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On the superimposition of Christoffel words

Geneviève Paquin∗† Christophe Reutenauer ‡

September 30, 2010

Abstract

Initially stated in terms of Beatty sequences, the Fraenkel conjecture can be reformu-
lated as follows: for a k-letter alphabet A, with a fixed k ≥ 3, there exists a unique bal-
anced infinite word, up to letter permutations and shifts, that has mutually distinct letter
frequencies. Motivated by the Fraenkel conjecture, we study in this paper whether two
Christoffel words can be superimposed. Following from previous work on this conjecture
using Beatty sequences, we give a necessary and sufficient condition for the superimposition
of two Christoffel words having same length, and more generally, of two arbitrary Christoffel
words. Moreover, for any two superimposable Christoffel words, we give the number of dif-
ferent possible superimpositions and we prove that there exists a superimposition that works
for any two superimposable Christoffel words. Finally, some new properties of Christoffel
words are obtained as well as a geometric proof of a classic result concerning the money
problem, using Christoffel words.

Key words: Fraenkel conjecture; Beatty sequence; Christoffel word; superimposition.

1 Introduction

Beatty sequences and Sturmian words are equivalent objects. The first ones are studied in
number theory. The second ones, known since the work of Bernoulli [Ber72], are studied in
combinatorics on words and related domains. A Beatty sequence is a sequence of the form
S(α, β) = {⌊αn + β⌋ : n ∈ Z}, with α, β ∈ R. It appeared in the literature for the first
time in [BACD+26], and the name came only more than 30 years later in [Con59, Con60].
A finite set of Beatty sequences is called an (eventual) exact cover if every (sufficiently large)
positive integer occurs in exactly one Beatty sequence. It is thus natural to wonder which sets of
Beatty sequences are an (eventual) exact cover of the integers. Some particular cases have been
studied for instance in [BACD+26, Usp27, Ban57, Sko57, Gra63, Niv63, Fra69, FLS72]. Later,
in [EG80], appears the Fraenkel conjecture in terms of Beatty sequences which states that if a
finite set of rational Beatty sequences, that is Beatty sequences with α ∈ Q, is an eventual cover
of the integers, then the α’s satisfy a particular form (see [EG80] for more details).

In combinatorics on words, the conjecture can be restated as: for a finite k-letter alphabet,
with a fixed k ≥ 3, there exists a unique balanced infinite word, up to letter permutations and

∗with the support of FQRNT (Québec)
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shifts, that has mutually distinct letter frequencies. This supposedly unique infinite word is
called a Fraenkel word and is given by the periodic word Frω

k , where Frk is defined recursively
by Frk = Frk−1kFrk−1 for k ≥ 2, and Fr1 = 1.

Particular cases of the Fraenkel conjecture have been well studied for instance by Morikawa,
who published a series of papers on the topic (see [Tij00] for a good survey). More precisely, in
[Mor85], the author proves the following theorem, which is a necessary and sufficient condition
for the disjointness of two Beatty sequences, and that was later reformulated by Simpson [Sim04]
as:

Theorem. [[Mor85], see also [Sim04]] Let p1, p2, q1, q2 be integers and let p = gcd(p1, p2),
q = gcd(q1, q2), u1 = q1/q and u2 = q2/q. There exist β1 and β2 such that the Beatty sequences
S1 = {⌊p1n/q1 + β1⌋ : n ∈ Z} and S2 = {⌊p2n/q2 + β2⌋ : n ∈ Z} are disjoint if and only if there
exist positive integers x and y such that

xu1 + yu2 = p− 2u1u2(q − 1).

This result is a step towards Fraenkel conjecture. In [Sim04], Simpson works out the proof
of Morikawa, gives a new proof and proves some new intermediate results. While translating
Simpson results in terms of Christoffel words, some nice properties of these words naturally
appear. In our paper, we first introduce some basic definitions and notation, and we show how
the Fraenkel conjecture and the superimposition of Christoffel words are related. Then after
having formulated and proved the main results of Simpson in terms of Christoffel words, we go
farther and give the number of superimpositions of two Christoffel words and one possible shift
needed to superimpose them. We end this paper by showing how the geometric representation
of Christoffel words can be used to prove a problem related to the classical money problem.

The authors are grateful to R. J. Simpson for giving them useful details about his proofs.

2 Preliminaries

We first recall notions on words (for more details, see for instance [Lot02]).
An alphabet A is a finite set of symbols called letters. A word over A is a sequence of letters

from A. The empty word ε is the empty sequence. Equipped with the concatenation operation,
the set A∗ of finite words over A is a free monoid with neutral element ε and set of generators
A, and A+ = A∗ \ ε. Given a nonempty finite word u = u[0]u[1] · · · u[n− 1], with u[i] ∈ A, the
length |u| of u is the integer n. One has |ε| = 0. We denote by An the set of finite words of
length n over A and by Aω the set of (right-) infinite words over A. The set A∞ is defined as
the set of finite and infinite words: A∞ = A∗∪Aω. The set of bi-infinite words, denoted by AZ,
is defined as the set of functions Z → A. For the sake of clarity, we denote in bold character
a letter denoting an infinite or bi-infinite word, in opposition to a finite word. If u ∈ A∗, then
ωuω is the bi-infinite word s = · · · u • uu · · · . The point • is located between s[−1] and s[0] and
represents the origin of the word s.

As usual, for a finite word u and a positive integer n, the nth power of u, denoted un, is the
word ε if n = 0; otherwise un = un−1u. The finite word w is primitive if it is not the power
of a shorter word. If u 6= ε, uω (resp. ωu) denotes the right-infinite (resp. left-infinite) word
obtained by infinitely repeating u to the right (resp. to the left). A right-infinite word u is
periodic (resp. ultimately periodic) if it can be written as u = wω (resp. u = vwω), with v ∈ A∗

and w ∈ A+. The number of occurrences of the letter a in the word u is denoted by |u|a.

2



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Over infinite words, the shift operator σ is defined by σ : AN → AN such that σ(s[n]) =
s[n + 1]. It is also naturally defined over the set of bi-infinite words by σ : AZ → AZ, with
σ(s[n]) = s[n + 1]. A shift σk, with k ≥ 0, over a bi-infinite word is equivalent to move the
origin k times to the right. For a letter α ∈ A and a finite word w ∈ A∗, the conjugacy operator
γ is defined by γ(αw) = wα. Then σ(wω) = (γ(w))ω : γ acts over finite words as the shift σ

acts over infinite words.
If, for some words u, s ∈ A∞, v, p ∈ A∗, u = pvs, then v is a factor of u, p is a prefix of u

and s is a suffix of u. If v 6= u (resp. p 6= u and s 6= u), v is called a proper factor (resp. proper
prefix and proper suffix). The set of factors of the word u is denoted F (u).

The reversal of the finite word u = u[0]u[1] · · · u[n − 1], also called the mirror image, is
ũ = u[n − 1]u[n − 2] · · · u[0] and if u = ũ, then u is called a palindrome. Let u ∈ An. Then
u[i]u[i + 1] · · · u[n− 1]u[0] · · · u[i− 1] is a conjugate of u, for all 0 ≤ i ≤ n− 1.

In what follows, for p, q ∈ N, we write p ⊥ q if gcd(p, q) = 1. Otherwise, we write p 6⊥ q.

2.1 Christoffel words

In combinatorics on words, instead of using Beatty sequences, we use an equivalent combinatoric
object: the Sturmian words. There exists a wide literature about Sturmian words in which
we can find several characterizations depending on the context of the study (see for instance
[Lot02]). In particular, the Sturmian words are known as the balanced non-periodic infinite
words over a 2-letter alphabet. Recall that a finite or infinite word w is balanced if for all finite
factors u, v ∈ F (w) having same length and for all letters a ∈ A,

∣∣|u|a − |v|a
∣∣ ≤ 1.

A finite version of the Sturmian words is the family of Christoffel words. It has been studied
for instance in [Chr75, BR06, BdLR08, KR07]. From the definition of Christoffel words given
in [MH40], in terms of symbolic dynamics, one can easily deduce the following:

Definition 2.1 Let A = {a < x}, α, β ∈ N such that α ⊥ β and let n = α + β. The
Christoffel word u ∈ A∗ with α occurrences of a’s and β occurrences of x’s is defined by
u = u[0]u[1] · · · u[n− 1], where

u[i] =

{
a if (i + 1)β mod n > iβ mod n

x if (i + 1)β mod n ≤ iβ mod n

for 0 ≤ i < n, where iβ mod n denotes the remainder of the Euclidean division of iβ by n.
We say that u has slope β/α.

