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Montréal (QC), Canada H3C 3P8
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Abstract

It has been proved that, among the polyominoes that tile the plane by trans-
lation, the so-called squares tile the plane in at most two distinct ways. In
this paper, we focus on double squares, that is, the polyominoes that tile
the plane in exactly two distinct ways. Our approach is based on solving
equations on words, which allows to exhibit properties about their shape.
Moreover, we describe two infinite families of double squares. The first one
is directly linked to Christoffel words and may be interpreted as segments of
thick straight lines. The second one stems from the Fibonacci sequence and
reveals some fractal features.
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1. Introduction

During the DGCI 2006 conference held in Szeged [1], E. Andres asked for a
description of tesselations of the plane with tiles whose boundary is composed
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of discrete segments. That was the starting point of an investigation that
shed new light on connections between discrete geometry, combinatorics on
words and also number theory.

The basic object of study is the polyomino, ubiquitous in the literature for
having applications in numerous fields whose listing is needless for our pur-
pose. There are different types of polyominoes, and by polyomino we mean a
finite union of unit lattice squares (pixels) in the discrete plane whose bound-
ary is a simple closed path. In particular, a polyomino is simply connected
(without holes), and its boundary is simple (does not cross itself). Paths are
conveniently encoded by words, called Freeman chain codes, on the alphabet
F = {0,1,2,3}, representing the elementary grid steps {→, ↑,←, ↓}.

S

Figure 1: A polyomino and its boundary.

For instance, starting from S the
boundary b(P ) of the polyomino P in
Figure 1 is coded (counterclockwise)
by the word

w = 01012223212333030011.

Observe that we may consider these boundary words as circular, which
avoids fixing an origin. Moreover, the perimeter of a polyomino P is the
length of its boundary words and is an even number.

The problem of deciding if a given polyomino tiles the plane by translation
was first considered by Wisjhoff and Van Leeuven [2] who coined the term
exact polyomino for these. Beauquier and Nivat [3] characterized them by
stating that the boundary b(P ) of an exact polyomino P satisfies the following
(not necessarily in a unique way) factorization

b(P ) = A ·B · C · Â · B̂ · Ĉ (1)

where at most one of the variables is empty, and where X̂ denotes the path
X traveled in the opposite direction. Hereafter, this condition is referred to
as the BN-factorization. For example, the polyomino in Figure 2 (left) is
exact and its boundary may be factorized as 101 ·2 ·23212 ·323 ·0 ·03010.

Polyominoes having a factorization with A, B and C nonempty are called
pseudo-hexagons, while pseudo-squares designate those for which one of the
variable is empty. From now on, we call them squares for simplicity. It has
been shown in [4] that there exist polyominoes admitting an arbitrary num-
ber of distinct non trivial factorizations as pseudo-hexagons. Surprisingly,
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the situation is different for squares, and it was conjectured in [4] that a
polyomino cannot have more than two distinct square factorizations.

Figure 2: Left: a pseudo-hexagon. Right: A double square and its two tilings.

Polyominoes admitting two distinct square factorizations (Figure 2 right)
are called double squares. An exhaustive search based on Equation (1) allows
to enumerate double squares exhaustively, but since they have very specific
structural properties, this leads to a more efficient way to generate them.
Moreover, another conjecture on double squares states that the factors of the
BN-factorizations are palindromes. For more details on tiling by translation
and square tilings see [1, 4, 5].

In this paper we use a combinatorial approach, relying on efficient tech-
niques [1, 6], for constructing two classes of double square polyominoes [7].
These two families are important for the zoology because they describe en-
tirely the table of small double squares available in [4]. The first is com-
posed of Christoffel tiles, those for which the boundary word is composed of
crenelated versions of two digitized segments (answering partially to E. An-
dres’ question), for which a characterization is provided (Theorem 6). The
second is built on the Fibonacci recurrence: a special family of Fibonacci tiles
is completely described (Theorem 11). The palindromicity of the factors in
the BN-factorization is proved for both families, and four derived classes of
double squares are also presented.

2. Preliminaries

The usual terminology and notation on words is from Lothaire [8]. An
alphabet A is a finite set whose elements are called letters. A finite word w is
a function w : [1, 2, . . . , n] → A, where wi is the i-th letter, 1 ≤ i ≤ n. The
length of w, denoted by |w|, is the integer n. The length of the empty word ε
is 0. The free monoid A∗ is the set of all finite words over A. The reversal
of w = w1w2 · · ·wn is the word w̃ = wnwn−1 · · ·w1. Words p satisfying p = p̃
are called palindromes. A word u is a factor of another word w if there exist
x, y ∈ A∗ such that w = xuy. We denote by |w|u the number of occurrences

3



of u in w. Two words u and v are conjugate, written u ≡ v or sometimes
u ≡|x| v, when x, y are such that u = xy and v = yx. Conjugacy is an
equivalence relation.

