
HAL Id: hal-00504876
https://hal.science/hal-00504876

Submitted on 8 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract geometrical computation 4: small Turing
universal signal machines

Jérôme Durand-Lose

To cite this version:
Jérôme Durand-Lose. Abstract geometrical computation 4: small Turing universal signal machines.
Theoretical Computer Science, 2011, 412, pp.57-67. �10.1016/j.tcs.2010.07.013�. �hal-00504876�

https://hal.science/hal-00504876
https://hal.archives-ouvertes.fr

Abstract geometrical computation 4:

small Turing universal signal machines

Jérôme Durand-Lose

LIFO, Université d’Orléans, B.P. 6759, F-45067 ORLÉANS Cedex 2, France.

Abstract

This article provides several very small signal machines able to perform any compu-
tation —in the classical understanding— generated from Turing machines, cellular
automata and cyclic tag systems. A halting universal signal machine with 13 meta-
signals and 21 collision rules is presented (resp. 15 and 24 for a robust version). If
infinitely many signals are allowed to be present in the initial configuration, 5 meta-
signals and 7 collision rules are enough to achieve non-halting weak universality
(resp. 6 and 9 for a robust version).

Key words: Abstract geometrical computation; cyclic tag systems; Turing
universality; signal machines; small universal machines.

1 Introduction

Computation and universality have been introduced in the 1930s. In the last
five decades, it has been unveiled how common they are. The question moved
from proving the universality of dynamical systems to the complexity of uni-
versal machines. Not only is this an intellectual challenge, but also an impor-
tant issue to identify up to what size machines could escape un-decidability
results based on universality or, otherwise, assert that it is too narrow to be
worth considering.

There have already been a lot of investigations on small Turing machines
(Rogozhin, 1982, 1996b; Margenstern, 1995; Kudlek, 1996; Baiocchi, 2001),

Email address: Jerome.Durand-Lose@univ-orleans.fr (Jérôme Durand-Lose).
URL: http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose

(Jérôme Durand-Lose).

Preprint submitted to Elsevier 5 August 2010

register machines (Korec, 1996), and cellular automata (Ollinger, 2002; Cook,
2004).

A machine is said to be universal if it can be operated in such a way that:
from an initial configuration that encodes any computable function and its
argument, the machine will end its computation in a configuration that en-
codes the value of the function (if any). The end of the computation does not
necessarily imply the halting of the machine. By composition, it is enough to
simulate a universal machine to be universal.

As smaller and smaller machines were exhibited in very limited systems, var-
ious qualities of universality arose:

• polynomial-time universality : the simulation of any TM M is done in a time
that is polynomial in the running time of M ,
• weak universality : the computation should be started on an ultimately pe-
riodic (on each side) infinite configuration —for example, the whole tape of
a Turing machine is filled, or for cellular automata which naturally operate
on infinite configurations; and
• semi-universality : the computation should to be started on an infinite con-
figuration that may or may not be ultimately periodic. The type of initial
configurations that are allowed should be stated clearly to ensure the func-
tion that encodes the initial configuration is not itself universal.

In the present article, minimal universal machines in the context of Abstract
Geometrical Computation (AGC) are investigated. Since AGC is a graphical
model, it allows us to understand the way the information is moved around
and interacts as shown by the various illustrations. AGC has been introduced
as a continuous counterpart of cellular automata; this move was inspired by
the way dynamics of CA are often designed or analysed in Euclidean space.
In AGC, signals are moving with constant speed in Euclidean space. When
they meet, they are replaced by new signals; interacting in a collision-based
computing way (Adamatzky, 2002; Adamatzky and Durand-Lose, 2010). A
signal machine (SM) defines existing kinds of signals, meta-signals, and their
interactions, collision rules.

Since a collision is an exact meeting in a continuous space, if little imprecision
is allowed, the collision of three or more signals has a probability of zero. It
thus makes sense to distinguish signal machines where only collisions of two
signals are considered. These machines are called robust.

The straightforward measure of the size of a SM is the number of meta-signals.
If there are m meta-signals defined, then there are at most 2m−m−1 possible
collision rules (at least two signals are needed in a collision and they must be
different). Since parallel signals cannot interact, the number of rules could be

2

much lower, but nevertheless exceeding by far the number of meta-signals.
In many constructions, only a small portion of potential collision rules are
defined, the rest being either undefined or blank (i.e. signals just cross each
other). So that the number of specially defined rules is also a good appendage
to the size of a SM.

In Durand-Lose (2005a,b), universality in AGC is proven by reduction from 2-
counter automata. The simulation time (the longest chain of collisions linked
by signals is used to measure the time complexity) is linear, but 2-counter
automata simulate TM with a doubly exponential time overhead. Not only is
this not polynomial universality, but also the size of such SM is not especially
small. Here smaller and polynomial universal machines are provided.

In the present article, universal SMs are generated from Turing machines,
cellular automata and cyclic tag systems. In each case, special care is taken
in order to save signals and collision rules.

For Turing machines, the linear-time simulation of Turing machines in Durand-
Lose (2009a) is improved to fit into a bounded space. Bounds are provided ac-
cording to known small universal Turing machines (Neary and Woods, 2006b,
2009b; Woods and Neary, 2006, 2007, 2009a,b)

Cellular automata (CA) are massively parallel devices composed of cells reg-
ularly displayed and interconnected. Cells are identical finite automata that
are updated synchronously. The generated dynamics are very rich (Sarkar,
2000; Kari, 2005). It should be noted that the signals are a key notion in
CA (Delorme and Mazoyer, 2002; Mazoyer and Terrier, 1999). The main dif-
ference from AGC is that CA operate in discrete time and space, whereas
these are continuous for signal machines. Tight bounds exist for universal CA
(Ollinger, 2002; Cook, 2004; Richard and Ollinger, 2008). They provide small
weakly universal SMs.

