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Abstract

As real-time embedded systems become more complex, resparttioning is in-
creasingly used to guarantee real-time performance. Rgceaveral compositional
frameworks of resource partitioning have been proposeagusal-time scheduling
theory with various notions of real-time tasks running unesstricted resource sup-
ply environments. However, these real-time schedulirggtlaapproaches are limited
in their expressiveness in that, although capable of d@sgrresource-demand tasks,
they are unable to model resource supply. This paper descdlprocess algebraic
framework PADS for reasoning about resource demand andinessgupply inspired
by the timed process algebra ACSR. In ACSR, real-time taskspecified by enun-
ciating their consumption needs for resources. To alsorantmlate resource-supply
processes in PADS, given a resourge, we write cpu to denote the availability of
cpu for a requesting task process. Using PADS, we define a sujgtyand relation
where a pai(T, S) belongs to the relation if the demand proc&ssan be scheduled
under supplyS. We develop a theory of compositional schedulability asialas well
as a technique for synthesizing an optimal supply procesa &t of tasks. Further-
more, we define ordering relations between supplies whigeride when a supply
offers more resource capacity than another. With this ndtics possible to formally
represent hierarchical scheduling approaches that asgiga “generous” resource al-
locations to tasks in exchange for a simple representafinillustrate our techniques
via a number of examples.

1. Introduction

Component-based design has been widely accepted as a ¢oomabspproach to
facilitate the design of complex systems. It provides méandecomposing a complex
system into simpler components and for composing the coemsrusing interfaces
that abstract component complexities. Such approachés@easingly used in prac-
tice for real-time systems. For example, ARINC-653 stadsldry the Engineering
Standards for Avionics and Cabin Systems committee speeifiition-based design
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of avionics applications. Also, hypervisors for real-timigual machines provide tem-
poral partitions to guarantee real-time performance [15, 1

To take advantage of the component-based design of realgystems, schedu-
lability analysis should support compositional analysiéng component interfaces.
These interfaces should abstract the timing requiremdrdascomponent with a min-
imum resource supply that is needed to meet the resourcendienfidhe component.
Component-based real-time systems often involve hiel@atbcheduling frameworks
that support resource sharing among components as webesia®d scheduling algo-
rithms [5, 22]. To facilitate the analysis of such systeraspurce component interfaces
and their compositional analysis have been proposed [1&£3, 25, 12]

Process algebras are abstract and compositional metlygelor system specifi-
cation and analysis. They allow to systematically build pter systems from smaller
ones via the use of a small number of operators, as well amasmnecompositionally
about system correctness. As such, they provide a promiingework in which to
study compositional scheduling. This paper presents adhineatment of the problem
of compositional hierarchical scheduling by introducingracess algebraic frame-
work, PADS, for modeling resource demand and supply inddisethe timed process
algebra ACSR [13, 14]. The notions of resource demand amdires supply are fun-
damental in defining the meaning of compositional real-tatieeduling analysis. Our
proposed framework formally defines both of these notiorsin8ACSR, a task in our
process algebra is specified by describing its consumpgedsfor resources. To also
accommodate resource-supply processes, we extend ta nbaresourceand given
a resource:pu we usecpu to denote the availability of the resource for consumption
by a requesting task. Our formalism then addresses theniolipissues:

1. Schedulability We define asupply simulation relatiori= that captures when a
taskT is schedulable by a supply, S =T

2. Compositionality We explore conditions under which we may safely compose
schedulable systems. Specifically, we are interested toed&fihctions on sup-
plies, o, and appropriate conditiong, such that if7} is schedulable bys; and
T, by S, then the parallel composition @f, andT5 is schedulable by, o Ss,
assuming that conditiofi holds:
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3. Supply SynthesisWe propose a method by which we can generate a supply
process to schedule a set of tasks, assuming that such aukmhexists. Our
method is based on the notion oflamandof a task which is a supply that can
schedule the task and, at the same time, it is optimal in theesthat (1) it does
not reserve more resources than those required and (2)tiireapall possible
ways in which a task can be scheduled. We then prove that tweooe tasks
are schedulable if and only if they can be scheduled by theposition of their
demands.