To any Christoffel word, we can associate a Christoffel path, defined as follows.

Definition 2.2 Suppose p, q ∈ N and p ⊥ q. The Christoffel path of slope q/p is the path from
(0, 0) to (p, q) in the integer lattice Z× Z that satisfies the following two conditions.

i) The path lies below the line segment that begins at the origin and ends at (p, q).

ii) The region in the plane enclosed by the path and the line segment contains no other points
of Z× Z besides those of the path.

Notice that the Christoffel word obtained using Definition 2.2 is also called the lower
Christoffel word and the one obtained by considering the path above the line instead of be-
low is called the upper Christoffel word. In this paper, we will only consider the lower ones.
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The next figure shows the Christoffel path of slope 3/5.

(5,3)

(0,0)

Notice that Definition 2.1 can be generalized to powers of Christoffel words by removing the
condition α ⊥ β. We then have:

Definition 2.3 Let C(n, α) be a word of length n over {a < x}∗ having α occurrences of a’s,
with α ≤ n, and let r = gcd(n, α).

i) If r = 1, then C(n, α) denotes the Christoffel word of slope n−α
α .

ii) If r > 1, then C(n, α) = C(rn
r , rα

r ) =
(
C
(

n
r , α

r

))r denotes the rth power of the Christoffel
word C

(
n
r , α

r

)
.

Lemma 2.4 The reversal of a Christoffel word (resp. power of a Christoffel word) C(n, α) ∈
{a < x}∗, denoted by C̃(n, α), is also a Christoffel word (resp. power of a Christoffel word)
over the same alphabet, but for which the order of the letters is reversed. More precisely,
C̃(n, α) = C(n, n− α) ∈ {x < a}∗.

Proof. Follows from the fact that the upper Christoffel word is also a Christoffel word, equals
to the mirror of the lower Christoffel one (see Prop. 4.2 in [BLRS08]).

Let us now consider the directed graph with the set of vertices {0, 1, 2, . . . , α + β − 1} that
has an arrow from the vertex i to the vertex j if i + β ≡ j mod n and labeled by a if i < j,
and by x if j < i.

i) If α ⊥ β, this graph is called the Cayley graph of the Christoffel word u over the alphabet

{a < x} and having slope
β

α
.

ii) If gcd(α, β) = r > 1, then the graph obtained is isomorphic to the Cayley graph C

(
α + β

r
,
α

r

)
.

This graph read r times is the Cayley graph of C(α + β, α).

Example 2.5 The Cayley graph associated to the Christoffel word over {a < x} having slope
3/5 is

4
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and u = aaxaaxax, |u|a = 5, |u|x = 3.

2.2 Link with the Fraenkel conjecture

Before showing how the problem of superimposition of Christoffel words is related to the Fraenkel
conjecture, some definitions are required.

First, let us recall that a word w ∈ A∗ is said to be circularly balanced if w2 = ww is
balanced.

Example 2.6 The word u = 112121 is balanced, but is not circularly balanced. Indeed,
111, 212 ∈ F (uu), but

∣∣|111|1 − |212|1
∣∣ > 1.

Example 2.7 One can easily verify that the word 112112 is balanced and consequently, that
v = 112 is circularly balanced.

Let w ∈ A∗, with Card A ≥ 3. The projection Πa(w) of the word w ∈ A∗ on the alphabet
{a, x}, with a ∈ A and x /∈ A, is defined by

Πa(w)[i] =

{
a if w[i] = a

x otherwise.

Example 2.8 Let w = 1232343112. Then Π1(w) = 1xxxxxx11x, Π2(w) = x2x2xxxxx2,
Π3(w) = xx3x3x3xxx and Π4(w) = xxxxx4xxxx.

The next result is given without proof, since it is trivial.

Lemma 2.9 If w ∈ A∗ is circularly balanced, then for all a ∈ A, the projection Πa(w) is so.

Definition 2.10 (superimposition of bi-infinite words) Let u ∈ ω{a, x}ω and v ∈ ω{b, x}ω

be two bi-infinite words. Let A be the set of positions of the a’s in u and B be the set of positions
of the b’s in v. We say that u and v are superimposable if A ∩B = ∅.

Example 2.11 Let u = ω(aaxaxx)ω and v = ω(xxbxxx)ω. Then A = {0, 1, 3} + 6Z and
B = {2}+ 6Z. Hence u and v are superimposable.

Definition 2.12 (superimposition of finite words) Let u ∈ {a, x}n and v ∈ {b, x}m be
finite words. Let A be the set of positions of the a’s in u and let B be the set of positions of

5
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the b’s in v. Then u and v are superimposable if and only if there exists k ∈ Z such that ωuω

and σk(ωvω) are superimposable, that means if

(A + nZ) ∩ (B − k + mZ) = ∅.

If k = 0, u and v are said perfectly superimposable.

Remark 2.13 In Definition 2.12, the condition k ∈ Z can be replaced by k ∈ [0,min{m,n}−1].
Indeed, one can easily verify that if there exists a shift k outside this interval that allows the
superimposition, then there exists k′ ∈ [0,min{m,n} − 1] such that it is so.

Lemma 2.14 Let u, v,A and B be such as in Definition 2.12. The words u and v are super-
imposable and are such that

(A + nZ) ∩ (B − k + mZ) = ∅

if and only if u and γk(v) are perfectly superimposable.

Proof. By definition, u and v are superimposable if and only if there exists k ∈ Z such that
(A + nZ) ∩ (B − k + mZ) = ∅. This condition is satisfied if and only if the set of positions of
the a’s in ωuω and the set of positions of the b’s in σk( ωvω) are disjoint. It is then sufficient
to show that the positions of the b’s in ω(γk(v))ω are the same as in σk( ωvω). Those two
words have period m and consequently, the positions of the b’s are the same if and only if
ω(γk(v))ω = σk( ωvω) ⇐⇒ γk(v) = σk( ωvω)[0,m − 1]. This last condition is satisfied by the
definition of γ.

Corollary 2.15 A finite circularly balanced word w ∈ Am, with A = {1, 2, . . . , k}, having
pairwise distinct letter frequencies can be obtained by the superimposition of k circularly balanced
words w1 ∈ {1, x}m, w2 ∈ {2, x}m, . . . , wk ∈ {k, x}m such that |wi|i = |w|i for all 1 ≤ i ≤ k.

Proof. It is sufficient to apply the projection Πa(w) to all letters a ∈ A and to conclude using
Lemma 2.9.

Lemma 2.16 [AGH98] Any balanced infinite word over a k-letter alphabet, with k ≥ 3, having
pairwise distinct letter frequencies is periodic.

Corollary 2.15 and Lemma 2.16 give the main motivation of this paper. Lemma 2.16 tells
us that in order to prove the Fraenkel conjecture, it is sufficient to prove that for a k-letter
alphabet, any circularly balanced finite word having pairwise distinct letter frequencies is a
conjugate of Frk. Moreover, we deduce from Corollary 2.15 that any finite word satisfying
the conditions of the Fraenkel conjecture can be obtained by the superimposition of circularly
balanced words, or in other words, by the superimposition of conjugates of powers of Christoffel
words, since Christoffel words are primitive balanced words that are minimal with respect to
the lexicographic order in their conjugacy class.

In this paper, we are naturally interested in the superimposition of two circularly balanced
words. We first only consider two finite primitive words and we give a necessary and sufficient
condition for the superimposition of those two words. Moreover, if u is primitive and circularly

6
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balanced, then there exists a conjugate of u that is a Christoffel word. Thus, we consider the
corresponding Christoffel words w1 and w2 and we give a criterion such that w1 and w2 are
superimposable. To do so, we use results from [Sim04] which are an extension of the works
of [Mor85]. We will see that considering a finite circularly balanced word as a conjugate of a
power of a Christoffel word allows us to get some nice properties of the Christoffel words.

