Class constrained bin packing revisited

Leah Epstein Csarad Imreh Asaf Levirf

Abstract

We study the following variant of the bin packing problem. We are given a set of items, where each
item has a (hon-negative) size and a color. We are also given an integer paranaetéithe goal is to
partition the items into a minimum number of subsets such that for each stilisehe solution, the
total size of the items i% is at most 1 (as in the classical bin packing problem) and the total number of
colors of the items irf is at mostk (which distinguishes our problem from the classical version). We
follow earlier work on this problem and study the problem in both offline and online scenarios.

1 Introduction

IntheCLASS CONSTRAINED BIN PACKING PROBLEMCCBP), we are given a set of itends= {1,2,...,n},
where each item has a size and a color associated with it. The size afigelanoted by;, and we assume
thats; € [0, 1]. The color of itemi is denoted by; (so if i andj have the same color then= ¢;). The set

of items of one color is also calledcalor class We assume that each color has a positive integer associated
with it, that is,c; € N. We are also given a (hon-negative) integer parameteA feasible solution is

a partition of I into subsetsSy, ..., .S, such that for each = 1,2, ..., m, the following two conditions
hold: >, s s; < 1 andsS; has items from at most color classes (i.e/, ij9 {¢j}| < k). The goal of
JES;

ccaris to find a feasible solution that minimizes the number of subsets in the partition. We denpte by
the total number of color classes in the instance. Note thatifn, the resulting problem is equivalent to

the bin packing problem with cardinality constraints [9, 10, 1, 2, 8, 5, 6]. If all items are of atkroador
classes, i.eq < k, we get the classical bin packing problem [3]. We refer the reader to the previous work
on ccBP[14, 16, 19] for details on the applications of this packing problem in Video on Demand, storage
management and other fields.

For an algorithmA, we denote its cost on an inpat by A(X), and if X is clear from the context, we
simply useA. An optimal offline algorithm (that in the case of comparison to online algorithms, knows
the complete sequence of items) is denoteaby. For minimization problems, the (asymptotic) approx-
imation ratio (competitive ratio for online algorithms) of an algoritbiris the infimumR > 1 such that
for any inputX, A(X) < R - oPT(X) + ¢ holds, wherec is a constant independent of the input. An
(asymptotic) polynomial time approximation scheme is a family of approximation algorithms such that for
everye > 0 the family contains a polynomial time algorithm with an (asymptotic) approximation ratio of

*This research has been partially supported by the Hungarian National Foundation for Scientific Research, Grant F048587.

TDepartment of Mathematics, University of Haifa, 31905 Haifa, Isieal@math.haifa.ac.il

fDepartment of Informatics, University of Szeged, 6720 Szeged, Hungamyeh@inf.u-szeged.hu

SChaya fellow. Faculty of Industrial Engineering and Management, The Technion, 32000 Haifa, Israel.
levinas@ie.technion.ac.il

1 + . We abbreviatgolynomial time approximation scherbg PTAS andasymptotic polynomial time
approximation schemiey APTAS, which is also called an asymptotic PTAS. A fully polynomial time ap-
proximation scheme (FPTAS) is a PTAS whose time complexity is polynomial not only in the number of
itemsn but also iné. Similarly, an AFPTAS is an APTAS whose time complexity is polynomial not only in
the number of items but also in%. An algorithm which has an approximation ratio of at mAds called an
R-approximation, or arR-approximate solution. For online algorithms, such an algorithm (of competitive
ratio at mostR) is called R-competitive.

In this paper, we consider both the offline versiorcaiBp and its online version. It is known that the
classical bin packing problem admits an APTAS [4] and an AFPTAS [7]. Furthermore, bin packing with
cardinality constraints, admits an APTAS [2] and an AFPTAS [6]. A natural question is whetss,
which is a generalization of both these problems, admits an APTAS (and possibly an AFPTAS as well). The
problem is clearly NP-hard by the hardness of classical bin packing. Moreover, Shachnai and Tamir showed
that already the problem with identical sized items is NP-hard in the strong sense [14, 15]. In [14], they
designed an algorithm which uses the smallest possible number of bins, but allows to use slightly larger bins
of sizel +¢. Such an algorithm is called a dual PTAS. The time complexity of this dual PTAS is polynomial
in n for constant values af. Xavier and Miyazawa [19] designed an APTAS for constant values ®his
raises the question of whether seeings a parameter rather than as a constant changes the complexity of
the problem. We answer this question affirmatively and show that this more general case does not admit an
APTAS for any value ofk. We close the offline problem by designing an AFPTAS for the case of constant
q; due to our hardness result, there is no APTAS for the case of arbitrary valygsioiess P=NP), and
hence our scheme is best possible.

In Section 2, we consider this special case of the offline problem, wher@ constant, and present
our AFPTAS for it, improving upon the APTAS (for this special case) of Xavier and Miyazawa [19]. To
do so, we present a different way to handle the small items. Whereas the scheme of [19] tries all possible
packing of the large items, and for each of them solves a linear program for the packing of the small items,
we construct one linear program that considers both large and small items. We use methods that are similar
to the ones recently developed in [6], that were used to develop an AFPTAS for bin packing with cardinality
constraints.

In Section 3 we show our hardness result on the approximabilitcef for every constant value d@f,
namely, that the asymptotic approximation ratio of any algorithncfoBpis at leastl + ﬁ for any value
of k (if ¢ is seen as a parameter of the problem).

Regarding the online version of the problem, previous studies [16, 19] analyze two variantsiefthe
FIT (FF) heuristic. The first one is simply calleg. Whenever a new item arrivesk tries to pack it in an
existing bin (if it fits both with respect to the number of colors in the bin and its size), and if this is indeed
possible, it packs the item in the first such bin. The second variant is catledR SETS FIRST FITCSFR.

In this variant, color classes are partitioned online into sets oflors (where the firsk colors that ever
appear are the first color set, the néxtolors that ever appear are the second color set, and so forth), and
each such color set has its own dedicated bins. When a new item arrives werRpgnsidering only the

bins of the color set that contains the color of the new item. Another natural algorithm iscalleR SETS

NEXT FIT (CSNF). This algorithm partitions the input into color sets exactlycasr, but each color set is
packed usingNexT FIT rather than first fit, that is, each color set uses a single active bin, and whenever a
new item cannot be packed there, the bin is closed and a new active bin is opened.

The online version of the problem was first studied in [16], where the case of identical sized items was
considered. They showed that the competitive ratio of lasthF andFr is at most 2. A matching lower

bound for some cases was presented. Note that the value of the lower bouine: fdris % Since items

have identical sizes, the cake= 1 can be solved trivially by aexT FIT (NF) approach on each color. In
Sections 4.1 and 4.2 we show that the competitive ratio of bethnd csrrfor &k = 2 is exactly 2, for
identical items. We further show that it is strictly above 2, namely, at I%afnr items of arbitrary sizes.

We present a lower bound of approximately 1.5652 on the competitive ratio of any online algorithm for
k = 2 (acting on items of arbitrary size) in Section 4.3. Note that the lower bound of van Vliet [18] on the
competitive ratio of any algorithm for classical bin packing is 1.5401.

The online problem was studied further in [19] where algorithms for arbitrary sizes of items were stud-
ied. It was shown that the competitive ratio ©fFFit at most 3. Xavier and Miyazawa [19] designed a
different algorithm that is based on a partition into three classes according to size, and showed that its com-
petitive ratio is at mos2.75. It was shown that the competitive ratios of these two algorithms cannot be
below2.7 and%, respectively, for large enough valueskof

In Section 5.1 we analyzesrrfurther and show that its competitive ratio is at mast % Thus, we
conclude that the competitive ratio o6Frfor k = 2 lies in the interva(3, 3]. In Section 5.2, we design an
improved online algorithm fok = 3 (of competitive ratio% ~ 2.547619), that is based on a partition of
items into three sets as in [19], but allows combining items of different sets. Moreover, our algorithm uses
an unusual rule, where tiny items are sometimes combined with a very large item in a bin.

In Section 5.3 we show a general reduction to online (classical) bin packing algorithms under some
conditions on these algorithms, that allows to convert such an algorithm into an algoritkcmegrwith a
loss of at most 1 in the asymptotic competitive ratio. This, together with the algorithm in Section 5.2 (that
can be applied to any value bJ allows us to find improved algorithms for all valueskgfgiving an overall
upper bound of 2.63492.

The next table summarizes our results.

| | Upper bound \ Lower bound |
Offline algorithms, constart AFPTAS Strongly NP-hard

(generalizes bin packing)

| Offline algorithms, arbitrary || 2.6349 | 1+ 1 (unless P=NP) |
Online algorithmsk = 2 2.5 1.5652
Online algorithms, arbitrary 2.6349 (2.54762 for k = 3) 2 [16]

CSFR k=2 2.5 2.25
CSFF, FF k = 2, equal sized item§ 2 [16] 2

CSFF, arbitraryk 3—1 2 [16]

2 An AFPTAS for the offline problem with constant

In this section we improve the APTAS of Xavier and Miyazawa [19] for constant valueshof incorpo-

rating the column-generation technique of Karmarkar and Karp [7] into the scheme of [19], together with
simplified version of the methods of [6] for dealing with small items. Note that the assumption of a constant

g also means that is a constant, since we may assuing ¢ (otherwise, the problem reduces to classical

bin packing). Letz: > 0 be such thalf; is an integer and < 1/3. Our scheme is valid for any > 1.

A scheme fork = 1 can be constructed also from applying the scheme of [7] for every color class sepa-
rately. Since any solution must pack every color class independently, and there is a constant number of color

3

classes, this immediately results in an AFPTAS.