Theorem 1 There is a non-halting weakly universal signal machine with 5
meta-signals and 7 non-blank rules. There is a non-halting weakly universal
robust signal machine with 6 meta-signals and 9 non-blank rules.

A Cyclic tag system (CTS) is defined by a list of binary word called appen-
dants. The input to a CTS is a binary word called the data word. At every
iteration, the first bit of the data word is discarded and if it is 1, the first
appendant of the list is added to the end of the word; the list of appendants is
then rotated. CTSs are polynomial-time universal (Neary and Woods, 2006a)
and have been used to provide what is currently the most efficient simulation
time overheads for the smallest weakly universal cellular automata (Cook,
2004). Economic simulations of CTSs provide the following bounds.

3

Theorem 2 There is a universal halting signal machine with 13 meta-signals
and 21 non-blank rules. There is a universal halting robust signal machine
with 15 meta-signals and 24 non-blank rules.

Signal machines are presented in Section 2. Each following section deals with
a different universal model and presents ways to simulate them with SMs:
Turing machines in Section 3, cellular automata in Section 4, and cyclic tag
systems in Section 5.

2 Definitions

2.1 Signal machines and space-time diagrams

In Abstract geometrical computation, dimensionless objects move on the real
axis. When they collide, they are replaced according to given collision rules.
This is defined by the following machines.

Definition 3 A signal machine is defined by (M,S,R) where M (meta-
signals) is a finite set, S (speeds) a mapping from M to R, and R (collision
rules) a function from the subsets of M of cardinality at least two into subsets
of M (all these sets are composed of meta-signals of distinct speeds).

Each instance of a meta-signal is a signal. The mapping S assigns speeds to
signals. They correspond to the inverse slopes of the line segments in space-
time diagrams. A collision rule, ρ−→ρ+, defines what emerges (ρ+) from the
collision of two or more signals (ρ−). Since R is a function, signal machines
are deterministic. The extended value set, V , is the union of M and R plus
one symbol for void, ⊘. A (finite) configuration, c, is a mapping from R to V
such that the set {x ∈ R | c(x) 6= ⊘} is finite. An infinite configuration is a
similar mapping such that the previous set has no accumulation point.

A signal corresponding to a meta-signal µ at a position x, i.e. c(x) = µ,
moves uniformly with constant speed S(µ). A signal must start (resp. end)
in the initial (resp. final) configuration or in a collision. This corresponds to
condition 1 in Def. 4. At a ρ−→ρ+ collision, signals corresponding to the meta-
signals in ρ− (resp. ρ+) must end (resp. start) and no other signal should be
present (condition 2).

Definition 4 The space-time diagram issued from an initial configuration c0
and lasting for time T is a mapping c from [0, T] to configurations (i.e. from
R× [0, T] to V) such that ∀(x, t) ∈ R× [0, T] :

4

(1) if ct(x)=µ then ∃ti, tf∈[0, T] with ti<t<tf or 0=ti≤t<tf or ti<t≤tf=T
s.t.:
• ∀t′ ∈ (ti, tf), ct′(x+ S(µ)(t′ − t)) = µ ,
• ti=0 or (cti(x+ S(µ)(ti − t)) = ρ−→ρ+ and µ ∈ ρ+),
• tf=T or (ctf (x+ S(µ)(tf − t)) = ρ−→ρ+ and µ ∈ ρ−);

(2) if ct(x)=ρ−→ρ+ then ∃ε, 0<ε, ∀t′∈[t−ε, t+ε] ∩ [0, T], ∀x′∈[x− ε, x+ ε],
• (x′, t′) 6= (x, t) ⇒ ct′(x

′) ∈ ρ−∪ρ+ ∪ {⊘},

• ∀µ∈M , ct′(x
′)=µ ⇔ or











µ ∈ ρ− and t′ < t and x′ = x+ S(µ)(t′ − t) ,

µ ∈ ρ+ and t < t′ and x′ = x+ S(µ)(t′ − t) .

Any signal should be traced to the bottom of the diagram (there is no infinite
backward sequence of signals).

On space-time diagrams, time is increasing upward. The traces of signals are
line segments whose directions are defined by (S(.), 1) (1 is temporal). Col-
lisions correspond to the extremities of these segments. This definition can
easily be extended to T =∞ and to infinite configurations.

Although speeds may be any real and thus encode information, in the follow-
ing, only a few rational values are used. Similarly, the distance between signals
may be any real but only rational positions are used. Then, because of the
way they are computed, all successive collisions happen at rational locations.

2.2 Computation, universality and complexity measures

Usually, computing means that when the device is started on an initial config-
uration representing the input, it “halts” with the output represented in the
final configuration. The problem in AGC —as well as for cellular automata—
is that the device does not halt. To cope with this, two approaches could be
considered:

• an observer checks that the “end of the computation” is reached according
to some property over the configuration (for example, the presence of a
given meta-signal) or
• the system reaches a stable state, i.e. no more collision is possible.