3 Superimposition of Christoffel words having same length

In this section, we first recall some properties of Christoffel words that will be used in the
sequel. Then we study the superimposition of Christoffel words having same length. Notice
that most of the results of this section are already known from [Mor85, Sim04], but we include
some of their proofs since it will be useful in order to prove the new results presented in the
last subsection (number of superimpositions) and in the next sections.

In the sequel, for a positive integer α and a fixed n, we will denote by α the integer in
[0 . . . n− 1] such that αα ≡ −1 mod n.

Lemma 3.1 is a translation of Theorem 3 in [Sim04] in terms of Christoffel words. This
result also appears in [BdLR08] in an equivalent form using the duality of Christoffel words.

Lemma 3.1 [Sim04, BdLR08] Let C(n, α) ∈ {a < x}∗ be a Christoffel word. Then the posi-
tions of the a’s modulo n in C(n, α) are given by the set {0, α, 2α, . . . , (α− 1)α}.

Lemma 3.1 can be easily generalized to a power of a Christoffel word as:

Corollary 3.2 Let C(nq, αq) = (C(n, α))q with n ⊥ α. Then the positions of the a’s modulo
nq in C(nq, αq) are given by

q−1⋃
i=0

{0, α, 2α, . . . , (α− 1)α}+ in.

The following theorem is deduced by Simpson from the Chinese remainder Theorem.

Theorem 3.3 [Sim04] Let C(n, 1) and C(m, 1) be two Christoffel words. Then C(n, 1) and
C(m, 1) are superimposable if and only if n 6⊥ m.

Lemma 3.4 Let C(n, α) ∈ {a < x}∗. For each position i of an a in C̃(n, α), there exists j ∈ N
such that

iα < jn ≤ (i + 1)α.

Proof. Recall that by Lemma 2.4, C̃(n, α) = C(n, n−α) ∈ {x < a}∗. Using the generalization of
Definition 2.1 to powers of Christoffel words by replacing respectively a, x, α and β by x, a, n−α

and α, we obtain that C̃(n, α)[i] = a if and only if (i+1)α mod n ≤ iα mod n. But (i+1)α
mod n ≤ iα mod n if and only if there exists a multiple of n between iα and (i + 1)α
inclusively. This condition is satisfied if and only if there exists j such that iα < jn ≤ (i + 1)α.

7
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Lemma 3.5 Let C(n, α) ∈ {a < x}n and C(n, β) ∈ {b < x}n be Christoffel words or power of
Christoffel words. If α|β, then the set of positions of the a’s in C(n, α) is a subset of the set of
positions of the b’s in C(n, β).

Proof. Let us prove this statement for the reversed words. Since α|β, we write β = qα, q ∈ N.
Let i be the position of an a in C̃(n, α). Then by Lemma 3.4, there exists j ∈ N such that
iα < jn ≤ (i + 1)α. Multiplying both sides of the inequation by q yields

i(qα) < (jq)n ≤ (i + 1)(qα) ⇐⇒ iβ < (jq)n ≤ (i + 1)β,

with jq ∈ N. Hence i is also a position of a b in C̃(n, β).

Theorem 3.6 (Th. 2 in [Sim04]) Let C(n, α) ∈ {a < x}n, C(m,β) ∈ {b < x}m be two
Christoffel words and let p = gcd(m,n). Then C(n, α) and γkC(m,β) are perfectly superimpos-
able if and only if C(p, α) and γkC(p, β) are so.

Theorem 3.6 is proved in [Sim04] in terms of Beatty sequences. Note that a straightforward
proof, in terms of Christoffel words, can be found in [Paq08].

Corollary 3.7 If the Christoffel words C(n, α) and C(m,β) are superimposable, then m 6⊥ n

and α + β ≤ p, with p = gcd(m,n).

Proof. By Theorem 3.6, C(n, α) and C(m,β) are superimposable if and only if C(p, α) and
C(p, β) are so. This implies that if C(n, α) and C(m,β) are superimposable, then α + β ≤ p.
Since α, β > 0, we have 1 < α + β ≤ p, and consequently, m 6⊥ n.

In what follows, we will first consider only Christoffel words having the same length, since
Theorem 3.6 will then allow us in Section 4 to generalize our results to words of any length.

3.1 Particular case: if α|β
In this subsection, we study the superimposition of the Christoffel words C(n, α) and C(n, β),
having same length, with α|β. We give a criterion that the shift must satisfy in order to allow
the superimposition (Lemma 3.11), and then, we show a necessary and sufficient condition for
the superimposition of those Christoffel words (Corollary 3.12). We also exhibit a shift that
will always allow the perfect superimposition of two Christoffel words (Corollary 3.13). We end
the subsection by showing how a Christoffel word can be viewed as the superimposition of some
Christoffel words (Theorem 3.14).

Lemma 3.8 Let C(n, α) ∈ {a < x}n be a Christoffel word. Then C(n, α) = γαC̃(n, α).

Proof. By Lemma 3.1, the positions of the a’s (modulo n) in C(n, α) are given by the set

A = {0, α, 2α, . . . , (α − 1)α}.

In the other hand, the positions of the a’s (modulo n) in the reverse word C̃(n, α) are given by

Ã = {n− 1, n− 1− α, n − 1− 2α, . . . , n− 1− (α− 1)α}
= {−1,−1− α,−1− 2α, . . . ,−1− (α− 1)α}.

8
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We then obtain that the positions of the a’s in the conjugate γαC̃(n, α) are given by

γαÃ = {−1− α,−1− 2α,−1− 3α, . . . ,−1− αα}
= {(α − 1)α, (α − 2)α, . . . , , α, 0} = A.

Definition 3.9 Let I = [a, b] and I ′ = [c, d] be two intervals of integers. We say that I is
located at the left of I ′ if a < c.

Lemma 3.10 The set of differences between the positions of the a’s in C(n, α) ∈ {a < x}n and
the positions of the b’s in C(n, β) ∈ {b < x}n, with β = qα and q ∈ N, forms a set of integers
having cardinality (2α − 1)q.

Proof. Recall from Lemma 3.1 that the positions of the a’s in C(n, α) are {0, α, . . . , (α − 1)α}
and those of the b’s in C(n, β) are {0, β, . . . , (β− 1)β}. Since β = qα, multiplying both sides by
αβ yields α ≡ qβ mod n and hence iα ≡ iqβ mod n. Consequently, the differences between
the positions of the letters form, modulo n, the set

E = {jβ − iα} 0≤j<β
0≤i<α

= {(j − iq)β} 0≤j<β
0≤i<α

. (1)

For a fixed i, the possible values of j− iq form the interval [−iq, β− iq[. Since q > 0, we deduce
that for any i, the interval [−iq, β − iq[ is at the left of the interval [−(i− 1)q, β − (i− 1)q[.

We have β = qα ⇒ β ≥ q ⇒ β− iq ≥ q− iq = −(i−1)q. Thus, the union of two consecutive
intervals is also an interval, and consequently, the union of these α intervals forms the interval
[−(α− 1)q, β[, which has cardinality

β − (−(α− 1)q) = β + αq − q = αq + αq − q = (2α− 1)q. (2)

Lemma 3.11 (Th. 4 in [Sim04]) Let C(n, α) ∈ {a < x}n and C(n, β) ∈ {b < x}n be two
Christoffel words, with β = qα and q ∈ N and let ℓ ∈ [0, n − 1]. The following conditions are
equivalent:

i) C(n, α) and γℓβC(n, β) are perfectly superimposable;

ii) ℓ + nN ∩ [−(α − 1)q, β[= ∅;
iii) C(n, α) and γβ(1+ℓ)C̃(n, β) are perfectly superimposable.

Proof. C(n, α) and γkC(n, β) are perfectly superimposable if and only if the shift k is not
contained in the set E (see (1)). Otherwise, there is an a in C(n, α) at the same position as
a b in γkC(n, β). This last condition is satisfied if and only if there exits ℓ /∈ [−(α − 1)q, β[
mod n such that k = ℓβ. Thus there exists ℓ /∈ [−(α − 1)q, β[ mod n if and only if C(n, α)
and γℓβC(n, β) are perfectly superimposable. Hence i) ⇐⇒ ii). Moreover, Lemma 3.8 gives
that C(n, β) = γβC̃(n, β). Replacing C(n, β) by this value in γℓβC(n, β) yields

γℓβC(n, β) = γℓβγβC̃(n, β) = γβ(ℓ+1)C̃(n, β).