Scheme overview.The general structure of the AFPTAS is as follows. We separate the items into large
and small ones, and use linear grouping ([4]) on each color class separately. After the grouping, there is a
constant number of rounded sizes of items of each color. The pair consisting of the rounded size of the item
and its color, is called the type of the item. We define packing patterns on the types of items, taking into
account the properties that a bin may contain items of at imd#ferent colors, and that the total rounded

size of packed items of a bin is at mdstif the items of the pattern have less thanolors, still the pattern

would have exactly: colors associated with it. We define a packing of the large rounded items, where the
small items are seen as fractional items, that is, we only keep track of the total size of the small items of
each color. However, the linear program has a variable for every pair of aycatat a subséf’ of & colors,

which corresponds to the total size of small items of cplarhich are to be packed into bins with patterns
whose colors ard”. The packing is defined via a linear program which determines the number of copies
of each pattern. The linear program is solved approximately using the column generation technique of [7].
For that, we apply an FPTAS for the knapsack problem, which tests the approximate feasibility of a dual
solution. Given a solution to the primal linear program, we transform it into a basic solution which costs
no more than the given solution, and then in order to give an output solution, we round up all fractional
components, and pack small items greedily, while the small remaining items are packed into dedicated bins.
We next describe the details of our scheme and its analysis.

Linear Grouping. We say that an item irgeif its size is at least and otherwise it ismall We assume
that the set of colors in the instance is denoted)by {1,2,...,q}. We denote by_? the set of large items
of color p, and byS the set of small items. We first apply linear grouping (originally introduced in [4]) on
the large items of each color class separately. That is, for every, 2, ..., ¢ we partitionZ? into Eiz parts
Li,..., L}, such that the following two conditions hold{LP|e?] = |LY| > |Lb] > - > 1L} | =
||LP|€%], and moreover) contains the/LY| largest items ofL?, and for everyt = 2,3,...,1/¢2, L}
t—1
contains theL?| largest items of » \ (| L?). Note that these two conditions uniquely define the partition
j=1
of the large items up to the allocation of equal sized items of a common color. In thef@ase 1/<2, we
modify the partition so that eaoh? has up to one item, ankf] is empty.

Lemma 1 Foreveryp =1,2,...,q, |L}| < 3¢2|LP \ L¥] holds.

Proof If LY is empty, it is clearly true. Otherwisel}| = [|LP|e*] < |LP|e? + 1, and |LP \ LY| >
|LP| — |LP|? — 1. Itis enough to prove that for a valué > 2, we haveXe? + 1 < 3e3(X (1 — £2) — 1).
This is equivalent toX > L322 (since2:2 > 3¢4 for anye < 3) and holds sincel; > L3 for any

2e2—3e4 2e2_3:4

e < %. [l

Next we round the size of the large items. For eyery 1,2,..., g and every; > 2 we let therounded

up sizeof the items ofo to bemaxieL§7 si, and we lets; denote the rounded up size of itenfwhere for

q 1/¢?

an itemi such that ¢ U1 'Uz L% we lets; = s;). Note that if|L?| < E% then we have) = s; for every
p=17=
q 1/¢

i€ LP. Weletl' = |J U L% andI’ = L' U S, where the size of item € I’ is the rounded up size.
p=1 j=2

The setl’ can be seen as a multi-set of items, where all item&' @ire of at mosq(si2 — 1) distinct types,

where aypeis specified by a pair of a size and a colaf,p). Let H denote the set of distinct types of items
in L'. We enumeraté] by {11, 2,...}. Itis not difficult to see thabpPT(I’) < oPT(I), since for any item
ina setL? for which rounding was applied (fgr> 2), its rounded up size is no larger than the original size
of any item inL?_l, and!’ does not contain the sefﬁ. LetI" denote the set of all subsetitolors, that is
I'={Q CQ:|Q| =k} Weenumerat€ by {1, s2, ...}, and note thafl'| = O(q"), that is a constant.

Bin configuration. A configuration of a bin represents a possible packing of a subset of iteffismtb a
bin. Itis a|H| + 1-tuple, where the-th component, fol < i < |H| states the number of items of type
; which are packed into this bin, and thd| + 1-th component is a member &f ~;. Every positive
component must satisfy that the color af; is in x;. A configurationC is therefore a subset of items of
L' of at mostk colors, whose total size is at masst The set of colors:;, which C has associated with it,
is denoted byCol(C') and according to the above definition, the colors of the large itends loélong to
Col(C) (butCol(C) may possibly contain additional colors). These arektladlowed colors for a bin with
configurationC'. We denote the set of all configurations®yNote that two configuration§; andC, that
have the same configuration of large items,®But(C,) # Col(C>), are seen as two distinct configurations.
We note thatC| = O(|H|!H! . |T'|) = O((%Q)(?) - ¢*), that is an exponential function &f and therefore
we cannot enumeratéin polynomial time.

Constructing the linear program. For eachh = (v, p) € H and a configuratiod’, we denote by:(h, C)
the number of items with typg in C, and we denote by (k) the number of items of typg in L'. We
(approximately) solve the following linear program where for each configurdtiowe have a variable
z¢ indicating the number of bins that we pack using configuration Moreover, for any subsef C
{1,2,...,q} of exactlyk colors, and a colop € T, we have a variabl&), 7 indicating the total size of
the small items of colop that we pack into bins with some configuratiéhsuch thatCol(C) = T. We
implicitly setY,, 7 = 0 if p ¢ T. We denote the set of small items of cojoby S,,.

min >z
ceC
s.t. > n(h,C)xc > n(h) Vhe H
ceC
> 1— > nhC)ov|lee> > Yor VI'CQ:|T|=k
C:Col(C)=T h=(v,p)eH peT
> Y>> s Vp € Q
TCQ:|T|=k €S,
zc >0 vC el
Y,r >0 VpEQ VT CQ:|T| =k

Note that this linear program has an exponential number of variables (exponential as a funét)ipamrf
hence we will not write it down explicitly, however we will be able to solve it approximately within a factor
of 1 4+ €. Denote by(z*, y*) an approximate (within a factor af+ ¢) basic solution to this linear program,
and letzc = [z, for all C. Our scheme returns a solution that pagksbins with configuratiorC'. Each
item of the rounded up instance is later replaced by the corresponding itémVé can clearly pack the

q 1/
itemsof |y U L? in these bins (some slots reserved to such items may remain empty). Note that for every
p=1 j=2
p, the total size assigned to small items of cglds at least the total size of these small items.

5

The column generation technique.To solve the above linear program approximately we invoke the column
generation technique of Karmarkar and Karp [7]. We next elaborate on this technique. The linear program
may have an exponential number of variables but it has a polynomial humber of constraints (neglecting
the non-negativity constraints). Instead of solving the linear program we solve its dual program (that has
a polynomial number of variables but possibly an exponential number of constraints). The vasigbles
correspond to the item types i, their intuitive meaning can be seen as weights of these items. The
variablessr correspond to subsets bfcolors that are packed in a common bin, i.e., subsets that can act as
a setCol(C') of some configuratio'. The variablesy, correspond to colors, and their intuitive meaning

can be seen as weights per unit of size of the small items of this color.

max > n(h)ap, + i(> S

heH p=1 i€S,

st. >, n(h,C)ay + (1 - > n(h,C’)v) Beocy <1 VO eC
h=(

heH v,p)EH
—Br+7 <0 VpeQ, VI CQ:|T|=kpeT
ap >0 Yh e H
Br >0 VICQ:|T| =k
Y =0 Vp € Q.

To be able to apply the ellipsoid algorithm, in order to solve the above dual problem within a factor of
1 + ¢, it suffices to show that there exists a polynomial time algorithm (polynomial and é) such
that for a given solution* = (a*, 3*,7*), which is a vector of length at most + q" + q (since there
are |H| = % variables of typeny, less thang® variables of type3r and |Q| = ¢ variables of type
vp), decides whethed* is close enough to a feasible dual solution. More precisely, it should either pro-

vides a configuratio € C such that)’ n(h,C)aj + 1 - >, n(h,C)v Béoi(cy > 1 0orout-
heH h=(v,p)eH
puts that such an approximate infeasibility evidence does not exist, that is, for all configuratiens,

>on(h,Clay+(1- > nhCu Bty < 1+ ¢ holds. Insuch a casqﬁ% satisfies all the
heH h=(v,p)eH
constraints of the first family in the dual program, and there is a polynomial number of other constraints that

can be checked efficiently.

Approximated separation oracle for the dual linear program. Such a configuratiol” can be found

using an FPTAS for th&NAPSACK problem. This is so because for edEhC @ such thalT'| = &, we

need to solve the following problem: given itemiswhere for eacth = (v,p) € H there is a volume

a; — v and a sizev, the goal is to pack a multiset of the items of the typegiofwhere an item can
appear multiple times but at most a given number of times) whose total size is at most 1, so that the total
volume is maximized. If our FPTAS to theNAPSACK problem finds a solution with total volume greater
thanl — 7. then this solution is a configuration whose constraint in the dual linear program is not satisfied,
and we can continue with the application of the ellipsoid algorithm. Otherwise, since the FPTAS is an
approximation within a factor of + ¢, we get that the maximum volume is at m@st+ ¢)(1 — 37).