In this paper, the alphabet F = {0,1,2,3} is considered as the additive
group of integers mod 4. Basic transformations on F are rotations ρi : x 7→
x+i and reflections σi : x 7→ i−x, which extend uniquely to morphisms (w.r.t
concatenation) on F∗. Given a nonempty word w ∈ F∗, the first differences
word ∆(w) ∈ F∗ of w is

∆(w) = (w2 − w1) · (w3 − w2) · · · (wn − wn−1). (2)

Words in F∗ are interpreted as paths in the square grid as usual (see Fig-
ure 3), so that we indistinctly talk of any word w ∈ F∗ as the path w.
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Figure 3: (a) The path w = 01012223211. (b) Its first differences word ∆(w) =
1311001330. (c) Its homologous ŵ = 33010003232.

Moreover, the word ŵ := ρ2(w̃) is homologous to w, that is, described in
direction opposite to that of w (see Figure 3 (c)).

If at least one letter of w is known, the word w can be recovered completely
from ∆(w) using its sequence of partial sums. Then we define the sequence
of partial sums Σα(w) ∈ F∗ of a word w ∈ F∗ starting by the letter α ∈ F
by

Σα(w) = α · (α + w1) · (α + w1 + w2) · · · (α + w1 + w2 + · · ·+ wn).

A word u ∈ F∗ may contain factors in C = {02,20,13,31}, correspond-
ing to canceling steps on a path. Nevertheless, each word w can be reduced
in a unique way to a word w′, by sequentially applying the rewriting rules
in the set {u 7→ ε|u ∈ C}. The reduced word w′ of w is nothing but a word
in P = F∗ \ F∗CF∗. Therefore, we define the turning number 1 of w by
T (w) = (|∆(w′)|1 − |∆(w′)|3) /4.

1In [6], the authors used the notion of winding number of w which is 4T (w)
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We also introduce two auxiliary length preserving functions on F∗ that
are meaningful for closed paths. The first is defined by

◦
∆ (w) = ∆(w) · (w1 − wn),

while the second is defined

◦
Σα (w) = α · (α + w1) · (α + w1 + w2) · · · (α + w1 + w2 + · · ·+ wn−1).

We end this section with two results useful for the next section.

Proposition 1 (Provençal [4]). If a square has two factorizations, then they
alternate, i.e. no factor of one factorization is included in a factor of the
other one. 2

Lemma 2. Let W be the boundary word of a square, A and B be words such
that W ≡ ABÂB̂. Then A and B are palindromes if and only if W = wρ2(w)
for some word w.

Proof. If W = wρ2(w) then every conjugate of W has this form. Therefore,

if W ≡ ABÂB̂, we have that AB = ρ2(ÂB̂) = ÃB̃, showing that A and B
are palindromes. Conversely, one shows that if A and B are palindromes,
then W ≡ ABρ2(AB). 2

3. Christoffel tiles

Recall that Christoffel words are finite Sturmian words, that is, they are
obtained by discretizing a line segment in the plane. Let (p, q) ∈ N2 with
gcd(p, q) = 1, and let S be the line segment with endpoints (0, 0) and (p, q).
The word w is a lower Christoffel word if the path induced by w is under S
and if they both delimit a polygon with no integral interior point. An upper
Christoffel word is defined similarly. A Christoffel word is either a lower
Christoffel word or an upper Christoffel word. See the Figure 4 (a).

It is well known that if w and w′ are respectively the lower and upper
Christoffel words associated to (p, q), then w′ = w̃. Moreover, we have
w = 0m1 and w′ = 1m0, where m is a palindrome and 0, 1 are letters.
The word m is called cutting word . They have been widely studied in the
literature (see e.g. [9], where they are also called central words).

The next theorem gives a very useful characterization of Christoffel words.
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(a)

(0, 0)

(5, 3)

w = 00100101

(b)
λ(wρ2(w))

(c)

(d)

Figure 4: (a) The lower Christoffel word w = 00100101. (b) The Christoffel Tile
λ(w)ρ2(λ(w)) is a double square tile, with distinct tilings (c) and (d).