Hence i) ⇐⇒ iii).

9
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Corollary 3.12 (Cor. 5 in [Sim04]) Let C(n, α) ∈ {a < x}n and C(n, β) ∈ {b < x}n be
Christoffel words such that β = qα, q ∈ N. Then C(n, α) and C(n, β) are superimposable if and
only if (2α− 1)q < n.

Proof. The words C(n, α) and C(n, β) are superimposable if and only if there exists a shift
0 ≤ k < n such that the positions of the α occurrences of a’s in C(n, α) form a disjoint set from
the set of positions of the β occurrences of b’s in C(n, β). Such a shift k exists if and only if
the set E (from Equation (1)) has cardinality at most n − 1. We conclude using the fact that
by Equation (2), Card (E) = (2α − 1)q.

From Lemma 3.11, it is also possible to deduce a shift that always allows the perfect super-
imposition of two superimposable Christoffel words C(n, α) and C(n, β) having same length,
with α|β:

Corollary 3.13 Let C(n, α) and C(n, β) be two superimposable Christoffel words such that
β = qα, q ∈ N. Then C(n, α) and γ(1−r)C̃(n, β) are perfectly superimposable, with αr ≡ 1
mod n.

Proof. By Lemma 3.11 we have (2α − 1)q < n and so

2β < n + q. (3)

Since αr ≡ 1 mod n we have βr ≡ q mod n, and (3) implies that no member of the interval
[q + 1, 2β] is congruent to q modulo n. Thus βr does not belong to this interval, and so,

βr − β − 1 6∈ [q + 1− β − 1, 2β − β − 1]

= [q − αq, β − 1]

= [−(α− 1)q, β[.

By parts ii) and iii) of Lemma 3.11, C(n, α) and γ(βr−β−1)βC(n, β) are superimposable. Using
Lemma 3.8 and the fact that γn is an identity transformation the second word equals

γ−r+1−βC(n, β) = γ1−rC̃(n, β)

as required.

Theorem 3.14 (Th. 6 in [Sim04]) Let C(n, qα) ∈ {a < x}n be a Christoffel word. Then
the set of positions of the a’s in C(n, qα) is the union of the sets {0, α, ..., (α− 1)α}+ kqα, for
0 ≤ k < q. Moreover, the Christoffel word C(n, qα) is the result of the perfect superimposition
of the following q conjugates of C(n, α): C(n, α), γ−qαC(n, α), . . . , γ−(q−1)qαC(n, α).

Proof. By Lemma 3.1, the set of positions of the a’s in C(n, qα) is, modulo n,

{0, qα, 2qα, . . . , (qα− 1)qα} =
qα−1⋃
j=0

jqα =
q−1⋃
k=0

α−1⋃
i=0

(iq + k)qα. (4)

10
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The last equality is obtained by separating the positions with respect to their remainder modulo
q. Since qαqα ≡ −1 mod n, we have qqα ≡ α mod n. Thus replacing qqα by α in Equation
(4) yields

qα−1⋃
j=0

jqα =
q−1⋃
k=0

α−1⋃
i=0

iα + kqα =
q−1⋃
k=0

{0, α, 2α, . . . , (α− 1)α}+ kqα. (5)

We conclude this proof by observing that the q sets {0, α, . . . , (α− 1)α}+ kqα, for 0 ≤ k ≤
q − 1, correspond respectively to the positions of the a’s in the conjugates of Christoffel words
C(n, α), γ−qαC(n, α), . . . , γ−(q−1)qαC(n, α).

3.2 General case

In this section, we study the general case of the superimposition of two Christoffel words having
same length. In order to do so, we consider the Christoffel words C(n, qα) ∈ {a < x}∗ and
C(n, qβ) ∈ {b < x}∗, with α ⊥ β and q ∈ N.

Notation 3.15 For 0 ≤ i < α, we denote by Vi the interval of integers

Vi = [(−q + 1)β, qβ − 1] + iαβ.

Proposition 3.16 The Christoffel words C(n, qα) and C(n, qβ) are superimposable if and only
if the union

α−1⋃
i=0

Vi (6)

is not a complete set of residues modulo n.

Proof. By inverting q and α in Theorem 3.14, we find that C(n, qα) is the perfect superimposition
of the α conjugates C(n, q), γ−qαC(n, q), . . . , γ−(α−1)qαC(n, q). The set of positions of the a’s
in C(n, qα) is

⋃α−1
i=0 posa(γ−iqαC(n, q)), where posa(w) denotes the positions of the a’s in w.

Moreover, replacing α, q and β by respectively q, β and qβ in Lemma 3.11 yields that C(n, q)
and γℓqβC(n, qβ) are perfectly superimposable if and only if ℓ /∈ [−(q − 1)β, qβ[ mod n. More
generally, γ−iqαC(n, q) and γℓqβC(n, qβ) are perfectly superimposable if and only if C(n, q) and
γℓqβ+iqαC(n, qβ) are perfectly superimposable. In order to get the form of Lemma 3.11 i), we
rewrite ℓqβ + iqα as

ℓqβ + iqα = ℓqβ − qβqβiqα

= qβ(ℓ + qβiq α)

= qβ(ℓ− iαβ).

We now have the required form of Lemma 3.11 i). Then γℓqβ+iqαC(n, qβ) and C(n, q) are
perfectly superimposable if and only if there exists ℓ− iαβ /∈ [−(q− 1)β, qβ[ mod n. This last
condition is equivalent to the existence of a ℓ /∈ [−(q − 1)β, qβ[ +iαβ = Vi, but we need that
ℓ /∈ Vi for all 0 ≤ i < α. Thus the words C(n, qα) and C(n, qβ) are superimposable if and only
if
⋃α−1

i=0 Vi is not a complete set of residues modulo n.

11
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Corollary 3.17 There exists ℓ /∈ ⋃α−1
i=0 Vi mod n if and only if C(n, qα) and γ(ℓ+1)qβC̃(n, qβ)

are perfectly superimposable.

Proof. By Proposition 3.16, the union of the Vi’s is not a complete set of residues modulo n if and
only if C(n, qα) and C(n, qβ) are superimposable. Since C(n, qα) is the perfect superimposition
of the following α conjugates of C(n, q)

C(n, q), γ−qαC(n, q), . . . , γ−(α−1)qαC(n, q),

using the proof of Proposition 3.16 we get that γ−iqαC(n, q) is perfectly superimposable with
γℓqβC(n, qβ) if and only if there exists a ℓ /∈ [−(q − 1)β, qβ[ +iαβ for all 0 ≤ i < α. Hence,
C(n, qα) and γℓqβC(n, qβ) are perfectly superimposable if and only if there exists ℓ /∈ [−(q −
1)β, qβ[ +iαβ for all 0 ≤ i < α. Finally, using Lemma 3.8, C(n, qβ) = γqβC̃(n, qβ) and we
get that C(n, qα) and γℓqβC(n, qβ) are perfectly superimposable if and only if C(n, qα) and
γℓqβγqβC̃(n, qβ) = γ(ℓ+1)qβC̃(n, qβ) are so.

Lemma 3.18 Let α, β ∈ N− {0}, with α ⊥ β, and let

xα + yβ = n− 2αβ(q − 1), (7)

with q, α, β ⊥ n and q ≥ 1. Then:

i) Equation (7) always has a solution {x, y} ∈ Z2;

ii) it always has a unique solution with 1 ≤ y ≤ α;

iii) if Equation (7) is satisfied, then α ⊥ (α− y).

Proof. Since α ⊥ β, Equation (7) always has a solution {x, y} ∈ Z2. Let us now suppose that
there exist 2 solutions, {x, y} and {x′, y′}, such that 1 ≤ y, y′ ≤ α. Then xα + yβ = x′α + y′β
and consequently, α(x− x′) = β(y′ − y). But α ⊥ β implies that α|(y′ − y): this is impossible,
since 1 ≤ y, y′ ≤ α. Finally, Equation (7) can be rewritten as

α(x + 2β(q − 1)) = n− yβ

and since α ⊥ n, it follows that α ⊥ y and hence α ⊥ (α− y).