We show that in this case, all the constraints of the dual linear program are satisfied by the séjy.tion
This clearly holds for the second type of constraints. To show this for the first type of constraints, consider

a configurationC' € C. We have > (o) — 0BG c))h, C) < (1 + &) (1 = By c)), therefore
h=(v,p)eH

aj ﬁé’ol(c) * 52‘01(6‘)
> n(h,C) + (1 - > n(h C)”) e = 1= Boqey T 17 < 1-
heHd h=(v,p)eH

Bounding the cost of(z*, y*). We note thabPT(I’) induces a feasible solution to the primal linear program
(z¢ is the number of bins with configuratiaiiin opT(I’), andY), r is the total size of the items ifi, such
thatopPT(I’) packs in bins with color sef). Therefore, sincéz*, y*) is an(1 + ¢)-approximated solution

to the primal linear program, we conclude that =}, < (14 ¢)oPT(I’).
Cec

Rounding the primal solution. Given the(1 + ¢)-approximated solution to the primal linear program,

we find a basic feasible solution to this linear program, which is not worse than the approximated solution
we obtained (in terms of their objective function values). Hence, without loss of generality we assume
that («*, y*) is a basic feasible solution which is &@h + ¢)-approximated solution. We note that in the
primal linear program there are at mo&t| + ¢ + ¢* inequality constraints (in addition to the non-negativity
constraints), and therefore in a basic solution sudragy*), there are at most | + ¢ + ¢* basic variables.

Since all non-basic variables are set to zero, we conclude that the number of fractional components in

(z*,y*)isatmos{H|+q+q~. Therefore,>" ¢ < Y xfi+|H|+q+¢" < (1+e)oPT(I')+|H|+q+q".
cec cec

q
Packing L; = |J L¥. We next bound the increase of the cost caused by the largest items in each color
p=1
class in dedicated bins. Recall thdt = L \ L;. Then, the solution defined by packs the items of.’.
We pack each item of; in a separate (dedicated) bin. We note that(I’) > > s, since the size of
el
a large item is at least, using Lemma 1, we get that for evepy |LY| < 3e2|LP \ Lf| < 3¢ Y s
ieLP\LY}
Summing the last inequality for all we get thafL,| < 3= - > s, < 3s0PT(I’). Therefore, packing the
el
items inL; in separate bins adds at m@sbpPT(I’) to the cost ofz. So the resulting solution costs at most
(14 4e)oPT(I') + |H| + q + ¢*.

Packing the small items.Consider a color sét (T' C @ and|T'| = k). Then the solutioriz, Y*) allocates
space for small items. More precisely, for a bin that is packed according to configutgtishose color

set isT" and its available spacedgC) = (1 - > n(h, C’)v) (after packing all the large items), we

h=(v,p)eH
define a space for small items of cojoto bez,(C) = o(C) - Zypin/T Note that forp ¢ T this implies
per P,

zp(C) = 0. By the second constraint of the primal linear program, the sum of val(&$ over all bins of
the solution that are according to a configuration whose set of coldrsisat least) | Y,, 7. Thus the
'eT

total size allocated in such bins for small items of cqlas at least’), 7. a

We pack the items of,, into the available spaces allocated for them using Next-Fit. Specifically, for
every bin packed by some configuratioh we place items frond,, until we exceed a total of,(C'). This
packing is possibly invalid, and at most one itemSyfneeds to be removed from the bin. We apply this
to all colors inT" and all bins (with color seT’). The process is stopped if no items or no spaces are left.
Recall that(z*, y*) is a feasible solution to the primal linear program, and all allocated spaces forpcolor
are filled completely, unless all items are assigned. Thus, at the end of this procedure, we are left with no
small items that needs to be packed. This means that for every bin, and each color that is allocated space

in this bin, there is at most one item that needs to be removed from the bin to allow the packing to become
valid. Therefore, since the size of each small item is at moste total size of the removed small items is
at mostke - Yoo 26 < ke(1 4 €)OPT(I') < 2keoPT(I’), where the last inequality holds becauss 1.

For everyp = 1,2,...,q, we pack the remaining small items of coloin dedicated bins (dedicated
only to this color), using Next-Fit. We note that the number of bins that are not full up to a level af
is at mostg (by the area guarantee of the Next-Fit algorithm when applied to items with sizes less than
). Therefore, the number of additional dedicated bins is at ﬁfﬁ%@ + q < 3keoPT(I’) + g. This
concludes the presentation of the AFPTAS for fixed valueg of

Theorem 1 If the number of colors in the instance is a fixed constant, the above scheme is an AFPTAS for
CCBP.

Proof The number of bins used by our solution is at mast4¢)oPT(I")+|H |+q+¢*+3keoPT(I') +q <
(14 (3k+4)e)oPT(I")+|H|+2q+q". Since|H| < % andk, q are constant, we conclude that the additive
error term|H | + 2q + ¢* is a constant, and hence by scalingy a factor of3k + 4 we obtain an AFPTAS
as required.

The time complexity of our scheme is dominated by the linear grouping and rounding of the sizes of
large items, which can be done@(;). This is because the application of the ellipsoid algorithm on the
dual problem takes a polynomial number of iterations in the number of variables of the dual linear program,
and the encoding of the coefficients (that is, a polynomial functiof of ¢ + ¢, logn andrsr;% log si)

which is a polylogarithmic number of iterations. Each iteration consists of at ghicapplications of the
FPTAS for the knapsack problem where the number of iterff§is= % which is a constant. Hence, it takes
a constant time for each iteration of the ellipsoid algorithm, and the resulting primal solution is obtained in
polylogarithmic time. O

In the next section we show that our result is best possible in the sense that without the assumption of a
fixed constant number of colors in the instanceppP does not have an asymptotic approximation scheme,
that is, an AFPTAS or even an APTAS (already for fixed values)of

3 Hardness of approximation whengq is not fixed

In this section we show that for each constant value:,oit is NP-hard to approximatecsp with an
asymptotic approximation ratio strictly smaller than- ﬁ and therefore without the assumption thag
a constantccBpdoes not have an APTAS (or AFPTAS).

Theorem 2 Fix a value ofk. If & > 2, then the offlineccBp problem does not have an approximation
algorithm with an asymptotic approximation ratio strictly smaller thias ﬁ unlessP = NP. If k =1,

then the offlineccepP problem does not have an approximation algorithm with an asymptotic approximation
ratio strictly smaller tharg unlessP = N P.

Proof We will show this claim via a reduction from ttmaRTITION problem defined as follows. We are

n
givenn non-negative rational numbets, as . . ., a,, such that) " a; = 1. The goal is to check whether
=1
there is a subsef C {1,2,...,n} suchthat)_ a; = % We construct the following instance otBp. The
=
bin size is scaled to ble— 1. Sizes of items are defined according to this bin size. Thergrgie— 1) +n

color classes denoted by, ..., As,4—1), B1, - - ., By FOreveryi = 1,2,...,2n(k — 1), the color class
A; consists of a single item of size 1. For eveér 1,2, ..., n, the color clas3; hasn items, where the
r-th item of this color class denoted by has sizea,. To prove the claim it suffices to show that if the
PARTITION instance is feasible, then the optimal solution to the instanceef costs at mos2n, whereas

if the PARTITION instance is infeasible, then the cost of the optimal soluticzaBris at leastn + %. For

k = 1, a stronger result can be proved, namely, the cost of the optimal solut@rstis at leasBn.

We first prove the claim fok = 1. In this case, only the sef8; exist. If thePARTITION instance is
feasible, then each color class requires two bins. However, if the instance is infeasible, since each bin can
contain items of a single color, at least three bins are necessary for each color. Therefore 3atbaast
are used.

Next, we prove the claim fok > 2. First, assume that theaRTITION instance is feasible. That is,
we assume that there is a subSet. {1,2,...,n} such that}" a; = 3. We construct a solution to the
ccBpinstance as follows. For evegy = 1,2,...,n we paz:eksin bin2p — 1 the items of color classes
Ap-2)(k—1)+1, A@p-2)(k—1)+2> - - - » A2p—1)(k—1) (@ltogether these are items/of- 1 color classes, with a
total size ofk — 1), and in addition, the s€fth, : » € S} of items of one color class (with total sizg is
packed into the same bin, which gives a totakafolor classes. Fg5y = 1,2, ...,n, we pack in birep the
items of color classed z,_1)(k—1)+1, A@2p—1)(k=1)42> - - - » A2p(r—1) @nd also the itemgby, : » ¢ S}. We
conclude that all items can be packe@inbins. Informally, in this case every bin receives- 1 of the unit
sized items, and every s} is partitioned into two parts of equal size, to be split into two bins.

We next assume that tiRTITION instance is infeasible. We fix an optimal solutiorT to CCBP.

If the color classB; is partitioned into at least two bins, then we calpértial color class and all other

color classes (including the; classes) are callefdll color classes Note that each bin i@PT has at most

k — 1 full color classes, since the total size of items of each full clags &d the bin size i — % The
remainder of the proof is based on the property that sinceAR&ITION instance is infeasible, a color class

B; cannot be split into two bins, where each bin contains, in addition to the itelig ekactlyk — 1 full

color classes. So one of the following three options must occur, where each one of the options leads to an
increased number of bins compared to the case whereatkei TION instance is feasible. The first option

is that many such sets are full, leading to a large number of bins with a total size of items &f enly

rather thark — % The second option is that many such sefsare split into two parts of different size. We

show later that this leads to partially occupied bins as well. The third option is that many; sets spread

over at least three bins. In this last case, since the number of colors in a bin is limied targe number

of color classes with multiple parts would result in a large number of bins. We next split the set of possible
solutions into these three options, we consider each option, and prove the claim that each option leads to a
large number of packed bins.

First, assume that there are at legstull color classes amon@, ..., B,. Then, there are at least
2n(k — 1) + % full color classes in total (ad; is always a full color class), and therefave T uses at least
% = 2n+ 535q) = 2n+ g, bins. Therefore, in the remainder of the proof we can assume without
loss of generality that the number of full color classes amBng . . , B, is at mostz.