4. Task and Supply Orderingd\Ve propose an ordering between tasks which de-
fines when a task is more “demanding” than another, meanigittihequires
more resources in order to execute correctly. We also peopes orderings
between supplies which define when a supply is more “genétbas another




meaning that it offers a greater resource allocation. Thie nesult accompany-
ing these notions is that any supply that schedules a moramiding task may
also schedule a less demanding task and that any task saehkedy a less gen-
erous supply is also schedulable by a more generous sugp/résult comes to
complement our supply synthesis approach since it allovs aseck whether a
supply S schedules a task set as follows: We begin by constructingptimal
supply/demandp, for the task set and then check whetlseis more gener-
ous thanD. In the affirmative case we may conclude that the task set@ al
schedulable bys.

Related work.As mentioned above, this work brings together two long-ditaglines
of research. On the one hand, there has been much work on siiopal hierar-
chical scheduling based on real-time scheduling theory23624, 8, 6, 7]. Typically,
such approaches to schedulability analysis rely on ovpreagimations of task demand
using, for example, demand bound functions and under-appations of resource
supply using supply bound functions. Efficient algorithnme developed to ensure
that demand never exceeds supply. On the other hand, séwereall approaches to
scheduling based on process algebras [3, 14, 13, 20, 18tak8],automata [10, 9],
preemptive Petri nets [4], etc., have been developed. Tdelse of our knowledge,
none of these approaches consider the modeling of resauppdysexplicitly. Instead,
sharing of a continuously available processing resourtigdsn a set of tasks has been
considered.

Our approach to supply synthesis is conceptually similahéowork of Altisenet
al. on applying controller synthesis to scheduling problem<]1 The difference is
that we are not aiming to generate schedulers, but rathietenfiacefor a task set, an
abstraction that can be used in a component-based appooai-time system design.

The present paper extends our previous work of [21] as fallowt introduces
priorities to the framework, thus allowing us to represattitesiulability with respect
to particular schedulers and it contains all the proofs mgsfrom [21] adopted for
the extended framework. Furthermore, it introduces ongerélations between tasks
and supplies and associated results that enable us to fpnmpiesent techniques for
over-approximating optimal resources as can be found in[238].

The rest of the paper is structured as follows. Section 2eptesour process alge-
bra and its semantics. Section 3 contains our results on esitignal schedulability
analysis and interface construction, followed by examplastrating the application
of the theory in Section 3.3. Section 4 presents hierardieéseen tasks and supplies
and develops their properties and, finally, Section 5 cateduhe paper.

2. The Language

In our calculus, PADS (Process Algebra for Demand and SQipplg consider a
system to be a set of processes operating on a set of seeiafigihble resources denoted
by R. These processes are (1) theksof the system, which require the use of resources
in order to complete their jobs, and (2) thepplies that specify when each resource is
available to the tasks. Based on this, each resaue® can be requested by a task,



granted by a supply;, or consumedy’, when a supply and a request for the resource
are simultaneously available.

An action in PADS is a set relating to resource requests tg@md consumptions,
where each resource may be represented at most once. Reseguests and con-
sumptions are associated with a priority, where prioriéiesdrawn from the nonnega-
tive integers. These priorities are used to arbitrate betveetions, the intention being
that an action with a higher priority always wins. Suppliégesources are not as-
sociated with priorities since a resource can either be lggpr not supplied to a
component and cannot be simultaneously offered to two oen@sks in a system. For
example, the actioki(r1,1), (r2,3)} represents a request for the resourceandr;
at priorities1 and3, respectively, whereas the actiémr, (15, 2), (rs, 1)} involves the
granting of resource;, consumption of resource at priority level2 and request for
resource-s at priority levell.

