arXiv:1001.4462v2 [cs.IT] 7 Apr 2010

Not Every Domain of a Plain Decompressor Contains
the Domain of a Prefix-Free Onhe

Mikhail Andreevf llya Razenshteyh Alexander Sheh
August 20, 2018

Abstract

C. Calude, A. Nies, L. Staiger, and F. Stephan posed thewinifp question about the
relation between plain and prefix Kolmogorov complexitiesg their paper in DLT 2008 con-
ference proceedings): does the domain of every optimalrdpoessor contain the domain of
some optimal prefix-free decompressor? In this paper weiggow negative answer to this
question.

1 Introduction

LetD: {0,1}* — {0,1}* be a computable partial function (used as a decompressoifndgorov
complexity ofx € {0,1}* with respect td is defined as the length of its short@&stescription:

Co(X):= min |I(y).
o) = gin 1)

There exists an optimal decompresosuch thatCy is minimal up toO(1). Cy (X) is calledplain
complexityof x and is usually denoted H/(x).

A decompressor is callgarefix-freeif its domain is prefix-free (ilu is a prefix ofv, the decom-
pressor cannot be defined on batandv). Again it can be proved that there exists an optimal (up
to O(1)) prefix-free decompressdft. Cy (x) is calledprefix complexityf x and is usually denoted
by K(x). (See, e.g.[[3] for more details.)

In [1] Calude et al. characterized domains of optimal plaid arefix decompressors. They
did not show any relation between domains of optimal plaicodgressor and prefix one, but

*Partially supported by RFBR 0901-00709-a and by NAFIT ANREMER-008-01 grants

TMoscow State Lomonosov University, Mathematics Departméogic and Algorithms Theory Division,
Moscow, Russiaamishaa@mail.ru

*Moscow State Lomonosov University, Mathematics Departiméngic and Algorithms Theory Division,
Moscow, Russiaj lyaraz@gmail . com

SLIF Marseille, CNRS & University Aix—Marseille, France, deave from Institute of Information Transmission
Problems, Moscow, Russial exander . shen@lif .univ-mrs.fr, sasha.shen@gmail.com

1

http://arxiv.org/abs/1001.4462v2

they posed the following question: is it true that the dondivery optimal plain decompres-
sor contains the domain of some optimal prefix decompres¥de?answer this question in the
negative:

Theorem 1. There exist an optimal plain decompressor D with domain & shet no set TC S is
the domain of an optimal prefix-free decompressor.

Note that for every decidable s&that contains a fixed fraction (say, at least one third)-bft
strings for everyn, there is an optimal plain decompressor whose domain issesobA. Indeed,
in this case there exists an injective mappmg> a(p) such that for every string the stringa(p)
belongs toA and is two bits longer thap. (Our assumption guarantees that there is enough strings
of this length inA.) Then let us take any optimal decompreddand replacé-bit descriptions by
(k+2)-bit descriptions insid&: letV (a(p)) be equal taJ (p). ThenV is an optimal decompressor
whose domain is a subsetAf (A more general question: which sets are the domains of amap
plain decompressor? — is answered. in [1].)

So it is enough to show that there exists a decidabléAsgith this property (containing at
least 1/3 of n-bit strings for everyn) such that there is no optimal prefix-free decompressor ehos
domain is a subset k. From now on we forget about plain decompressors: we needtonl
construct such a sét This construction is provided in the next section; in th&t i this section
we discuss the intuition behind it and the result itself.

The useful tool in the prefix complexity theory is provideddsyobservation often calléttaft—
Chaitin lemma Consider the following “memory allocation” game: at eaolind Alice gives a
natural numben and Bob replies with a string of length The restriction for Alice is that the sum
of 27" for all her numbers does not exceed 1; the restriction for Bahat none of his strings is
a prefix of another one. Kraft—Chaitin lemma says that Bobsha@mputable winning strategy in
this game. (See, e.g./[3], p. 28.)

Informally, the question posed in![1] asks whether this nes#&ue if some strings (a fixed
fraction for every length) are forbidden for Bob (and the@akd sum for Alice is adjusted accord-
ingly). The answer is no: one can choose the forbidden pastvefy {0,1}" in such a way that
it cripples Bob’s ability to win. Technically, we need to citer a more complicated game, since
complexity is defined up to a constant. We do not explain thimg in details (but note that the
game approach that goes back to Andrej Muchnik [2] was an itapbtool for us). Instead, we
give a self-contained proof that combines game-theoraticacursion-theoretic arguments.

Finally, one may say that the question itself is a bit ar@dicione may ask instead whether
for every optimal plain decompressor there is saastrictionof it (on some smaller enumerable
domain) that is an optimal prefix-free decompressor. Inftm®, however, the answer is negative
for obvious reasons: consider an optimal plain decompréssehere two different stringsandt
have unique descriptionsl {preimagesps and p;, and, sayps is a prefix ofp.