The latter is preferred since the ’halting’, i.e. stabilizing, is then a part of
the system. Nevertheless, when simulating never halting systems, like cellular
automata, the discussion arises again and the end of computation criterion
has to be “imported” too.

Like any computing system, a SM is (Turing) universal if there exist rep-
resentations through which any Turing machine (or any equivalent model of

5

computation) and an input can be given to the SM, and the output (if any)
represents the output (if any) of the TM on the input. (As soon as one output
is undefined, so must be the other.)

To consider polynomial-time universality, the time complexity of a computa-
tion should be defined. A space-time diagram can be deformed by changing
speeds and positions in the initial configuration so that only the locations of
generated collisions and signals are changed (Durand-Lose, 2003, Chap. 7).
Space and time are continuous; by rescaling a finite computation, the dura-
tion can be made as short as we want, and moreover: any infinite computation
starting from a finite configuration can be automatically folded into a finite
portion of the space-time diagram (Durand-Lose, 2009a). So that a correct
notion of time complexity does not lie in elapsed continuous time.

Collisions can be considered as discrete steps related by signals: a collision is
causally before another if a signal generated by the first one ends in the second
one. When taking collisions as nodes and signals (except from initial and final
configurations) as edges, a direct acyclic graph (DAG) is generated.

Definition 5 The time complexity of a SM computation is the longest length
of a chain in the collision-causality DAG formed by collisions and signals.
A SM is polynomial-time universal if the slowdown in simulating a Turing
machine is bounded by a polynomial in the size of the running time of the
simulated computation.

If the universality construction relies on ultimately periodic (on each side)
infinite configurations, then one speaks of weak universality.

2.3 Generating an infinite periodic signal pattern

Generating a periodic infinite sequence of signals inside a space-time diagram
is useful to provide, starting from a finite number of signals, the infinite data
for weak universality. At the cost of extra meta-signals and collision rules, it
allows to fall back into regular universality as soon as there is periodicity.

The construction works as follows: a signal bounces back and forth between
two “walls”, each time it bounces on the one side, the next signal in the
sequence is emitted. The signals used for the wall record the location in the
pattern and appear periodically wall1, wall2. . . wall1, wall2. . . The construction
is simple and straightforward. It is only presented on an example: an infinite
sequence of period 3, (µ1µ2µ3)

ω, where each µi is already defined. The added
meta-signals and collision rules as well as the resulting space-time diagram are
displayed in Fig. 1.

6

Id Speed

bou 2

wall1, wall2, wall3 1

Collision rules

{ bou, wall3 }→{ µ1, wall1 }

{ bou, wall1 }→{ µ2, wall2 }

{ bou, wall2 }→{ µ3, wall3 }

{ wall1, µ1 }→{ µ1, wall2, bou }

{ wall2, µ2 }→{ µ2, wall3, bou }

{ wall3, µ3 }→{ µ3, wall1, bou }
bo
uw

al
l 1

w
al
l 3

w
al
l 1

w
al
l 1

µ
1

µ
2

µ
3

µ
1

bo
u

bo
u

bo
u

w
al
l 2

w
al
l 3

w
al
l 2

w
al
l 3

Fig. 1. Generating a periodic pattern.

To save one bouncing meta-signal, the µi signals are directly generated on the
bottom wall. The number of added meta-signals is one plus the period (the
output signals are not counted). The number of collision rules is twice the
period.

If the output signals are not parallel or to be set at unequal distances, following
the scheme exemplified in Fig. 2, this can be done by adding one plus twice
the period of meta-signals and twice the period of collision rules.

Collision rules

{ zig1, wall}→{zag2, wall }

{ zig2, wall}→{zag3, wall }

{ zig3, wall}→{zag1, wall }

{ zag1, wall}→{ µ1, wall, zig2 }

{ zag2, wall}→{ µ2, wall, zig3 }

{ zag3, wall}→{ µ3, wall, zig1 }

w
al
l

w
al
l

zig1

z
a
g
1

zig2

zag
2

zig3

za
g
3

zig1

z
a
g
1

µ
1

µ
2

µ
3

µ
1

Fig. 2. Generating an unevenly spaced periodic pattern.

Altogether, this is useful to turn weak universality into standard universality
(over a finite configuration), but, unless the period is very short, the modified
SM is much bigger.

7

3 Turing machines

Only notations and constructions are presented since the reader is expected
to have some knowledge of Turing machines. This section provides small
polynomial-time universal SMs. It also illustrates AGC.

A Turing machine (TM) is defined by (Q, qi,Γ, #, δ) where Q is a finite set
of states, qi is the initial state, Γ is a finite set of symbols, # (blank) is a
distinguished symbol, and δ : Q × Γ → Q × Γ × {←,→} is the transition
function.

The construction is exemplified in the TM given in Fig. 3 and its operation in
Fig. 4(a).

Q= {qi, q1, q2, qf}

Γ= {^, a, b, #}

=

“−” means undefined

δ ^ a b #

qi qi,^,→ qi,a,→ q1,a,← -

q1 - q1,b,→ - q2,a,→

q2 - - - qf ,b,←

qf qf ,^,← qf ,a,← qf ,b,← -

Fig. 3. Definition of the TM.

The simulation goes as follows: there are finitely many parallel signals (encod-
ing the content of the tape) in which zigzags a signal mimicking the movement
of the head and encoding the state.

qf

^ b b a b #.

qf

^ b b a b #.

qf

^ b b a b #.

qf

^ b b a b #.

qf

^ b b a b #.

q2

^ b b a #.

q1

^ b b #.

q1

^ b a #.

q1

^ a a #.

qi

^ a b #.

qi

^ a b #.

qi

^ a b #.