We next note that if there exists a partial color cl&such that the elements &f are packed in exactly
two bins ofopT, and each of these two bins has- 1 full color classes (in addition to the items Bf), then
the PARTITION instance is feasible, since the space left for itemB,ah each one of the two bins is exactly
%. Therefore, if we have a partial color claBg then its elements are packed in at least three bins or at least
one of the bins (that contains at least one elemeif;ptontains at most — 2 full color classes.

We next consider the case where there are at ?g‘apartial color classes such that each of these classes
is partitioned into at least three bins ofT (recall that we assume that there are at mbsgull color
classes among, . .., B, and therefore there are at Ie%t partial colors). We let gart be a maximal
subset of a color class that is packedd®T into a common bin. Then, the number of parts is at least
2n(k — 1) + ¢ + 2%" + 3%” = 2nk + %. Since each bin ioPT has at most parts, we conclude that
the number of bins is at lea8t + 5%- Therefore, in the remainder of the proof we can assume that there
are at most%” partial color classes such that each of them is partitioned into at least three rs.in
By our assumptions we conclude that there are at I%hsiolor classes amon§}y, Bs, . .., B, thatoPT
packs each of them into exactly two bins. Without loss of generality, assumerhigiacks each one of
the color classe®, B, ..., By, /5 into exactly two bins. We define thmain binof a color classB; for
i € {1,...,%2} as a bin that contains a total size more tHaof the items of this color class. Such a bin
must exist since the items @f; are partitioned into exactly two bins, and cannot be shared equally due to
the infeasibility of thePARTITION instance. The subset of items of a cal®rwhich are packed in the main
bin of this color class are called tineain partof this color class.

For thei-th bin packed byopT, let ¢; denote the number of color classes for which their main part is
OPT
packed into this bin. We hav§_ ¢; > 2.
=1
If a bin hast main parts of partial colors, then in the cdasge 2 it has at mosk — ¢ full colors, since
it cannot have items of more tha@ncolor classes. If = 1, it can have at most — 2 full colors, due
to space constraints. In both cases, the number of full colors is atAnest — % If ¢ = 0, then the

number of full colors is again at mokt— 1 = k — 1 — £. The number of full colors is at leagt(k — 1),
OPT

so we haven(k — 1) < Y (k—1-%) = oPT(k — 1) — . Rearranging the last inequality gives
i=1

1=
OPT22n+ﬁ22n+5ﬂk. O

4 Lower bounds for online algorithms andk = 2

In this section we provide lower bounds on the performance guarantees of specific algorithms as well as a
lower bound on the performance of any online algorithm. We focus on thekcasa

4.1 Lower bound of 2 on the competitive ratio ofFF when applied to equal size items

We note that Shachnai and Tamir [16] proved a lower boungi oh the competitive ratio of any online
algorithm for the case of equal size items @ng 2. Their upper bound of 2 for the competitive ratiorsf
applies for all values of (for equal sized items). We show in what follows that their upper bound is tight
already for the cask = 2.

Theorem 3 The competitive ratio ofF for the case: = 2 and equal sized items is exactly 2.

Proof The upper bound follows from [16], and we next prove the lower bound MLk a large integer.
The (common) size of the itemsds= 535

In the instance there a8V color classes. Fot = 1,2,..., N, the total size of the elements of color
classX, is % + 2ne, and the total size of elements of color clagsis % — 2(n — 1)e. The items arrive
according to the following order. First the itemsXf U Y7, then the items o, U Y5 and so on. The order

of the items satisfies also the following condition. For everyhe last pair of items o¥X,, U Y;, has one

10

item from each of these two color classes. This order of the items ensures that for each walhe idems
of X,, UY,, will be packed in exactly two bins (that will not be used by other items). Therefengses two
bins for every value ofi, and in total, a set &N bins.

An optimal solution packs the items of,, U Y;,.1 in a bin (forn = 1,2,..., N — 1), since the total
size of these items, for the relevant values pis exactly one. One other bin is used for the item¥gfand
one additional bin for the items of ;. Therefore, the total cost of the optimal solutionNis+ 1. Hence,
the competitive ratio ofr for the case of = 2 and equal sized items is at leagt;, and this lower bound
approaches 2 a¥ tends to infinity. O

Remark 1 The same construction of lower bound of 2 holds alsaferr(for the case of = 2 and equal
sized items).

Remark 2 Similar constructions give a lower bound of 2 few and csFrfor every fixed value of > 2
and equal sized items.

4.2 Lower bound of9/4 on the competitive ratio of CSFF for the casek = 2

In this section we show that application of the same algorithm on non-identical sized items increases the
competitive ratio strictly above 2. We show that the lower bound of 2 shown in the previous section on the
competitive ratio oicsFrwhenk = 2 can be increased above 2, if items are not necessarily all of the same
size.

Theorem 4 The competitive ratio afsFFwhen applied taccBpPwith k£ = 2 is at Ieast%.

Proof Let N be a large even integer. Let= ZQN#H The instance is defined as follows. The firét
items are of different colors and each of them has siZBheseN items are denoted bytq,..., Ay. The
colors of these items are never used again../Fer 1,2, ..., N (starting withn = 1) the next items are as
follows: there are items of sizefrom two color classe®,, andC,, such that the total size of the items in
B, is 3 — (2" + 1)e and the items of colo€’,, have total siz&2"*! + 1)e. Then, there are the following
additional items: item¥X,, of size% + 2™¢ and of colorB,,, itemY,, of size% + 2™¢ and of colorC,,, and
item Z,, of size% — 271 and colorC,,. This completes the subsequence corresponding to the vatue of
All items for a given value of, are given consecutively, and after thais increased by 1. The process is
repeated untih = N + 1 and stops after the items defined foe= N.

CSFFuses% bins to pack the itemd, A,, ..., Ay. Afterwards, for each value of, the color classes
B, and(C,, form a color set, and¢ srFruses four bins to pack the items of such a color set. Therefore, the
total cost ofcsFris 2.

To prove the claim it suffices to show a feasible solution which @8&s 4 bins. This is done as follows.
Foreachvalue ot = 1,2,..., N we pack the color clasB,, together with the itemd,, using one bin. This
is a feasible packing because the total size of the items of é&jas exactly% — 2"+ e+ % + 2" =
1 — € and therefore the total size of the items that we pack into this bin is exactly 1. For each value of
n =1,2,..., N — 4 we pack in one bin the items of col6r, with sizee together withY,, (which is of
color C,, as well) and iten¥,,,4 (that has a different color, so in total there are items of exactly two colors
in the bin). This bin is feasible with respect to total size, since the total size of the items in this bin is exactly
(2" + e+ 4 + 2% + 1 —200+)=1c < 1. We pack itemsZ,, Zo, Z3, Z4 in four dedicated bins, and we
pack the remaining items of color classes, Cy_1, Cn_2, Cv_3 (the small items and thg; items) using
four additional bins (one bin for each such color class, that would contain one larger item and all smaller
items of the same color), clearly these bins are feasible, and the claim follows. O

11

4.3 Lower bound against any online algorithm for the case ok = 2

For arbitrary item sizes and= 2 there are two previously known lower bounds. The first one follows from
classical bin packing. SincecBpis its generalization, the lower bound for the former problem holds also
for ccsP. This gives a lower bound df54014 due to van Vliet [18]. The other lower bound is%)because
ccaPwith arbitrary sizes generalizes the problem with identical sizes, and therefore the lower bound of [16]
holds also for this problem. We next show how to combine the methods of the two lower bounds to obtain
an improved result foccBpPwith arbitrary sized items ankl = 2.

Theorem 5 Any online algorithm foiccBpPwith k& = 2 has a competitive ratio of at least 1.5652.

Proof Lete > 0 be a small enough number £ Wloo is sufficiently small), and lelV be a large integer. The
sequence consists of at most four steps (sub-sequences), where a set of items is introduced at each step, anc
then depending on the output of the algorithm at this time, the adversary decides whether it would continue

to the next step (otherwise, the sequence ends). The first st@dvhisams each of size. Moreover, each

of them has a different color from the sgt, 2,...,2N}. All additional items, of the second, third and

fourth steps will share a new col@)V + 1. The second step consistsI&N items, each of which has size

% + . These last items are called items of typpeThe third step consists @RV items, each of which has

size% + ¢, and these items are called items of typeThe fourth step consists 02N items, each of which

has a siz% + ¢, and these items are called items of type

We next find the cost of the optimal solution at the end of each step. After the first step, we have
OPT = N, since any pair of items can be packed in one bin. After the second step, each set of six items of
type A can be packed together in a bin. Moreover, since all items of #ypave the same color, any such
set can be combined with an additional item of giz&o it is possible to pack all items HV bins, and so
OPT = 2N. After the third step we haverT = 6N because we can pack two items of typewith two
items of typeA and an additional item of sizein one bin (such an additional item is packed onl2¥ of
the6N bins). At the end of the fourth stepPT = 12/V because a bin can accommodate three items of the
three typesA, B andC, and an additional item of sizein 2NV of the bins.