Notation 3.19 In the sequel, let z = α− y, where y refers to the solution of Equation (7). Let
i ∈ [0, α − 1] be one of the possible values of z, as z = α − y and y ∈ [1, α]. Since α ⊥ z (see
Lemma 3.18 iii)), following Simpson [Sim04], there exists a unique r(i) ∈ N such that i ≡ r(i)z
mod α. For 0 ≤ r < α, let

M(r) = r(x + (2q − 1)β) −
⌊zr

α

⌋
β. (8)

The functions r(i) and M(r(i)) will be useful in what follows, in order to obtain a new order
for the intervals Vi.

12
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Remark 3.20 Let a = bq + r, the Euclidean division of a by b, with r < b and a, b, q, r ∈ N.
We have r = a mod b and q =

⌊a

b

⌋
. Thus,

a = bq + r ⇐⇒ a− bq − r = 0 ⇐⇒ a− b
⌊a

b

⌋
− (a mod b) = 0.

Lemma 3.21 (Lemma 7 in [Sim04]) For i ∈ [0, α − 1], M(r(i)) ≡ −iαβ mod n.

Proof. For a fixed i, let us consider α(M(r(i)) + iαβ). In what follows, we will write r instead
of r(i), in order to simplify the notation. Using Equation (7) and the definition of M(r), we
get:

α (M(r) + iαβ) ≡ β
(
zr − α

⌊zr

α

⌋
− i
)

mod n.

Replacing a and b in the previous remark by respectively zr and α and using the fact that i ≡ zr

mod α yields that the term in parenthesis has value 0 and consequently, that α(M(r)+iαβ) ≡ 0
mod n. Since α ⊥ n, M(r) + iαβ ≡ 0 mod n and we conclude.

Lemmas 3.22, 3.23, 3.24, 3.25 and 3.26 are not original results, since they appeared without
emphasis in the proof of Theorem 8 in [Sim04]. However, they are the key for the proofs of the
results in the next section.

Lemma 3.22 Let n ∈ N be a fixed integer and let I0, I1, . . . , Ir−1 be r finite intervals in Z
having same length and satisfying:

i) max(I0)−min(Ir−1) ≥ n− 1 ≥ 1;

ii) for 0 ≤ j < r − 1, if Ij+1 is located at the left of Ij , then Ij+1 ∪ Ij is an interval.

Then
⋃r−1

j=0 Ij is a complete set of residues modulo n.

Proof. Let us suppose that the interval Ir−1 is not located at the left of the interval I0. Since
max(I0) − min(Ir−1) ≥ n − 1, it implies that I0 ∪ Ir−1 is an interval and that I0 ∩ Ir−1 =
[min(Ir−1),max(I0)]. It follows that Card (I0 ∩ Ir−1) ≥ n and that

⋃r−1
j=0 Ij is a complete set

of residues modulo n. Let us now suppose that the interval Ir−1 is located at the left of the
interval I0. By ii), there exist consecutive intervals that are located one to the left of the others.
Condition ii) also ensures that all the integers between Ir−1 and I0 are in the union of the j

intervals. Since max(I0)−min(Ir−1) ≥ n− 1, the number of integers between the beginning of
the interval Ir−1 and the end of the interval I0 is at least n. In both cases,

⋃r−1
j=0 Ij is a complete

set of residues modulo n.

Lemma 3.23 Let I0, I1, . . . , Ir−1 be finite intervals in Z and let I be the shortest interval that
contains them. Let us suppose that

i) I \⋃r−1
j=0 Ij is non-empty;

ii) if x ∈ ⋃r−1
j=0 Ij and y ∈ I \⋃r−1

j=0 Ij , then |y − x| < n.

Then
⋃r−1

j=0 Ij does not contain all the integers modulo n.

13
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Proof. Let y ∈ I\ ∪r−1
j=0 Ij . By ii) there can be no x ∈ I such that x ≡ y mod n and the result

follows.

Lemma 3.24 Let z = α−y and 0 ≤ r < α be such as in Notation 3.19. Then
⌊

z(r+1)
α

⌋
−⌊zr

α

⌋ ∈
{0, 1}.

Proof. Let zr = iα + t, with i ∈ N and 0 ≤ t < α. Then⌊
z(r + 1)

α

⌋
−
⌊zr

α

⌋
=

⌊
iα + t + z

α

⌋
−
⌊

iα + t

α

⌋
= i +

⌊
t + z

α

⌋
− i−

⌊
t

α

⌋
=
⌊

t + z

α

⌋
−
⌊

t

α

⌋
.

Since 1 ≤ y ≤ α and 0 ≤ t < α, we have 0 ≤ t + z < 2α and consequently,⌊
t + z

α

⌋
−
⌊

t

α

⌋
=
⌊

t + z

α

⌋
− 0 ≤ 1.

Lemma 3.25 Let M(r) be defined as in Equation (8). Then

i) M(0) = 0;

ii) M(α− 1) = n− x− 2β(q − 1)− i, with i = 0 if y 6= α and i = β otherwise.

Proof.

i) M(0) = 0(x + (2q − 1)β) − ⌊ z·0
α

⌋
β = 0.

ii) If y 6= α, then

M(α− 1) = (α− 1)(x + (2q − 1)β) −
⌊

z(α− 1)
α

⌋
β (9)

= αx + (2q − 1)αβ − x− (2q − 1)β − zβ + β (10)

= αx + yβ − αβ + (2q − 1)αβ − x + β − (2q − 1)β

= n− x− 2β(q − 1). (11)

Equation (10) is deduced from Equation (9) using the fact that⌊
z(α− 1)

α

⌋
β = zβ +

⌊−z

α

⌋
β = zβ − β,

since 0 < z = α − y < α, as 1 ≤ y < α, while Equation (11) is obtained using Equation
(7).
If y = α, then z = 0 and ⌊

z(α − 1)
α

⌋
β = 0,

implying
M(α − 1) = n− x− 2β(q − 1)− β. (12)

14
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Lemma 3.26 Let M(r) be defined as in Equation (8). Then

i) M(r + 1)−M(r) = x + (2q − 1)β − β
(⌊

z(r+1)
α

⌋
− ⌊ zr

α

⌋)
;

ii) if x ≤ 0, then M(r + 1)−M(r) ≤ β(2q − 1).

Proof. We have:

M(r + 1)−M(r) =
(

(r + 1)(x + (2q − 1)β) −
⌊

z(r + 1)
α

⌋
β

)
−
(
r(x + (2q − 1)β) −

⌊zr

α

⌋
β
)

= x + (2q − 1)β − β

(⌊
z(r + 1)

α

⌋
−
⌊zr

α

⌋)
,

which is ≤ β(2q − 1) if x ≤ 0, using Lemma 3.24.

The following theorem is a particular case of Theorem 8 in [Sim04] which first appeared in
[Mor85].

Theorem 3.27 ([Mor85, Sim04]) C(n, qα) and C(n, qβ) are superimposable if and only if
there exists {x, y} ∈ {N− {0}}2 such that

xα + yβ = n− 2αβ(q − 1). (13)

Proof. For the Christoffel words C(n, qα) and C(n, qβ), by Lemma 3.18 there exists a unique
{x, y} satisfying Equation (13), with 1 ≤ y ≤ α. We want to show that C(n, qα) and C(n, qβ)
are superimposable if and only if x > 0.

(=⇒) Let us suppose that x ≤ 0 and let us consider the union of the intervals given in
Equation (6). Using Lemma 3.21, we have, modulo n,

α−1⋃
i=0

{[(−q + 1)β, qβ − 1] + iαβ} =
α−1⋃
r=0

{[(−q + 1)β, qβ − 1]−M(r)} . (14)

Let Ir = [(−q + 1)β, qβ − 1]−M(r), for 0 ≤ r < α. Then using Lemma 3.25, we get max(I0) =
qβ − 1−M(0) = qβ − 1 and min(Iα−1) = (−q + 1)β −M(α− 1) and then

max(I0)−min(Iα−1) = qβ − 1− ((−q + 1)β −M(α− 1))

= qβ − 1 + qβ − β + n− x− 2β(q − 1)− i

= β + n− x− 1− i,

where i = 0 if y 6= α and i = β otherwise (see Lemma 3.25). Since x ≤ 0, −x is non-negative.
Hence max(I0)−min(Iα−1) ≥ n− 1.