(a) TM Computation.

#

^

^

^

a

a

b

b

b

a

b

b

#

a

a

b

−→
qi

−→
qi

−→
qi

←−
q1

−→
q1

−→
q1

−→
q2

−→
qf

←−

#

−→

#

−→
qf

←−

#

−→

#

−→

#

#
−→
qf

−→
qf

−→
qf

(b) Simulation.

#

#

#

−→
qi

−→
qi

−→
qi

−→
q2

−→
q2

←−
q1

←−
q1

^

^

^

a

a

a

a

a

−→
qf

−→
qf

−→
qf

−→
qf

−→
qf

b

b

b

b

b

b

b

(c) Bounded simulation.

Fig. 4. Example of a TM computation and its simulation by a SM.

The simulating SM is defined by the following meta-signals:

8

• one symbol meta-signal (of speed 0) for each value in Γ, to encode the cells
of the tape;
• −→q (of speed 1) and ←−q (of speed −1) head meta-signals for each state q, to
encode the state and the location and movement of the head;

• # (of null speed),
←−
(of speed −3),

−→
(of speed 3),

←−
(of speed −1) and

−→
(of speed 1) which are used to denote the extremities of the tape and to
manage the enlargement of the tape on both sides.

The number of meta-signals in the simulating signal machine is 2|Q|+ |Γ|+5

(# is distinct from #). For weak universality, bounding and enlarging signals
are unneeded, so that this number drops to 2|Q|+ |Γ|.

A SM configuration encodes a TM configuration if it corresponds to the same
sequence of symbols (up to trailing #’s on both ends) surrounded by #’s to-
gether with an extra signal encoding the state. The latter signal should be
moving to meet the signal corresponding to the position of the head.

The collision rules ensure that the evolution of the SM corresponds to the com-
putation of the TM. When the head encounters a symbol signal, it performs
the update and moves to its next position on the tape. When it meets the spe-
cial signal, #, the configuration is automatically enlarged on the corresponding
side.

The scheme to generate the collision rules is given in Fig. 5. For each input of
the TM transition function, two collision rules are generated accounting for
the cases where the head would come from the left or from the right. The
extremity rules ensure a correct enlargement of the configuration in the case
where a head signal would meet #, the signal marking the last cell on both
sides. (Only the right case is presented, the left one being symmetric.) In such
a case, two things have to be done: simulate the TM transition (as if it were
a # signal) and enlarge the configuration. If the head goes left (first case),

the latter means generating a new # signal on the right (right column). If the
head goes right (second case, left column), then the head signals must meet

something on the right; what is met is a
−→
signal as presented on the second

row. Single rules ensure that
←−
bounces on the first signal on the left as

−→
.

This
−→
signal meets

−→
and regenerates # (first case); otherwise (second case)

it participates in a collision from the second row (enlarging again). This is
illustrated in Fig. 4.

The number of collision rules is:

• 2 for each entry of the transition table of the TM,
• plus 4 for each transition on the blank symbol,
• plus 4 (for enlarging the table).

9

Regular transition Right extremity rules

δ(q, c) = (r, d,→) δ(q, c) = (r, d,←) δ(q, #) = (r, d,→) δ(q, #) = (r, d,←)

d

c

−→r

−→q

d

c

←−r

−→q

d

#

−→r

−→q

←−
d

#

←−r

−→q

←−
−→

#

d

c

−→r

←−q

d

c

←−r

←−q

d

−→
#

−→q

−→r
←−
d

−→
#

−→q

←−r
←−
−→

#

Single rules Left extremity rules

e ∈ Γ δ(q, #) = (r, d,→) δ(q, #) = (r, d,←)

e

e

−→
#

←−
#

#

−→
#

−→

d#

−→r

←−q

−→
#←−

#

d

#

←−r

←−q

−→
#

e

e
−→
#

←−
#

←−
#

←−

#

d

←−
#

←−q

−→r
−→
#←−

#

d

←−
#

←−q

←−r
−→
#

Fig. 5. Collision rules generated.

Considering the known limit curves for universality in Neary and Woods
(2009b,a) and Woods and Neary (2009b), this leads to the following values: 19
meta-signals for polynomial-time universality for Rogozhin’s Rogozhin (1996a)
4-state 6-symbol universal TM. The number of collision rules is bounded by
62. The exact numbers have not been computed since a construction with
fewer meta-signals is possible.

With the 3-state 3-symbol polynomial-time weakly universal TM from Neary
and Woods (2009b), we generate a polynomial-time weakly universal SM with
only 9 meta-signals.

Using Smith (2007), the 2-state 3-symbol TM translates into a semi-universal
SM with 7 meta-signals (the additional five meta-signals are not needed) and
6 collision rules. Please note that the universality of Smith’s construction is
still a controversial issue.

The computation is robust, the positions do not have to be exact as long as
the order of the signals is preserved.

With a slight increase of the speeds of
←−
and

−→
, the tape can be enlarged

not by one unit but by a geometrically decreasing length. This is displayed in
Fig. 4(c). This provides a way to compute in a spatially bounded portion of
space. The drawback is that if the head moves to the left forever, then in finite
duration, an accumulation is generated: infinitely many signals and collisions
in a bounded part of the space-time diagram.