Our framework is intended to capture real-time, resoumara systems. Such
systems have a limited number of shared resources each df vgtapable of partici-
pating in at most one action at a time. To capture this viewearable reasoning about
scheduling such systems, our process algebra containstibe of time. In particular,
we take a discrete time approach: we assume that all actgusére one unit of time
to complete measured on a global clock, with acfieepresenting idling for one time
unit since no resource is being employed.

We writeAct, ranged over by and, for the set of all actions and distinguidlaty,
the set of actions involving only resource requests, ramyed by p, andActg, the set
of actions involving only resource grants, ranged ovefb@ivena € Actwe writea”
to remove all priorities from resource-priority pairsdne.g. {(r1,2),73, (r3,1)}* =
{ry, 73,73} andres(«) for the set of resources occurringdne.g.res({(r1, 2), 7z, (7
,1)}) = {r1,72,r3}. Finally, given an actionv and a resource, we write 7, (r)
for the priority at which resourceis employed within actiom, where we consider all
supplied resources to be employed at priority léve.g. fora = {(r1, 2),73, (;73,), 4)},
we haver,(r1) = 2, mo(r2) = 0 andn,(r3) = 4. (Note thatr,, is well defined since
we have assumed that each resource may be represented tioarahmost once.)

2.1. Syntax

The following grammars define the set of tasksthe set of supplie§S and the
set of timed systemB, where we recall thgt € Actgz andy € Acte. Furthermore,
C ranges over a set ¢ésk constantseach with an associated definition of the form

c ¥ T, whereT may contain occurrences 6f as well as other task constants and
ranges over a similar set etipply constants

T == FIN | p:T | T+T | C
S == FIN|~:S|]S+S| D
P === 46 |T|S| P|P

We conside'IN to be the well-terminated process. Then a task process can be
FIN, a task constanf’, an action-prefixed procegs: T which executes during



the first time unit and then behaves&sor a nondeterministic choicg, + 7> which
offers the choice between executihigor T5. Similarly, a supply process can béN,
a supply constan$, an action-prefixed process: S, or a nondeterministic choice
S1 + S3. We make the assumption that all constants are guarded bstian,ahat is,

it is not possible to define a process suclCa¥ D + ...

Finally, a system can be a deadlocked systémgr an arbitrary composition of
tasks and supplies. In a parallel composit®r| P, P, and P, run concurrently and
synchronize while executing their actions. Furthermofgemever one process requests
a resource granted by the other, we obtain a consumptioreattource in question.
Note that the difference betwe@tiN and¢ is that whileFIN allows time to passj
does not. As a shorthand notation we will wrilgc; P; for P,, + ... + P, , where
I = {i1,...,i,}. Note that, given our assumption that all process constzotsr
guarded by an action, any task or supply differerifItY is in fact a guarded choice of
the formX;c;a; : P;.

2.2. Semantics

The semantics of PADS is given in two steps. First, we develtvpnsition relation
in which nondeterminism is resolved in all possible ways, thprioritized transition
relation—. Then, we refine» into —, the prioritized transition relation, on the basis
of a preemption relation which implements a type of “andddieghavior in the way in
which tasks resolve their nondeterminism, choosing the essible outcome given
the available supply and taking priorities into account.

We proceed to consider the unprioritized transition retati» defined in Table 1.
FIN being a well-terminated (and not a deadlocked) processloivs time to pass
(axiom (DLE)). Action-prefixed processes first execute their initigiat and then
proceed according to the continuatiod¢(T) and ActS)). Nondeterministic choice
behaves as either of its constituent summan8ar{(T) and SumS)). A constant be-
haves as the process in its defining equati@o((stT) and ConstS)). Finally, rule
(Par) specifies the way in which a parallel system evolves. Torbegih, we recall
that all actions take one time unit thus every step of a peredimposition should cap-
ture the actions of each of its components during the firgt timit. To achieve this, the
components of a parallel composition evolve synchronoaslty the composition ad-
vances only if both of the constituent processes are witlingke a step. Furthermore,
the rule enunciates the outcome of the synchronizationdstviwo parallel processes,
the most important aspect being that a request within ongpoaent is satisfied by an
available grant in the other. The condition of ruRa() imposes a restriction on when
two actions may take place simultaneously within a systepecBically, we say that
actionsa; anda, arecompatiblewith each other if, wheneveroccurs in both actions
then one occurrence must be a request and the other a sughly @source. So, for
example, it is not possible to simultaneously offer a reseun one component and
consume or offer it in another, nor to request it by two défertasks. We capture this
requirement as follows:

compatible(ay, as) = /\ (readi ATea})V(reay AT ea?)

reres(ay)Nres(os)



Table 1:Transition rules for tasks, supplies and systems

0
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compatible(as, az)

We may now combine compatible actions by transforming a Banaous request and
supply of the same resource into a consumption:

{(r,p) €ar Uaa|F € a1 Uaa} U{F € a1 Uaa|(r,p) &€ a1 Uz}
U {(?7]7)‘(7’,17) S Oéi,? S 043_7;71' € {172} or (?ap) c o U (JéQ}

arbay =

We may show the parallel composition operator to be asseeiatith respect to

. « . . «
— in the sense thatPy||(Pz||Ps) — Pi||(Ps]|P%) if and only if (Py||P)||Ps —
(P/||Py)||P;. This can be shown by establishing that ¢bmpatible(ay, as) and
compatible(a; @ aq, a3) if and only if compatible(as, a3) andcompatible(ay, g @
as), and (2) the associativity ab. Both of these properties are easy to prove by refer-
ring to the definitions.

Example 2.1. Consider the supply def {71,732} : S which offers resources andr,
simultaneously and the following task processes:

T ¥ {(r,2)} :FIN+0: {(r1,2)} : FIN
Ty {(r1,1), (r2, )} FIN 4 {(r2,1), (15, 1)} : T
Ty {(r1,1), (r2, 1)} FIN 4 {(r2, 1)} : {(r1, 1)} : FIN

TaskT; places a demand for resource at priority level2 during either the first or
the second time unit. Task requires the use of two resources simultaneously during
the first time unit, eithery; andr, or o andrs. Finally, task73 requires the use of
resources; andrs either simultaneously or in sequence. The transition systef
TS, Tz||S and(T1]|.S)||T5 are depicted in Figure 1.

Note that(T3||S)|| T3 has no transitions altogether since b@thand T requirers
during the first time unit. ]

Before we proceed to define the prioritized transition retabf PADS let us draw
some motivation from the example above. We may note thaethieprioritized tran-
sition systems include some unexpected and even undesbabbviors. For example,
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Figure 1: The unprioritized transition systemsIafi|S, 7> ||S and (T4 ||S)|| T3

consider task;. Our intention in writing this process is to express thatrequests
resourcer; during the first or the second time unit. More preciselyyifis avail-
able during the first time unit, thef} should employ it and, if not, then it should
idle and reiterate its request during the second time unitwév¥er, when placing?

in parallel with a process liké' that offersr; (andry) immediately, we observe that

{r1,72}

Ti|IS = {(r1,2)} : FIN||S, i.e. the semantics allow fdF; to choose its second
alternative of idling instead of employing the availableaerce, contrary to our in-
tention. Furthermore, consid&k||S. Again, here we observe that, contrary to what
one might expect, the process may choose to execute itad¢ti, 1), (rs, 1)}, thus
iterating its resource request foy, instead of consuming the availableandr,. Fi-
nally, in the transition system dff}||.5)||75, we observe that the initial state enables
two transitions whose actions contain the same resourdesittuone having higher
priorities than the other: a treatment of priority is neettednsure that higher-priority
actions take precedence over lower-priority ones.

