
PADS: An approach to modeling resource demand and
supply for the formal analysis of hierarchical scheduling

Anna Philippoua, Insup Leeb, Oleg Sokolskyb

aDepartment of Computer Science, University of Cyprus, Nicosia, Cyprus
bDepartment of Computer and Info. Science, University of Pennsylvania, Philadelphia, PA, U.S.A.

Abstract

As real-time embedded systems become more complex, resource partitioning is in-
creasingly used to guarantee real-time performance. Recently, several compositional
frameworks of resource partitioning have been proposed using real-time scheduling
theory with various notions of real-time tasks running under restricted resource sup-
ply environments. However, these real-time scheduling-based approaches are limited
in their expressiveness in that, although capable of describing resource-demand tasks,
they are unable to model resource supply. This paper describes a process algebraic
framework PADS for reasoning about resource demand and resource supply inspired
by the timed process algebra ACSR. In ACSR, real-time tasks are specified by enun-
ciating their consumption needs for resources. To also accommodate resource-supply
processes in PADS, given a resourcecpu, we write cpu to denote the availability of
cpu for a requesting task process. Using PADS, we define a supply-demand relation
where a pair(T, S) belongs to the relation if the demand processT can be scheduled
under supplyS. We develop a theory of compositional schedulability analysis as well
as a technique for synthesizing an optimal supply process for a set of tasks. Further-
more, we define ordering relations between supplies which describe when a supply
offers more resource capacity than another. With this notion it is possible to formally
represent hierarchical scheduling approaches that assignmore “generous” resource al-
locations to tasks in exchange for a simple representation.We illustrate our techniques
via a number of examples.

1. Introduction

Component-based design has been widely accepted as a compositional approach to
facilitate the design of complex systems. It provides meansfor decomposing a complex
system into simpler components and for composing the components using interfaces
that abstract component complexities. Such approaches areincreasingly used in prac-
tice for real-time systems. For example, ARINC-653 standards by the Engineering
Standards for Avionics and Cabin Systems committee specifypartition-based design

Email addresses:annap@cs.ucy.ac.cy (Anna Philippou),lee@cis.upenn.edu (Insup Lee),
sokolsky@cis.upenn.edu (Oleg Sokolsky)

Preprint submitted to Elsevier August 2, 2011

of avionics applications. Also, hypervisors for real-timevirtual machines provide tem-
poral partitions to guarantee real-time performance [15, 11].

To take advantage of the component-based design of real-time systems, schedu-
lability analysis should support compositional analysis using component interfaces.
These interfaces should abstract the timing requirements of a component with a min-
imum resource supply that is needed to meet the resource demand of the component.
Component-based real-time systems often involve hierarchical scheduling frameworks
that support resource sharing among components as well as associated scheduling algo-
rithms [5, 22]. To facilitate the analysis of such systems, resource component interfaces
and their compositional analysis have been proposed [16, 23, 24, 8, 25, 12]

Process algebras are abstract and compositional methodologies for system specifi-
cation and analysis. They allow to systematically build complex systems from smaller
ones via the use of a small number of operators, as well as to reason compositionally
about system correctness. As such, they provide a promisingframework in which to
study compositional scheduling. This paper presents a formal treatment of the problem
of compositional hierarchical scheduling by introducing aprocess algebraic frame-
work, PADS, for modeling resource demand and supply inspired by the timed process
algebra ACSR [13, 14]. The notions of resource demand and resource supply are fun-
damental in defining the meaning of compositional real-timescheduling analysis. Our
proposed framework formally defines both of these notions. As in ACSR, a task in our
process algebra is specified by describing its consumption needs for resources. To also
accommodate resource-supply processes, we extend the notion of aresourceand given
a resourcecpu we usecpu to denote the availability of the resource for consumption
by a requesting task. Our formalism then addresses the following issues:

1. Schedulability: We define asupply simulation relation|= that captures when a
taskT is schedulable by a supplyS, S |= T .

2. Compositionality: We explore conditions under which we may safely compose
schedulable systems. Specifically, we are interested to define functions on sup-
plies,◦, and appropriate conditions,f , such that ifT1 is schedulable byS1 and
T2 by S2 then the parallel composition ofT1 andT2 is schedulable byS1 ◦ S2,
assuming that conditionf holds:

S1 |= T1, S2 |= T2

S1 ◦ S2 |= T1‖T2
, f(S1, S2)

3. Supply Synthesis: We propose a method by which we can generate a supply
process to schedule a set of tasks, assuming that such a scheduler exists. Our
method is based on the notion of ademandof a task which is a supply that can
schedule the task and, at the same time, it is optimal in the sense that (1) it does
not reserve more resources than those required and (2) it captures all possible
ways in which a task can be scheduled. We then prove that two ormore tasks
are schedulable if and only if they can be scheduled by the composition of their
demands.

4. Task and Supply Orderings: We propose an ordering between tasks which de-
fines when a task is more “demanding” than another, meaning that it requires
more resources in order to execute correctly. We also propose two orderings
between supplies which define when a supply is more “generous” than another

2

meaning that it offers a greater resource allocation. The main result accompany-
ing these notions is that any supply that schedules a more demanding task may
also schedule a less demanding task and that any task schedulable by a less gen-
erous supply is also schedulable by a more generous supply. This result comes to
complement our supply synthesis approach since it allows usto check whether a
supplyS schedules a task set as follows: We begin by constructing theoptimal
supply/demand,D, for the task set and then check whetherS is more gener-
ous thanD. In the affirmative case we may conclude that the task set is also
schedulable byS.

Related work.As mentioned above, this work brings together two long-standing lines
of research. On the one hand, there has been much work on compositional hierar-
chical scheduling based on real-time scheduling theory [16, 23, 24, 8, 6, 7]. Typically,
such approaches to schedulability analysis rely on over-approximations of task demand
using, for example, demand bound functions and under-approximations of resource
supply using supply bound functions. Efficient algorithms are developed to ensure
that demand never exceeds supply. On the other hand, severalformal approaches to
scheduling based on process algebras [3, 14, 13, 20, 18, 19],task automata [10, 9],
preemptive Petri nets [4], etc., have been developed. To thebest of our knowledge,
none of these approaches consider the modeling of resource supply explicitly. Instead,
sharing of a continuously available processing resource between a set of tasks has been
considered.

Our approach to supply synthesis is conceptually similar tothe work of Altisenet
al. on applying controller synthesis to scheduling problems [1, 2]. The difference is
that we are not aiming to generate schedulers, but rather aninterfacefor a task set, an
abstraction that can be used in a component-based approach to real-time system design.

The present paper extends our previous work of [21] as follows. It introduces
priorities to the framework, thus allowing us to represent schedulability with respect
to particular schedulers and it contains all the proofs missing from [21] adopted for
the extended framework. Furthermore, it introduces ordering relations between tasks
and supplies and associated results that enable us to formally represent techniques for
over-approximating optimal resources as can be found in e.g. [23].

The rest of the paper is structured as follows. Section 2 presents our process alge-
bra and its semantics. Section 3 contains our results on compositional schedulability
analysis and interface construction, followed by examplesillustrating the application
of the theory in Section 3.3. Section 4 presents hierarchiesbetween tasks and supplies
and develops their properties and, finally, Section 5 concludes the paper.

2. The Language

In our calculus, PADS (Process Algebra for Demand and Supply), we consider a
system to be a set of processes operating on a set of serially reusable resources denoted
byR. These processes are (1) thetasksof the system, which require the use of resources
in order to complete their jobs, and (2) thesupplies, that specify when each resource is
available to the tasks. Based on this, each resourcer ∈ R can be requested by a task,r,

3

granted by a supply,r, or consumed,
↔
r , when a supply and a request for the resource

are simultaneously available.
An action in PADS is a set relating to resource requests, grants and consumptions,

where each resource may be represented at most once. Resource requests and con-
sumptions are associated with a priority, where prioritiesare drawn from the nonnega-
tive integers. These priorities are used to arbitrate between actions, the intention being
that an action with a higher priority always wins. Supplies of resources are not as-
sociated with priorities since a resource can either be supplied or not supplied to a
component and cannot be simultaneously offered to two or more tasks in a system. For
example, the action{(r1, 1), (r2, 3)} represents a request for the resourcesr1 andr2
at priorities1 and3, respectively, whereas the action{r1, (

↔
r2, 2), (r3, 1)} involves the

granting of resourcer1, consumption of resourcer2 at priority level2 and request for
resourcer3 at priority level1.

Our framework is intended to capture real-time, resource-aware systems. Such
systems have a limited number of shared resources each of which is capable of partici-
pating in at most one action at a time. To capture this view andenable reasoning about
scheduling such systems, our process algebra contains the notion of time. In particular,
we take a discrete time approach: we assume that all actions require one unit of time
to complete measured on a global clock, with action∅ representing idling for one time
unit since no resource is being employed.

We writeAct, ranged over byα andβ, for the set of all actions and distinguishActR,
the set of actions involving only resource requests, rangedover byρ, andActG, the set
of actions involving only resource grants, ranged over byγ. Givenα ∈ Actwe writeα♭

to remove all priorities from resource-priority pairs inα, e.g.{(r1, 2), r2, (
↔
r3, 1)}

♭ =

{r1, r2,
↔
r3} andres(α) for the set of resources occurring inα, e.g.res({(r1, 2), r2, (

↔
r3

, 1)}) = {r1, r2, r3}. Finally, given an actionα and a resourcer, we write πα(r)
for the priority at which resourcer is employed within actionα, where we consider all
supplied resources to be employed at priority level0, e.g. forα = {(r1, 2), r2, (

↔
r3, 4)},

we haveπα(r1) = 2, πα(r2) = 0 andπα(r3) = 4. (Note thatπα is well defined since
we have assumed that each resource may be represented in an action at most once.)

2.1. Syntax

The following grammars define the set of tasksT, the set of suppliesS and the
set of timed systemsP, where we recall thatρ ∈ ActR andγ ∈ ActG. Furthermore,
C ranges over a set oftask constants, each with an associated definition of the form

C
def
= T , whereT may contain occurrences ofC as well as other task constants andD

ranges over a similar set ofsupply constants.

T ::= FIN | ρ : T | T + T | C

S ::= FIN | γ : S | S + S | D

P ::= δ | T | S | P‖P

We considerFIN to be the well-terminated process. Then a task process can be
FIN, a task constantC, an action-prefixed processρ : T which executesρ during

4

the first time unit and then behaves asT , or a nondeterministic choiceT1 + T2 which
offers the choice between executingT1 or T2. Similarly, a supply process can beFIN,
a supply constantS, an action-prefixed processγ : S, or a nondeterministic choice
S1 + S2. We make the assumption that all constants are guarded by an action, that is,

it is not possible to define a process such asC
def
= D +

Finally, a system can be a deadlocked system,δ, or an arbitrary composition of
tasks and supplies. In a parallel compositionP1‖P2, P1 andP2 run concurrently and
synchronize while executing their actions. Furthermore, whenever one process requests
a resource granted by the other, we obtain a consumption of the resource in question.
Note that the difference betweenFIN andδ is that whileFIN allows time to pass,δ
does not. As a shorthand notation we will writeΣi∈IPi for Pi1 + . . . + Pin , where
I = {i1, . . . , in}. Note that, given our assumption that all process constantsoccur
guarded by an action, any task or supply different toFIN is in fact a guarded choice of
the formΣi∈Iαi : Pi.

