(si) +
1
2

M3 + Ma3 + M3s ≤
∑

i∈J3

w1(si) +
2
3

Mbs + Mbb + Mab ≤
∑

i∈Jb

w1(si) +
1
2

Proof The first claim holds since
∑

i∈J1

w1(si) = N1.

The second claim holds since
∑

i∈J2

w1(si) = N2
2 , andM2 = dN2

2 e.

18



To prove the third claim, note that we haveM3 = dN3−bN3
16
c

3 e ≤ N3−bN3
16
c

3 + 2
3 ≤ 5

16N3 + 2
3 , and

Ma3 + M3s = bN3
16 c ≤ N3

16 . Since
∑

i∈J3

w1(si) = 3
8N3, the claim holds.

To prove the fourth claim, note that we haveMbb = dNb−bNb
7
c

2 e ≤ Nb−bNb
7
c

2 + 1
2 ≤ 3

7Nb + 1
2 , and

Mbs + Mab = bNb
7 c ≤ Nb

7 . Since
∑

i∈Jb

w1(si) = 4
7Nb, the claim holds. ¤

Lemma 3 If the functionw2 is used, i.e.,M3s = Mbs = 0, then we have,

M1 =
∑

i∈J1

w2(si),

M2 ≤
∑

i∈J2

w2(si) +
1
2
,

M3 ≤
∑

i∈J3

w2(si) +
2
3

Mbb ≤
∑

i∈Jb

w2(si) +
1
2
,

Mab + Ma3 + Ma ≤
∑

i∈Ja

w2(si),

Proof The first two claims are identical to those of the previous lemma, sincew1 andw2 are defined
identically for these two cases.

To prove the third claim, we use againM3 ≤ 5
16N3 + 2

3 . Since
∑

i∈J3

w2(si) = 5
16N3, the claim holds.

To prove the fourth claim, we use againMbb ≤ 3
7Nb + 1

2 . Since
∑

i∈Jb

w2(si) = 3
7Nb, the claim holds.

To prove the fifth claim, we haveMab + Ma3 + Ma = Na. Since
∑

i∈Ja

w2(si) = Na, the claim holds.¤

We next define weights forJ4-items. These items receive weights according to a functionw defined on
the items, and we letwi

1 = w(i) andwi
2 = w(i) for such items, unlike other items for whichwi

1 = w1(si)
andwi

2 = w2(si).
We use two non-negative constantsγ = 9

7 andδ = 5
7k . Consider an item of sizea (wherea ≤ 1

4 ) that
belongs to a color class which contains` items. Recall thatCSFFpartitions color classes into color sets, each
of which is packed usingFF. There may be some color classes, for which there exists at least oneJ4-item,
but they are never assigned to color sets, since all their items are combined withJ1-items in bins. In this
case we say that the color set contains a single color.

Consider allJ4-items of colors which belong to one color set. If there are noJ4-bins of this color set
(which can happen if the color set only has one color, but can also happen if aJ4-bin becomes aJ1-bin, and
no additional bins are opened for this color set), then all weights ofJ4-items of this color set are defined to
be zero. Otherwise, there are two options. If the total size of theseJ4-items, including items of this color set
which were packed intoJ1-bins, is at least13 , then the weight of this item is defined asγ · a + δ

` . This type
of weights ofJ4-items are calledsize based weights. Otherwise, it is defined as1k` . This type of weights of
J4-items are calledsize independent weights. The following claim follows directly from the last definition.
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Claim 1 Consider a color class, where the total size of items isS. Then the total weight of items in this
class isγ · S + δ if the item weights are defined to be size based weights, the total weight is1

k , if the item
weights are size independent, and zero, if all weights were defined to be zero.

Lemma 4 Consider a color set ofk colors, for whichCSFFusesm J4-bins. Then the total weight of items
in this color set is at leastm. For a color set containing less thank colors, the total weight is at leastm−1.

Proof We first consider a color set ofk colors. Ifm = 0, the claim is trivial since the weights are always
non-negative.

If the weight of every item of the color set was defined to be1
k` , where` is the number of items of its

color class, then the total size of the items of the color set is less than1
3 , and hencem = 1. The total weight

of items of each class is1k , and since there arek color classes in the color set, the claim follows.
If m = 1 but the weight of some item of sizea of this color set was set toγ · a + δ

` , then the total size of
all J4-items of colors in this color set is at least1

3 (possibly some such items are not packed inJ4-bins but
in J1-bins). The total weight of all these items is at leastγ · 1

3 + kδ = 8
7 > 1.