In order to capture the intended behavior of systems, assied above, we define
a preemption relation on actions that prunes away undésib@aviors. This preemp-
tion relation focuses on nondeterminism within tasks areh#ures that it is resolved
based on the priorities of the resource requests and tlosvioly two assumptions:

1. Given a supply, a task should respond “angelically” arkrga nondetermin-
istic set of enabled transitions, it should choose only betwthe ones that are
satisfied by the available supply, assuming that such optaist. For example,
T»||S above should retain only transitidiir, 1), (r3, 1)} in its initial state.

2. In addition, we assume that a task behaves greedily ardchtstep, it employs
as many of the supplied resources as possible. For exarhgle&omposition
Ty || above should only retain transitiitr1, 2), 73} in its initial state.

Given the above, we define the preemption relation as follows

Definition 2.2. We define th@reemption relatior<e Act x Act so thata < 3 if one
of the following holds:

1. {r|[f € a’or Ye o’} = {r|r € BPor Ve B}, @ "R # pandB’ NR = §), that
is,  and 8 use the same consumed and offered resourcesvasahtains some
additional resource requests where@sloes not.



2. rega) =regB), o’ NR = B NR = B and{r| 7€ o’} C {r| ¥ B}, thatis,a
and s involve the same resources, neither of them makes any morgquests,
but 5 consumes more resources that

3.a" = B, forall r € refa) m,(r) < ms(r), and there exists € reqa),
mo(r) < mg(r), thatis,ac and g contain the same resources witlyiving greater
or equal priority to all resource usages, and there existéeast one resource
which is associated with a strictly greater priority ihthan inc.

Intuitively, an action precludes another if it makes betisage of the same offered
resources: According to clause (1), an action that invoh@sesource requests for
an available resource supply preempts an action that makig®ef requests given the
same supply which implies that tasks should behave in arelarignanner according
to the first assumption above. According to clause (2), givesource supply as much
resource should be consumed as possible, thus tasks bakadi\gaccording to the
second assumption above. And, finally, the third clauseemphts our treatment of
priority: if two resources contain exactly the same resesirand in the same mode
(request, grant or consume) th@mpreemptsy if each resource is employed Idyat a
priority higher than or equal te,, with at least one resource being implemented at a
higher priority.

Note that preemption takes place between two actions ottigyf contain the same
consumed and offered resources. For examfil&,, 2), (77, 1)} < {(1,1), (73, 1)}
but {(i1,1), (7, 1)} 4 {(1,2))} and{(F1, 1), (72, 1), (3, 1)} £ {(¥1,2))}. In other
words, our semantics makes an asymmetric treatment bet@seuarce requests and
resource supplies and, consequently, between task anty uppesses. Intuitively,
this asymmetry captures the understanding that while ggpbntrol their nondeter-
minism and may choose to offer any one of their availableastitasks respond to the
supply available and resolve their nondeterminism basati@environment.

We may now define the prioritized transition relatieh> by the following rule:

P5Q
P-%5Q
Figure 2 presents the refined versions of the transitioresystin Figure 1 after pre-
emption is implemented.

We conclude this section by introducing some notations. \Wew — if there
existsa such thatP -, If P/~ for all actionsa, we write P = §, wheres is the
deadlocked process. We wrike=—> P’ if there existwy,...,a, andPy, ..., P,,n >
1, such thatP 2% P, 2% ... P,_; 2 P, = P'. The set of traces aP, traces(P),
is defined to be the set of all infinite sequenaga’ . .. such thatP =% P, 2% ...
Furthermore, we write for elements oR andz to transform all resource requests in
k Into resource grants, s@rq, 2} = {71,72}. Extending this notation to traces of the
formw = k1Ko ..., Wwe writew for 71 &3 . . .. Finally, givena € Actg, we writea® to
transform all resource grants into resource requests7soiz 1% = {r1,72}.