Theorem 3 (Pirillo [10]). A word m on the two-letter alphabet {0,1} ⊂ F
is a cutting word if and only if 0m1 and 1m0 are conjugate. 2

Another useful result is the following.

Proposition 4 (Borel and Reutenauer [11]). The lower and upper Christof-
fel words w and w′ are conjugate by palindromes. 2

Consider the morphism λ : F∗ → F∗ defined by 0 7→ 0301, 1 7→ 01,
2 7→ 2123 and 3 7→ 23, which can be seen as a “crenelation” of the four
canonical steps. Two useful properties of λ are used through the rest of this
section and are easy to establish.

Lemma 5. Let v, v′ ∈ F∗. Then

(i) 1λ(v) is a palindrome if and only if v is a palindrome.

(ii) λ(v) ≡ λ(v′) if and only if v ≡ v′.

Theorem 6. Let w = 0v1 ∈ {0,1}∗ ⊂ F∗.

(i) If v is a palindrome, then λ(wρ2(w)) is a square tile.

(ii) λ(wρ2(w)) is a double square if and only if w is a Christoffel word.
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Proof. (i) First, we have the square factorization

λ(wρ2(w)) = 0301λ(v)01212ρ2(1λ(v))23 ≡ 303 · 01λ(v)0 · 3̂03 · ̂01λ(v)0.

Now we show that λ(wρ2(w)) is simple. Clearly, λ(w) and λ(ρ2(w)) are
simple since they both contain three letters and no word of the form αα.
Moreover, if P and Q denote respectively the starting and ending points of
λ(w), then the path λ(w) is below the line PQ while λ(ρ2(w)) is above.

(ii) (⇒) Assume that W is a double square. Let W = λ(wρ2(w)) be its
boundary word, where w = 0v1 ∈ 0Pal(F∗)1. Since W factorizes as

W = 303 · 01λ(v)0 · 3̂03 · ̂01λ(v)0, (3)

and since the factorizations must alternate (Proposition 1), the second fac-
torization starts with the second or the third letter of W . Let W ′,W ′′ be
such that W ≡1 W

′ and W ≡2 W
′′ and V ′ and V ′′ be respectively the first

half of W ′ and W ′′. Then, by Lemma 2, either V ′ or V ′′ is a product of two
palindromes x and y. First, assume that the other factorization is obtained
from V ′. Then V ′ = λ(0v1) = 0301λ(v)01 = xy. Taking the reversal on

both sides, we get λ̃(0v1) = yx, that is λ(0v1) ≡ λ̃(0v1). But

λ̃(0v1) = 10λ̃(v)1030 = 101̃λ(v)030 = 101λ(v)030

≡ 01λ(v)0301 = λ(1v0),

which means that λ(0v1) ≡ λ(1v0). Thus, by Lemma 5, it follows that
0v1 ≡ 1v0. Hence, by Theorem 3, v is a cutting word so that w = 0v1 is
a lower Christoffel word. It remains to consider the case where the second
factorization is obtained from V ′′. We could then write V ′′ = 301λ(v)012 =
xy. But such palindromes x and y cannot exist since 2 appears only at the
end of V ′′.

(⇐) Assume that w = 0v1 is a lower Christoffel word. It is well known
that v is a palindrome. Then from (i), λ(wρ2(w)) is the boundary of a
square tile. We know from Proposition 4 that w = 0m01m′1 for some other
palindromes m and m′. Therefore,

λ(wρ2(w)) = λ(0m01m′1)ρ2(λ(0m01m′1))

= 0301λ(m)030 · 101λ(m′)01 · 2123ρ2(λ(m))212

· 323ρ2(λ(m′))23,

showing that P admits a second square factorization. 2
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We say that a crenelated tile λ(wρ2(w)) obtained from a lower Christoffel
word w is a basic Christoffel tile while a Christoffel tile is a polyomino iso-
metric to a basic Christoffel tile under some rotations ρ and symmetries σi.
Observe that, in view of Lemma 2, if W ≡ ABÂB̂ is the boundary word of
a Christoffel tile, then the factors A and B are palindromes, a result com-
patible with the conjecture of Provençal and Vuillon [4]. To conclude this
section, we extract interesting statistics of the Christoffel tiles.

Proposition 7. Let T be a Christoffel tile obtained from the (p, q)-Christoffel
word, where p and q are relatively prime. Then the perimeter and the area
of T are given respectively by P(T ) = 8p+ 4q and A(T ) = 4p+ 3q − 2.