2.2. Semantics

The semantics of PADS is given in two steps. First, we developa transition relation
in which nondeterminism is resolved in all possible ways, the unprioritized transition
relation։. Then, we refine։ into−→, the prioritized transition relation, on the basis
of a preemption relation which implements a type of “angelic” behavior in the way in
which tasks resolve their nondeterminism, choosing the best possible outcome given
the available supply and taking priorities into account.

We proceed to consider the unprioritized transition relation։ defined in Table 1.
FIN being a well-terminated (and not a deadlocked) process, it allows time to pass
(axiom (IDLE)). Action-prefixed processes first execute their initial action and then
proceed according to the continuation ((ActT) and (ActS)). Nondeterministic choice
behaves as either of its constituent summands ((SumT) and (SumS)). A constant be-
haves as the process in its defining equation ((ConstT) and (ConstS)). Finally, rule
(Par) specifies the way in which a parallel system evolves. To begin with, we recall
that all actions take one time unit thus every step of a parallel composition should cap-
ture the actions of each of its components during the first time unit. To achieve this, the
components of a parallel composition evolve synchronouslyand the composition ad-
vances only if both of the constituent processes are willingto take a step. Furthermore,
the rule enunciates the outcome of the synchronization between two parallel processes,
the most important aspect being that a request within one component is satisfied by an
available grant in the other. The condition of rule (Par) imposes a restriction on when
two actions may take place simultaneously within a system. Specifically, we say that
actionsα1 andα2 arecompatiblewith each other if, wheneverr occurs in both actions
then one occurrence must be a request and the other a supply ofthe resource. So, for
example, it is not possible to simultaneously offer a resource in one component and
consume or offer it in another, nor to request it by two different tasks. We capture this
requirement as follows:

compatible(α1, α2) =
∧

r∈res(α1)∩res(α2)

(r ∈ α♭
1 ∧ r ∈ α♭

2) ∨ (r ∈ α♭
2 ∧ r ∈ α♭

1)

5

Table 1:Transition rules for tasks, supplies and systems

(Idle) FIN
∅
։ FIN

(ActT) ρ : T
ρ

։ T (ActS) γ : S
γ

։ S

(SumT)
Ti

α
։ T, i ∈ {1, 2}

T1 + T2

α
։ T

(SumS)
Si

α
։ S, i ∈ {1, 2}

S1 + S2

α
։ S

(ConstT) T
α
։ T

′

C
α
։ T

′
C

def
= T (ConstS) S

α
։ S

′

D
α
։ S

′
D

def
= S

(Par) P1

α1

։ P
′
1 P2

α2

։ P
′
2

P1‖P2

α1⊕α2

։ P
′
1‖P

′
2

compatible(α1, α2)

We may now combine compatible actions by transforming a simultaneous request and
supply of the same resource into a consumption:

α1 ⊕ α2 = {(r, p) ∈ α1 ∪ α2|r 6∈ α1 ∪ α2} ∪ {r ∈ α1 ∪ α2|(r, p) 6∈ α1 ∪ α2}

∪ {(
↔
r , p)|(r, p) ∈ αi, r ∈ α3−i, i ∈ {1, 2} or (

↔
r , p) ∈ α1 ∪ α2}

We may show the parallel composition operator to be associative with respect to

։ in the sense that,P1‖(P2‖P3)
α
։ P ′

1‖(P
′
2‖P

′
3) if and only if (P1‖P2)‖P3

α
։

(P ′
1‖P

′
2)‖P

′
3. This can be shown by establishing that (1)compatible(α1, α2) and

compatible(α1 ⊕ α2, α3) if and only if compatible(α2, α3) andcompatible(α1, α2 ⊕
α3), and (2) the associativity of⊕. Both of these properties are easy to prove by refer-
ring to the definitions.

Example 2.1. Consider the supplyS
def
= {r1, r2} : S which offers resourcesr1 andr2

simultaneously and the following task processes:

T1
def
= {(r1, 2)} : FIN + ∅ : {(r1, 2)} : FIN

T2
def
= {(r1, 1), (r2, 1)} : FIN + {(r2, 1), (r3, 1)} : T2

T3
def
= {(r1, 1), (r2, 1)} : FIN + {(r2, 1)} : {(r1, 1)} : FIN

TaskT1 places a demand for resourcer1 at priority level2 during either the first or
the second time unit. TaskT2 requires the use of two resources simultaneously during
the first time unit, eitherr1 andr2 or r2 andr3. Finally, taskT3 requires the use of
resourcesr1 andr2 either simultaneously or in sequence. The transition systems of
T1‖S, T2‖S and(T1‖S)‖T3 are depicted in Figure 1.

Note that(T2‖S)‖T3 has no transitions altogether since bothT2 andT3 requirer2
during the first time unit. 2

Before we proceed to define the prioritized transition relation of PADS let us draw
some motivation from the example above. We may note that these unprioritized tran-
sition systems include some unexpected and even undesirable behaviors. For example,

6

T2||S

FIN||S

{(r1,1), (r2,1)}

{r1,(r2,1),(r3,1) }

(T1||S)||T3

{(r1,1),(r2,1)}

{r1,r2}

{(r1,2),(r2,1)}

(FIN||S)||{(r1,1)}:FIN ({r1,2)}:FIN||S)||FIN

{(r1,2),r2}

FIN||S

{(r1,1),r2}

{r1,r2}

T1 || S

{(r1,2)}:FIN||S

FIN||S

{(r1,2),r2}

{r1,r2}

{(r1,2),r2}

{r1, r2}

Figure 1: The unprioritized transition systems ofT1‖S, T2‖S and(T1‖S)‖T3

consider taskT1. Our intention in writing this process is to express thatT1 requests
resourcer1 during the first or the second time unit. More precisely, ifr1 is avail-
able during the first time unit, thenT1 should employ it and, if not, then it should
idle and reiterate its request during the second time unit. However, when placingT1

in parallel with a process likeS that offersr1 (andr2) immediately, we observe that

T1‖S
{r1,r2}
։ {(r1, 2)} : FIN‖S, i.e. the semantics allow forT1 to choose its second

alternative of idling instead of employing the available resource, contrary to our in-
tention. Furthermore, considerT2‖S. Again, here we observe that, contrary to what
one might expect, the process may choose to execute its action {(r2, 1), (r3, 1)}, thus
iterating its resource request forr3, instead of consuming the availabler1 andr2. Fi-
nally, in the transition system of(T1‖S)‖T3, we observe that the initial state enables
two transitions whose actions contain the same resources but with one having higher
priorities than the other: a treatment of priority is neededto ensure that higher-priority
actions take precedence over lower-priority ones.

In order to capture the intended behavior of systems, as discussed above, we define
a preemption relation on actions that prunes away undesirable behaviors. This preemp-
tion relation focuses on nondeterminism within tasks and itensures that it is resolved
based on the priorities of the resource requests and the following two assumptions:

1. Given a supply, a task should respond “angelically” and, given a nondetermin-
istic set of enabled transitions, it should choose only between the ones that are
satisfied by the available supply, assuming that such options exist. For example,
T2‖S above should retain only transition{(

↔
r1, 1), (

↔
r2, 1)} in its initial state.

2. In addition, we assume that a task behaves greedily and, ateach step, it employs
as many of the supplied resources as possible. For example, the composition
T1‖S above should only retain transition{(

↔
r1, 2), r2} in its initial state.

Given the above, we define the preemption relation as follows:

Definition 2.2. We define thepreemption relation≺∈ Act × Act so thatα ≺ β if one
of the following holds:

1. {r|r ∈ α♭or
↔
r∈ α♭} = {r|r ∈ β♭or

↔
r∈ β♭}, α♭ ∩ R 6= ∅ andβ♭ ∩ R = ∅, that

is, α andβ use the same consumed and offered resources andα contains some
additional resource requests whereasβ does not.

7

2. res(α) = res(β), α♭∩R = β♭∩R = ∅ and{r|
↔
r∈ α♭} ⊂ {r|

↔
r∈ β♭}, that is,α

andβ involve the same resources, neither of them makes any resources requests,
butβ consumes more resources thatα.

3. α♭ = β♭, for all r ∈ res(α) πα(r) ≤ πβ(r), and there existsr ∈ res(α),
πα(r) < πβ(r), that is,α andβ contain the same resources withβ giving greater
or equal priority to all resource usages, and there exists atleast one resource
which is associated with a strictly greater priority inβ than inα.

Intuitively, an action precludes another if it makes betterusage of the same offered
resources: According to clause (1), an action that involvesno resource requests for
an available resource supply preempts an action that makes further requests given the
same supply which implies that tasks should behave in an “angelic” manner according
to the first assumption above. According to clause (2), givena resource supply as much
resource should be consumed as possible, thus tasks behave greedily according to the
second assumption above. And, finally, the third clause implements our treatment of
priority: if two resources contain exactly the same resources and in the same mode
(request, grant or consume) thenβ preemptsα if each resource is employed byβ at a
priority higher than or equal toα, with at least one resource being implemented at a
higher priority.

Note that preemption takes place between two actions only ifthey contain the same
consumed and offered resources. For example,{(

↔
r1, 2), (r2, 1)} ≺ {(

↔
r1, 1), (

↔
r2, 1)}

but {(
↔
r1, 1), (r2, 1)} 6≺ {(

↔
r1, 2))} and{(

↔
r1, 1), (r2, 1), (r3, 1)} 6≺ {(

↔
r1, 2))}. In other

words, our semantics makes an asymmetric treatment betweenresource requests and
resource supplies and, consequently, between task and supply processes. Intuitively,
this asymmetry captures the understanding that while supplies control their nondeter-
minism and may choose to offer any one of their available actions, tasks respond to the
supply available and resolve their nondeterminism based onthe environment.

We may now define the prioritized transition relation
α

−→ by the following rule:

P
α
։ Q

P
α

−→ Q
, there is noP

β
։, α ≺ β

Figure 2 presents the refined versions of the transition systems in Figure 1 after pre-
emption is implemented.

We conclude this section by introducing some notations. We write P −→ if there
existsα such thatP

α
−→. If P 6

α
−→ for all actionsα, we writeP = δ, whereδ is the

deadlocked process. We writeP =⇒ P ′ if there existα1, . . . , αn andP1, . . . , Pn, n ≥
1, such thatP

α1−→ P1
α2−→ . . . Pn−1

αn−→ Pn = P ′. The set of traces ofP , traces(P),
is defined to be the set of all infinite sequencesα♭

1α
♭
2 . . . such thatP

α1−→ P1
α2−→

Furthermore, we writeκ for elements of2R andκ to transform all resource requests in
κ into resource grants, so,{r1, r2} = {r1, r2}. Extending this notation to traces of the
form w = κ1κ2 . . ., we writew for κ1 κ2 Finally, givenα ∈ ActG, we writeα♮ to
transform all resource grants into resource requests, so,{r1, r2}

♮ = {r1, r2}.