If Ir ∪ Ir+1 is not an interval then M(r + 1)−M(r) > |Ir|+ 1. Thus, in order to show that
Ir ∪ Ir+1 is an interval, it is sufficient to show that M(r + 1)−M(r) ≤ |Ir|+ 1. By Lemma 3.26
ii), we have M(r + 1)−M(r) ≤ β(2q − 1). Moreover, all the intervals have length

|Ir| = qβ − 1− (−q + 1)β = 2qβ − β − 1 = β(2q − 1)− 1.

Hence M(r + 1)−M(r) ≤ |Ir|+ 1. Then, for all 0 ≤ r < α− 1, Ir ∪ Ir+1 is an interval. Recall
that Proposition 3.16 tells us that C(n, qα) and C(n, qβ) are superimposable if and only if the
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union (14) is not a complete set of residues modulo n. Applying Lemma 3.22, we conclude that
for x ≤ 0 the words are not superimposable.

(⇐=) Let us now suppose that x > 0 and let us show that it implies that the words are super-
imposable. By Proposition 3.16, it is sufficient to show that if x > 0, then

⋃α−1
r=0 {[−(q − 1)β, qβ − 1]−M(r)}

does not contain all the integers modulo n.
Let us recall that Ir = [−(q − 1)β, qβ − 1] − M(r), for 0 ≤ r < α. Since x > 0 and q ≥ 1,

and using Lemmas 3.24 and 3.26, we have

M(r + 1)−M(r) = x + (2q − 1)β − β

(⌊
z(r + 1)

α

⌋
−
⌊zr

α

⌋)
≥ x + (2q − 1)β − β

= x + 2β(q − 1) ≥ x > 0.

Thus, the intervals Ir are located one to the left of the others, for 0 ≤ r < α. They all have
the same cardinality, that is: Card (Ir) = |Ir|+ 1 = β(2q − 1)− 1 + 1 = β(2q − 1).

Let us suppose that I =
⋃α−1

r=0 Ir is not an interval. Then condition i) of Lemma 3.23
is satisfied. For condition ii), it is sufficient to take y = min(I0) − 1 (since max(I \ ∪Ij) ≤
min(I0)− 1) and x = min(I) and to check that y − x < n. We have x = −(q − 1)β −M(α− 1)
and y = −(q − 1)β − 1.

Consequently:

y − x = (−(q − 1)β − 1)− (−(q − 1)β − (n− x− 2β(q − 1)− i)) = n− x− 1− 2β(q − 1)− i,

with i ∈ {0, β}. Since x > 0, this value is < n. By Lemma 3.23, we conclude that the union of
these intervals does not contain all the integers modulo n.

3.3 Number of superimpositions of Christoffel words

In this section, we prove the exact number of superimpositions of two Christoffel words having
same length and we give a shift that always allows a perfect superimposition for two superim-
posable Christoffel words.

Definition 3.28 Let C(n, α) and C(n, β) be two superimposable Christoffel words. The num-
ber of superimpositions of these two words is defined by

Card
(
{k ∈ [0, n − 1] |C(n, α) and γkC(n, β) are perfectly superimposable}

)
.

Some results are first required.

Corollary 3.29 (of Lemma 3.23 and of its proof) If the two conditions of Lemma 3.23
are satisfied, then

i) the elements of I \⋃r−1
j=0 Ij are all distinct modulo n;

ii) if Card (I) ≥ n, then modulo n, the elements of I \⋃r−1
j=0 Ij are exactly the ones that are

not in
⋃r−1

j=0 Ij ;

16



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

iii) if Card (I) < n, then modulo n, the elements of Z \⋃r−1
j=0 Ij are exactly the ones that are

in I\ ∪r−1
j=0 Ij and the following n− Card (I) elements:

{min(I)− (n− Card (I)), . . . ,min(I)− 2,min(I)− 1}.

Proof.

i) Let x, y ∈ I \ ⋃r−1
j=0 Ij and without loss of generality, let us suppose that y > x. Then

y ≤ max(I \⋃r−1
j=0 Ij) and x > min(I), since min(I) is contained in

⋃r−1
j=0 Ij . Consequently

y − x < max(I \⋃r−1
j=0 Ij)−min(I) which is, by Lemma 3.23 ii), < n. Hence y − x < n.

ii) Since I is an interval and Card (I) ≥ n, I contains all the elements mod n. By Lemma
3.23 ii), there is no element in

⋃r−1
j=0 Ij that is equal, modulo n, to an element in I \⋃r−1

j=0 Ij.

iii) One can easily observe that the n − Card (I) elements are not equal, modulo n, to any
element of I.

Lemma 3.30 Let C(n, j) ∈ {a < b}∗ be a Christoffel word. Then

C(n, j)[i] =


a if

⌊
n− j

n
(i + 1)

⌋
−
⌊

n− j

n
i

⌋
= 0

b if
⌊

n− j

n
(i + 1)

⌋
−
⌊

n− j

n
i

⌋
= 1.

Proof. Follows from the definition of Christoffel words. Taking the difference between the
integer parts corresponds to checking if there is a multiple of n or not between both values. If
the difference is 0, then no multiple of n occurs.

Proposition 3.31 Let C(n, qα) and C(n, qβ) be two superimposable Christoffel words. The
number of superimpositions of C(n, qα) and C(n, qβ) is

i) xy, if x ≤ β;

ii) xα + yβ − αβ, if x > β;

where {x, y} is the unique solution of Equation (13), with 1 ≤ y ≤ α.

Proof. Let us recall from Theorem 3.27 that if two Christoffel words are superimposable and
if the solution of Equation (13) is {x, y} with 1 ≤ y ≤ α, then x > 0. Let us denote by I the
shortest interval that contains the union of the intervals given in Equation (14). Then using
Lemma 3.25, we get

Card (I) = max(I)−min(I) + 1

= max(I0)−min(Iα−1) + 1

= (qβ − 1)− ((−q + 1)β −M(α− 1)) + 1

= qβ − 1 + qβ − β + (n− x− 2β(q − 1)− i) + 1

= n− x + β − i,

with i = 0 if y 6= α, and i = β otherwise.
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i) Let us suppose that x ≤ β and y 6= α. Then Card (I) = n−x+β ≥ n. By Corollary 3.29
ii), the complementary set modulo n of

⋃α−1
j=0 Ij has the same cardinality as the number of

elements contained between I0 and I1, I1 and I2, etc. The number of elements contained
between Ir and Ir+1 is M(r + 1) − M(r) − (2q − 1)β, that is the distance between the
beginning of both intervals minus the cardinality of one interval. Using Lemma 3.26, we
have

M(r + 1)−M(r)− (2q − 1)β = x− β

(⌊
z(r + 1)

α

⌋
−
⌊zr

α

⌋)
. (15)

There is a gap between two intervals if the value of (15) is > 0. This value corresponds
to the number of integers contained in the gap. Since x ≤ β, it will be the case for all r

such that
⌊

z(r+1)
α

⌋
− ⌊ zr

α

⌋
= 0. Using Lemma 3.30, with j = y, i = r and n = α, we find

that it is the case for exactly y values of r. Thus, there are xy possible superimpositions.

ii) Let us suppose that x > β. One can easily observe that x > β =⇒ y 6= α. Then Card (I) =

n − x + β < n. We still have that
⌊

z(r+1)
α

⌋
− ⌊ zr

α

⌋
= 0 for y values of r. Moreover, since

0 ≤ r < α, there are (α− 1) gaps containing each

x− β

(⌊
z(r + 1)

α

⌋
−
⌊zr

α

⌋)
integers. Thus, by Lemma 3.30, ⌊

z(r + 1)
α

⌋
−
⌊zr

α

⌋
= 1

for α− 1− y = z − 1 values. Hence x− β
(⌊

z(r+1)
α

⌋
− ⌊ zr

α

⌋)
= x− β for (z − 1) values of

r. Using Corollary 3.29 iii), we know that there are n − Card (I) others possible values
outside the interval I. The number of superimpositions is then given by

xy + (x− β)(z − 1) + n−Card (I) = xy + (x− β)(α − y − 1) + n− (n− x + β)

= xα + yβ − αβ.

iii) Let us suppose that x ≤ β and y = α. Then Card (I) = n − x < n. This case is similar
to case ii), except that here, since y = α,⌊

z(r + 1)
α

⌋
−
⌊zr

α

⌋
= 0

between every interval and hence z = α − y = 0. Since there are (y − 1) = (α − 1)
gaps between I0 and Iα−1, using Corollary 3.29 iii), we find that the number of possible
superimpositions is given by

x(y − 1) + n− Card (I) = x(y − 1) + n− (n− x) = xy.