Proof. Let w = 0v1 be the (p, q)-Christoffel word. First, we have

P(T ) = |λ(w)ρ2(λ(w))| = 2|λ(w)| = 2(4|w|0 + 2|w|1) = 8p+ 4q.

On the other hand, it follows from Equation (3) in the proof of Theorem 6
that the area of a T is exactly the area of the parallelogram determined by

the vectors
−→
A =

−−→
303 = (1,−2) and

−→
B =

−−−−−→
01λ(v)0 = (2, 1) + (2|v|0 + |v|1, |v|1) = (2p+ q − 1, q).

Hence, A(T ) = |−→A ×−→B | = 4p+ 3q − 2. 2

4. Fibonacci tiles

Among Sturmian words, the most famous one is the Fibonacci word

abaababaabaababaababa · · · .

defined as the limit of the sequence satisfying f−1 = b, f0 = a, and, for n ≥ 1,
fn = fn−1fn−2. Equivalently, one may prove that f is the fixed point of the
morphism ϕ : {a, b} → {a, b} defined by ϕ(a) = ab and ϕ(b) = a.

From f , it is possible to derive naturally a path on F having remark-
able properties. The construction is obtained as follows. First, rewrite the
Fibonacci word on the alphabet {2,0} ⊂ F instead of {a, b}. Then

f = 202202022022020220202 · · · .
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Figure 5: The prefixes of length 233 (left) and 987 (right) of the path p.

Next, apply the operator Σ1 followed by the operator Σ0. This yields the
word

p = Σ0Σ1f = 01030323030101210103010121232 · · · .
which is as an infinite path on the square grid (see Figure 5). It has been
discovered independently in [12], where the construction is equivalent but
slightly different.

It is convenient to express the path p by means of the turns right and
left (encoded respectively by 3 and 1) instead of the four elementary steps
0, 1, 2 and 3. Thus, the sequence of turns of the path p is given by Σ1f or,
equivalently, by ∆p. We shall denote the sequence of turns by q.

Hereafter, in order to simplify the notation, we define w = σ0(w) for all
w ∈ F∗. Hence, 0 = 0, 1 = 3, 2 = 2 and 3 = 1 and the words w of F∗
satisfying w̃ = w are called σ0-palindromes.

Consider the sequence (qn)n∈N in F∗ defined by q0 = ε, q1 = 3 and

qn =

{
qn−1qn−2 if n ≡ 2 mod 3,

qn−1qn−2 if n ≡ 0, 1 mod 3.

whenever n ≥ 2. The first terms of (qn)n∈N are
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q0 = ε q3 = 31 q6 = 31131133
q1 = 3 q4 = 311 q7 = 3113113313313
q2 = 3 q5 = 31131 q8 = 311311331331331131133

Moreover, |qn| = Fn is the n-th Fibonacci number.

Proposition 8 (Blondin Massé and Paquin [13]). The sequence q of turns
is the limit of the sequence (qn)n∈N.

Proof. Since ∆(q) = f , it suffices to show that ∆(qn)αn = fn−1 for all
integers n ≥ 3, where αn = σn2 (2). The proof is done by induction on n.
First, we have ∆(q3)σ

3
2(2) = ∆(31)0 = 20 = f2, ∆(q4)σ

4
2(2) = ∆(311)2 =

202 = f3 and ∆(q5)σ
5
2(2) = ∆(31131)0 = 20220 = f4. Now, assume that

the result holds for all integers m such that 3 ≤ m < n and let us show that
it also holds for n. We only prove the case n ≡ 2 mod 3 since the argument
is similar for the cases n ≡ i mod 3, i ∈ {0, 1}. Let n = 3k + 2 for some
integer k. Then

∆(q3k+2)α3k+2 = ∆(q3k+1q3k)α3k+2

= ∆(q3k+1)∆(σk0(3)3)∆(q3k)α3k+2

= ∆(q3k+1)σ
k
2(0)∆(q3k)α3k+2

= ∆(q3k+1)α3k+1∆(q3k)α3k

= f3k+1f3k = f3k+2,

and the result follows. 2

Given α ∈ F , the path Σαqn exhibits interesting symmetry properties.

Lemma 9 (Blondin Massé et al. [14]). Let n ∈ N and α = σn0 (3). Then
q3n+1 = pα, q3n+2 = rα and q3n+3 = sα for some σ0-palindrome p and some
palindromes r and s.