8

T2||S

FIN||S

{(r1,1), (r2,1)}

(T1||S)||T3

{r1,r2}

{(r1,2),(r2,1)}

(FIN||S)||{(r1,1)}:FIN

FIN||S

{(r1,1),r2}

{r1,r2}

T1||S

{(r1,2),r2}

FIN||S {r1,r2}

Figure 2: The prioritized transition systems ofT1‖S, T2‖S and(T1‖S)‖T3 from Example 2.1

3. Schedulability

In this section we present a theory of schedulability for ourcalculus. We begin
by defining when a set of tasks is considered to be schedulableby a supply. Then we
present an alternative characterization based on a type of simulation relation and we
prove the two definitions to be equivalent. In what follows wewrite T⋆ for the set
containing all processes of the formT1‖ . . . ‖Tn, n ≥ 1, andS⋆ for the set containing
all processes of the formS1‖ . . . ‖Sn, n ≥ 1. For simplicity, we refer to elements of
T⋆ andS⋆ simply as tasks and supplies, respectively.

Definition 3.1. A taskT ∈ T⋆ is schedulable bysupplyS ∈ S⋆ if wheneverT‖S =⇒

P then (i)P −→ and (ii) for all P
α

−→ we haveα♭ ∩ R = ∅.

According to this definition, a taskT is schedulable by supplyS if at no point during
their interaction does the system deadlock (clause (i)) and, moreover, no request for a
resource remains unsatisfied (clause (ii)).

Example 3.2. Let

S1
def
= {r2} : FIN T1

def
= {(r1, 1)} : FIN

S2
def
= {r1, r2} : FIN T2

def
= {(r1, 1)} : FIN + {(r2, 1)} : FIN

S3
def
= {r1} : FIN + {r2} : FIN T3

def
= {(r2, 1)} : FIN

ConsiderT1. We observe thatT1 is not schedulable byS1 sinceT1‖S1
{(r1,1),r2}

−→ .
Clearly, this is so becauseS1 does not offerr1 as required byT1, whileS2, by offering

simultaneouslyr1 andr2, schedulesT1 as shown in the transitionT1‖S2
{(

↔

r1,1),r2}
−→

FIN‖FIN. However, this is not the case for supplyS3: although it offers bothr1 and
r2 during the first time unit, it does so in two distinct actions.If the nondeterminism is

resolved according to the first summand, we obtainT1‖S3
{(r1,1),r2}

−→ FIN‖FIN (note
that{(r1, 1), r2} and{(

↔
r1, 1)} are incomparable by≺ thus both actions are enabled in

T1‖S3).

9

Moving on to taskT2 we observe that this is schedulable by all three supplies.

In particular,T2‖S1
{(

↔

r2,1)}
−→ FIN‖FIN and this is the only transition ofT2‖S1 since

{r2, (r1, 1)} ≺ {(
↔
r2, 1)}. Finally,T3 is schedulable byS1 andS2 but notS3. 2

Following this example we can make a number of observations regarding the de-
fined notion of schedulability. Regarding supplies, we notethat adding resources to the
actions of a supply (asS2 introducesr2 in the action of supplyS1) appears to increase
the supply’s ability to schedule tasks since this implies that more resources are offered
(S2 schedules taskT1 whereasS1 cannot). However, introducing nondeterministic al-
ternatives in a supply reduces this ability; for exampleS1 schedulesT3 but S3 does
not. The opposite holds for tasks: extending the actions of atask with resources de-
creases its ability to be scheduled by a supply since this implies that more resources are
required, while extending a task with nondeterministic alternatives increases its ability
to be schedulable since additional alternatives instill greater flexibility for the task to
execute (T2 is schedulable byS3 unlikeT1 andT3). These observations will be further
studied and formalized in Section 4.

We now continue to provide an alternative characterizationof schedulability via
a type of simulation relations. This definition highlights the conditions under which
a task is schedulable by a supply as well as the asymmetry between tasks and sup-
plies discussed above. Before moving on to this definition weintroduce some useful
notations and results:

Definition 3.3. Letα, β ∈ Act.

• We writesat(β, α) if res(β) ⊆ res(α). In the case ofβ ∈ ActR andα ∈ ActG,
we say that request actionβ is satisfied by grant actionα.

• For a systemP , we writeβ �P α if sat(β, α) and there exists noγ ∈ Act such
thatP

γ
−→ P ′, sat(γ, α) and eitherβ♭ ⊂ γ♭ or β♭ = γ♭ andβ ≺ γ. If β �P α

we say thatβ is amaximalresponse ofP with respect toα.

Note that, given a resource grant by some supplyS, only maximal responses of a task
T are relevant responses to the supply. This is because, in theparallel composition of
T‖S, any non-maximal responses will be pruned away by the preemption relation and

thus they can be ignored. For example, ifT
def
= {(r1, 2), (r2, 1)} : T1 + {(r1, 3)} : T2

andS
def
= {r1, r2} : S′, we have{(r1, 2), (r2, 1)} �T {r1, r2}. We may in fact prove

that:

Lemma 3.4. For anyT ∈ T⋆, S ∈ S⋆,

1. T‖S
α

−→ T ′‖S′ withα♭∩R = ∅ if and only ifT
α1−→ T ′, S

α2−→ S′,α = α1⊕α2

andα1 �T α2.
2. SupposeT‖S

α
−→ T ′‖S′, whereT

α1−→ T ′, S
α2−→ S′ andα = α1 ⊕ α2, and,

furthermore, there existsβ, sat(β, α2) with T
β

−→ T ′′. Thenα1 �T α2.

PROOF: For the first item of the lemma, considerT ∈ T⋆, S ∈ S⋆, such thatT‖S
α

−→
T ′‖S′ with α♭ ∩ R = ∅. Then it must be that for someα1 ∈ ActR andα2 ∈ ActG,

10

T
α1−→ T ′, S

α2−→ S′ with α = α1 ⊕ α2. Sinceα♭ ∩ R = ∅ it must be thatsat(α1, α2).
Suppose that there existsγ with sat(γ, α2) such that eitherα♭

2 ⊂ γ♭ or β♭ = γ♭ and
β ≺ γ. In both cases we may see thatα1⊕α2 ≺ γ⊕α2 which contradicts the existence
of transitionT‖S

α
−→. This implies thatα1 �T α2 as required. The other direction of

the property can be established using similar arguments.
For the second item of the lemma, supposeT‖S

α
−→ T ′‖S′, whereT

α1−→ T ′,

S
α2−→ S′, andα = α1 ⊕ α2, and, furthermore, there existsβ, sat(β, α2) with T

β
−→

T ′′. Suppose thatα♭ ∩ R 6= ∅. Thenα ≺ β ⊕ α2 which contradicts the existence of
the transitionS‖T

α
−→ S′‖T ′. Thus,α♭ ∩ R = ∅, and by the first part of the lemma

α1 �T α2. 2

Definition 3.5. A relation S ⊆ T⋆ × S⋆ is a supply simulation relationif for all
(T, S) ∈ S, S −→, and ifS

α
−→ S′ then

1. there existsT
β

−→ T ′ with sat(β, α) and(T ′, S′) ∈ S, and

2. wheneverT
β

−→ T ′ with β �T α, then(T ′, S′) ∈ S.

If there exists a supply simulation relation betweenT andS, then we writeS |= T .

That is, a task and a supply are related by a supply simulationrelation if (i) the
supply is able to offer resources to the task (S −→), (ii) if a supply offers a set of
resources then the task will be able to respond by an action that is satisfied by the avail-
able supply and to remain schedulable by the resulting stateof the supply (clause 1),
and (iii) given a set of resources offered by the supply, any maximal transition by which
the task can accept the offered supply will result in a state that remains schedulable by
the remaining supply (clause 2). Recall that, according to Lemma 3.4(2), only maximal
transitions ofT with respect to some supply are relevant responses, all other transitions
are pruned away by the preemption relation and can thus be ignored.

We may now prove that the two alternative schedulability notions coincide.

Lemma 3.6. A taskT ∈ T⋆ is schedulable by supplyS ∈ S⋆ if and only ifS |= T .

PROOF: To begin with, suppose there exists a supply simulation relationR betweenT
andS. We will show that ifT‖S

α
−→ T ′‖S′ then (i)α♭ ∩R = ∅, (ii) (T ′, S′) ∈ R and

(iii) T ′‖S′ −→. Then, by induction on the length of the transition ofT‖S =⇒ P , we
may deduce thatT is schedulable byS, according to Definition 3.1.

So suppose thatT‖S
α

−→ T ′‖S′ whereT
α1−→ S′ andS

α2−→ S′, α = α1 ⊕ α2.

We know that for someβ, sat(β, α2), T
β

−→ T ′′ (Definition 3.5(1)). By Lemma 3.4(2)
this implies thatα1 �T α2, thus by Definition 3.5(T ′, S′) ∈ R. Furthermore, by
Lemma 3.4(1) we have thatα♭ ∩ R = ∅. Finally, since(T ′, S′) ∈ R, by Definition 3.5

we have thatS′ −→ and for eachS′ β1
−→ there existsT ′ β2

−→ with sat(β2, β1). This
implies thatS′‖T ′ −→ which completes the first part of the proof.

Conversely, suppose that taskT is schedulable by supplyS. We will show that

R = {(T, S)|T is schedulable byS}

is a supply simulation relation. Suppose(T, S) ∈ R. SinceT‖S −→, T −→ and
S −→. Furthermore, ifS

α
−→ S′ then, sinceT is schedulable byS, there exists

11

T
β

−→ T ′, sat(β, α). If not, that is for allT
β

−→ T ′′, res(β) − res(α) 6= ∅, then
T‖S

γ
−→, γ♭ ∩ R 6= ∅ which contradicts our assumption ofT being schedulable by

S. Next, suppose thatT
β

−→ T ′ andβ �T α. SinceS
α

−→ S′ andT
β

−→ T ′ where

β �T α, by Lemma 3.4(1)T‖S
α⊕β
−→ T ′‖S′, whereT ′ is schedulable byS′, which

implies that(T ′, S′) ∈ R, as required. 2

We define when a task is schedulable and this is done in the following obvious way.

Definition 3.7. A taskT ∈ T⋆ is schedulableif there exists a supplyS with S |= T .

We observe that the crux of the schedulability of a task by a supply lies in the ability
of the task to operate acceptably for all possible actions ofthe supply and in doing so
in all its enabled nondeterministic executions that can take place as a response to the
supply available. The notion of a cylinder defined below is intended to capture all the
possible ways in which a task can respond given an execution of a supply.

Definition 3.8. Given a taskT ∈ T⋆ and an infinite tracew = κ1κ2 . . ., with κi ⊂ R

for all i, we define thew-cylinderof T to be the setA = ∪i≥1Ai, where

A1 = {(T, α1, P1) | T
α1−→ P1, α1 �T κ1}

Ai = {(Pi, βi, P
′
i) | Pi

βi
−→ P ′

i , βi �Pi
κi, ∃(Q, γ, Pi) ∈ Ai−1}, i > 1

Furthermore, we say that anw-cylinderA = ∪i≥1Ai is live if (i) for all (Q,α,Q′) ∈ A

thenQ −→, (ii) Ai 6= ∅ for all i and (3)
⋃

(P,β,Q)∈Ai
β♭ = κi.

Thus, aw-cylinder, wherew = κ1κ2 . . ., of a taskT contains all the possi-
ble/maximal responses ofT given the supplyκ1 (setA1), all possible responses of
the resulting states given supplyκ2 (setA2), and so on. For example, consider taskT

where

T
def
= {(r1, 2)} : T ′

T ′ def
= {(r1, 1)} : FIN + {(r2, 1)} : FIN + {(r3, 1)} : FIN

Forw = {r1, r2}{r2, r3}∅
∗, thew-cylinder ofT is A = ∪i≥1Ai, where

A1 = {(T, {(r1, 2)}, T
′)}

A2 = {(T ′, {(r2, 1)},FIN), (T ′, {(r3, 1)},FIN)}

Ai = {(FIN, ∅,FIN)}, i ≥ 3

We observe that these are indeed the transitions that will berelevant when scheduling

T by a supply of the formS
def
= {r1, r2}{r2, r3} : S′. The following result relates live

cylinders with task schedulability.