If m ≥ 2, consider them J4-bins used for the color set, and allJ4-items of colors in this color set,
including items which are packed inJ1-bins, if exist. We next argue that the total size of these items is at
least45(m− 2) + 1. If each bin, possibly except for the last one, contains total size of items at least4

5 , then
the total size of items is at least4

5(m − 2) + 1, since the total size of items in the last two bins together is
at least 1 (where the last property is a property ofFF). Otherwise, consider the first bin that has total size
less than4

5 . By definition, this is not the last bin. Every additional item which is packed in later bins has
size more than15 (but no more than14 , since it is aJ4-item), thus each bin (except for possibly the last one)
contains exactly four such items, and thus contains total size more than4

5 . This means again that all bins,
except for two bins, have a total size of items which is at least4

5 , and the sum of items sizes in the remaining
two bins (the one with a total size smaller than4

5 and the last bin) together is at least1. Hence, we showed
that the total size of theJ4-items in this color set is at least4

5(m− 2) + 1. Sincem ≥ 2, the total weight of
all items of the color set isγ times their total size, pluskδ.

We thus need to find a lower bound onγS + kδ, whereS is the sum of items sizes in the color set (i.e.,
the total size of all items of all color classes of this color set) and to show that it is at leastm. Indeed we
haveγS + kδ ≥ γ((m− 2)4

5 + 1) + kδ = 9
7(4

5m− 3
5) + 5

7 ≥ m, which is equivalent tom35 ≥ 2
35 and thus

holds form ≥ 2.
If the color set has less thank colors, then ifm = 1 the claim holds. Otherwise, the total size ofJ4-items

of colors in this color set is at least1, so we need to find a lower bound onγS+δ > 9
7(4

5m− 3
5) ≥ m− 5

7 >

m− 1, by the previous case wherem > 1. ¤
Note that there is at most one color set with less thank color classes. By Lemmas 2, 3 and 4, we can

summarize that in the first case whereMa = 0, we have for an input ofn itemsA3 <
n∑

i=1
wi

1 + 3, and in the

second caseA3 <
n∑

i=1
wi

2 + 3. Before we proceed, we show the following lemma.

Lemma 5 Consider a color set ofJ4-items, resulting by at least oneJ4-bin. If there is at least oneJ1-item
of a color in the color set, of size in(11

18 , 2
3 ], then the weights of items of this color are defined to be size

based.

Proof Since there is at least oneJ4-bin, then the color class contains colors which were assigned to it
actively (and not just one color class which was never assigned to a color set).
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If there exists aJ1-item which was packed into aJ4-bin of this color set and thus it turned into aJ1-bin,
then since an additionalJ4-bin of the same color set was opened, then the total size of items ofJ4-items of
colors in this color set exceeds13 , since the size of theJ1-item does not exceed13 , so a total size of at most
1
3 would result in a situation where there are noJ4-bins for this color set.

If there exists aJ1-bin which contains someJ4-item of a color of this color set, but this bin was never
defined as aJ4-bin (i.e., theJ1-item was the first item packed into this bin) then the color of theJ1-item
was assigned to the color set only when someJ4-item could not be packed into theJ1-bin. Sincesi ≤ 2

3 ,
the total size ofJ4-items of this color must have exceeded1

3 .
Otherwise, everyJ1-bin, containing aJ1-item of this color set, only contains this item. Consider a

specific suchJ1-item i. There are two options as for the arrival time of itemi.

• If i arrived before the color ofi joined the color set. This leads to a contradiction, since at least one
J4-item of the same color asi can fit into theJ1-bin of i, since their total size is at most2

3 + 1
4 < 1.

• If i arrived after the color ofi was assigned to a color set, sincei could not join the first bin of the
color set, the total size of items in this bin must be above1

3 , sincesi ≤ 2
3 .

In all cases, the total size ofJ4-items of colors in the color set is at least1
3 , so size based weights are

used. ¤
To apply Theorem 6, we consider a bin packed in a valid manner (by the optimal solution), and compute

an upper bound on the total weight of this bin, using each one of the two weight functions. We discuss the
J4-items first.