. B
, thereisnaoP —,a <
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Figure 2: The prioritized transition systems®f||.S, T2 ||.S and(71 ||.S)||T3 from Example 2.1

3. Schedulability

In this section we present a theory of schedulability for calculus. We begin
by defining when a set of tasks is considered to be schedWgtdesupply. Then we
present an alternative characterization based on a typienofetion relation and we
prove the two definitions to be equivalent. In what follows wite T* for the set
containing all processes of the forf|| ... |7, n > 1, andS* for the set containing
all processes of the forifi, || . .. ||S,, n > 1. For simplicity, we refer to elements of
T* andS* simply as tasks and supplies, respectively.

Definition 3.1. AtaskT € T* is schedulable bgupplyS € S* if whenevelT||S —-
P then (i) P — and (ii) for all P - we havex” N R = .

According to this definition, a task is schedulable by suppl§ if at no point during
their interaction does the system deadlock (clause (i)) entdteover, no request for a
resource remains unsatisfied (clause (ii)).

Example 3.2. Let

S © {m}: FIN = {(r1,1)}: FIN
Sy € {r,73): FIN T, % {(r,1)} : FIN + {(ry, 1)} : FIN
Sy ) FIN4 {73} :FIN Ty % {(ry,1)} : FIN

r1,1),T2
) }_

ConsiderT;. We observe thdl} is not schedulable by, sinceT? |5, {
Clearly, this is so becausf does not offer; as required by, while S,, by offering

simultaneouslyr; andr,, schedules; as shown in the transitiof || S, (D)

FIN||FIN. However, this is not the case for supgdly: although it offers both; and
ro during the first time unit, it does so in two distinct actioifshe nondeterminism is

resolved according to the first summand, we obf&ifSs; {raDyrs} FINJ||FIN (note
that{(r1,1),73} and{(r1, 1)} are incomparable by thus both actions are enabled in
T4 |Ss).



Moving on to taskl, we observe that this is schedulable by all three supplies.

In particular,T%||S1 R FIN||FIN and this is the only transition df||S; since
{73, (r1,1)} < {(3,1)}. Finally, T3 is schedulable by; andS, but notSs. ad

Following this example we can make a number of observatiegarding the de-
fined notion of schedulability. Regarding supplies, we &t adding resources to the
actions of a supply (aS: introduces-, in the action of supplys;) appears to increase
the supply’s ability to schedule tasks since this implieg thore resources are offered
(S2 schedules task; whereasS; cannot). However, introducing nondeterministic al-
ternatives in a supply reduces this ability; for exam$lescheduled; but S; does
not. The opposite holds for tasks: extending the actionstaetk with resources de-
creases its ability to be scheduled by a supply since thiésfhat more resources are
required, while extending a task with nondeterministiemiatives increases its ability
to be schedulable since additional alternatives instélaggr flexibility for the task to
execute 75 is schedulable bys unlike 7} andT3). These observations will be further
studied and formalized in Section 4.

We now continue to provide an alternative characterizatibachedulability via
a type of simulation relations. This definition highlighteetconditions under which
a task is schedulable by a supply as well as the asymmetryebattasks and sup-
plies discussed above. Before moving on to this definitiointduce some useful
notations and results:

Definition 3.3. Leta, 5 € Act.

e We writesat(3, «) if req8) C reqa). In the case of € Actg anda € Actg,
we say that request actiohis satisfied by grant action.

e For a systemP, we write8 <p « if sat(3, «) and there exists ng € Act such
that P - P, sat(v, o) and either” c 4” or 8” =~ and < ~. If 8 <Ip a
we say thaf3 is amaximalresponse of’ with respect ta.

Note that, given a resource grant by some supgplgnly maximal responses of a task
T are relevant responses to the supply. This is because, pat#del composition of
TS, any non-maximal responses will be pruned away by the préemgelation and

thus they can be ignored. For examplef;,Fifiéf {(r1,2),(re, 1)} : Ty + {(r1,3)} : T2
ands &' {1,732} : ', we have{(r1,2), (r2,1)} <7 {71,72}. We may in fact prove
that:

Lemma 3.4. ForanyT € T*, S € S*,

1. T|S = T'||S" witha’NR = @ifand only if T % 77, S % ', a = oy Bay
anda1 <7 s.
2. Supposd’||S - T'||S", whereT' 25 T, S 22 S anda = a; @ as, and,

furthermore, there exist8, sat(8, as) with T’ Ly, Thena; <t as.