We denote byX, the number of bins with two items at the end of the first step (so at the end of this
step there are exactBV — 2.X bins with one item in each, and these are the bins that can be used by the
next steps). We use patterns in the analysigafternis a vector, consisting of three components, which
corresponds to a way that a bin is packed, with respect to the number of items ofityBeendC', which it
contains. A bin corresponds tgatternp = (p1, p2, p3), if it hasp; items of typeA, p» items of typeB and
p3 items of typeC'. A pattern may contain non-zero components corresponding to numbers of items of types
B andC'. In such a case, the spaces allocated to such items (that do not necessarily arrive) remain empty
if the sequence is stopped before their arrival. We say that a patterrip;, p2, p3) dominates a pattern
q = (q1, 92, q3) if they correspond to bins opened for the same step (i.e., the smallest non-zero component
is the same component in the two patterns) and for evefyl, 2,3, ¢; < p; holds. A patterrp which no
pattern dominates it (except fp), is called dominant. Since we only use inequalities in the linear program
which counts the number of items (i.e., it is possible for an optimal packing to add items in order to get a
sufficient number of items for a given pattern), it is never profitable for an offline algorithm to use a pattern
which is not dominant, so only the dominant patterns are listed in the sequel. In addition, we remove the
pattern(4, 1,0), since the variables are not necessarily integral, and a bin packed according to this pattern
can be replaced by two halves of bins packed accordiri@, @ 0) and(2, 2, 0).

The following variables count the number of bins with a given packing pattern of items of #;pBs
andC. We denote byX; the number of bins that the online algorithm packs six items of typee., bins

12

packed according to the pattef6, 0,0). We denote byX, the number of bins that the online algorithm
packs three items of typg and an item of typ&”, i.e., bins packed according to the pattésn0, 1). We
denote byX3 the number of bins that the online algorithm packs with two items of ty@and two items
of type B, i.e., bins packed according to the patté2n2, 0). We denote byX, the number of bins that the
online algorithm packs with one item of typke one item of typeB and one item of typ€’, i.e., bins packed
according to the patterfi, 1, 1). We denote byX; the number of bins that the online algorithm packs with
two items of typeB, i.e., bins packed according to the pattén2, 0). We denote byXs the number of bins
that the online algorithm packs with one item of typeand one item of typé€’, i.e., bins packed according
to the patterr{0, 1, 1). Finally, we denote byX; the number of bins that the online algorithm packs with one
item of typeC, i.e., bins packed according to the pattédn0, 1). The four first packing patterns correspond
to bins that are used already after the typ#gems arrive. The next two patterns correspond to bins that are
used if the typeB items arrive. The last pattern corresponds to bins that are used only after tiie itgpes
arrive.

By a counting argument, the following three constraints must hed; + 3Xs + 2X35 + X4 > 12N
(counting the number of items of typ8), 2 X3+ X, +2X5+Xg > 12N (typeB), and Xy + X+ X+ X7 >
12N (type C). We denote byR the competitive ratio of the online algorithm. Then, the following four
additional constraints must hol@N — Xy < RN (comparing the cost of the algorithm and the optimal
algorithm at the end of the first stepYy + X1 + X2 + X3 + X4y < R - 2N (comparing the cost of the
algorithm and the optimal algorithm at the end of the second st&p); X1 + Xo + X3+ X4+ X5+ Xg <
R - 6N (comparing the cost of the algorithm and the optimal algorithm at the end of the third step), and
Xo+ X1+ Xo+ X35+ X4+ X5+ X6+ X7 < R-12N (comparing the cost of the algorithm and the optimal
algorithm at the end of the fourth step). In addition to these constraints all varigbjeX((, ..., X7, R)
need to be non-negative and we would like to minimize Letting x; = XW andxg = R, We get the
following linear program such that its optimum is clearly a lower bound on the competitive ratio of any
online algorithm.

min s
s.t. z; > 0 0<71<8
6x1 + 3x2 + 223 +x14 > 12
203+ x4 + 225 + 6 > 12
o+ Ty +ax6+a7 > 12
xot+rs = 2
—xg—T1 —To—T3—x4+2x83 > 0
—X0—T1 — X9 —T3— T4 —Ts5 —Tg+06xg > 0
—X0—T1 — X2 —T3— X4 — X5 —Tg—x7+12xg > 0
Using a standard LP-solver we get that the optimum is approximately 1.565217. O

5 Online algorithms

In this section, we analyze online algorithms &@BP. For large values of, we would like to use modifica-
tions of the algorithmrHARMONIC [11]. This algorithm partitions online the input into independent streams,

13

and packs each such stream in separate bins. The streams are of items of size in intervals 0@{‘%‘9 %,'}Je
for 1 < i < M, and there is one last interval of items no larger tlﬁkpi. We refer to this type of packing
as harmonic packing. For intervals of relatively large items, the constraint on the number of colorsin abinis
satisfied immediately. This property can be exploited for the design of algorithnescfw. Modifications
of HARMONIC [11, 12, 13], allow to combine several types of large items. As long as such a bin, where
different types of items are combined, contains a small number of items, it can also satisfy the constraint on
the number of colors, therefore, such algorithms are useful for our purposes as well. One major difference
with previous algorithms is that we sometimes combine items of the smallest class of items, i.e., of the last
interval, with very large items. The reason for this is that unlike standard bin packing, where a very small
item does not occupy much space, and small items are packed very denselyrdiege any packing of
small items (including optimal packings of such items) can result in very empty bins, contaiiérgs of
different colors. To deal with this, we allow to combine small items with a large item, of a color in the same
color set, but only if it has a very specific size.

Our plan is to consider separately the small values, aind then to consider larger valuesiofWe first
show in Section 5.1 thatsFris (2 + k—;l)—competitive algorithm. This ratio is small far = 2 and it is
in fact the best algorithm we present for the case 2. Fork = 3 we present an improved algorithm in
Section 5.2, which is shown to ti% ~ 2.547619-competitive. Afterwards we show a general reduction
from online bin packing algorithms which results a good competitive ratio for large values of

To prove upper bounds on the competitive ratio, we use the technique of weighting functions. This
technique was originally introduced by Ullman [17]. We use the following theorem, see Seiden [13].

Theorem 6 Consider a bin packing algorithm. Let;,ws be two weight measures; : (0,1] — R{.
Assume that for every input, there exists a val(@ie= 1 or i = 2) such that the number of bins used by the
algorithm ALG is at mostX; (o) + ¢ for some constant, whereX; (o) is the sum of weights of all items in
the sequence according to weight measuyeDenote byi¥; > 0 the supremum amount of weight that can
be packed into a single bin according to measuydi = 1, 2). Then the competitive ratio of the algorithm
is at mostmax (W, Wa).

. X;(o)
Proof Given an input, let be the value that satisfies the theorem for this input. Cleartf’ () > =7~

We getALG < X;(0) + ¢ < W;OPT + c. O

5.1 Analysis ofCSFF

Theorem 7 CSFFisa (2 + '“gl)—competitive algorithm.

Proof We assign weights to items as follows. Consider a color elgsshere the total size of items in this
class isS¢, then the total weight that we assign@ois max{2S¢, %}. This total weight is split among the
items inC according to the specific size of each item, and in proportion to its size. That is, an item with size
ain C has a weight of- - max{2Sc, 1 }.

We first argue that the total weight of the items plus 1 is an upper bound on the coskmfTo see
this, consider a color set which is not the last color set ever defined, for which the total size of items is
S. If this color set results in a single bin, then still each color class in this color set has a total weight of
at least, and in total it is at least 1. Now assume that at least two bins are used for this color set. By
definition of weight, the total weight of the items in this color set is at Ie&stIf Fr, executed on a set of
items, results in at least two bins, then the sum of item sizes in every (not necessarily consecutive) pair of
bins is larger than 1. Lex be the cost ofF on the color set. Consider all pairs of bins, andrjetienote

14

the total size packed into theth bin. Then) ;. 1>, i< (ni +nj) > # On the other hand,

di<icn-1 2icjami+n) =A=1) 3> m = (A—1)S. ThusA < 28 and s®S is a an upper bound
- - 1<<A
on the total number of bins used by when applied to item set with items of total si8e The very last

color set is the only one that may contain less thamolors, and for that color set the total weight may be
smaller thanl, if it results in a single bin. If it results in at least two bins, then the proof above hold for
this color set as well. We conclude that the total weight of the itemsipisign upper bound on the cost of
CSFFE

To prove the theorem, it suffices to show that when we consider one kinpfthe total weight of the
items in this bin is at mos? + k—gl To see this we note that for a color classvhose total size5 is at
mostﬁ (called a small color class), the total weight of the item€’iis % <25+ % and for a color class
C whose total size is larger thanzik, the total weight of the items i@’ is at most2S. When we fix a bin
of opPT, the total weight of the items in this bin is at most twice their total size élu’mes the number of
small color classes in this bin. There are two cases: if all color classes of items in this bin are small, then
the total weight of the items in these color classes is at most 1, and the claim holds. Otherwise, there is at
least one large color class usedd®Tin this bin, and in this case the total weight is at mbst% as we
claimed. O

5.2 Animproved algorithm for the casek > 3

Our algorithm is based on online partitioning of the items according to size. The algorithm is defined for
anyk > 3. The algorithm is based on the idea of the algoritREFINED HARMONIC of Lee and Lee [11]
andMobDIFIED HARMONIC of Ramanan et al. [12] for the packing of relatively large items, combined with
csrrfor the packing of small items. That is, roughly speaking, items are partitioned into large items, of
size larger thaﬁ}, and small items, of size at mo§1 The large items are partitioned into medium items, of
size at mos é which are packed using methods similar to thosBRefINED HARMONIC [11]. The largest
large items, of size more tha§1 are packed in dedicated bins. Small items are usually packed OsiFg)
with some exceptions. A small item which was not assigned to a color set yet can be combined with an item
of the same color, and size { 1;, %], in a bin, possibly with some additional small items of the same color.
In such a case, the color of the small item is not assigned to a color set at this time. The algorithm tries to
combine such small items with a large item even if their color was assigned to a color set, and in addition, if
the large item is the one arriving later, the algorithm tries to push it into the very first bin of the color set, to
be combined with the small items there. Naturally, this is possible only if the bin contains a small total size
of items. In what follows, we give a complete definition of the algorithm.