Lemma 3.9. A taskT ∈ T⋆ is schedulable if and only if it possesses a live cylinder.

12

PROOF: SupposeT has a livew-cylinder wherew = κ1κ2 Consider supplyS0

defined by the following set of equationsSi
def
= κi+1:Si+1. Then, we may confirm that

S0 |= T . In particular we show that ifA = ∪i≥1Ai is thew-cylinder ofT , then

R = {(T, Si) | (T, β,Q) ∈ Ai, i ≥ 1}

is a supply relation. So, consider(T, Si) ∈ R. To begin with, triviallySi −→. Further,

if Si
α

−→ Si+1, then sinceAi 6= ∅, there existsT
β

−→ Q, β �T α, and(Q,Si+1) ∈ R.

In fact, this holds for allT
β

−→ Q, whereβ �Ti
α and the result follows.

On the other hand, ifT is schedulable, then there exists a supplyS that schedules
it. Let w = κ1 κ2 . . . ∈ traces(S). We may construct a cylinderA = ∪i≥1Ai of T as

A1 = {(T, α1, P) | T
α1−→ P, α1 �T κ1}

Ai = {(P, βi, P
′) | P

βi
−→ P ′, βi �P κi, (Q, γ, P) ∈ Ai−1}, i > 1

SinceT is schedulable byS it is straightforward to see thatA contains no triple of the
form (Q,α, δ) and also thatAi 6= ∅ for all i. Finally, if we takeβi =

⋃

(P,β,Q)∈Ai
β♭,

we may conclude thatA = ∪i≥1Ai is aw′-cylinder ofT , wherew′ = β1β2.... 2

3.1. Matching Supplies to Tasks

In this section we focus our attention to the problem of collecting the resource
requirements of a task into a matching supply. Specifically,given a task, we would like
to generate a supply process which schedules the task and at the same time is optimal
in that (1) it does not reserve more resources than those required by the task and (2)
it provides resource assignments to capture all possible ways in which the task can be
scheduled. Both of these properties are important during the compositional scheduling
of real-time tasks. The first property is clearly desirable since conservation of resources
becomes critical when real-time components are composed. For the second property,
we observe that capturing all possible ways of scheduling a task gives greater flexibility
when one tries to compositionally schedule a set of tasks where the challenge is to share
the resources between the tasks in ways that are acceptable to each one of them.

We begin by defining a function for combining supplies. This is helpful for a sub-
sequent definition that considers matching supplies to tasks.

Definition 3.10. Given suppliesS1, S2 ∈ S we defineS1 ⊗ S2 as

S1 ⊗ S2 =

S1 if S2 = FIN
S2 if S1 = FIN
Σi∈IΣj∈J αi ∪ βj :(

⊗

k∈I,αk�S1
αi∪βj

Pk ⊗
⊗

l∈J,βl�S2
αi∪βj

Ql)

if S1
def
=

∑

i∈I αi:Pi andS2
def
=

∑

j∈J βj :Qj

Essentially, the joined supplyS1 ⊗ S2 joins together the various summands of the
individual supplies as follows: in its topmost summand it unites all available grants of
S1 with all available grants ofS2, while the continuation process consists of the join of
those continuations ofS1 andS2 which appear after “maximal” subsets of the initial
action in question. For example we have:

13

∅ : {r} : ∅ : FIN⊗ ∅ : ∅ : {r} : FIN = ∅ : {r} : {r} : FIN
∅ : {r} : ∅ : FIN⊗ (∅ : ∅ : {r} : FIN + {r} : ∅ : ∅ : FIN)

= ∅ : {r} : {r} : FIN + {r} : {r} : ∅ : FIN

Using this definition we now move to define thedemandof a task. The demand of
a task is intended to capture the optimal supply that can schedule a task in the sense we
have already discussed. The main point to note in this definition is that we combine all
same-prefixed nondeterministic choices of a task by a singly-prefixed supply.

Definition 3.11. Given a taskT ∈ T⋆, we define itsdemandas the following element
of S:

demand(T)
def
=

∑

α:T
α

−→

α♭:[
⊗

T ′:T
α

−→T ′

demand(T ′)]

Example 3.12. Consider tasks

T1 = {(r, 2)} : ∅ : ∅ : T1 + ∅ : {(r, 1)} : ∅ : T1 + ∅ : ∅ : {(r, 3)} : T1

T2 = {(r, 1)} : ∅ : ∅ : T2 + ∅ : ({(r, 2)} : ∅ : T2 + ∅ : {(r, 2)} : T2)

T3 = {(r, 1)} : {(r, 1)} : FIN + {(r, 2)} : ∅ : T3

Their demands are given byX1, X2, X3 below, respectively.

X1 = {r} : ∅ : ∅ : X1 + ∅ : {r} : {r} : X1

X2 = {r} : ∅ : ∅ : X2 + ∅ : ({r} : ∅ : X2 + ∅ : {r} : X2)

X3 = {r} : ∅ : X3

2

The next lemma considers the optimality ofdemand(T) following the requirements
posed at the beginning of this section. We writew ≤ w′ for the infinite tracesw =
α1α2 . . . andw′ = β1β2 . . ., if αj ⊆ βj for all j ≥ 1.

Lemma 3.13. If w ∈ traces(demand(T)) thenT possesses a livew-cylinder and if
w ∈ traces(T) then there existsw′ ∈ traces(demand(T)) such thatw ≤ w′.

PROOF: Supposedemand(T)
α1−→ S1

α2−→ S2
α3−→ We will show that for thew-

cylinderA = ∪i≥Ai of T , wherew = α
♮
1α

♮
2 . . ., we haveSi =

⊗

(P,β,Q)∈Ai
demand(Q)

andA is live. Consider an arbitrarySi and supposeSi =
⊗

(P,β,Q)∈Ai
demand(Q)

whereAi 6= ∅ andAi does not contain elements of the form(P, β, δ). Then, since

Si
αi+1

−→, by the definition of⊗, it must be that

αi+1 =
⋃

{α | (P, β,Q) ∈ Ai, demand(Q)
α

−→}.

In addition,Si
αi+1

−→
⊗

T ′∈B demand(T ′), B = {T ′ | (P, β,Q) ∈ Ai, Q
β

−→ T ′, β�Q

αi+1}. But,B = Ai+1 and by the construction ofαi+1, Ai+1 6= ∅ andA is live, which
completes the first part of the proof.

14

To establish the second part of the proof it is sufficient to note that ifT
α

−→ T ′

thendemand(T)
α

−→ demand(T ′) ⊗ S for someS and, further, ifS1
α

−→ S′
1 then

S1 ⊗ S2
α′

−→ S′
1 ⊗ S′

2, whereα ⊆ α′ for someS′
2. Then, by the definition ofdemand,

it is easy to see that ifT
α1−→ T1

α2−→ T2
α3−→ . . ., thendemand(T)

β1
−→ demand(T1)⊗

S1
β2
−→ demand(T2)⊗ S2

β3
−→ . . ., whereα♭

1α
♭
2 . . . ≤ β1β2

2

Thus, we may conclude that a taskT is schedulable bydemand(T). Furthermore,
demand(T) is an optimal supply forT since each of its executions schedules exactly a
cylinder ofT , i.e. it offers exactly the resources necessary for scheduling the cylinder,
and each possible schedule ofT is captured by an execution ofdemand(T).

3.2. Compositional Theory

We proceed to consider the schedulability problem of a set oftask components. The
first issue we tackle is the compositionality problem: If a componentT1 is schedulable
by S1 and an independent componentT2 by S2 can we combineS1 andS2 into a
collective supply that schedulesT1‖T2? We begin by noting a subtlety pertaining to this
problem which we need to consider before answering it. Consider the two components
below each consisting of one task:

T1 = {(r, 1)}:∅:FIN + ∅:{(r, 1)}:FIN

T2 = {(r, 1)}:∅:FIN + ∅:{(r, 1)}:{(r, 1)}:FIN

These components are schedulable by suppliesS1 = ∅:{r}:FIN andS2 = {r}:∅:FIN,
respectively. That is, it is sufficient for componentT1 to obtain resourcer during the
second time unit and for componentT2 during the first time unit. However, a supply
S = {r}:{r}:FIN, offering r during both time units, fails to scheduleT1‖T2. This is
due to the fact that the supply for resourcer during the first time unit is intended for
componentT2 but may be consumed by componentT1 leading to a deadlock of the
system during the third time unit. Moreover, ifT1 employed its resources at priority
level2, this would in fact be destined to happen.

To resolve this issue, we associate components with their matching supplies by an-
notating each resource reference by a number which distinguishes the component in
which the resource is employed/supplied. Precisely, we assume that each component
is associated with a component identifier and if resourcer is requested by a compo-
nent with identifieri we write r[i] for the request and, similarly, if a supply ofr is
intended for the component with identifieri we write r[i] for the supply. So, we say
that component{(r[1], 1)}:FIN is schedulable by supply{r[1]}:FIN and component
{(r[2], 3)}:FIN by supply{r[2]}:FIN. However, note that resourcesr[1] andr[2] do
refer to the same resource and for all other purposes should be treated as the same. So,
for example,{r[1]} ∩ {r[2]} 6= ∅. To model this precisely we write:

• P [i] for the processP with all its resourcesr renamed asr[i] (and, thus,demand(P)[i]
for the processdemand(P) with all its resourcesr renamed asr[i]).

• α ∩R β for {r ∈ R | r[i] ∈ res(α) andr[j] ∈ res(β)}.

15

Furthermore, we use the notationα[i] = {r[i] | r ∈ α} and, ifw = α1α2 . . ., w[i] =
α1[i]α2[i] We have the following result:

Lemma 3.14. If T1 is schedulable byS1, T2 is schedulable byS2 andS1‖S2 does not
deadlock, thenT1[1]‖T2[2] is schedulable byS1[1]‖S2[2].

PROOF: We will show thatR, below, is a supply simulation relation.

R = {(T1[1]‖T2[2], S1[1]‖S2[2]) | S1 |= T1, S2 |= T2, S1[1]‖S2[2] does not deadlock}

Let (T1[1]‖T2[2], S1[1]‖S2[2]) ∈ R. By the definition ofR, S1[1]‖S2[2] −→. So
considerS1[1]‖S2[2]

α
−→ S′

1[1]‖S
′
2[2]. It must be thatα = α1[1] ⊕ α2[2], where

S1
α1−→ S′

1, S2
α2−→ S′

2 andα1 ∩ α2 = ∅. SinceS1 |= T1, S2 |= T2, we have

T1
β1
−→ T ′

1, S′
1 |= T ′

1, and similarlyT2
β2
−→ T ′

2, S′
2 |= T ′

2. In fact, for allT1
β1
−→ T ′

1,

β1 �T1
α1, it holds thatS′

1 |= T ′
1, and for allT2

β2
−→ T ′

2, β2 �T2
α2, it holds that

S′
2 |= T ′

2. This implies that for allT1[1]‖T2[2]
β

−→ T ′
1[1]‖T

′
2[2], β �T1[1]‖T2[2] α,

(T ′
1[1]‖T

′
2[2], S

′
1[1]‖S

′
2[2]) ∈ R and there exists at least one suchβ-transition. This

completes the proof. 2

However, note that even ifS1‖S2 deadlocks, it is still possible that the suppliesS1

andS2 can be combined to produce a supply forT1‖T2. In particular, we may suspect
that every infinite trace ofS1‖S2 is capable of schedulingT1‖T2, and in fact we can
show that the part of the transition system that pertains to non-deadlocking behavior
achieves exactly that. The following operator on supplies extracts this type of behavior.