Remark 3.32 Since Lemma 3.18, we have supposed that {x, y} is the solution of Equation (13)
such that y ≤ α. In the proof of Proposition 3.31, we still use this assumption. It is possible
to rewrite all these results considering the solution for which x ≤ β. We would have obtained
similar result as in Proposition 3.31, with the conditions y ≤ α and y > α.
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Theorem 3.33 is a generalization of Corollary 3.13 for any values of q, α, β, such that α ⊥ β:
for two superimposable Christoffel words having same length, we give a shift that always allows
a perfect superimposition.

Theorem 3.33 Let C(n, qα) and C(n, qβ) be two superimposable Christoffel words, with α ⊥ β.
Then C(n, qα) and γ1−rC̃(n, qβ) are perfectly superimposable, where qr ≡ 1 mod n.

Proof. By Corollary 3.17, C(n, qα) and γ(ℓ+1)qβC̃(n, qβ) are superimposable if and only if ∃ℓ /∈⋃α−1
i=0 Vi mod n. It is then sufficient to show that there exists ℓ /∈ ⋃α−1

i=0 Vi mod n such that
(ℓ + 1)qβ ≡ 1− r. Isolating ℓ, we get that this last condition is equivalent to

ℓ ≡ −qβ + rqβ − 1 ≡ β − 1− qβ.

Let us show that β − 1− qβ /∈ ⋃α−1
i=0 Vi mod n.

If α = 1, by Equation (14), the union of the Vi’s is the interval [−qβ + β, qβ − 1]. Then
β − qβ − 1 is the element preceding the interval and since the words are superimposable, the
interval has a length < n, and consequently β− qβ− 1 mod n is not contained in the interval.

If α > 1, let us consider the intervals I0 and I1. There exist elements between both intervals,
since

M(1)−M(0) − (2q − 1)β = x + (2q − 1)β −
⌊ z

α

⌋
β − 0− (2q − 1)β = x > 0,

as z = α− y < α. Moreover,

]max(I1),min(I0)[ = ]qβ − 1− (x + (2q − 1)β) , (−q + 1)β[ (16)

= ]qβ − 1− x− 2qβ + β,−qβ + β[

= ]β − qβ − 1− x,−qβ + β[. (17)

Thus, β− qβ− 1 is located between I0 and I1. In order to conclude, it is sufficient to show that
this element does not appear in an other interval. It is true if (β − qβ − 1) − min(Iα−1) < n.
Let us verify:

(β − qβ − 1)−min(Iα−1) = β − qβ − 1− ((−q + 1)β − (n− x− 2β(q − 1)− i))

= n− 2β(q − 1)− x− 1− i < n

where i ∈ {0, β}.

4 Generalization to words having different lengths

In this section, we use Theorem 3.6 in order to generalize the results of Sections 3.2 and 3.3 for
arbitrary Christoffel words, not necessarily having same length.

Theorem 4.1 [Mor85, Sim04] Let C(n, qα) and C(m, qβ) be Christoffel words, with α ⊥ β.
Then C(n, qα) and C(m, qβ) are superimposable if and only if there exists {x, y} ∈ {N− {0}}2

such that

xα + yβ = p− 2αβ(q − 1), (18)

with p = gcd(m,n).
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Proof. By Theorem 3.6, C(n, qα) and C(m, qβ) are superimposable if and only if C(p, qα) and
C(p, qβ) are so. We conclude using Theorem 3.27, since it ensures that C(p, qα) and C(p, qβ)
are superimposable if and only if there exists {x, y} ∈ {N− {0}}2 satisfying Equation (18).

Lemma 4.2 If C(p, α) and γ−kC(p, β) are perfectly superimposable, then C(n, α) and γ−k+ipC(m,β)
are so, with m > n, p = gcd(n,m) and 0 ≤ i < m

p .

Proof. Theorem 3.6 shows that C(p, α) and γ−kC(p, β) are perfectly superimposable if and only
if C(n, α) and γ−kC(m,β) are so. Moreover, one can easily observe that C(p, α) and γ−kC(p, β)
are perfectly superimposable if and only if C(p, α) and γ−k+ipC(p, β) are so. These −k + ip

correspond to different shifts, for 0 ≤ i < m
p , for words of length at most m.

Proposition 4.3 Let C(n, qα) and C(m, qβ) be two superimposable Christoffel words, with
α ⊥ β, p = gcd(m,n) and m > n. The number of superimpositions is

i) xy
m

p
, if x ≤ β;

ii) (xα + yβ − αβ)
m

p
, if x > β;

with {x, y} ∈ {N− {0}}2 the solution of xα + yβ = p− αβ(q − 1) such that y ≤ α.

Proof. Follows from Proposition 3.31 and from Lemma 4.2.

Theorem 4.4 Let C(n, qα) and C(m, qβ) be two superimposable Christoffel words, with α ⊥ β

and p = gcd(m,n). Then C(n, qα) and γ−(r−1)+ipC̃(m, qβ) are perfectly superimposable, with
qr ≡ 1 mod p and 0 ≤ i <

m

p
.

Proof. Follows from Theorem 3.33 and from Lemma 4.2.

5 Other results

In this last section, we first give a new necessary and sufficient condition for the perfect super-
imposition of two Christoffel words C(n, α) and C(n, β), with α ⊥ β. Then we give a result
concerning the word obtained by the superimposition of two Christoffel words having the same
length. We end this section with a new proof of a problem related to the money problem, using
the geometric interpretation of Christoffel words.

Theorem 5.1 Let u = C(n, α) ∈ {a < z}n and v = C(n, β) ∈ {b < z}n be Christoffel words.
There exists {x, y} ∈ {N − {0}}2 such that αx + βy = n if and only if u and ṽ are perfectly
superimposable.

Proof. (=⇒) Let us suppose that there exists {x, y} ∈ {N−{0}}2 such that αx+βy = n. Let us
consider the Christoffel words u′ = C(n, xα) and v′ = C(n, yβ). Since αx+βy = n, these words
are complementary, that means that u′ and ṽ′ are perfectly superimposable. Using Lemma 3.5,
we conclude that u and ṽ are so.
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(⇐=) Let us suppose that u and ṽ are perfectly superimposable. Let d = gcd(α, β). By
Lemma 3.5, C(n, d) ∈ {a < z}n and C̃(n, d) ∈ {z < b}n are also superimposable. Let us now
show that u and ṽ are superimposable only if d|n. If d 6 |n, then C(n, d) can be written as the
product of azi and azi+1, it begins by azi and ends by azi+1. Moreover, C̃(n, d) ends by bzib.
There is a conflict between a letter a and a letter b, since

C(n, d) = paziz and C̃(n, d) = p′bzib.

Thus, if the words are perfectly superimposable, d|n.
Moreover, since d = gcd(α, β), d|α and d|β. Thus, gcd(n, α) = d and gcd(n, β) = d. Since

C(n, α) and C(n, β) are Christoffel words, α ⊥ n and β ⊥ n. Hence d = 1. Applying Theorem
4.1 with m = n, q = 1, we get p = 1 and consequently, C(n, α) and C(n, β) are superimposable
if and only if there exists {x, y} ∈ {N− {0}}2 such that xα + yβ = n.

Definition 5.2 Let w ∈ {a, b}∗ and let A = {i1, i2, . . . , ik} be the set of positions of the a’s in
w. Then the word w′ ∈ {a, b}∗ obtained by the decimation Dp/q,a of w over the letter a, with
p ≤ q, is the word w for which we have deleted the letters w[ij ], for all j ∈ {ℓq+1, ℓq+2, . . . , ℓq+
p}0≤ℓ≤⌊|A|/q⌋ if p/q < 0 and for all j ∈ {|A| − ℓq, |A| − ℓq − 1, . . . , |A| − ℓq − p + 1}0≤ℓ≤⌊|A|/q⌋
otherwise. In other words, w′ is the word w for which p occurrences over q of the letter a are
removed from left to right if p/q < 0, and from right to left otherwise.