Unlike the standard analysis of such algorithms, since wecssefor some items, we define weights
that in some cases depend on the specific packing rather than depending just on the size of items. Moreover,
our algorithm tries to pack together the smallest items and the largest items in common bins. This last
property of the algorithm is non-standard for online bin packing algorithms.

We define several intervals, where the input items are partitioned into several independent streams ac-
cording to size. Items of size in an intendaWill be called-items.

There are six intervalsh, Jo, Js3, J4, Ju, andJ,, whereJ; U Jo U J3 U Jy U J, U Jp = [0, 1].

The definition of the intervals is as follows:

o J1 = (1t ~0.6111,1].

o J, = (%,%]

—_

15

(
Jb = (3, 1)
Js = (3 3]
Ja = [0, %]

The bins created by the algorithm will be of the following types.

J1-bins, each of which will contain a singlé -item, possibly with soméd,-items, which belong to
the color set of the color ofy, in the packing of the/,-items.

Jo-bins, each of which will contain twgs-items, except for possibly the last such bin, which may
contain one item.

Js-bins, each of which will contain thred;-items, except for possibly the last such bin, which may
contain one or two items.

Jwp-bins, each of which contains twg,-items, except for possibly the last such bin, which may
contain one item.

J,, bins, each of which contains a singlg-item.
Jap-bins, each of which contains.g-item and aJ,-item.
Ja3-bins, each of which contains.g-item and aJs-item.
Jps-bins, each of which contains a singlg-item.
J3s-bins, each of which contains a singlg-item.

J4-bins, which are packed usirgsFF

We next define algorithrds. The algorithm uses variablég, for x = b andx = 3, to count the number
of items which arrived so far with size in the interval. We initialize N, = N3 = 0. We leti denote the
index of the new item to be packed, and initialize: 0.

If all items were packed, then stop. Otherwise, apply i + 1. Leti be the next item to be packed of
sizes;. If i is aJ,-item thenN, = N, + 1. If i is a Js-item thenN3 = N3 + 1.

If s; € Jy4, then act as follows.

— If there exists a/;-bin with an item of the same color as itemof size no larger thaé, such
that item: can be packed there without violating the constraint on the total size, then pack item
7 into such a bin.

— Otherwise, pack itemusingCsFFinto a.J4-bin.
If s; € Js, then act as follows.

— First assume thaWs is not divisible by16. If there exists a/s-bin with less than three items,
then pack item in this bin. Otherwise (i.e., there is no sugk-bin), open a new/s-bin and
pack the item there.

16

— Now assume thaivs is divisible by 16. If there exists aJ,-bin, then pack item in this bin
(which becomes d,3-bin). Otherwise, open a ney,-bin and pack the item there.

e If 5; € Jp, act as follows.

— First assume thav,, is not divisible by7. If there exists a/;,-bin with only one item, then pack
item in this bin. Otherwise, open a neWw,-bin and pack the item there.

— Now assume thaV, is divisible by7. If there exists a/,-bin, then pack iteniin this bin (which
becomes a,;,-bin). Otherwise, open a newy,-bin and pack the item there.

o If 5; € Jo, if there exists a/,-bin with exactly one item, then pack iteinin this bin. Otherwise, open
a new.J>-bin and pack the item there.

o If s; € J,, if there exists a/;s-bin or aJss-bin, choose such a bin and pack the item. In this case
the bin where the item is packed becomeg, gbin, if it was a J,-bin, and otherwise a,3-bin.
Otherwise, open a new,-bin and pack the item there.

e If s; € Ji, then act as follows.

— If all the following conditions hold:s; < % the color of item; already belongs to a color set of
Jy-items, and item can be packed into the first bin ever created for this color set, then pack it
there. This bin becomes.A-bin.

— Otherwise, open a new;-bin and pack the item there.

Note that in the packing ofs-items, if a.J4-item is combined with a/;-item in a bin (possibly containing
additional J4-items of the same color), then thi-item is not assigned to a color set, unless it already
belongs to a color set. Thus, either it is never assigned to a color set, in which case/alitdras of this
color are combined witll; -items in the same bins, or it is assigned to a color set later, which means that for
at least oneJ,-item of this color, it was no longer possible to combine it into a bin containirigiéem of
the same color.

On the other hand, if it is thd;-item which is inserted into d,-bin, then it must be the case that its
color was previously assigned to a color set.

It is not difficult to see that the properties above regarding the contents of each type of bin are satisfied.
In addition, if there is at least ong,-bins or aJy,-bin, then there is nd,-bin, and vice versa, d,-bin
excludes the existence @f:-bins and ofJ,-bins. The reason for this is that/gs-bin or a.J,s-bin is created
only if no J,-bin exists, and on the other hand/abin is created if na/35-bins exist and nd/,, bins exist.

Theorem 8 Algorithm As is % ~ 2.547619-competitive for the cask = 3, and algorithmAs has a
competitive ratio of at mos: — 2 for larger values of.

Proof We first note that the algorithm returns a feasible solution. This is so because each bin dedicated to
items, which are nofs-items, has at most three items and therefore it satisfies the constraint on the number
of color classes represented in the bin, and its total size is atir{bgtour partitioning of the large items,

and the definitions of bin types). The small items are packed in feasible bins by the feasikilgymand

since we pack a;-item in a bin with small items only after checking that the total size will not exceed 1,
and that its color is already assigned to this color set.

17

It remains to prove the competitive ratio. To do so we design two weight functions. By the definition of
the algorithm, there are several types of bins in the solution returned by the algorithm. In addition to the first
nine types defined above, we consider separately bins packedrdmwhich contain total size more than
%, and bins whose total size of items is at mésﬂvhich are two sub-types of bins of the tenth type (i.e., of
J4-bins).

Recall that there is at most one bin of each of the following types of bishins, J>-bins, and/s;-bins,
which does not contain the complete number of items that this bin should contain (which is two for the first
two types, and three for the third type). Furthermore, siteris applied on items of size at mo§1there
is at most one bin with a total size of items at m%sgiven as an output afsrr, for each color set. Finally,
we need to consider separately the case where there is at leagt-bime(but no.Js,-bins or J,4-bins), and
the case where there are fgbins.

We use one weight functiony, for the case that there are dg-bins, and a second weight function,
wy, is for the case that such bins may exist.

We assign weights to items as follows. For an iteai sizes;, we have the following cases. Note that
the weights are a function of the sizes of items. The cash-aems is discussed below, and in that case,
the weight is based not only on the size of an item, but also on the resulting packing (unlike the analysis of
the algorithmsREFINED HARMONIC [11], MODIFIED HARMONIC [12], andHARMONIC++ [13]).

o If s, € Jy, thenw;(s;) = wa(s;) = 1.

If s; € Jo, thenw (s;) = wa(s;) = 3.

(

o If 5; € J,, thenwy(s;) = 0 andws(s;) = 1.
(
(

If s; € Jp, thenwy(s;) = andwg(sl) = %
o If S; € J3, thenwl(si) = % andwg(si) = %

Let M, denote the final number of,-bins for all types of bins, and |€Y,, denote the final number of
J.-items for all types of items.

Lemma 2 If the functionw; is used, i.e.M, = 0, then we have,

= Z wl(si)v

i€J1
My <)y wi(si) + E
: 2
i€Ja
2
M; + Moz + Mss < > wi(s;) + 3
i€J3
1
Mpps + Mpp + Map < Z wi(si) + 3
i€Jy
Proof The first claim holds since | wi(s;) = V.
i€y
The second claim holds sincg, wi(s;) = 22, andM, = [£2].
i€Ja

18

N
To prove the third claim, note that we hadé; = (N3_3LT63J1 <

Mgz + Mz, = [2] < M. Since‘ZJ w1 (s;) = 2N, the claim holds.
1€J3

Na—L%”J 2 5 2
3 +35 < Vs + 5, and

. N B N—ZE] 1 _ 3 1
To prove the fourth claim, note that we hal#, = [——=] < 3 +35 < 2Ny + 3, and

Mys + Mgy = | 2] < 2o, SinceZJ wy(s;) = 21Ny, the claim holds. O
1€Jp

Lemma 3 If the functionws, is used, i.e. M3, = M, = 0, then we have,

M1 = Z wQ(Si),
i€y
1
My < Z wa(si) + 3,
i€J2
Ms < wa(si) + 2
: 3
1€J3
1
My, < Z wa(si) + 3,
iedy

Mab + Ma3 + Ma < Z w2(3i)7
1€Jq

Proof The first two claims are identical to those of the previous lemma, sincandw, are defined
identically for these two cases.
To prove the third claim, we use agalif; < > N3 + 2. Since }_ ws(s;) = 2 N3, the claim holds.

i€Js
To prove the fourth claim, we use agaifi, < 2N, + 5. Since >_ ws(s;) = 2N, the claim holds.
1€Jy
To prove the fifth claim, we have/,, + M,3 + M, = N,. Since > wa(s;) = N,, the claim holdsC
icTa

We next define weights faf,-items. These items receive weights according to a funetigiefined on
the items, and we lab! = w(i) andw’ = w(i) for such items, unlike other items for whiet{ = w1 (s;)
andwg = ’U)Q(SZ‘).

We use two non-negative constants= % andjy = % Consider an item of size (wherea < i) that
belongs to a color class which contathtems. Recall that sFFpartitions color classes into color sets, each
of which is packed usingF. There may be some color classes, for which there exists at leagh; otean,
but they are never assigned to color sets, since all their items are combined, vitéims in bins. In this
case we say that the color set contains a single color.