10

4 Cellular automata

Cellular automata (CA) operate over infinite arrays of cells. Each cell can be
in finitely many states. (The infiniteness of the array is the only way to ensure
unbounded memory.) A CA changes the states of all the cells simultaneously.
Each cell is updated according to a common local function and the states of
the two surrounding cells. This is a parallel, synchronous, local and uniform
process.

Definition 6 A cellular automaton is defined by (Q, f) where: Q is a finite set
of states, f : Q3 → Q, is the local function. The global function, G : QZ → QZ,
is defined by: ∀i ∈ Z,G(c)i = f(ci−1, ci, ci+1).

Only CA of dimension 1 and radius 1 are considered here. Higher dimensions
can be covered similarly by higher dimension signal machines. Radius 1 means
that a cell only communicates with its two closest neighbours (one on each
side). Broader radii could have been considered, but more signals are used to
convey information at greater distances (for example, for radius 2, 5 meta-
signals per state instead of 3).

Cellular automata are inherently non-halting. So that halting is provided by
an outside observer according to some predefined condition like: reaching a
stable/periodic configuration, the apparition of a state/pattern in the config-
uration or on some designated cell. Detecting any of these would require too
many meta-signals.

The simulation works by locating the cells at equal distances. Each time the
local function is used, three signals are emitted, one for the cell and one for
each of the two closest cells. For each state, s, there are three meta-signals
corresponding to these three signals: sL, s and sR of speeds −1, 0 and 1
respectively. A transition is performed when a cell received simultaneously the
values from its two neighbours. The local function is encoded in the collision
rules:

if f(s, t, u) = v then {sR, t, uL} → {vL, v, vR}.

The rule 110 (elementary) CA is presented in Fig. 6 as well as a generated
collision rule.

Output 0 1 1 0 1 1 1 0

Input 1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 ze
ro

R

o
n
e

zero
L

one
L o

n
e

on
eR

Fig. 6. Local transition function and the collision rule implementing f(0, 1, 0) = 1.

CA work on infinite configurations. With rule 110 —proved weakly universal
in Cook (2004)— a 6-meta-signal 8-collision-rule weakly universal SM is gen-

11

erated. Moreover, one signal, say oneR, can be easily removed. This “ghost”
signal can be identified by the presence of only two signals of speeds 0 and
−1, instead of three. The other collisions of two signals are blank (with sig-
nals of speeds 1 and −1 thus differentiating them). Noticing that the transition
f(0, 0, 0) = 0 generates a blank rule, this leads to a 5-meta-signal 7-collision-
rule weakly universal SM.

To consider standard universality, infinitely many cells should be encoded with
finitely many signals. The configurations used are quasi-periodic so that the
periodic pattern generation of Subsect. 2.3 can be used. When a cell is gener-
ated, it corresponds to a future iteration, so that the periodicity to be consid-
ered is not the spatial one but the one following a space-time line which might
have a very different period. Since periodic configurations have (ultimately)
periodic orbits, following a rational space-time discrete line, a periodic obser-
vation is found. The construction is only presented on an example in Fig. 7:
evolution of rule 110 CA on the configuration 11. The periodic space-time
discrete lines are typed in boldface: ω(10) on the left and (011)ω on the right.

0 1 1 1 0 0 1 1 0 0

10 1 1 0 0 0 1 11

10 1 1 1 1 10

10 1 101

Fig. 7. Evolution and simulation of rule 110 on 11 framed by ω(10) and (011)ω.

With the references in Ollinger (2008) and Durand-Lose (2009b), it is hard
to go below, say, 30 meta-signals for standard universality. Ollinger (2002);
Cook (2004) and Richard and Ollinger (2008) provide universal CA with very
few states but they use periodic extensions encoding a boolean function or a
cyclic tag system, which leads to many meta-signals.

4.1 Robust weak universality

Previous construction is not robust since it works with collisions of three
signals. If one signal is slightly moved, then the exact collision of three signals
is transformed into a two-signal collision plus a signal on the side.

The CA simulation can be turned robust by adding a few rules and signals:
leftward meta-signals are replaced by faster ones, and then each central still
signal receives the information from the left (a 2-collision) and then from the
right (another 2-collision). This is depicted on the example of Fig. 8.

The robustness is at the price of extra meta-signals to encode the information

12

z
e
r
o

z
e
r
o
L

z
e
r
o
L

z
e
r
o

f(0, 0, 0)

o
n
eR

o
n
e

o
n
e
L

z
e
r
o
L

z
e
r
o

f(1, 1, 1)

z
e
r
o

o
n
e
L

o
n
e
L

o
n
e

o
n
eR

f(0, 0, 1)

o
n
e

z
e
r
o
L

o
n
e
L

o
n
e

o
n
eR

f(0, 1, 0)

o
n
e

o
n
e
L

o
n
e
L

o
n
e

o
n
eR

f(0, 1, 1)

o
n
eR

z
e
r
o
z
e
r
o

z
e
r
o
L

z
e
r
o
L

z
e
r
o

f(1, 0, 0)

o
n
eR

z
e
r
o
z
e
r
o

o
n
e
L

o
n
e
L

o
n
e

o
n
eR

f(1, 0, 1)

o
n
eR

o
n
e

z
e
r
o
L

o
n
e
L

o
n
e

o
n
eR

f(1, 1, 0)

Fig. 8. Robust simulation of rule 110 with a ghost signal.

brought by the first two signals. Each kind of 2-collision is identified by the
speed of incoming signals: −1 and 1 for blank collision (information exchange
between cells), −1 and 0 for the first part of the transition and 0 and 1 for the
second part. This means, that null-speed signals may be freely reused. Only
three new meta-signals (instead of four) are needed since z 7→ f(1, 0, z) and
z 7→ f(0, 0, z) are the same function. This cost one extra meta-signal.