2 Construction

Statement of the Lemma

As explained in the previous section, it is enough to proegdtiowing lemma:

2

Lemma 1. There exists a decidablgynonyms: computable, recursiwet A of strings with the
following properties:

(1) For every n the set A contains at ledst3 of all strings of length n;

(2) There is no optimal prefix-free decompressor whose domaisigset of A.

Constructing A

Describing the construction, we identify binary stringshawertices of the full binary tree: empty
string is the root, string has sonx0 andx1. The seQQ = {0,1}% of infinite binary sequences is
identified with[0, 1]. For each stringk we define an intervak C [0, 1]; empty string corresponds
to the entire]0, 1]; the intervalslyg and Iy, are left and right halves df. In Q the intervally
corresponds to the subtree that consists of binary segse¢hathave prefix, and we use the
notationly both for intervals in0, 1] and inQ.

The intervaldy are calledbasicintervals in the sequel. Aasic subsebf Q is a finite union
of basic intervals; we may assume without loss of genertidy these intervals have the same
length and are disjoint, i.e., correspond to differenticeg at the same level of the tree. (()1]
we consider intervals that share an endpoint as disjoiht))bbsic seV equals the unioxex Ix
whereX C {0,1}", we say thaKX represents V at level rEach basic set can be represented at all
sufficiently high levels.

We construct the sétlayer by layer in such a way that every basic set of measueast ¥ 3 is
represented by some layerAiffor every basic s&f of measure at leasy B there exists such that
AN{0,1}" represent¥ at leveln. (In a sense, this makés‘universal”: every possible restriction
appears somewhere.) Moreover, every basiv/qef measure at least/B) should be represented
by infinitely many layers that form large groups of subsedegyers: there are infinitely many
such thav is represented b at levelsn,n+1,...,2n). Itis easy to find a decidable s&twith
this property (the family of all basic sets is countable aad be effectively enumerated, so we
allocate infinitely many groups of layers for every basig.set

It remains to show (assuming thathas these properties) that no optimal prefix-free decom-
pressor can have a domain that is a subsét of

Density

Assume thaD is an optimal prefix-free decompressor whose domain is aesabs. The strings
x whereD is defined form a prefix-free set. The corresponding intenyadre disjoint; letD C Q
be the union of these intervals.

Lemma 2 (Density) D intersects any basic set of measure at lda&

Proof. LetV be a basic set of measure at leags.1 According to the assumption, there are in-
finitely manyn such thaw is represented b at all levelsn,n+1,...,2n. If D does not intersect
V, this implies thaD is undefined on strings of lengths. . 2n, which is impossible for an optimal
D (most of the strings of length.8n have complexity betweemand h for large values oh, so
description of those lengths should exist). O

Splitting the task

Prefix complexity can be equivalently defined as the logarith maximal lower semicomputable
semimeasure. We use this fact in one directionx #> q(X) is a lower semicomputable non-
negative function and,q(x) < 1, thenK(x) < —log, q(x) + O(1). We need to get a contradiction
and show that every prefix-free functi@ defined on the subset & is not an optimal prefix-
free decompressor. For this purpose we construct a loweceerputable non-negative function
X — q(X) and show tha€p(x) < —log,q(x) + O(1) is false.

ReplacingO(1)-notation by an explicit statement, we obtain the followahgim:

for everyc=1,2,... there existx such thatCp(x) > —log, q(x) + C.

We achieve this by constructing for eacla (uniformly) lower semicomputable function—
ge(X) such thaty,ge(x) < 27¢ andCp(x) > —log, qc(x) + ¢ for somex. Then we letq(x) =
3 ¢0c(X); the sumy , q(x) does not exceed 1 since the corresponding sumcfisr bounded by 2¢
andy 2 ¢ < 1. (We can use other converging series insteagl & ©.)

Constructing gc

It remains to show how one can “lower semicompute” (=enutedram below) some functiog
with the required property while watching the enumeratibtie graph oD. Imagine that Alice is
given some “capital” 2¢ and is allowed to distribute this amount between differémgsx (note
that we distribute capital between strings that form thegenaf D); her goal is to allocate at least
2¢.2-% M to somex. Of course, Alice does not know the final value@j(x); it can decrease
later (after the allocation is made). So Alice needs to guamthat her allocation still prevails for
somex independently of what happens after the allocation is done.

How can Alice achieve this goal? To explain her strategyuseintroduce some terminology.
The vertices (strings) iA areallowed and the strings outsid& areprohibited (For each level at
least 1/3 of all strings of this length are allowed.)

These notions do not depend on time (i.e., on the number p$ stethe enumeration of the
domain ofD). The other notion is dynamic. L& be the part of the domain d@ that already
appeared in the enumeration process. A stuirig free at that step iD U {u} is prefix-free. (A
string that is not free cannot appear later in the domaid @fince this domain should remain
prefix-free.) In terms of2 this definition can be reformulated as followsts free ifl, and the set
D of all sequences that have prefixinare disjoint.

If at some level there are no free allowed strings, this guaes that no new strings of this
length will appear in the domain @f.