Consider allJ4-items of colors which belong to one color set. If there are/ptins of this color set
(which can happen if the color set only has one color, but can also happéi-iiia becomes d;-bin, and
no additional bins are opened for this color set), then all weighih-afems of this color set are defined to
be zero. Otherwise, there are two options. If the total size of the#ems, including items of this color set
which were packed intd;-bins, is at Ieas%, then the weight of this item is definedasa + % This type
of weights of.J;-items are calledize based weight©therwise, it is defined a§ This type of weights of
Jy-items are calledize independent weightghe following claim follows directly from the last definition.

19

Claim 1 Consider a color class, where the total size of itemS§.isThen the total weight of items in this
class isy - S + ¢ if the item weights are defined to be size based weights, the total weighilf ithe item
weights are size independent, and zero, if all weights were defined to be zero.

Lemma 4 Consider a color set ot colors, for whichcsrrusesm J4-bins. Then the total weight of items
in this color set is at least. For a color set containing less thancolors, the total weight is at least — 1.

Proof We first consider a color set éfcolors. Ifm = 0, the claim is trivial since the weights are always
non-negative.

If the weight of every item of the color set was defined tojpewhere? is the number of items of its
color class, then the total size of the items of the color set is Ies%trmd hencen = 1. The total weight
of items of each class %. and since there arecolor classes in the color set, the claim follows.

If m = 1 but the weight of some item of sizeof this color set was set t9- a + % then the total size of
all J4-items of colors in this color set is at Iea?(possibly some such items are not packed rbins but
in J1-bins). The total weight of all these items is at legst; + k6 = 2 > 1.

If m > 2, consider then J,-bins used for the color set, and dll-items of colors in this color set,
including items which are packed iR -bins, if exist. We next argue that the total size of these items is at
least2 (m — 2) + 1. If each bin, possibly except for the last one, contains total size of items atlethsn
the total size of items is at Iea%(m — 2) 4 1, since the total size of items in the last two bins together is
at least 1 (where the last property is a property®t Otherwise, consider the first bin that has total size
less thar%. By definition, this is not the last bin. Every additional item which is packed in later bins has
size more thar% (but no more thari, since it is aJy-item), thus each bin (except for possibly the last one)
contains exactly four such items, and thus contains total size morégthﬁhis means again that all bins,
except for two bins, have a total size of items which is at Iéaand the sum of items sizes in the remaining
two bins (the one with a total size smaller th?land the last bin) together is at leastHence, we showed
that the total size of thd,-items in this color set is at Ieaé(m —2) + 1. Sincem > 2, the total weight of
all items of the color set is times their total size, plukd.

We thus need to find a lower bound 68 + kJ, whereS is the sum of items sizes in the color set (i.e.,
the total size of all items of all color classes of this color set) and to show that it is ahledsdeed we
haveyS + kd > v((m —2)% + 1) + k6 = 2(3m — 2) + 2 > m, which is equivalent tg% > 2 and thus
holds form > 2.

If the color set has less tharcolors, then ifm = 1 the claim holds. Otherwise, the total sizeafitems
of colors in this color set is at leaktso we need to find a lower bound 98 +§ > %(%m - %) >m— % >
m — 1, by the previous case whene > 1. g

Note that there is at most one color set with less thaolor classes. By Lemmas 2, 3 and 4, we can

n

summarize that in the first case whéig = 0, we have for an input of items A < > wi + 3, and in the
i=1

n .
second casds < > w} + 3. Before we proceed, we show the following lemma.
i=1

Lemma 5 Consider a color set afs-items, resulting by at least ong-bin. If there is at least ond;-item
of a color in the color set, of size i@}—é, %], then the weights of items of this color are defined to be size
based.

Proof Since there is at least ong-bin, then the color class contains colors which were assigned to it
actively (and not just one color class which was never assigned to a color set).

20

If there exists a/;-item which was packed into.4.-bin of this color set and thus it turned into/a-bin,
then since an additional;-bin of the same color set was opened, then the total size of itemhsitdms of
colors in this color set exceeés since the size of thd;-item does not excee@, so a total size of at most
% would result in a situation where there are.igbins for this color set.

If there exists aJ;-bin which contains somé,-item of a color of this color set, but this bin was never
defined as a/4-bin (i.e., theJ;-item was the first item packed into this bin) then the color of fxétem
was assigned to the color set only when safdétem could not be packed into thg-bin. Sinces; < %
the total size of/,-items of this color must have exceed?d

Otherwise, every/;-bin, containing aJ;-item of this color set, only contains this item. Consider a
specific such/;-itemi. There are two options as for the arrival time of itém

¢ If 4 arrived before the color afjoined the color set. This leads to a contradiction, since at least one
Ju-item of the same color ascan fit into theJ; -bin of ¢, since their total size is at mo§t+ i < 1.

e If 4 arrived after the color of was assigned to a color set, siniceould not join the first bin of the
color set, the total size of items in this bin must be abbysinces; < 2.

In all cases, the total size of;-items of colors in the color set is at Iea@tso size based weights are
used. O

To apply Theorem 6, we consider a bin packed in a valid manner (by the optimal solution), and compute
an upper bound on the total weight of this bin, using each one of the two weight functions. We discuss the
Jy-items first.

Lemma 6 Consider a packed bin and letbe an upper bound on the total size.hfitems in this bin. The
total weight of theJ,-items is at mosinax{1, 2 =5+ 7k2} < 95 + 1. If there areJ,-items of at most — 1
colors of non-zero weights, or if at least one color has S|zed based weights; q?r? then the total weight
of the J,-items is at mosgs + -2,

Proof Since the bin may contain items of at mdstolor classes, let; > = > --- > 7, > 0 be
the total sizes of items from these color classes, suchﬁfat1 7; < s. Our bound on the total weight
of items of thei-th color class is at moshax{y Ti + 0, %}. A clear upper bound on the total weight is
vs+ g0+l =9 g4 M TRET = 954 T2 \wherey is the number of color classes whose total
weight is size based. jf= 0, then we getan alternative upper bound 0Otherwise,j > 1, and the upper
bound |395 + 7'§k2 If there are at most — 1 colors which have non-zero weights, then the bound for the
casej = O becomegi! < 254 T2,

If the total size ofJ4 |tems is at Ieasf—, thenwe havés + 72 = 25+ 1— 2 > 1foranyk > 3, so
it is possible to take into account only the upper bo@etL 7’;—;2 O

We next consider the possible contents of a bin, in addition to posgjbtems. For theJs-items, we
consider their supremum size, and calculate their total weight based on this bound. If their total size is
smaller, their total weight cannot be larger.

If the bin contains only/s-items andJ,-items, then the ratio of weight to size (for bath andw-) of
everyJs-itemis at mosﬁﬁ = § Lets be the total size of3-items in the bin, thus the total size &f-items

is at mostl — s. The total weight is at mos§ + 2 92) 1 <25,

We consider next the cases in which the bin contalns eitberiem or aJ,-item.

Forwy, since aJ,-item has a weight of zero, & -item can be neglected. Therefore we assume that there
is aJi-item. This bin may contain at most one additional item of size a@p\nwe to space constraints.

21

Specifically, such an item can bejgitem or aJs-item. Therefore, there are three cases for the items of
size in(%, 1] in the bin, which are:

e The bin contains a;-item and aJ,-item. In this case the space remaining faritems is less than

L
18"

We compute an upper bound on the total weightgitems. If there aré& colors of J4-items, and
all of them have size independent weights, then/patem of size no larger tha§, of any of these
colors, could exist contradicting the assumption thdf-stem and aJ,-item are packed together. By

Lemma 5 and Lemma 6, the total weight of the items is at rosk + -2 41+ 2 =37 — 2.

° The bin contains a;-item and aJs-item. In this case the space remaining faritems is less than
+. This gives a total weight of at most+ 3 + 2 - 5 + ™2 < 3T _ 2

e The bin contains &;-item. In this case the space remaining fgfitems is less thaﬁ%.

i R i 9 Tk—2 2
This gives a total weight of at most+- = - 8 + 7= < ﬁ — 7

On the other hand, fows, it is sufficient to consider d,-item, sinceJ;-items andJ,-items have the
same weight. Here there are four cases.

e The bin contains d,-item and aJ/,-item. In this case the space remaining foritems is less thaé.

This gives a total weight of at most+ 5 + 2. & + -2 = 37 2

e The bin contains d,-item and aJ,-item. In this case the space remaining fgritems is less tha%s.

e i i 3.9 _ 37 _ 2
This gives a total weight of at most+ = + = - 6 + 1 7k =1~ 7

e The bin contains d,-item and aJs-item. In this case the space remaining fgfitems is less thaé.
This gives a total weight of at most+ 2 + 2 - 1 4 762 37 _ 2
e The bin contains d,-item. In this case the space remaining fritems is less thaé.

e qi i 9 37 _ 2
This gives a total weight of at most+- = - 2+ 7k =11~ 7

We are left with the case where no items have size al%ovm this case, we only need to consider
w1, Sincew; dominatesws for this range of sizes. Furthermore, since we have already considered the case
where all items have size of at mo;%twe only need to consider bins which contain one or two items of size
in (3, %]. In fact, sinceJ,-items are smaller thash-items, but have larger weight, we can assume that all
such items of size larger th@ areJ,-items. We have the following five cases.

e The bin contains twd/,-items and a/s-item.
In this case the space remaining firitems is less tharlr.

This gives a total weight of at mogt 2 + 2 + 2. L + T2 < 3T _ 2

e The bin contains twd,-items.
In this case the space remaining ﬂ;r—items is less thaé.