The ghost signal trick can be used again as depicted in Fig. 8, leading to 6
meta-signals and 9 rules: 4 (for the left and central bit) plus 5 (3 cases by 2
values for the last bit minus one blank rule for 0, 0) 2-meta-signal rules.

5 Cyclic tag systems

A Cyclic tag system (CTS) is defined by a list of binary word called appen-
dants. The input to a CTS is a binary word called the data word. The system
is updated in the following way: the first bit of the data word is removed.
If it is 1, then the first appendant is appended at the end of the data word
(otherwise nothing is done). Then, the list is rotated circularly. The systems
stabilize by reaching an empty data word or by entering a cycle. It can also
be decided that when a special appendant is triggered then the systems halts
and the data word is the output. Not only are CTSs universal (Cook, 2004)
but they also simulate TM in polynomial time (Neary and Woods, 2006a).

The simulation follows the structure of CTSs: parallel signals are used to
encode the data word and the circular list. At every iteration, depending on
the first signal, a copy of the first appendant is appended (for 1) or not (for
0). Signals encoding the data word are configured in such a way that delivered
copies automatically enlarge the data word on the right.

The signals used in the simulation are defined in Figure 9. The following nam-
ing convention is used: meta-signals with no subscript have speed 0 and the

13

ones with subscript LL, R and RR have speed −2, 1 and 2 respectively.

Speed Meta-Signals

-2 goLL

0 zero, one, first, sep, last

1 zeroR, oneR, falseR, trueR

2 zeroRR, oneRR, goRR

Fig. 9. List of all the meta-signals.

As illustrated in Figure 10, the initial configuration is composed, left to right,
of: last, goLL that starts the dynamics, then one’s and zero’s to encode the
data word, then first to indicate the beginning of the cyclic list, then one’s
and zero’s to encode each appendant, and sep to separate one appendant from
the next, and finally last. The iteration starts when the goLL signal erases
last to give goRR. The latter signal erases the first bit, restores last and sends
the corresponding signal, zeroR or oneR to the cyclic list. Once the rotation
is initiated and the possible addition of signals is done, a goLL signal is sent
back through the data word to the last on the left.

la
st go

LL

goR
R

la
st

on
eR

o
n
e ze

ro
o
n
e

o
n
e

fi
rs
t

ze
ro

o
n
e

o
n
e

se
p

o
n
e

se
p

ze
ro

o
n
e

o
n
e

se
p

ze
ro

o
n
e

la
st

data word list of appendants

Fig. 10. Initial configuration and first collisions for 1011 and list [011, 1, 011, 01].

The emitted oneR or zeroR crosses the one’s and zero’s encoding the data word
without modifying anything until first is reached, then the rotation starts. (For

technical reasons linked to the end of the rotation, first remains and is later
removed by goLL.) If the data word is empty, then goRR meets first. Reaching

the empty word is a halting condition so that, in such a case, goRR is just
discarded.

Figure 11 lists all the collision rules. All non-blank rules are collision of only
two signals so that the rules can be presented in a two-dimensional array.

The rotation is handled in three steps: signals for the first appendant are set on
movement then they freely move to the right end of the list, and finally after
reaching last, they are positioned. The first step is presented in Figure 12. A
signal of speed 2 (zeroRR or oneRR) is emitted to generate the speed 1 versions

of zero’s (zeroR) and one’s (oneR) encoding the first appendant. oneRR leaves a
copy of the first appendant (which appears at the end of the data word) while

zeroRR does not. This oneRR or zeroRR stops at the first sep which is replaced
by last and then by first. (Basically, this is the case because both zeroR and

oneR react with first.)

14

zero one first sep last goLL

goRR last, zeroR last, oneR first

oneRR zero, zeroR, oneRR one, oneR, oneRR goLL, last, falseR

zeroRR zeroR, zeroRR oneR, zeroRR goLL, last, falseR

trueR — — first, falseR —

falseR — — sep, goRR — first, oneR goLL, trueR

oneR — — first, trueR, oneRR — — —

zeroR — — first, falseR, zeroRR — — —

goLL — — goLL goRR

zeroR oneR falseR trueR

goRR last zero, goRR one, goRR

oneRR — — —

zeroRR — — —

“—” means blank

“ ” means unused

Other blank rules

zeroR, zero, goLL

zeroR, one, goLL

oneR, zero, goLL

oneR, one, goLL

Fig. 11. List of all the collision rules.