A free string can later become non-free but not vice versate ldso that an extension of a
free string is free, so the fraction of free strings at levid a non-decreasing function of(at any
moment).

Only allowed free strings can be later used as descriptem§, at some level and at nearby
levels they form a very small minority, Alice can use thistfeccachieve her goal. Let us make this
statement more precise.

Winning case

Assume that at all levels in some interval (say, betwleandL) the allowed strings represent the
same basic set. Then the fraction of free allowed stringsrafthn increases as increases (from
| toL). Assume that at levél this fraction is still less than some smali> 0.

What can Alice do in this case? She can alloc&te22" to many (sayN; the value ofN will
be chosen later) different strings that have no descript&in(do not belong to the image of the
current part oD). If this turns out to be insufficient for her to win, each oésieN strings gets later
a description of length at mokt(otherwise Alice still prevails on this string). These dgsttons
are different (moreover, none of them is a prefix of anothen)o®nly 2 descriptions may have
length less tham, so at leasN — 2 of them are in our interval (have lengths betwéemdL).
All these descriptions were free when Alice made her movat sllat moment the fraction of free
allowed strings of length is at least

(N-2)/2-

(If a free allowed string appears at an intermediate levelbenl andL, this can only increase the
fraction, since it can be replaced by several free allowedgs at level..)
We come to a contradiction if
(N=2)/2" > ¢,

i.e.,
N>g.2-42

Recall that the total capital of Alice is bounded by*2so the allocated amount needed to win is
(g-2-42).2¢.27L = g. 264 2¢ /24,

Therefore, Alice wins if botte - 2¢ and Z/2-~' are bounded by Z/2. Both conditions are satis-
fied, for example, if
e=2% andL—-1>3c

Strategy for Alice

We arrive to the following strategy for Alice.
For a giverc, Alice waits until an intervall, L] appears where

e L-I>3c
¢ allowed strings represent the same basic set at all levelsebal andL;

e the (current) fraction of free allowed strings at lekdb less thare = 2-3¢,

As soon as such an interval appears, Alice allocate® 2 toN = ¢ - 2- + 2! fresh strings (that
have no descriptions yet).

As we have seen, this guarantees that Alice wins, i.e. ggta) > 2¢- 2-Co(U) for one of these
strings.

Why it helps

It remains to show that the event that Alice is waiting forlwideed happen. Assume that it is
not the case. Recall that (by our construction) every bagitsgepresented infinitely many times
by blocks of levels, and all these blocks (except for finitaigny of them) are thick enough (have
L —1 > 3c). Therefore, the fraction of free allowed vertices at thédio line of each block never
drops belove = 2~

This leads to a contradiction in the following way. Fix someds (“the first block”) that is
thick enough and wait until the fraction of free allowed V&t at its bottom level stabilizes. Let
Bo be the basic set that is represented by the set of free allegréides at this level; by assumption,
its measure is at least

If the measure 0By is at least 3, we get a contradiction with density lemma. So it is less
than 1/3 (and therefore 23), so there exists second block below the first one whereilgtet
(=not allowed) elements represdit. At the bottom line of this block the fraction of free allowed
strings also never drops bela@wyWait until it stabilizes and leB, be the basic set that corresponds
to the free allowed strings at this level. By constructgyrandB; are disjoint (we considered only
allowed strings while constructirigy, andBg corresponds to prohibited strings).

If the measure oByUB; is at least 3, we again get a contradiction with density lemma (since
Bo UB; andD are disjoint; recall that we wait for the stabilization). ®e can find a third block
whereBg U B is prohibited, wait for the stabilization at its bottom ljr@nstrucBs etc.

Finally we get a contradiction since each block contribi#ekeaste to the measure and at
some point we exceed the thresho)1

Technical remarks: (1) The threshold3lcan be replaced by any other value not exceeding
1/2: we need to get a contradiction before the size of the pitglilpart becomes too large. In our
argument we may prohibit up tg/3 of all strings and 13 is enough for a contradiction.

(2) The construction dBg, By, ... is not effective but this is not necessary since we only prove
the existence of a moment when the fraction of free allowedgs drops belove.

3 Acknowledgments

We thank all the participants of Kolmogorov seminar and Ugdeluate Seminar at the Logic and
Theory of Algorithms division of Mathematics Departmenip$#¢ow Lomonosov State University.

References

[1] Cristian S. Calude, André Nies, Ludwig Staiger, Fraté@han, Universal recursively enumer-
able sets of strings. IrDevelopments in Language Theory, 20D8cture Notes in Computer
Science, 5257 (2008), p. 170-182.

[2] Andrej A. Muchnik, Ilya Mezhirov, Alexander Shen, Nilka} VereshchagirGame interpreta-
tion of Kolmogorov complexifyarxiv:1003.4712

[3] Alexander Shen, Algorithmic Information Theory and Kolmogorov Complex-
ity. Lecture notes of an introductory course at Uppsala uniyersavailable at
www.it.uu.se/research/publications/reports/2000-034.

	1 Introduction
	2 Construction
	3 Acknowledgments