This gives a total weight of at mogt £ + 2. 1 4 762 < 3T _ 2

22

e The bin contains ond-item and twoJ3-items.
In this case the space remaining foritems is less tharé

This gives a total weight of at mogt+2 - 2 + 2. 1 4 T2 o 37 _ 2

e The bin contains ondy-item and oneJs-item.

In this case the space remaining firitems is less thaﬁ%.
2

This gives a total weight of at mo§t+ 2 + 2. 2 4 T2 < 3T _ 2

e The bin contains ondy-item.
In this case the space remaining firitems is less tha|§.

This gives a total weight of at mo§t+ 2 - 2 4 -2 < 3T _ 2
[l
Algorithm A3 was constructed to handle the cdse- 3 and as a byproduct it gives improved bounds
for all & > 3. Thus, the parameters were optimized only for the éase3. It is straightforward to see that
for each fixed value ok > 4, it is possible to adapt the algorithm and optimize the parametersand
the numerical parameters such as the fraction of items among the items of a given interval of sizes which
are packed with a,-item. Specifically, it is possible to use a larger number of intervals, and to possibly
combine additional classes of items in bins together with larger items.

5.3 Improved algorithms for large values ofk

In this section we consider the case wheiis large and adapt the algorithAaRMONIC++ of Seiden [13]

for our problem, with a loss of 1 in the competitive ratio, that is, we get a competitive ratio of 2.58889 for
any k > 49. We use the main part of this algorithm as a black box, namely, the packilaggefitems,
which are defined to be items of size more t@@nis performed byHARMONIC++,

We first discuss the general properties of an algorithm that can be used as a black bgkbd.ein
online (classical) bin packing algorithm, such tbapartitions the input intemallitems, which are items
in (0, t+1] for some integet andlarge items, which are all other items. The set of large items may be
partitioned further. We require that packs the large items in some way, independently of small items,
and that it packs small items using. We call such an algorithml a uniformbin packing algorithm. The
integert is seen as a property of, and is denoted,.

We next show how to adapt a uniform algorithihjnto an algorithm for our problem, with > ¢ 4. We
partition items (online) into small and large items, as they are definedl. tharge items are simply packed
using.A. Since all these items are strictly larger tl’%‘j&b each bin may contain at masst items, and thus
the number of color classes they can belong to is no largerith@merefore, the packing of large items is
valid. The small items are packed usiogNF. We call this algorithnts(A).

Theorem 9 Let R be an upper bound on the competitive ratio.4f(when it is applied to the classical
online bin packing problem). Then the competitive raticsfA) is at mostR + 1.

Proof LetTi,..., Ty be the color sets used lmsNFon small items. Clearly, we haye< []. Note that
OPT > [#] > f. We apply two modifications on the input. Consider a given color setsNF created
only one bin for this color set we do nothing. Otherwise, we consider the last two bins created bfor

23

this color set. Letr be the size of the first item packed in the last bin, and,Ibe the total size of items
packed in the previous bin. Clearly, we have- y > 1. We split the item of size: into two items of the

same color oft, of sizeszr;1 = 1 — y < x andxy = = — x1. The two new items arrive instead of the item

of sizex, first the part of sizer; and then the other part. Note that the two parts are also small items. We
perform this to every color set, and get a modified input sequence. Next, we move all small items to the
beginning of the sequence, we reorder them so that the items of each color set, that are packed in all the
bins used for this colors set except the last such bin, arrive consecutively, according to their order in the
modified sequence. The content of the last bin of each color set arrives only after all other small items (of
all color sets) have arrived. That is, first arrive the items of coloffsetxcept for the last bin of the small

items of Ty, then the same is applied f@p, and so on. For every color set, small items arrive exactly in

the order that they are originally packed into the bin<lsyF. Let I’ denote the new input after the second
modification,0PT the cost of an optimal offline algorithm for the new input arg{A)’, the cost ofcs(A)

on the new input. Then, since large items are packed independently of smalldts{3,acts exactly the

same on these items. Moreover, the number of bins packed for each color cskbyoes not change.

This is clear for color sets that used a single bin. For those that used at least two bins, the only change in
packing is that the last bin of a color set that receives an item ofisizers < x instead of an item of size

x. The second to last bin of a given color set must contain a total size of items of exactly 1. Any optimal
solution of the original input can be adapted to pack the new input. The change of order does not influence
offline packings. For every item that was split, its parts can take its place in the packing, since they have the
same total size and the same color. Thus we lta(d)’ = cS(A) andorPT < oPT. Now let.A andopPT’

denote the costs of packing the new input sequence, but without the restriction on colors. That is, these
are the costs of solutions for the classical bin packing problem on the new input (ignoring colors of items),
whereA denotes the cost of the packing returned by algorithm A,@d denotes the cost of the optimal
solution to this instance of the classical bin packing problem. We bavé < opT since any solution that

takes colors into account is still a valid solution for the classical problem. If we apply the new input,

the packing of the items of each color set of small items would be exactly the sames#in except for
possibly the packing of the items of the last bin of each color set. Except for these items, items of distinct
color sets do not get mixed, since the second to last bin of each color set (that now became the last bin) is
full. Therefore, we havel > cs(A)’ — f. UsingA < R - oPT’' + O(1), due to the competitive ratio for the
standard bin packing problem, we get,

CS(A) =CS(A) <A+ f<R-oPT"+0(1) +0PT<R-0PT 4+ O(1) +OPT< (R+1)-0PT+ O(1) .

O
We mention several algorithms in the literature that are indeed uniform. For the alg&#RMED
HARMONIC [11], the parameteris 19, and the competitive ratio of this algorithm is at most 1.6359. For the
algorithmMobDIFIED HARMONIC of [12], the parametet is 37, the competitive ratio is at most 1.61562.
As mentioned above, AlgorithtHARMONIC++ [13] is uniform as well.

Corollary 1 The algorithmcs(HARMONIC++) has a competitive ratio of at mo31H8889 for any k > 49.
The algorithmcs(MoDIFIED HARMONIC) has a competitive ratio of at mo3t61562 for anyk > 37. The
algorithm cs(REFINED HARMONIC) has a competitive ratio of at mo816359 for anyk > 19.

To conclude this section, we note that for= 2 we can usecsrFrand get a competitive ratio @5,
for values ofk such that3 < k < 36 we can use Theorem 8 and get a competitive rati%o# % <

24

3 — 2.~ 2.63492, for values ofk such thaB7 < k < 48 we get a competitive ratio of at moai51562
using Corollary 1, and for values éfsuch that: > 49 we get a competitive ratio of at moz$8889 using
Corollary 1. Therefore, for all values &f we get a competitive ratio of at maxs3492 and we established

the following.

Theorem 10 For all values ofk, there exists an online algorithm facep, with a competitive ratio of at
most2.63492.

References

[1] Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir Kotov. Algorithms for on-line bin-packing
problems with cardinality constraintBiscrete Applied Mathematic443(1-3):238—-251, 2004.

[2] Alberto Caprara, Hans Kellerer, and Ulrich Pferschy. Approximation schemes for ordered vector
packing problemsNaval Research Logistic82:58—-69, 2003.

[3] Edward G. Coffman Jr. anddos Csirik. Performance guarantees for one-dimensional bin packing. In
T. F. Gonzalez, editoklandbook of Approximation Algorithms and Metaheuristdsapter 32, pages
(32—1)—(32-18). Chapman & Hall/Crc, 2007.

[4] Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within 1+epsilon
in linear time.Combinatorica 1(4):349-355, 1981.

[5] Leah Epstein. Online bin packing with cardinality constrai®igiM Journal on Discrete Mathematics
20(4):1015-1030, 2006.

[6] Leah Epstein and Asaf Levin. AFPTAS results for common variants of bin packing: A new method to
handle the small item<€oRR abs/0906.5050, 2009.

[7] Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. IrProceedings of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS'82pages 312-320, 1982.

[8] Hans Kellerer and Ulrich Pferschy. Cardinality constrained bin-packing problémsals of Opera-
tions Researclp2:335-348, 1999.

[9] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Analysis of several task-scheduling algorithms
for a model of multiprogramming computer systerdgurnal of the ACM22(4):522-550, 1975.

[10] K. L. Krause, V. Y. Shen, and Herbert D. Schwetman. Errata: “Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systerdstirnal of the ACM24(3):527-527,
1977.

[11] C.C. Lee and Der-Tsai Lee. A simple online bin packing algoritdournal of the ACM32(3):562—
572, 1985.

[12] Prakash V. Ramanan, Donna J. Brown, C. C. Lee, and Der-Tsai Lee. On-line bin packing in linear
time. Journal of Algorithms10(3):305-326, 1989.

25

[13] Steven S. Seiden. On the online bin packing probldournal of the ACM49(5):640-671, 2002.

[14] Hadas Shachnai and Tami Tamir. Polynomial time approximation schemes for class-constrained pack-
ing problems.Journal of Schedulingd(6):313—-338, 2001.

[15] Hadas Shachnai and Tami Tamir. On two class-constrained versions of the multiple knapsack problem.
Algorithmicg 29(3):442-467, 2001.

[16] Hadas Shachnai and Tami Tamir. Tight bounds for online class-constrained padkiegretical
Computer Scien¢e21(1):103-123, 2004.

[17] Jeffrey D. Uliman. The performance of a memory allocation algorithm. Technical Report 100, Prince-
ton University, Princeton, NJ, 1971.

[18] André van Vliet. An improved lower bound for online bin packing algorithingormation Processing
Letters 43(5):277—-284, 1992.

[19] Eduardo C. Xavier and Blio Keidi Miyazawa. The class constrained bin packing problem with
applications to video-on-demand@heoretical Computer Sciencgd3(1-3):240-259, 2008.

26