Definition 3.15. Given suppliesS1 andS2 ∈ S we define their productS1 × S2 by

S1×S2 =

S1 if S2 = FIN
S2 if S1 = FIN
(α ∪ β):(S′

1 × S′
2) if S1 = α:S′

1, S2 = β:S′
2, α ∩R β = ∅, S′

1 × S′
2 6= δ

δ if S1 = α:S′
1, S2 = β:S′

2, α ∩R β 6= ∅ or S′
1× S′

2 = δ

Σi∈I,j∈J (S
i
1 × S

j
2) if S1 = Σi∈IS

i
1, S2 = Σj∈JS

j
2

Note that the set of recursive equations used in the definition ofS1 ×S2 may allow
more than one solution. Consider, for example,S1 = {r1} : S1 andS2 = {r2} : S2. It
is easy to see thatS1 × S2 = δ is a trivial solution. However, we are interested in the
maximal solution to this set of equations, which in this caseis S1 × S2 = {r1, r2} :
S1 × S2. Intuitively, solutions can be ordered by the set of terms that are set toδ: the
fewer terms are deadlocked, the “larger” the solution. We use the following lemma to
make this notion precise and show that, for finite-state processes, the maximal solution
exists and can be computed iteratively:

Lemma 3.16. Given suppliesS1 andS2 the set of equations which arise throughS1×
S2 has a greatest fixed point.

PROOF: Consider the termS1 × S2. Let SS1,S2
= {S | S1 =⇒ S or S2 =⇒ S} and

S×
S1,S2

= SS1,S2
∪ [SS1,S2

× SS1,S2
]. That is,S×

S1,S2
is a set containing all derivatives

of S1 orS2 and all pairs of these derivatives. For finite-state processes,S×
S1,S2

is finite.

16

Consider the set of relations onS×
S1,S2

, W = {W |W ⊆ S×
S1,S2

×S×
S1,S2

}, ordered by
set inclusion. BecauseW is a powerset of a finite set,W is a complete lattice of finite
height.

Consider relationW where, if (w1, w2) ∈ W , thenw1 ∈ [SS1,S2
× SS1,S2

] and
w2 ∈ S×

S1,S2
appears on the right-hand side of the equation forw1, disregarding the

recursive part of the third clause and the fourth clause, so that

• if Si = FIN then(S1 × S2, S3−i) ∈ W ,

• if S1 = α:S′
1, S2 = β:S′

2 and(S1 × S2, S
′
1 × S′

2) ∈ W , thenα ∩R β 6= ∅,

• if S1 = Σi∈IS
i
1, S2 = Σj∈JS

j
2 and(S1 × S2, S

′
1 × S′

2) ∈ W thenS′
1 = Si

1 for
somei ∈ I andS′

2 = S
j
2 for somej ∈ J .

Thus, such a relationW relates a productS1×S2 with some of its possible deriva-
tives according to the selected part of the definition. Further, suppose that whenever
w ∈ [SS1,S2

× SS1,S2
] and there existsw1 such that(w1, w) ∈ W , then there also

existsw2 such that(w,w2) ∈ W . Then, suchW is a fixed point of the set of equations
definingS1 × S2. This is because, according to the complete definition,S1 × S2 has
some derivativew, if and only ifw has a derivative (i.e.w 6= δ).

Define a functionF : W 7→ W asF(W) = W − {(w1, w2) | w2 ∈ [SS1,S2
×

SS1,S2
] ∧ ∀w, (w2, w) 6∈ W}. SinceF can only remove elements fromW , F(W) ≤

W . Furthermore, ifW1 ≤ W2, thenF(W1) ≤ F(W2); that is,F is monotonic. Let
us construct the setW0 using the definition ofS1 ×S2, again by omittingS′

1 ×S′
2 6= δ

from clause 3 andS′
1 × S′

2 = δ from clause 4. Clearly, any fixed point ofS1 × S2,
WS1×S2

satisfiesWS1×S2
≤ W0 since fewer terms are set toδ in W0. SinceW is a

complete lattice, by the Tarski-Knaster theorem, the greatest fixed point exists and is
unique. Since the lattice is of finite height, the fixed point can be computed starting
fromW0 and iteratively applyingF until the fixed point is reached. 2

It is easy to see that, ifS1‖S2 does not deadlock thenS1 × S2 6= δ. However, the
opposite is not true. By the construction of×, S1 ×S2 selects the part of the transition

system ofS1‖S2 that does not lead to deadlocked states. For example, considerS1
def
=

{r}:{r}:FIN + ∅:{r}:{r}:FIN andS2
def
= ∅:{r}:FIN + {r}:∅:FIN. Then, although

S1‖S2
{r}
−→ {r}:FIN‖{r}:FIN = δ, S1 × S2 = {r}:({r}:{r}:FIN × ∅:FIN), and

({r}:{r}:FIN× ∅:FIN) = {r}:{r}:FIN.

Lemma 3.17. If T1 is schedulable byS1, T2 is schedulable byS2 andS1 × S2 6= δ,
thenT1[1]‖T2[2] is schedulable byS1[1]× S2[2].

PROOF: The proof is similar to that of Lemma 3.14. 2

At this point we turn our attention to the problem of constructing an interface for
a set of mutually schedulable tasks. To do this, we employ thenotion of demands and
we prove the following:

Lemma 3.18. If w ∈ traces(T1[1]‖T2[2]) then there exists a tracew′ ∈ traces(demand(T1[1])×
demand(T2[2])) such thatw ≤ w′.

17

PROOF: Suppose thatw ∈ traces(T1[1]‖T2[2]). It is easy to see thatw[1] andw[2]
give rise to traces ofT1[1] andT2[2]. Then, by Lemma 3.13, there existw1 andw2

such thatw[1] ≤ w1 andw[2] ≤ w2 such thatw1 ∈ traces(demand(T1[1])) and
w2 ∈ traces(demand(T2[2])). Suppose thatw1 = α1α2 . . . andw2 = β1β2 . . . and
write w′ = γ1γ2 . . ., whereγi = αi ∪ βi. Then, from the definition of× we may
conclude thatw′ a trace ofdemand(T1[1])×demand(T2[2]), and, in addition,w ≤ w′,
as required. 2

This result implies that all alternatives of schedulingT1[1]‖T2[2] will be explored
by demand(T1[1]) × demand(T2[2]). It can be extended to the composition of an
arbitrary number of tasks. We are now ready to present our main theorem:

Theorem 3.19.T1[1]‖T2[2] is schedulable if and only ifdemand(T1[1])×demand(T2[2]) 6=
δ. Moreover, if it is schedulable, then it is schedulable bydemand(T1[1])×demand(T2[2]).

PROOF: SupposeT1[1]‖T2[2] is schedulable. Then, by Lemma 3.9, it has a livew-
cylinder. Letw1 be the trace of an execution ofT1[1]‖T2[2] occurring within the cylin-
der. Then, by Lemma 3.18, there is a tracew2, w1 ≤ w2 such thatw2 is a trace of
demand(T1[1])×demand(T2[2]). This implies thatdemand(T1[1])×demand(T2[2]) 6=
δ. On the other hand, ifdemand(T1[1]) × demand(T2[2]) 6= δ, then, since, addition-
ally, demand(T1[1]) schedulesT1[1] and(T2[2]) schedulesT2[2], then, by Lemma 3.17,
T1[1]‖T2[2] is schedulable bydemand(T1[1])× demand(T2[2]). 2

Based on this result we may determine the schedulability anda related scheduler
for a set of tasksT1, . . . , Tn, as follows: For each task, extract its demand and compute
the productsD1 = demand(T1) × demand(T2), D2 = D1 × demand(T3), If
this process does not reduce to someDi = δ then the tasks are schedulable byDn−1.
Furthermore, according to Theorem 3.19, if they are indeed schedulable thenDn−1 6=
δ. Thus, this method is guaranteed to produce a schedule if oneexists.

3.3. Examples

3.3.1. Scheduling periodic tasks
We first consider a simple periodic task with periodp and execution timew which

requires usage of some resourcer, Taskw,p = T0,0,w,p. This is defined by the fol-
lowing equations wheree is the accumulated execution time of resourcer during the
current period andt the total elapsed time during the current period, andπ is the prior-
ity of the resource access.

Te,t,w,p =

∅ : Te,t+1,w,p if e = w andt < p

T0,0,w,p if e = w andt = p

∅ : Te,t+1,w,p + {(r, π)} : Te+1,t+1,w,p if e < w andw − e < p− t

{(r, π)} : Te+1,t+1,w,p if e < w andw − e = p− t

Note that in our definition, the task cannot idle if idling will make it miss the dead-
line. If the supply can avoid giving the resource to the task in this case, the system
will have an unmet resource request transition that signalsnon-schedulability (by Def-
inition 3.1). Let us consider an instance of a classical scheduling problem for a set
of periodic tasks running on a single processor resource:Task2,3‖Task2,7‖S, where

18

S = {r} : S. In the figure below, we show the initial part of the state space of the
example where we assume that the priorities of all resource requests in both tasks are
the same and equal to1. Each state is represented as a tupleij|km, wherei and j
are the first two parameters of the first task andk andm are the first two parameters
of the second task. The other two parameters do not change andare omitted to avoid
cluttering the figure. We also omit labels on the transitions: all transitions are labeled
by {(

↔
r , 1)}.

00 | 00 11 | 01 22 | 02 00 | 13 11 | 14 22 | 15 00 | 26 11 | 00

01 | 11 12 | 12 01 | 24 12 | 25

22 | 01

12 | 11

00 | 12 11 | 13

01 | 23

...

...

The tasks are schedulable according to the Definition 3.1 andthe transition system
of the composite process, shown above, can be seen as the specification of feasible
schedulers for the task set. Nondeterminism in the transition system represents differ-
ent decisions that a scheduler can make. For example, the trace along the top of the
figure corresponds to the rate-monotonic scheduling policy, which gives higher prior-
ity to Task2,3 as it has the smallest period. Indeed, to consider schedulability under a
specific scheduling policy, we would simply need to specify the appropriate priorities
and check for the schedulability of the system within the newtransition system.

We now consider the demand of a periodic task defined above. Itis easy to see that
the task process isdeterministic, that is, wheneverTe,t,w,p

α
−→ T1 andTe,t,w,p

α
−→

T2 thenT1 = T2. For a deterministic task, the demand is obtained by a straight-
forward replacement of requested resources by matching offered resources. Thus,
demand(Taskw,p) = X0,0,w,p is defined below:

Xe,t,w,p =

∅ : Xe,t+1,w,p if e = w, t < p

X0,0,w,p if e = w, t = p

∅ : Xe,t+1,w,p + {r} : Xe+1,t+1,w,p if e < w,w − e < p− t

{r} : Xe+1,t+1,w,p if e < w,w − e = p− t

It is easy to check thatdemand(Task2,3)‖demand(Task2,7) does not deadlock and
thus can schedule the two tasks according to Lemma 3.14.