Proof. By induction on n. For n = 0, we have indeed q1 = ε · 3, q2 = ε · 3
and q3 = 3 · 1. Now, assume that q3n+1 = pα, q3n+2 = rα and q3n+3 = sα for
some σ0-palindrome p, some palindromes r, s and α = σn0 (3). Then

q3n+4 = q3n+3q3n+2 = q3n+2q3n+1q3n+2 = rαpαr · σn+1
0 (3)

q3n+5 = q3n+4q3n+3 = q3n+3q3n+2q3n+3 = sαrαs · σn+1
0 (3)

q3n+6 = q3n+5q3n+4 = q3n+4q3n+3q3n+4 = rαpαrαsαrαpαr · σn+2(3)

Since rαpαr is a σ0-palindrome and sαrαs, rαpαrαsαrαpαr are palindromes,
the result follows. 2
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Lemma 10 (Blondin Massé et al. [14]). Let n ∈ N and α ∈ F .

(i) The path Σαqn is simple.

(ii) The path
◦
Σα (q3n+1)

4 is the boundary word of a polyomino. 2

Proof. Since the proof is rather technical, we only describe the basic ideas.
(i) By induction on n. This is clearly verified for n = 1, 2, 3. Now, assume

that the result holds for all integers m such that 1 ≤ m < n and let us show

that this is also true for n. The idea is to divide the path
◦
Σα qn into three

smaller parts as follows.

◦
Σ1 q7

◦
Σ0 q7

◦
Σ0 q6

Applying the induction hypothesis,

one deduces that the paths
◦
Σβ qn−3

and
◦
Σγ qn−2 are simple as well. It only

remains to show that the three smaller
paths are contained in disjoint boxes
and the result follows.

(ii) It is sufficient to show that
◦
Σα (q3n+1)

3 is simple. First, notice that
q3n+5 = q3n+4q3n+3 = q3n+3q3n+2q3n+2q3n+1 = q3n+2q3n+1q3n+1q3nq3n+2q3n+1.
But q3n+1 is a prefix of q3nq3n+2, so that q33n+1 is a factor of q3n+5. From (i),

we conclude that
◦
Σα (q3n+1)

3 is simple as well. 2

A Fibonacci tile of order n is a polyomino having
◦
Σα (q3n+1)

4 as a bound-
ary word, where n ∈ N. The first Fibonacci tiles are illustrated in Figure 6.

Figure 6: Fibonacci tiles of order n = 0, 1, 2, 3, 4.

Fibonacci tiles were considered in [14] from a number theory point of
view, and presented slightly differently.
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Figure 7: Tilings of the Fibonacci Tile of order 2 illustrate that it is a double square tile.

Theorem 11. Fibonacci tiles of order n > 0 are double squares.

Proof. We know from Lemma 9 that q3n+1 = px for some σ0-palindrome p
and some letter x ∈ {1,3}. If x = 3, we consider the reversal of the path, i.e.

σ0( ˜(q3n+1)4), so that we may suppose that x = 1. Therefore, on one hand we
obtain

◦
Σα (q3n+1)

4 = Σα

(
p1 · p1 · σ0(p̃)1 · σ0(p̃)

)
= Σαp · Σρ(α)p · Σ̂αp · Σ̂ρ(α)p,

because T (p) = 0. On the other hand, the conjugate q′3n+1 = q3n−1q3n of
q3n+1 corresponds to another boundary word of the same tile. Using again
Lemma 9, we may write q3n = r1 and q3n−1 = q3, for some palindromes q
and r. Therefore, p1 = q3n+1 = q3nq3n−1 = r1q1 so that p = r1q. But p is
an σ0-palindrome, which means that q′3n+1 = q3n−1q3n = q1r1 = p̃1 = p1.
Hence, since p is an σ0-palindrome as well, we find

◦
Σα (q′3n+1)

4 = Σα

(
p1 · p1 · p̃1 · p̃

)
= Σαp · Σρ(α)p · Σ̂αp · Σ̂ρ(α)p. 2

As for Christoffel tiles, Fibonacci tiles also suggest that the conjecture of
Provençal and Vuillon for palindromes in double squares [4] holds.

Corollary 12. If ABÂB̂ is a BN-factorization of a Fibonacci tile, then A
and B are palindromes.

Proof. The conclusion follows from Theorem 11. Indeed, since p is a σ0-
palindrome, then Σαp is a palindrome. The same argument applies for the
second factorization. 2

Moreover, the sequence of areas of the Fibonacci tiles

A(n) = 1, 5, 29, 169, 985, 5741, 33461, · · ·
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is precisely the odd index subsequence of the well-known Pell numbers

P (n) = 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, · · · .