Lemma 6 Consider a packed bin and lets be an upper bound on the total size ofJ4-items in this bin. The
total weight of theJ4-items is at mostmax{1, 9

7s + 7k−2
7k } ≤ 9s

7 + 1. If there areJ4-items of at mostk − 1
colors of non-zero weights, or if at least one color has sized based weights, ors ≥ 2

27 , then the total weight
of theJ4-items is at most97s + 7k−2

7k .

Proof Since the bin may contain items of at mostk color classes, letτ1 ≥ τ2 ≥ · · · ≥ τk ≥ 0 be
the total sizes of items from these color classes, such that

∑k
j=1 τj ≤ s. Our bound on the total weight

of items of thei-th color class is at mostmax{γ · τi + δ, 1
k}. A clear upper bound on the total weight is

γs + jδ + k−j
k = 9

7 · s + 5j
7k + 7k−7j

7k = 9
7s + 7k−2j

7k , wherej is the number of color classes whose total
weight is size based. Ifj = 0, then we get an alternative upper bound of1. Otherwise,j ≥ 1, and the upper
bound is9s

7 + 7k−2
7k . If there are at mostk − 1 colors which have non-zero weights, then the bound for the

casej = 0 becomesk−1
k < 9

7s + 7k−2
7k .

If the total size ofJ4-items is at least227 , then we have97s + 7k−2
7k = 9

7s + 1− 2
7k ≥ 1 for anyk ≥ 3, so

it is possible to take into account only the upper bound9
7s + 7k−2

7k . ¤
We next consider the possible contents of a bin, in addition to possibleJ4-items. For theJ4-items, we

consider their supremum size, and calculate their total weight based on this bound. If their total size is
smaller, their total weight cannot be larger.

If the bin contains onlyJ3-items andJ4-items, then the ratio of weight to size (for bothw1 andw2) of
everyJ3-item is at most3/8

1/4 = 3
2 . Lets be the total size ofJ3-items in the bin, thus the total size ofJ4-items

is at most1− s. The total weight is at most3s
2 + 9(1−s)

7 + 1 ≤ 2.5.
We consider next the cases in which the bin contains either aJ1-item or aJa-item.
Forw1, since aJa-item has a weight of zero, aJa-item can be neglected. Therefore we assume that there

is aJ1-item. This bin may contain at most one additional item of size above1
4 , due to space constraints.
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Specifically, such an item can be aJb-item or aJ3-item. Therefore, there are three cases for the items of
size in(1

4 , 1] in the bin, which are:

• The bin contains aJ1-item and aJb-item. In this case the space remaining forJ4-items is less than
1
18 .

We compute an upper bound on the total weight ofJ4-items. If there arek colors ofJ4-items, and
all of them have size independent weights, then noJ1-item of size no larger than23 , of any of these
colors, could exist contradicting the assumption that aJ1-item and aJb-item are packed together. By
Lemma 5 and Lemma 6, the total weight of the items is at most9

7 · 1
18 + 7k−2

7k + 1 + 4
7 = 37

14 − 2
7k .

• The bin contains aJ1-item and aJ3-item. In this case the space remaining forJ4-items is less than
5
36 . This gives a total weight of at most1 + 3

8 + 9
7 · 5

36 + 7k−2
7k < 37

14 − 2
7k .

• The bin contains aJ1-item. In this case the space remaining forJ4-items is less than718 .

This gives a total weight of at most1 + 9
7 · 7

18 + 7k−2
7k < 37

14 − 2
7k .

On the other hand, forw2, it is sufficient to consider aJa-item, sinceJ1-items andJa-items have the
same weight. Here there are four cases.

• The bin contains aJa-item and aJ2-item. In this case the space remaining forJ4-items is less than19 .

This gives a total weight of at most1 + 1
2 + 9

7 · 1
9 + 7k−2

7k = 37
14 − 2

7k .

• The bin contains aJa-item and aJb-item. In this case the space remaining forJ4-items is less than16 .

This gives a total weight of at most1 + 3
7 + 9

7 · 1
6 + 7k−2

7k = 37
14 − 2

7k .

• The bin contains aJa-item and aJ3-item. In this case the space remaining forJ4-items is less than14 .
This gives a total weight of at most1 + 5

16 + 9
7 · 1

4 + 7k−2
7k < 37

14 − 2
7k .