Let us now consider a task with variable execution time whichtakes betweenb and
w time units to complete:Taskvb,w,p = Taskb,p + Taskb+1,p + . . . + Taskw,p. One
can see thatdemand(Taskvb,w,p) = demand(Taskw,p). This observation matches the
well-known fact from the real-time systems theory that for independent periodic tasks
it is sufficient to consider the worst-case execution time ofeach task [17].

3.3.2. Scheduling with partial supplies
To illustrate compositional analysis with partial supplies, we begin with a sim-

ple example of time-partitioned supplies that are widely used in practice. Consider
a periodic time partition with periodP , durationD ≤ P , and relative start timet0,
which essentially offers a resourcer for the interval[t0, t0 + D) during each period:
Partt0,D,P = P0,t0,D,P is defined as follows where, again, addition is moduloP :

Pt,t0,D,P =

{

{r} : Pt+1,t0,D,P if t0 ≤ t < t0 +D

∅ : Pt+1,t0,D,P otherwise

19

r
r

rr

O

OrO O

r

00 | 00 | 00

11 | 01 | 11 01 | 11 | 11

12 | 02 | 12

01 | 01 | 01

12 | 12 | 22 02 | 12 | 12
r

02 | 02 | 02

00 | 13 | 13

Figure 3: Scheduling with a periodic resource

It is clear that partitions with the same period and non-overlapping service intervals
[t, t + D) do not conflict. We can now analyze schedulability of tasks allocated to a
partition separately from any other task in the system. It is, for example, trivial to see
that partitionPartt0,D,P can schedule a taskTaskD,P for anyt0.

We can similarly define more complex partial supplies. Consider, for example,
compositional scheduling based on periodic resource models [23, 24]. A periodic
resource model is a supply that guaranteesw units of resource execution within a
periodP , however, the availability of the resource within the period is unknowna
priori . We can straightforwardly model a periodic resource model as PRMw,P =
demand(Taskw,P). We can then analyze whether a set of tasks is schedulable with
respect to this supply. This analysis will not be limited to independent periodic or
sporadic tasks, unlike existing approaches in the literature.

As an example, consider the systemT1 = Task1,3‖Task1,5‖PRM3,5 where all
priorities of resource requests are fixed to1. Figure 3 shows the initial state space using
the same notation as above, except now the state tuple also includes the parameterse
and t of the supply. Note that, in this transition system we have actions pertaining
to resource consumption, abbreviated by

↔
r , actions pertaining to resource requests,

abbreviated byr, and idling actions. Recall that idling and consumed resource actions
are incomparable in the preemption relation, while idling preempts unsatisfied resource
requests. We see that a poor scheduling decision can makeTask1,3 miss its deadline.
The scenario is seen on the right side of the figure: in the firsttwo time units, one unit
of resource goes toT1,5 and the other unit of resource is denied to both tasks (this can
happen in any order). If on the third step the supply denies access to the resource again,
the first task cannot idle, thus we reach a transition labeledby {r}, which implies that
the task misses its deadline, leading to a violation of Definition 3.1.

If instead we wish to consider schedulability of the tasks under an EDF (earliest-
deadline-first) policy, we would have to repeat our analysisfor periodic tasks with
priorities defined as below.

Te,t,w,p =

∅ : Te,t+1,w,p if e = w, t < p

T0,0,w,p if e = w, t = p

∅ : Te,t+1,w,p + {(r,Dmax − (p− t))} : Te+1,t+1,w,p

if e < w,w − e < p− t

{(r,Dmax − (p− t))} : Te+1,t+1,w,p if e < w,w − e = p− t

whereDmax is a number exceeding the largest period in the task set. In this new setting,
the compositionT2 = Task1,3‖Task1,5‖PRM3,5, whereDmax = 6, is schedulable

20

r
O

Or
r

r

O O r

O

r

Or rr

00 | 00 | 00

11 | 01 | 11 01 | 11 | 11 01 | 01 | 01

02 | 02 | 02

r ,3
,1

,2

12 | 12 | 22 02 | 12 | 12

,2
,4

00 | 03 | 1300 | 13 | 23
,5

12 | 02 | 12

,3

11 | 14 | 34 01 | 14 | 24 11 | 04 | 24

,3 ,3,4

Figure 4: EDF scheduling with a periodic resource

as shown in Figure 4. In the figure, preempted transitions arecrossed out. Note that
the problematic actionr of the previous example is no longer present because, in the
initial state, action(

↔
r , 1) is preempted by action(

↔
r , 3), and from state01|01|01 action

(
↔
r , 2) is preempted by action(

↔
r , 4), and thus the trees pointed to by these preempted

actions in the transition system are pruned away, includingthe request actionr.

4. Hierarchies on tasks and supplies

In the previous section we defined an approach for schedulinga set of tasks via
analysis of theirdemand processes which are supply processes capturing the precise
resource allocation required by tasks to complete their execution. In this section we
proceed to provide machinery that will allow us to reason about hierarchical approaches
to scheduling that rely on approximating the necessary supply, making it more gener-
ous than necessary, in exchange to a simple representation.Specifically, we define
an ordering relation between tasks and two ordering relations between supplies which
describe when a task/supply requires/offers greater resource allocation than another.

4.1. Task demands

We proceed to consider the notion oftask demandand we define a relation on tasks
which characterizes when a task is more “demanding” than another in the sense that it
places more requirements on the available supply.

Definition 4.1. A relationD ∈ T × T is a demand relationif for all (T1, T2) ∈ D, if
T1

α
−→ then

1. there existT2
β

−→ T ′
2 with sat(β, α), andT1

α
−→ T ′

1, such that(T ′
1, T

′
2) ∈ D,

2. for all T2
β

−→ T ′
2, if β�T2

α ∪ β, α�T1
α ∪ β and for noγ, T1

γ
−→ andβ�T2

γ

andγ �T1
α ∪ β, then there existsT1

α
−→ T ′

1 such that(T ′
1, T

′
2) ∈ D.

We write�D for the largest demand relation and we say that a taskT1 is more demand-
ing than a taskT2, T2 �D T1, if there exists a demand relationD with (T1, T2) ∈ D.

According to this definition, ifT1 is more demanding thanT2 then for every action
α enabled byT1, (1) there is a move ofT2 which can be matched by someα-move of
T1, (2) if β andα are maximal moves ofT2 andT1, respectively, with respect toα∪β,

21

and, additionally, there is noγ-move ofT1 such thatβ is a maximal move ofT2 with
respect toγ andγ is a maximal move ofT1 with respectα ∪ β, then allβ-derivatives
of T2 are related to someα-derivative ofT1.

To better understand the definition, let us first consider thepoint relating to the
existenceof anα move ofT1 (instead of universality) as required by the first clause:
let

T1
def
= {(r1, 1)} : {(r2, 2)} : FIN + {(r1, 1)} : {(r3, 1)} : FIN

T2
def
= {(r1, 1)} : {(r2, 1)} : FIN

Although T2 cannot match the second summand ofT1, it is intuitive thatT1 should
be considered as more demanding thanT2. This is because forT1 to be scheduled
successfully it is imperative that after being offeredr1 it will be offered simultaneously
bothr2 andr3. Thus, it is sufficient forT2 to match one of the{(r1, 1)} actions ofT1.

The second clause of the definition is concerned with combinations of actionsα∪β

whereT1
α

−→ andT2
β

−→, and it aims to ensure that, if a supply offers the resources
in α∪ β then, if it is able to schedule theα-continuation ofT1 it should also be able to
schedule theβ continuation ofT2, that is,T1 should continue to be more demanding
thanT2. Clause (2) of the definition enunciates this requirement assuming thatα andβ
are maximal actions with respect toα∪β, since this is necessary for them to constitute
relevant responses to a supply ofα ∪ β and furthermore, that no action ofT1, γ, lies
betweenβ andα∪ β, since, if such asγ exists andT1

γ
−→ T ′

1, it is sufficient thatT ′
1 is

more demanding thanT ′
2. For example, for

T1
def
= {(r1, 1), (r3, 1)} : {(r2, 1), (r3, 1)} : FIN

T2
def
= {(r2, 1)} : {(r2, 0)} : FIN + {(r1, 1), (r3, 1)} : {(r3, 0)} : FIN

we may check that, according to the definition,T1 is more demanding thanT2. Note

that supplyS
def
= {r1, r2, r3} : {r2, r3} : FIN, schedules both tasks. Moreover, for

T1
def
= {(r1, 1), (r2, 1), (r3, 1)} : {(r2, 1), (r4, 1)} : FIN

+ {(r1, 1), (r3, 1), (r4, 1)} : {(r2, 1), (r3, 1)} : FIN

T2
def
= {(r1, 1)} : {(r2, 0)} : FIN + {(r1, 1), (r2, 1)} : {(r2, 1), (r4, 1)} : FIN

if we we apply the definition of a demand relation and takeα = {(r1, 1), (r3, 1), (r4, 1)}
andβ = {(r1, 1), (r2, 1)} it is not necessary for theα-derivative ofT1 to be more
generous than theβ-derivative ofT2, which is not. This is becauseT1

γ
−→, where

γ = {(r1, 1), (r2, 1), (r3, 1)} andβ �T2
γ andγ �T1

α ∪ β. Nonetheless,T1 is more
demanding thanT2 according to our definition and for a supply that offers the resources
α∪β, if it may scheduleT1 then it must schedule both itsα andγ derivatives and, con-
sequently, it must also scheduleT2.

Some further examples follow:

22

Example 4.2. Consider the following tasks.

T1
def
= {(r, 1)} : ∅ : T1

T2
def
= {(r, 1)} : ∅ : T2 + ∅ : {(r, 1)} : T2

T3
def
= {(r, 1)} : ∅ : ∅ : T3 + ∅ : {(r, 1)} : ∅ : T3 + ∅ : ∅ : {(r, 1)} : T3

T4
def
= {(r, 1)} : ∅ : ∅ : T4 + ∅ : ({(r, 1)} : ∅ : T4 + ∅ : {(r, 1)} : T4)

T5
def
= ∅ : ∅ : {(r, 1)} : T5

T6
def
= ∅ : ∅ : {(r, 1)} : T6 + {(r, 1)} : {(r, 1)} : {(r, 1)} : T6

T1 andT2 request resourcer once in every two time units with the distinction thatT1

requires the resource during the first time unit whereasT2 is satisfied with an allocation
during either time units. We may verify thatT1 is more demanding thanT2. Note that

actionT2
∅

−→ need not be matched byT1 since, according to the definition, it is not a
maximal move ofT2 with respect to∅ ∪ {(r, 1)}.