The identity A(n) = P2n+1 reveals a link with number theory where Pell
numbers play an important role, as established in [14].

4.1. Fibonacci tiles variants

We conclude this section by introducing four variants of the Fibonacci
tiles. Consider the sequence (rd,m,n)(d,m,n)∈N3 satisfying the following recur-
rence, for d ≥ 2,

rd,m,n =


rd−1,n,mrd−2,n,m if d ≡ 0 mod 3

rd−1,n,mrd−2,n,m if d ≡ 1 mod 3

rd−1,m,nrd−2,m,n if d ≡ 2 mod 3

Using similar arguments as in the Fibonacci tiles case, one shows that both
families obtained respectively with seed values

r0,m,n = (3113)m313, r1,m,n = (3113)n3, (4a)

r0,m,n = (31)m313, r1,m,n = (31)n31 (4b)

are such that
◦
Σα (r3d,m,nr3d,n,m)2 is a boundary word whose associated poly-

omino is a double square (see Figure 8), where α ∈ F . Intuitively, the
parameters m and n measure the thickness of the tiles (in orthogonal direc-
tions), while the parameter d measures their level of fractality.

Figure 8: The tile
◦
Σ0 (r6,0,1r6,1,0)2 with seeds (4a); tiles

◦
Σ0 (r9,m,0r9,0,m)2 with seeds of

type (4b) for m = 0, 1, 2.

Similarly, let (sd,m,n)(d,m,n)∈N3 be a sequence satisfying for d ≥ 2 the
recurrence

sd,m,n =

{
sd−1,n,msd−2,n,m if d ≡ 0, 2 mod 3,

sd−1,m,nsd−2,m,n if d ≡ 1 mod 3.
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Then the families obtained with seed values

s0,m,n = (3113)m313, s1,m,n = 31, (5a)

s0,m,n = (31)m313, s1,m,n = 3 (5b)

yield double squares
◦
Σα (s3d,m,ns3d,n,m)2 as well (see Figure 9). One may

verify that rd,0,0 = sd,0,0 for any d ∈ N if the seed values are respectively (4a)
and (5b) or respectively (4b) and (5a).

Figure 9: Tile
◦
Σ0 (s9,2,0s9,0,2)2 with seeds (5a); tiles

◦
Σ0 (s6,0,ns6,n,0)2 with seeds (5b) for

n = 1, 2.

5. Concluding remarks

The study of double squares suggests interesting and challenging prob-
lems. For instance, it is appealing to conjecture that a double square is
either of Christoffel type or of Fibonacci type. However, that is not the case,
as illustrated in Figure 10. This begs for a thorough study in order to ex-

Figure 10: Three double squares not in the Christoffel and Fibonacci tiles families.

hibit a complete zoology of such tilings. Another problem is to prove that
Christoffel and Fibonacci tiles are prime, that is, they are not obtained by
composition of smaller square tiles (see Figure 11). On the other hand, there

is a conjecture of [4] stating that if ABÂB̂ is the BN-factorization of a prime
double square, then A and B are palindromes, for which no counter-example
has been provided. This leads to a number of questions on the “arithmetics”
of tilings, such as the unique decomposition, distribution of prime tiles, and
their enumeration. Moreover, it would be interesting to verify if the following
statements hold:
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(a) (b)

S : 0 7→ 00 1 7→ 101
2 7→ 22 3 7→ 323

(c)

Figure 11: (a) A prime double square D. (b) A square tile S. (c) The tile S(D), which is
obtained by replacing each unit square of D by S, is a double square tile. It is not prime.

• Let m,n ∈ N be fixed. The sequence of areas indexed by d ∈ N of the
four variants of Fibonacci tiles satisfy, for d ≥ 2, the recurrence

A(d) = 6A(d− 1)−A(d− 2).

• The first differences sequence of limn→∞ qn is the Fibonacci word. De-
scribe the first differences sequence of limd→∞ rd,m,n and limd→∞ sd,m,n.

• If αα appears in the boundary word of a double square tile D, where
α ∈ F , then D is not prime.

Finally, the Fibonacci tiles have fractal characteristics suggesting that
Lindemayer systems (L-systems) might be used for their generation. The
formal grammars that describe them have been widely studied, and their
impact is significant in biology, computer graphics [15] and modeling of plants
[16]. Snowflakes (Fibonacci tiles) are one of the numerous designs that are
included in this category.
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