Moving zeroR’s and oneR’s are surrounded by two signals with the same speed,
falseR, to drive the end of the rotation. The bottom right falseR signal is
generated when zeroRR (or oneRR) reaches sep. The top left falseR is generated

when the translation starts (i.e. at the collision on first). As can be seen in

Fig. 12, this signal has identity falseR (only for zeroR), then trueR (after goLL)

and finally falseR (on last). The signal to start the next iteration, goLL, is

emitted when meeting the first sep (it is not a problem since the next iteration

cannot catch up with the rotation). This goLL signal is used to turn falseR to

trueR (and to provide a simple halting scheme, as explained later).

fi
rs
t

fi
rs
t

ze
ro o
n
e o
n
e se
p

ze
ro
R

on
eR

on
eR

la
st

fi
rs
t

go
LL

fa
lse
R

fa
lse
R

ze
ro
R

fa
lse

R

tr
ue

R

zer
oRR

(a) Without copy

fi
rs
t

fi
rs
t

ze
ro o
n
e o
n
e se
p

ze
ro
R

on
eR

on
eR

la
st

fi
rs
t

go
LL

fa
lse
R

fa
lse
R

on
eR

one
RR

tr
ue

Rze
ro o
n
e o
n
e

(b) With copy

Fig. 12. Starting the rotation of appendants for the current simulated time step and
providing the signal goLL that starts the simulation of the next time step.

Step 2 of the rotation, the translation, is straightforward: the parallel falseR,
zeroR and oneR cross sep, zero and one until last is eventually met.

15

The last step of the rotation, as presented in Figure 13, is almost symmetric
to the first part. To save meta-signals, falseR has been used to mark both the
beginning and the end of the appendant. But they have different meanings, so
the first one changes last to first and the second to sep and goRR. The problem
is that first interacts with zeroR and oneR: zeroR (resp. oneR) is changed to

falseR (resp. trueR) and oneRR (resp. zeroRR). This generates the lattice in the
triangle (the signals do not interact inside it). The bits of the appendant are

now encoded with falseR’s and trueR’s. It is the role of goRR to turn them
back into zero’s and one’s and to turn the final oneR to last. Signals goRR,
zeroRR and oneRR are parallel, all the translating signals are parallel; so that
the appendant is recreated with exactly the same distances.

la
st

fi
rs
t

se
p ze
ro o
n
e o
n
e la
st

fa
lse

R

ze
ro
R

on
eR

on
eR

fa
lse

R

goR
R

fa
lse

R

tr
ue

R

tr
ue

R

on
eR

zer
oRR

one
RR

one
RR

Fig. 13. Ending the rotation.

Figure 14(a) shows one full iteration of a CTS including a whole rotation.
Figure 14(b) shows halting by reaching an empty word. Figure 14(c) shows
the effect of the halting appendant as explained below. Figure 14(d) shows one
entire simulation with a halting appendant and cleaning added: blank rules
have been modified in order to destroy the garbage signals escaping on the
right that nevertheless would never interact with the rest of the configuration,
nor provoke any collision since they are parallel. The modified rules to destroy
the signals on the right are:

{ zeroRR, oneR } → { oneR }

{ oneRR, oneR } → { oneR }

Theses rules are only used in the collisions in Fig. 13.

16

(a) One CTS iteration.

(b) Halt by empty word.

(c) Use of halt appendant.

(d) A full simulation (clean & halt).

Fig. 14. Simulation of a cyclic tag system.

5.1 Taking halting into account

CTSs stabilize by reaching an empty data word or by cycling. The first case
is already implanted as displayed in Fig. 14(b) with the rule

{ goRR, first} → { first } .

Cycling is also implemented but detecting it requires more meta-signals.

CTSs can halt by triggering a special appendant. This is implemented by

17

adding two meta-signals for this appendant, halt and haltR (in rotation), with
speeds 0 and 1, and four collision rules for rotating:

{ zeroRR, halt } → { haltR, zeroRR }

{ oneRR, halt } → { halt, haltR, oneRR }

{ goRR, haltR } → { halt, goRR }

and for halting:

{ goLL, halt } → {} .

The generated machine is robust.

Altogether, this sums up to 15 meta-signals and 24 non-blank collision rules.

5.1.1 Non-robust version

Instead of introducing two meta-signals, it is possible to take advantage of
one 2-signal collision and turn it into a 3-signal collision in the case the halt
appendant is triggered (thus the machine is not robust anymore). The collision

between trueR and goLL in Fig. 12(b) is in the zone crossed by the copy to be
appended to the data word. The position of this collision is totally determined
by the position of the surrounding first and sep: it appends at exactly 2/3 of
the distance.

If a one signal is positioned exactly at this position, if a copy is left, it enters
the collision. The extra rule:

{ trueR, one, goLL } → { trueR }

destroys both one and goLL, so that no new cycles is started. Then, the rotation
is finished and no more collision is possible. The result of the computation is
the sequence on the left of first.

The rotating process ensures that the distances between the signals remain
constant, so that a one at 2/3 remains there (and a one not at 2/3 cannot get

there). It should also be ensured that, in the initial position, there is no one

at 2/3 not standing for halt, which is straightforward to achieve: for example,

by using locations 1/2, 3/4, 7/8. . . between sep.

This construction brings forth the need for an exact collision of three signals
which is the only non-robust collision rule. Altogether, this sums up to 13
meta-signals and 21 non-blank collision rules.

18

Acknowledgement

We are very grateful to Matthew Cook for proposing the ghost signal trick
which improved the bounds by one in the weak universal cases.

We are also very gratefull to Turlough Neary, Anthony Seda, Damien Woods
and the anonymous referees for, among other things, clarifying the various
notions of universality.

References

Adamatzky, A., editor (2002). Collision based computing. Springer.
Adamatzky, A. and Durand-Lose, J. (2010). Collision computing. In Corne, D.,

editor, Handbook of Natural Computing: Theory, Experiments, and Applications,
Part II. Springer. Book in press.