Moving on to tasksT3 andT4 we observe that they both require resourcer once in
every three time units but they pose slightly different nondeterministic requirements:
T3 is defined as the nondeterministic choice between the options of usingr during one
of the first three time units, whereasT4 initially offers the choice between acquiring
the resource and idling for two time units or idling and then acquiring the resource
during one of the next two time units. We may check thatT1 is more demanding
than both tasksT3 andT4 which demandr once every three time units. In addition,
T2 is more demanding thatT4 but not ofT3 sinceT3 may choose to respond to an
initial ∅ action with the third summand which isnot less demanding thanT2 given
that it requests resourcer during the third time unit. A comparison betweenT3 and
T4 shows thatT3 is more demanding thanT4. Finally, note that taskT5 is not more
demanding than taskT6. Intuitively, we can see that taskT5 can be scheduled by supply

S
def
= {r} : ∅ : {r} : S but taskT6 cannot. Furthermore, according to the definition,

actionT6
{(r,1)}
−→ needs to be examined as it is a maximal action ofT6 with respect to

∅ ∪ {(r, 1)} and clearly one that illustrates the absence of a demand relation between
the two tasks. This example brings out the subtle treatment required for the actions of
the less demanding task. 2

We now proceed to justify our notion ofmore demanding. To begin with we may
easily prove that�D is reflexive and transitive. Furthermore, we may verify thatmore
demanding tasks place more requirements on their supplies by proving that if taskT is
more demanding than taskT ′ then a supply that can scheduleT can also scheduleT ′.

Lemma 4.3. Suppose that taskT1 is schedulable by supplyS and thatT1 is more
demanding thanT2. Then, taskT2 is also schedulable by supplyS.

PROOF: The proof consists of showing that the relation

S = {(T2, S)|∃ demand relationD, supply simulation relationR and

T1 ∈ T, (T1, T2) ∈ D, (T1, S) ∈ R}

23

is a supply simulation. Suppose(T2, S) ∈ S andT1 is a task such that(T1, T2) ∈ D,
whereD is a demand relation, and(T1, S) ∈ R, whereR is a supply simulation
relation. SupposeS

α
−→ S′. We confirm that the two clauses of Definition 3.5 are

satisfied as follows:

• Since(T1, S) ∈ S, there existsT ′
1 with T1

β
−→ T ′

1, β �T1
α and(T ′

1, S
′) ∈ R.

Then, by clause (1) of Definition 4.1, there existsT ′
2, such thatT2

β′

−→ T ′
2 with

sat(β′, β), and for someT ′′
1 , T1

β
−→ T ′′

1 , (T ′′
1 , T

′
2) ∈ D. By Definition 3.5 it

is also the case that(T ′′
1 , S

′) ∈ R, while, clearly,sat(β′, α). This implies that
(T ′

2, S
′) ∈ S as required.

• Next supposeT2
β2
−→ T ′

2. Two cases exist:

If there existsT1
γ

−→ T ′
1, γ �T1

α andβ2 �T2
γ. Then (T ′

1, S
′) ∈ R and

(T ′
1, T

′
2) ∈ D. Thus,(T ′

2, S) ∈ S as required.

Now suppose there exists noT1
γ

−→ T ′
1, γ �T1

α andβ2 �T2
γ. Nonetheless,

sinceS schedulesT1, there existsT1
β1
−→ T ′

1, β1 �T1
α and(T ′

1, S
′) ∈ R. Now

considerβ1∪β2. It must be the case that bothβ2�T2
β1 ∪ β2 andβ1�T1

β1 ∪ β2,
otherwise we would have contradictions to our assumptions thatβ2 �T2

α and
β1 �T1

α. Now, suppose there existsγ such thatT1
γ

−→ with β2 �T2
γ and

γ �T1
β1 ∪ β2. Sinceγ �T1

β1 ∪ β2, sat(β1, α) andsat(β2, α), we have that
sat(γ, α), which implies that eitherγ �T1

α or, if not, there existsγ′ with γ ≺
γ′, sat(γ′, α) andγ′ �T1

α while β �T2
γ′. This contradicts the assumption

of the case and it implies that there exists noγ as the one just described and,
consequently, by Definition 4.1(2), there existsT ′′

1 such thatT1
α

−→ T ′′
1 and

(T ′′
1 , T

′
2) ∈ D. By Definition 3.5 it is also the case that(T ′′

1 , S
′) ∈ R. Thus

(T ′
2, S

′) ∈ S which completes the proof.

2

4.2. Supply generosity

Similarly to demands, we now proceed to define a hierarchy on supplies. This
hierarchy is built on the basis of simulation relations thatcapture when a supply is
more “generous” than another, where the intended meaning of“generosity” is that the
more generous a supply the more tasks it can schedule. Below we define two such
notions.

4.2.1. Strong generosity
Definition 4.4. A relationR ∈ S×S is astrong generosity relationif for all (S1, S2) ∈
R,

1. if S2 −→ thenS1 −→.
2. if S2 −→ andS1

α
−→ S′

1 then we have thatS2
α

−→ S′
2 and(S′

1, S
′
2) ∈ R.

We write�S for the largest strong generosity relation and we say that supply S1 is
strongly more generous thansupplyS2, S2 �S S1, if there existsR with (S1, S2) ∈ R.

24

According to the definition,S1 is strongly more generous thanS2 if: (1) whenever
S2 is not deadlocked thenS1 is also not deadlocked, and (2) wheneverS2 is not dead-
locked then any action enabled byS1 is also enabled byS2. Intuitively, this definition
aims to establish that any task scheduled by the less generous supply,S2, can also be
scheduled by the more general supply,S1. To implement this,S1 is required to offer a
subset of the behaviors ofS2, in this way it is guaranteed that each ofS1’s executions
is also possible inS2 and, thus, any task schedulable byS2 will be schedulable byS1.
Thus, in Example 3.2,S1 is a strongly more generous supply thanS3.

Note that the notion of strong generosity captures an earlier observation that the
introduction of nondeterministic alternatives in supplies diminishes their potential of
scheduling tasks. This is because, as viewed by a task, a supply with more choices
constitutes an environment with more uncertainty, and the more ways in which a supply
may offer resources implies a need for greater flexibility onbehalf of a task. As an
example consider

T
def
= ∅ : {(r, 1)} : FIN + {(r, 1)} : {(r, 2)} : {(r, 1)} : FIN

and
S1

def
= ∅ : {r} : FIN + {r} : {r} : FIN, S2

def
= ∅ : {r} : FIN

AlthoughS2 can scheduleT , this is not the case withS1. The same is true in the case

that we allow a supply to offer a wider range of resources. Forexample,S′
1

def
= {r} :

{r} : FIN also fails to schedule taskT .
It it easy to show that�S is reflexive and transitive. Furthermore, the following

result establishes that generosity preserves schedulability.

Lemma 4.5. If taskT is schedulable by supplyS2 andS1 is strongly more generous
than supplyS2 thenT is also schedulable by supplyS1.

PROOF: The proof consists of showing that the relation

S = {(T, S1)|∃ S2 ∈ S, supply simulation relationR and strong generosity

relationG, (S1, S2) ∈ G and(T, S2) ∈ R}

is a supply simulation relation. Suppose(T, S1) ∈ S andS2 is a supply such that
(T, S2) ∈ R, whereR is a supply simulation relation and(S1, S2) ∈ G whereG is a
strong generosity relation. SupposeS1

α
−→ S′

1. By Definition 4.4(2),S2
α

−→ S′
2 with

(S′
1, S

′
2) ∈ G. Thus:

1. There existsT
β

−→ T ′, β �T α with (T ′, S′
2) ∈ R. By definition,(T ′, S′

1) ∈ S
as required.

2. SupposeT
β

−→ T ′, β �T α. Again we have(T ′, S′
2) ∈ R and(T ′, S′

1) ∈ S
which completes the proof. 2

In fact, we can also show that:

Lemma 4.6. S1 is strongly more generous thanS2 if and only if each task schedulable
by supplyS2 is also schedulable by supplyS1.

25

PROOF: The ’⇒’ direction follows by the previous lemma. To demonstrate the ’⇐’
direction we will show that the following relation is a strong generosity relation.

R = {(S1, S2)|∀T · T schedulable byS2 =⇒ T schedulable byS1}

Suppose(S1, S2) ∈ R. We have the following:

1. SupposeS2
α

−→ S′
2 and consider the set of tasks{α : T |T schedulable byS′

2}.
Then, this set, being schedulable byS2, is also schedulable byS1, which implies
thatS1 −→ by Definition 3.5, as required.

2. SupposeS1
α

−→ S′
1 and in order to reach a contradiction suppose further that

S2 6
α

−→. Consider taskT
def
=

∑

S2

αi−→
αi : FIN + α : T ′ whereT ′ is not

schedulable byS′
1 nor by any ofS2’s derivatives. ThenT is schedulable by

S2 but notS1, resulting in a contradiction. This implies thatS2
α

−→ S′
2 and

(S′
1, S

′
2) ∈ R as required. 2

As an example for strong generosity consider suppliesS1 andS2 below

S1
def
= {r} : {r} : ∅ : S1

S2
def
= {r} : ({r} : ∅ : S2 + ∅ : {r} : S2) + ∅ : {r} : {r} : S2

whereS1 offers supplyr during the first two out of every three units of execution
andS2 offers r for two out of every three time units where the precise timingof the
offerings is nondeterministic. We may easily verify thatS1 is more generous thanS2

and, as such, it may schedule at least as many tasks asS2. Thus, the deterministic
nature ofS1 makes it more generous thanS2.

Generalizing this example, we may also see that a periodic time partition with
periodP , durationD ≤ P , and relative start timet0, Partt0,D,P , defined in Sec-
tion 3.3.2, is strongly more generous than the periodic resource modelPRMD,P that
guaranteesD time units of resource usage within every periodP . The former presents
one of the possible behaviors of the latter, this making it more generous, and able to
schedule at least as many tasks.

4.2.2. Weak generosity
It turns out that the definition of strong generosity prevents us from comparing other

supply models which one might be interested in comparing. For instance, supplyS1

above which offers a resource during the first two out of everythree time units, would

be intuitively considered as being more generous than supply S3
def
= {r} : ∅ : ∅ : S3.

However,S1 is not strongly more generous thanS3, according to our definition and, for
instance, althoughS1 offers more resources thanS3 it fails to schedule taskT below
which is in fact schedulable by the more stingyS3:

T
def
= {(r, 0)} : [∅ : ∅ : FIN + {(r, 0)} : {(r, 0)} : FIN]

Nonetheless, we would like to relax the notion of supply generosity to encompass a
wider set of supplies at the expense of Lemma 4.5. Specifically, below we define a
weaker notion of generosity which is subsequently considered within a restricted class
of tasks. This definition is as follows.

26

Definition 4.7. A relationR ∈ S×S is aweak generosity relationif for all (S1, S2) ∈
R,

1. if S2 −→ thenS1 −→.

2. if S2 −→ andS1
α

−→ S′
1 then we have thatS2

β
−→ S′

2, β ⊆ α and(S′
1, S

′
2).

We write�W for the largest weak generosity relation and we say that supply S1 is
weakly more generous thansupplyS2, S2 �W S1, if there exists a weak generosity
relationR with (S1, S2) ∈ R.

This definition follows along the lines of that of strong generosity with the excep-
tion that we allow the less generous supplyS2 to match the supply ofS1 with a subset
of its resourcesβ ⊆ α. Although we have shown that in this caseS1 is not guaranteed
to schedule all tasks schedulable byS2, this new notion allows to explore the intuition
that offering more resources makes for more generous supplies. The following hold:

• SuppliesS1 andS3 considered above are such thatS1 is weakly more generous
thanS3.

• The partial supplyPartt0,D,P is weakly more generous than the partial supply
Partt0,D′,P , whereD′ ≤ D.