PROOF. For the first item of the lemma, considBre T*, S € S*, such thafl’||S -*»
T'||S” with o® N R = (). Then it must be that for some, € Actz anda, € Actg,

10



T 257,822 8 with = a; @ . Sincea” N R = () it must be thasat(ay, as).
Suppose that there existswith sat(v, a3) such that eithen, ¢ +” or 5” = 4” and
B < ~. In both cases we may see thatba, < @ as which contradicts the existence
of transitionT’||S . This implies thaty; < s as required. The other direction of
the property can be established using similar arguments.

For the second item of the lemma, supp@dgs —» T’||S’, whereT % T,

S 22 8’ anda = a; ® as, and, furthermore, there exists sat(3, ap) With T N
T”. Suppose that’ N R # (. Thena < § ® a, which contradicts the existence of
the transitionS||7 - S’||T". Thus,a’ N R = (), and by the first part of the lemma
aq 9 a. O

Definition 3.5. A relation S C T* x S* is a supply simulation relationf for all
(T,S) €S, S —, andifS =+ S’ then

1. there existg’ 2 T with sat(8,«) and(7”,5") € S, and
2. whenevefl” 2 T’ with B8 <r a,then(T”,5") € S.

If there exists a supply simulation relation betw&eand S, then we writeS = T..

That is, a task and a supply are related by a supply simulagitzion if (i) the
supply is able to offer resources to the task {—), (ii) if a supply offers a set of
resources then the task will be able to respond by an actainistsatisfied by the avail-
able supply and to remain schedulable by the resulting sfatee supply (clause 1),
and (iii) given a set of resources offered by the supply, aayimal transition by which
the task can accept the offered supply will result in a staeremains schedulable by
the remaining supply (clause 2). Recall that, accordingeimina 3.4(2), only maximal
transitions ofl” with respect to some supply are relevant responses, all mémsitions
are pruned away by the preemption relation and can thus loeedn

We may now prove that the two alternative schedulabilityorst coincide.

Lemma 3.6. AtaskT € T* is schedulable by supply € S* if and only if S = T.

PROOF. To begin with, suppose there exists a supply simulaticaticel R betweeril”
ands. We will show that ifT'||S -+ T"||S" then ()a® NR = @, (ii) (7", 5") € R and
(i) T"||S” —. Then, by induction on the length of the transitionfdfS — P, we
may deduce thaf is schedulable by, according to Definition 3.1.

So suppose that||S - T7||S” whereT 2% S’ andS 2% S/, a = a1 @ as.
We know that for somé, sat(3, ), T Ny (Definition 3.5(1)). By Lemma 3.4(2)
this implies thata; <7 as, thus by Definition 3.57",5") € R. Furthermore, by
Lemma 3.4(1) we have that N R = (. Finally, since(7”, S’) € R, by Definition 3.5

we have thats’ —» and for eachs” -2 there exist” -2 with sat(f2, 51). This
implies thatS’||T7" — which completes the first part of the proof.
Conversely, suppose that taSks schedulable by supply. We will show that

R = {(T,S)|T is schedulable by}

is a supply simulation relation. SuppogE, S) € R. SinceT||S —, T — and
S —s. Furthermore, ifS - S’ then, sincel is schedulable bys, there exists
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gy sat(f, «). If not, that is for allT Ny res(8) — resla) # 0, then
T||S -1, 4" N R # () which contradicts our assumption @fbeing schedulable by
S. Next, suppose that -5 7’ and 8 <r a. SinceS -+ §" andT -+ T’ where
B <r «, by Lemma 3.4(1)'||S i T'||S’, whereT” is schedulable bys’, which
implies that(7”, S") € R, as required. O
We define when a task is schedulable and this is done in thenfioldy obvious way.