Example 5.3 Let consider w = aabaabababa. The decimation D1/3,a(w) yields w′ = abababab.
Then performing D−1/2,b over w′ gives w′′ = aabaab.

Theorem 5.4 Let u = C(n, α) ∈ {a < z}n and C(n, β) ∈ {b < z}n be two superimposable
Christoffel words with α ⊥ β. Let v be the conjugate of C(n, β) that is perfectly superimposable
to u. Let w be defined as

w[i] =


a if u[i] = a

b if v[i] = b

z otherwise.

Let w′ be the word obtained from w, after having removed the letter z. Then w′ is the Christoffel
word of slope β/α.

Proof. Let {x, y} ∈ {N−{0}}2 be such that αx+βy = n. By Theorem 3.27, we know that such
x, y exist. Let us consider the Christoffel word t ∈ {a < b}n with αx occurrences of the letter
a and βy occurrences of the letter b. Let us perform the decimation D(x−1)/x,a(t): it removes
(αx−α) letters a’s. The decimation D−(y−1)/y,b over the word obtained removes (βy−β) letters
b’s. Since the decimation operation preserves Christoffel words [Bor01] and since a couple of
number of occurrences of letters determines a unique Christoffel word, the word w′ obtained is
the Christoffel word of length α + β with α occurrences of the letter a and β occurrences of the
letter b.

Example 5.5 Let u = C(13, 4) = azzazzazzazzz and C(13, 3) = bzzzbzzzbzzzz. These words
are superimposable. Indeed, it is sufficient to take the conjugate v = C̃(13, 3) = zzzzbzzzbzzzb.
We then find w = azzabzazbazzb and w′ = aababab. Note that the equation 4x+3y = 13 has the
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solution x = 1 and y = 3. Thus, we consider the Christoffel word t = C(13, 4) = abbabbabbabbb.
The decimation D0/1,a(t) does not erase any a. Then we perform D−2/3,b over D0/1,a(t): starting
from the left we erase 2 occurrences over 3 of b’s. We get aababab = C(7, 4).

5.1 Money problem

In Theorem 5.1, we showed that two Christoffel words u and ṽ of length n are perfectly super-
imposable if and only if there exist integers α, β such that αx+βy = n. In what follows, αx+βy

occurs again: we prove, using the geometric interpretation of Christoffel words, classical results
of Sylvester concerning the money problem, also known as the Frobenius problem.

Let us first recall the money problem.

Definition 5.6 [Wei07] Let 0 < a1 < . . . < an be n integers, with n ≥ 2, that represent n

different values of money pieces and such that gcd(a1, a2, . . . , an) = 1. The possible amounts of
money that can be obtained using these n pieces are given by

n∑
i=1

aixi,

where xi ∈ N denotes the number of the piece ai used. The money changing problem consists of
determine the greatest integer N = g(a1, a2, . . . , an) that cannot be obtained using the pieces
of money a1, a2, . . . , an. This integer is called the Frobenius number.

If a1 = 1, all amounts can be obtained. It is not the case in general: only a few amounts
can be obtained. For instance, with pieces of 2, 5 and 10, it is impossible to obtain 1 and 3,
while all the other quantities can be obtained. Hence g(2, 5, 10) = 3.

Proposition 5.7 [Syl84] The greatest integer that cannot be obtained with the pieces a and b

is

g(a, b) = (a− 1)(b− 1)− 1. (19)

Proposition 5.8 appears in [Wei07], but the origin is unknown.

Proposition 5.8 The number of integers that cannot be obtained with the pieces a and b is
given by

(a− 1)(b − 1)
2

. (20)

Corollary 5.9 The number of elements of the submonoid of N generated by a and b and smaller
than (a− 1)(b − 1) is (a−1)(b−1)

2 .

Proof. We know by Proposition 5.7 that all the integers greater or equal to (a − 1)(b − 1) are
representable with a and b. Thus the unrepresentable (a−1)(b−1)

2 integers given in Proposition
5.8 are necessarily smaller than (a− 1)(b− 1). Since half of the (a− 1)(b− 1) elements smaller
than (a − 1)(b − 1) (including the 0) are not representable with a and b, there is exactly the
same quantity that is representable.

In what follows, we will show that it is possible to prove Corollary 5.9 using the geometric
representation of Christoffel words and their Cayley graphs.
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Theorem 5.10 Let a, b ∈ N. Let us consider the quadrant defined by x ≥ 0 and y ≤ 0, having
at the coordinate (x,−y) the value xb + ya. While considering only the integer coordinates
(x,−y) such that xb+ ya < ab, the boundary obtained can be coded by a Christoffel word having
exactly a occurrences of the letter α and b occurrences of the letter β.

Here is first an example of Theorem 5.10.

Example 5.11 For a = 8, b = 5, we have ab = 40. We then get:

26

32

29 34 39

31 36

28 33 38

30 35

37

24

16

8

0 5 10 15 20 25

13 18 23

21

α

αα

α

αα

αα

β

β

β

β

β

Associating the letter α to a move to the right and the letter β to a move to the top, and if we
start at the lower leftmost corner, the lower boundary is coded by the word ααβααβαβααβαβ:
it is the Christoffel word with 8 occurrences of α and 5 occurrences of β.

Proof. (of Theorem 5.10) Let us consider the Cayley graph of the Christoffel word with a

occurrences of the letter α and b occurrences of the letter β, with α < β. We get the Cayley
graph linearly represented by

0 → b → 2b mod (a + b) → . . . → ib mod (a + b) → . . . → (a + b− 1)b mod (a + b) → 0

In this Cayley graph, if there exists k ∈ N such that

ib < k(a + b) ≤ (i + 1)b,

then
(i + 1)b mod (a + b) = (ib mod (a + b))− a. (21)

Otherwise, we have

(i + 1)b mod (a + b) = (ib mod (a + b)) + b. (22)

Let us consider the preceding Cayley graph to which we add the value ab − a − b. Since the
values in the initial Cayley graph were lower or equal to a + b, the values in the new Cayley
graph are now lower or equal to a + b + ab− a− b = ab. This corresponds exactly to taking the
lower and rightmost path such that the value of the coordinate (x,−y) is lower or equal to ab.
Indeed, we do +b (see Equation (22): right move) if we exceed the value ab, otherwise we do
−a (see Equation (21): up move).

In the preceding example, the Cayley graph is

0 → 5 → 10 → 2 → 7 → 12 → 4 → 9 → 1 → 6 → 11 → 3 → 8 → 0

23



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

The new Cayley graph obtained by adding ab− a− b = 27 is

27 → 32 → 37 → 29 → 34 → 39 → 31 → 36 → 28 → 33 → 38 → 30 → 35 → 27

and corresponds to the boundary described in Example 5.11.
Here is a new proof of Corollary 5.9 that uses the result of Theorem 5.10.

Proof. (of Corollary 5.9) Excluding the integers that are on the boundary in Theorem 5.10 and
using the Cayley graph seen previously, we obtain that there are exactly xa + yb integers that
are lower than (a− 1)(b− 1). The total number of elements in the rectangle is ab and since we
have to remove the boundary which contains a + b − 1 elements, and divide by 2, we obtain:
ab− (a + b− 1)

2
=

(a− 1)(b − 1)
2

.

6 Concluding remarks

In this paper, we have expressed in term of words combinatorics, a necessary and sufficient
condition for the superimposition of two Christoffel words, by translating the results of [Mor85,
Sim04] in terms of Christoffel words. For two superimposable Christoffel words, we did more
than in [Mor85, Sim04] by giving a possible shift that always allows the perfect superimposition
of two superimposable Christoffel words and the number of possible shifts. Those results are
interesting since they give new properties of the well-known Christoffel words. Finally, in order
to prove the Fraenkel conjecture, it would be interesting to generalize the condition for the
superimposition of Christoffel words for more than two Christoffel words. Since the condition for
the superimposition does not tell us which shift is necessary to superimpose the two Christoffel

words, and moreover, since for n Christoffel words,

(
n

2

)
Diophantine equations are necessary in

order to make sure that the n Christoffel words are eventually superimposable, this last problem
appears to be a challenging one.

We gratefully thank the referees for a careful reading of the paper and for their valuable
suggestions.
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