• The periodic resource modelPRMw,P , defined in Section 3.3.2, is weakly more
generous than the periodic resource modelPRMw′,P , w′ ≤ w.

• The periodic resource modelPRM2,4 is not weakly more generous than the pe-
riodic resource modelPRM1,2. We may confirm this by considering the execu-

tionPRM2,4
{r}
−→

{r}
−→

∅
−→

∅
−→ PRM2,4 and observing that it cannot be matched

by PRM1,2 as required by the definition of weak generosity. Note that task
Task1,2 is schedulable by supplyPRM1,2 but it isnotschedulable byPRM2,4.

Regarding the ability of weakly more generous supplies to schedule tasks we have
the following result. Consider the class of periodic tasksC with periodp and execution
timew, Taskw,p, defined in Section 3.3.1. We may prove that:

Lemma 4.8. If taskT ∈ C is schedulable by supplyS2 andS1 is weakly more generous
than supplyS2, thenT is also schedulable by supplyS1.

PROOF: The proof consists of showing that the following relation is a supply simula-
tion relation.

R = {(Te,t,w,p, S1) | ∃S2 ∈ S, supply simulation relationS and weak generosity

relationW · (S1, S2) ∈ W and(Te′,t,w,p, S2) ∈ S, for somee′ ≤ e}

So, consider(Te,t,w,p, S1) ∈ R and suppose there exist a supplyS2, a supply
simulation relationS and a weak generosity relationW, such that(S1, S2) ∈ W

and (Te′,t,w,p, S2) ∈ S for somee′ ≤ e. SupposeS1
α

−→ S′
1. We will show that

Te,t,w,p
β

−→ T whereβ �Te,t,w,p
α and(T, S′

1) ∈ R. First note that sinceS1
α

−→ S′
1

and(S1, S2) ∈ W, S2
γ

−→ S′
2, γ ⊆ α and(S′

1, S
′
2) ∈ W. The following cases exist:

27

• If e = w, e = e′ and t < p, thenTe′,t,w,p
∅

−→ Te′,t+1,w,p, Te,t,w,p
∅

−→
Te,t+1,w,p, (Te′,t,w,p, S

′
2) ∈ S, and, thus,(Te,t+1,w,p, S

′
1) ∈ R as required.

• If e = w, e < e′ andt < p, thenTe′,t,w,p
β′

−→ Te′′,t+1,w,p, wheree′′ ∈ {e′, e′ +

1}, depending on whetherr ∈ γ. In any case,e′′ ≤ e, Te,t,w,p
∅

−→ Te,t+1,w,p,
(Te′,t,w,p, S

′
2) ∈ S, and, thus,(Te,t+1,w,p, S

′
1) ∈ R as required.

• If e = w and t = p, then sinceTe′,t,w,p is schedulable byS2 it must be that
e′ = w and the proof follows as in the next case.

• If e < w, w − e < p − t, w − e′ < p − t the following cases exist. Ifr ∈ γ,

thenr ∈ α andTe′,t,w,p
(r,π)
−→ Te′+1,t+1,w,p, Te,t,w,p

(r,π)
−→ Te+1,t+1,w,p, where

(Te′+1,t+1,w,p, S
′
2) ∈ S, and, thus,(Te+1,t+1,w,p, S

′
1) ∈ R as required. Ifr 6∈ γ

and r ∈ α thenTe′,t,w,p
∅

−→ Te′,t+1,w,p, Te,t,w,p
(r,π)
−→ Te+1,t+1,w,p, where

(Te′,t+1,w,p, S
′
2) ∈ S, and, thus,(Te+1,t+1,w,p, S

′
1) ∈ R as required. Finally, if

r 6∈ γ andr 6∈ α thenTe′,t,w,p
∅

−→ Te′,t+1,w,p, Te,t,w,p
∅

−→ Te,t+1,w,p, where
(Te′,t+1,w,p, S

′
2) ∈ S, and, thus,(Te,t+1,w,p, S

′
1) ∈ R as required.

• If e < w, w − e < p− t andw − e′ = p− t, then the proof follows similarly to
the first case of the previous clause.

• Finally, if e < w andw − e = p − t, then, sinceTe′,t,w,p is schedulable byS2,

e = e′, r ∈ γ and thus,r ∈ α andTe′,t,w,p
(r,π)
−→ Te′+1,t+1,w,p, Te,t,w,p

(r,π)
−→

Te+1,t+1,w,p, where(Te′+1,t+1,w,p, S
′
2) ∈ S, and, thus,(Te+1,t+1,w,p, S

′
1) ∈ R

which completes the proof. 2

Example 4.9. Consider a system composed of two applications competing for the us-
age of a single resource, the first consisting of the task setTask1,3‖Task1,5 running
under an EDF scheduler and the second consisting of the task set Task1,6‖Task1,5
running under a rate-monotonic (RM) scheduler (i.e. the smaller the period the higher
the priority). We may verify that the assignment of supplyPRM3,5 to the first appli-
cation andPRM2,5 to the second application leads to the schedulability of thesystem.
This can be achieved by constructing the demand-processes of the two applications and
verifying that

1. PRM3,5 is weakly more generous thandemand(Task1,3‖Task1,5) and
2. PRM2,5 is weakly more generous thandemand(Task1,6‖Task1,5). 2

As the above example illustrates, our study of generosity relations complement our
compositionality results for schedulability analysis of real-time systems. Specifically,
our framework represents a formal approach for hierarchical scheduling which allows
us (1) to check compositionally whether a hierarchical system is schedulable and ex-
tract appropriate (optimal) supplies for its components via thedemand function, and
(2) to construct practical schedulers for the components inquestion by isolating simple
supplies that are at least as generous as the component demands. Our framework may
also be used to formally represent the hierarchical scheduling approaches based on re-
source models [23] that rely on approximating the necessarysupply, making it more
generous than necessary, in exchange for a simple representation.

28

5. Conclusions

In this paper, we have presented PADS, a process algebra for resource demand and
supply. The algebra can be used to describe a task process andits demand on resources
necessary for the execution of a real-time task as well as a supply process that describes
the behavior of a resource allocator. We have defined precisely the notion of schedu-
lability using demand and supply, that is, when a process canbe scheduled under a
supply process, and provided a compositional theory of demand-supply schedulabil-
ity. We believe that PADS is the first process algebra that candescribe the behavior of
demand and supply processes and compositional schedulability between them.

There are several directions in which the current work can beextended. We are cur-
rently developing a tool which implements our techniques for schedulability analysis
and compositional scheduling of real-time systems and we are developing the theory
of the process algebra via the study of the precongruence properties and the axiomati-
zations of the preorders proposed in this paper. We plan to extend our work in order to
handle dependencies between tasks. Furthermore, we would like to define the notion of
aresidualsupply which captures the supply available after a system has its resource de-
mands satisfied and which will enable to perform incrementalscheduling of systems.
It would also be interesting to explore how to extend the notion of schedulability to
the notion ofresource satisfiabilitybetween demand and supply of arbitrary resources
that are not shared mutually exclusively. Another extension is to explore demand and
supply processes in the presence of probabilistic behavior.

References

[1] K. Altisen, G. Gößler, A. Pnueli, J. Sifakis, and Y. Yovine. A framework for
scheduler synthesis. InProceedings of RTSS’99, pages 154–163. IEEE Computer
Society, 1999.

[2] K. Altisen, G. Gößler, and J. Sifakis. Scheduler modeling based on the controller
synthesis paradigm.Real-Time Systems, 23(1-2):55–84, 2002.

[3] H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y. S. Kim, I. Lee,and H.-L. Xie. A
process algebraic approach to the schedulability analysisof real-time systems.
Real-Time Systems, 15:189–219, 1998.

[4] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario. Modelingflexible real time sys-
tems with preemptive time Petri nets. InProceedings of ECRTS’03, pages 279–
286. IEEE Computer Society, 2003.

[5] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open envi-
ronment. InProceedings of RTSS’97, pages 308–319. IEEE Computer Society,
1997.

[6] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework using
EDP resource models. InProceedings of RTSS’07, pages 129–138. IEEE Com-
puter Society, 2007.

29

[7] A. Easwaran, I. Lee, and O. Sokolsky. Interface algebra for analysis of hierarchi-
cal real-time systems. InProceedings of FIT’08, 2008.

[8] X. Feng and A. Mok. A model of hierarchical real-time virtual resources. In
Proceedings of RTSS’02, pages 26–35. IEEE Computer Society, 2002.

[9] E. Fersman, P. Krćal, P. Pettersson, and W. Yi. Task automata: schedulability, de-
cidability and undecidability.Information and Computation, 205(8):1149–1172,
2007.

[10] E. Fersman, P. Pettersson, and W. Yi. Timed automata with asynchronous pro-
cesses: schedulability and decidability. InProceedings of TACAS’02, LNCS
2280, pages 67–82, 2002.

[11] R.-T. S. GmbH. Real-Time Hybervisor, 2010. www.real-time-systems.com.

[12] T. A. Henzinger and S. Matic. An interface algebra for real-time components. In
Proceedings of RTAS’06, pages 253–263. IEEE Computer Society, 2006.

[13] I. Lee, P. Bŕemond-Gŕegoire, and R. Gerber. A process algebraic approach to the
specification and analysis of resource-bound real-time systems. Proceedings of
the IEEE, pages 158–171, 1994.

[14] I. Lee, A. Philippou, and O. Sokolsky. Resources in process algebra.Journal of
Logic and Algebraic Programming, 72:98–122, 2007.

[15] Linuxworks. LynxSecure Embedded Hypervisor and Separation Kernel, 2010.
www.lynuxworks.com/virtualization/hypervisor.php.

[16] G. Lipari and E. Bini. Resource partitioning among real-time applications. In
Proceedings of ECRTS’03, pages 151–160. IEEE Computer Society, 2003.

[17] J. Liu. Real-Time Systems.Prentice Hall, 2000.

[18] M. Mousavi, M. Reniers, T. Basten, and M. Chaudron. PARS: a process algebra
with resources and schedulers. InProceedings of FORMATS’03, LNCS 2791,
pages 134–150, 2003.

[19] M. Mousavi, M. Reniers, T. Basten, and M. Chaudron. PARS: a process algebra
with resources and schedulers. InProcess Algebra for Parallel and Distributed
Processing, pages 331–358. Chapman and Hall/CRC, 2008.

[20] M. Nunez and I. Rodriguez. PAMR: A process algebra for the management of
resources in concurrent systems. InProceedings of FORTE’01, pages 169–184,
2001.

[21] A. Philippou, I. Lee, O. Sokolsky, and J.-Y. Choi. A process algebraic framework
for modeling resource demand and supply. InProceedings of FORMATS’10,
LNCS 6246, pages 183–197, 2010.

30

[22] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein. Analysis of hierarchical
fixed-priority scheduling. InProceedings of ECRTS’02, pages 173–181. IEEE
Computer Society, 2002.

[23] I. Shin and I. Lee. Periodic resource model for compositional real-time guaran-
tees. InProceedings of RTSS’03, pages 2–13. IEEE Computer Society, 2003.

[24] I. Shin and I. Lee. Compositional real-time schedulingframework. InProceed-
ings of RTSS’04, pages 57–67. IEEE Computer Society, 2004.

[25] L. Thiele, E. Wandeler, and N. Stoimenov. Real-time interfaces for composing
real-time systems. InProceedings of EMSOFT ’06. ACM, 2006.

31