• The bin contains aJa-item. In this case the space remaining forJ4-items is less than12 .

This gives a total weight of at most1 + 9
7 · 1

2 + 7k−2
7k = 37

14 − 2
7k .

We are left with the case where no items have size above1
2 . In this case, we only need to consider

w1, sincew1 dominatesw2 for this range of sizes. Furthermore, since we have already considered the case
where all items have size of at most1

3 , we only need to consider bins which contain one or two items of size
in (1

3 , 1
2 ]. In fact, sinceJb-items are smaller thanJ2-items, but have larger weight, we can assume that all

such items of size larger than13 , areJb-items. We have the following five cases.

• The bin contains twoJb-items and aJ3-item.

In this case the space remaining forJ4-items is less than112 .

This gives a total weight of at most2 · 4
7 + 3

8 + 9
7 · 1

12 + 7k−2
7k < 37

14 − 2
7k .

• The bin contains twoJb-items.

In this case the space remaining forJ4-items is less than13 .

This gives a total weight of at most2 · 4
7 + 9

7 · 1
3 + 7k−2

7k < 37
14 − 2

7k .
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• The bin contains oneJb-item and twoJ3-items.

In this case the space remaining forJ4-items is less than16 .

This gives a total weight of at most4
7 + 2 · 3

8 + 9
7 · 1

6 + 7k−2
7k < 37

14 − 2
7k .

• The bin contains oneJb-item and oneJ3-item.

In this case the space remaining forJ4-items is less than512 .

This gives a total weight of at most4
7 + 3

8 + 9
7 · 5

12 + 7k−2
7k < 37

14 − 2
7k .

• The bin contains oneJb-item.

In this case the space remaining forJ4-items is less than23 .

This gives a total weight of at most4
7 + 9

7 · 2
3 + 7k−2

7k < 37
14 − 2

7k .

¤
Algorithm A3 was constructed to handle the casek = 3 and as a byproduct it gives improved bounds

for all k ≥ 3. Thus, the parameters were optimized only for the casek = 3. It is straightforward to see that
for each fixed value ofk ≥ 4, it is possible to adapt the algorithm and optimize the parametersγ, δ, and
the numerical parameters such as the fraction of items among the items of a given interval of sizes which
are packed with aJa-item. Specifically, it is possible to use a larger number of intervals, and to possibly
combine additional classes of items in bins together with larger items.

5.3 Improved algorithms for large values ofk

In this section we consider the case wherek is large and adapt the algorithmHARMONIC++ of Seiden [13]
for our problem, with a loss of 1 in the competitive ratio, that is, we get a competitive ratio of 2.58889 for
any k ≥ 49. We use the main part of this algorithm as a black box, namely, the packing oflarge items,
which are defined to be items of size more than1

50 , is performed byHARMONIC++.
We first discuss the general properties of an algorithm that can be used as a black box. LetA be an

online (classical) bin packing algorithm, such thatA partitions the input intosmall items, which are items
in (0, 1

t+1 ] for some integert and large items, which are all other items. The set of large items may be
partitioned further. We require thatA packs the large items in some way, independently of small items,
and that it packs small items usingNF. We call such an algorithmA a uniformbin packing algorithm. The
integert is seen as a property ofA, and is denotedtA.

We next show how to adapt a uniform algorithm,A into an algorithm for our problem, withk ≥ tA. We
partition items (online) into small and large items, as they are defined byA. Large items are simply packed
usingA. Since all these items are strictly larger than1tA+1 , each bin may contain at mosttA items, and thus
the number of color classes they can belong to is no larger thank. Therefore, the packing of large items is
valid. The small items are packed usingCSNF. We call this algorithmCS(A).

Theorem 9 LetR be an upper bound on the competitive ratio ofA (when it is applied to the classical
online bin packing problem). Then the competitive ratio ofCS(A) is at mostR+ 1.