Baiocchi, C. (2001). Three small universal Turing machines. In Margenstern, M.
and Rogozhin, Y., editors, Machines, Computations, and Universality, number
2055 in LNCS, pages 1–10. Springer.

Cook, M. (2004). Universality in elementary cellular automata. Complex Systems,
15:1–40.

Delorme, M. and Mazoyer, J. (2002). Signals on cellular automata. In Adamatzky,
A., editor, Collision-based computing, pages 234–275. Springer.

Durand-Lose, J. (2003). Calculer géométriquement sur le plan – machines à signaux.
Habilitation à diriger des recherches, École Doctorale STIC, Université de Nice-
Sophia Antipolis. In French.

Durand-Lose, J. (2005a). Abstract geometrical computation for black hole compu-
tation (extended abstract). In Margenstern, M., editor, Machines, Computations,
and Universality (MCU ’04), number 3354 in LNCS, pages 176–187. Springer.

Durand-Lose, J. (2005b). Abstract geometrical computation: Turing computing
ability and undecidability. In Cooper, B. S., Löwe, B., and Torenvliet, L., editors,
New Computational Paradigms, 1st Conf. Computability in Europe (CiE ’05),
number 3526 in LNCS, pages 106–116. Springer.

Durand-Lose, J. (2009a). Abstract geometrical computation 3: Black holes for clas-
sical and analog computing. Nat. Comput., 8(3):455–472.

Durand-Lose, J. (2009b). Cellular automata, Universality of. In Meyers, R. A. and
Adamatzky, A., editors, Encyclopedia of Complexity and System Science, pages
901–913. Springer.

Kari, J. (2005). Theory of cellular automata: a survey. Theoret. Comp. Sci., 334:3–
33.

Korec, I. (1996). Small universal register machines. Theoret. Comp. Sci.,
168(2):267–301.

Kudlek, M. (1996). Small deterministic turing machines. Theoret. Comp. Sci.,
168(2):241–255.

Margenstern, M. (1995). Non-erasing Turing machines: A new frontier between a

19

decidable halting problem and universality. In Baeza-Yates, R., Goles, E., and
Poblete, P., editors, LATIN’95, number 911 in LNCS, pages 386–397. Springer.

Mazoyer, J. and Terrier, V. (1999). Signals in one-dimensional cellular automata.
Theoret. Comp. Sci., 217(1):53–80.

Neary, T. and Woods, D. (2006a). P-completeness of cellular automaton rule 110.
In Bugliesi, M., Preneel, B., Sassone, V., and Wegener, I., editors, International
Colloquium on Automata Languages and Programming (ICALP ’06), number
4051(1) in LNCS, pages 132–143. Springer.

Neary, T. and Woods, D. (2006b). Small fast universal Turing machines. Theoret.
Comp. Sci., 362(1–3):171–195.

Neary, T. and Woods, D. (2009a). Four fast universal Turing machines. Fund. Inf.,
91(1):123–144.

Neary, T. and Woods, D. (2009b). Small weakly universal Turing machines. In
Kutylowski, M., Charatonik, W., and Gebala, M., editors, Fundamentals of Com-
putation Theory, 17th International Symposium, FCT 2009, Wroclaw, Poland,
September 2-4, 2009. Proceedings, volume 5699 of Lecture Notes in Computer
Science, pages 262–273. Springer.

Ollinger, N. (2002). The quest for small universal cellular automata. In Wid-
mayer, P., Ruiz, F. T., Morales, R. B., Hennessy, M., Eidenbenz, S., and Conejo,
R., editors, International Colloquium on Automata Languages and Programming
(ICALP ’02), number 2380 in LNCS, pages 318–329. Springer.

Ollinger, N. (2008). Universalities in cellular automata: a (short) survey. In Durand,
B., editor, Journées Automates cellulaires (JAC ’08), pages 102–118.

Richard, G. and Ollinger, N. (2008). A particular universal cellular automaton. In
Neary, T., Woods, D., Seda, A. K., and Murphy, N., editors, The Complexity of
Simple Programs. National University of Ireland, Cork.

Rogozhin, Y. (1996a). Small universal turing machines. Theoret. Comp. Sci.,
168(2):215–240.

Rogozhin, Y. V. (1982). Seven universal Turing machines. In Systems and theoretical
programming, number 63 in Mat. Issled., pages 76–90. Academia Nauk Moldavskoi
SSR. in Russian.

Rogozhin, Y. V. (1996b). Small universal Turing machines. Theoret. Comp. Sci.,
168(2):215–240.

Sarkar, P. (2000). A brief history of cellular automata. ACM Computing Surveys,
32(1):80–107.

Smith, A. (2007). Universality of Wolfram’s 2, 3 Turing machine. Complex Systems.
to appear.

Woods, D. and Neary, T. (2006). On the time complexity of 2-tag systems and small
universal Turing machines. In 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’06), Berkeley, CA, USA, pages 439–448. IEEE
Computer Society.

Woods, D. and Neary, T. (2007). Small semi-weakly universal Turing machines.
In Durand-Lose, J. and Margenstern, M., editors, Machines, Computations and
Universality (MCU ’07), number 4664 in LNCS, pages 303–315. Springer.

Woods, D. and Neary, T. (2009a). The complexity of small universal Turing ma-
chines: A survey. Theoret. Comp. Sci., 410(4–5):443–450.

Woods, D. and Neary, T. (2009b). Small semi-weakly universal Turing machines.

20

Fund. Inf., 91(1):179–195.

21