Proof Let T1, . . . , Tf be the color sets used byCSNFon small items. Clearly, we havef ≤ d q
ke. Note that

OPT ≥ d q
ke ≥ f . We apply two modifications on the input. Consider a given color set. IfCSNF created

only one bin for this color set we do nothing. Otherwise, we consider the last two bins created byCSNF for
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this color set. Letx be the size of the first item packed in the last bin, and lety be the total size of items
packed in the previous bin. Clearly, we havex + y > 1. We split the item of sizex into two items of the
same color ofx, of sizesx1 = 1 − y < x andx2 = x − x1. The two new items arrive instead of the item
of sizex, first the part of sizex1 and then the other part. Note that the two parts are also small items. We
perform this to every color set, and get a modified input sequence. Next, we move all small items to the
beginning of the sequence, we reorder them so that the items of each color set, that are packed in all the
bins used for this colors set except the last such bin, arrive consecutively, according to their order in the
modified sequence. The content of the last bin of each color set arrives only after all other small items (of
all color sets) have arrived. That is, first arrive the items of color setT1 except for the last bin of the small
items ofT1, then the same is applied forT2, and so on. For every color set, small items arrive exactly in
the order that they are originally packed into the bins byCSNF. Let I ′ denote the new input after the second
modification,OPT′ the cost of an optimal offline algorithm for the new input andCS(A) ′, the cost ofCS(A)
on the new input. Then, since large items are packed independently of small items,CS(A) acts exactly the
same on these items. Moreover, the number of bins packed for each color set byCSNF does not change.
This is clear for color sets that used a single bin. For those that used at least two bins, the only change in
packing is that the last bin of a color set that receives an item of size0 < x2 < x instead of an item of size
x. The second to last bin of a given color set must contain a total size of items of exactly 1. Any optimal
solution of the original input can be adapted to pack the new input. The change of order does not influence
offline packings. For every item that was split, its parts can take its place in the packing, since they have the
same total size and the same color. Thus we haveCS(A) ′ = CS(A) andOPT′ ≤ OPT. Now letA andOPT′′

denote the costs of packing the new input sequence, but without the restriction on colors. That is, these
are the costs of solutions for the classical bin packing problem on the new input (ignoring colors of items),
whereA denotes the cost of the packing returned by algorithm A, andOPT′′ denotes the cost of the optimal
solution to this instance of the classical bin packing problem. We haveOPT′′ ≤ OPT′ since any solution that
takes colors into account is still a valid solution for the classical problem. If we applyA on the new input,
the packing of the items of each color set of small items would be exactly the same as inCS(A), except for
possibly the packing of the items of the last bin of each color set. Except for these items, items of distinct
color sets do not get mixed, since the second to last bin of each color set (that now became the last bin) is
full. Therefore, we haveA ≥ CS(A) ′− f . UsingA ≤ R · OPT′′+O(1), due to the competitive ratio for the
standard bin packing problem, we get,

CS(A) = CS(A) ′ ≤ A+ f ≤ R · OPT′′ + O(1) + OPT≤ R · OPT′ + O(1) + OPT≤ (R+ 1) · OPT+ O(1) .

¤
We mention several algorithms in the literature that are indeed uniform. For the algorithmREFINED

HARMONIC [11], the parametert is 19, and the competitive ratio of this algorithm is at most 1.6359. For the
algorithmMODIFIED HARMONIC of [12], the parametert is 37, the competitive ratio is at most 1.61562.
As mentioned above, AlgorithmHARMONIC++ [13] is uniform as well.

Corollary 1 The algorithmCS(HARMONIC++) has a competitive ratio of at most2.58889 for anyk ≥ 49.
The algorithmCS(MODIFIED HARMONIC) has a competitive ratio of at most2.61562 for anyk ≥ 37. The
algorithmCS(REFINED HARMONIC) has a competitive ratio of at most2.6359 for anyk ≥ 19.

To conclude this section, we note that fork = 2 we can useCSFFand get a competitive ratio of2.5,
for values ofk such that3 ≤ k ≤ 36 we can use Theorem 8 and get a competitive ratio of37

14 − 2
7k ≤
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37
14 − 2

7·36 ≈ 2.63492, for values ofk such that37 ≤ k ≤ 48 we get a competitive ratio of at most2.61562
using Corollary 1, and for values ofk such thatk ≥ 49 we get a competitive ratio of at most2.58889 using
Corollary 1. Therefore, for all values ofk, we get a competitive ratio of at most2.63492 and we established
the following.

Theorem 10 For all values ofk, there exists an online algorithm forCCBP, with a competitive ratio of at
most2.63492.
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