Definition 3.7. AtaskT € T* is schedulabléf there exists a suppl§ with S = T.

We observe that the crux of the schedulability of a task bypplsuies in the ability
of the task to operate acceptably for all possible actiorth@supply and in doing so
in all its enabled nondeterministic executions that cae falace as a response to the
supply available. The notion of a cylinder defined below tefled to capture all the
possible ways in which a task can respond given an executiasopply.

Definition 3.8. Given ataskl’ € T* and an infinite tracev = k1k2..., Withx; C R
for all 4, we define thev-cylinderof 7" to be the setl = U;>1 4;, where

A = {(T a1, P) | T 25 Proq SrFg}
A = {(PnB.P)| P25 P B <p, 7, 3(Q, v, P) € Ay}, 0> 1

Furthermore, we say that an-cylinderA = U;>1 4; isliveif (i) forall (Q,«, Q') € A
then@ —, (ii) A; # O forall i and (U p 5.g)ca, B = i-

Thus, aw-cylinder, wherew = kiks..., Of a taskT contains all the possi-
ble/maximal responses @f given the supplys; (set A;), all possible responses of
the resulting states given suppity (setAs), and so on. For example, consider td3k
where

T = {(rn,2)}:T
T = {(r1,1)} : FIN+{(re,1)} : FIN + {(r3,1)} : FIN
Forw = {ry,ro}{rs, 73 }0*, thew-cylinder of T is A = U;>1 4;, where

Ar = {(TA(r, 2}, 1)}
Ay = {(Tlv{(TQa1)}5FIN)’(T/v{(r?nl)}’FIN)}
4A; = {(FIN,0,FIN)}, i>3

We observe that these are indeed the transitions that wiktleeant when scheduling

T by a supply of the fornf def {71,732 }H{72,73} : S’. The following result relates live
cylinders with task schedulability.

Lemma 3.9. AtaskT € T* is schedulable if and only if it possesses a live cylinder.

12



PROOF Suppose€l’ has a livew-cylinder wherew = k1k4 .... Consider supplyy

defined by the following set of equatiolss ef Rit1:9:+1. Then, we may confirm that
So = T'. In particular we show that it = U;>1 A; is thew-cylinder of T', then

R = {(T7Sz) ‘ (TaﬂaQ) S Aiai Z 1}

is a supply relation. So, considgF, S;) € R. To begin with, trivially.S; —. Further,
if S; = S;.1, then sinced; # 0, there existg BN Q, B<4r o, and(Q, Si11) € R.

In fact, this holds for alll" i> @, wherefs <Jr. a and the result follows.
On the other hand, if" is schedulable, then there exists a supplghat schedules
it. Letw =Ry Rz... € traces(S). We may construct a cylindet = U;>; A; of T as

Ay = {(T,a1,P)| T =% Py Qr Ry}
A = {(P.Bi.P)|PLS P Bi<pF (Qy,P)€ Ai}i>1

SinceT is schedulable by it is straightforward to see that contains no triple of the
form (Q, o, 6) and also thatd; # @ for all i. Finally, if we takeg; = U(P,@Q)GAI_ B,
we may conclude thal = U;>1 4; is aw’-cylinder of ', wherew’ = ;... O

3.1. Matching Supplies to Tasks

In this section we focus our attention to the problem of atitey the resource
requirements of a task into a matching supply. Specificgilyen a task, we would like
to generate a supply process which schedules the task amel sdine time is optimal
in that (1) it does not reserve more resources than thoséreedoy the task and (2)
it provides resource assignments to capture all possibys wawhich the task can be
scheduled. Both of these properties are important duriagémpositional scheduling
of real-time tasks. The first property is clearly desirales conservation of resources
becomes critical when real-time components are composedthE second property,
we observe that capturing all possible ways of schedulimglagives greater flexibility
when one tries to compositionally schedule a set of tasksenthe challenge is to share
the resources between the tasks in ways that are accepiadaeh one of them.

We begin by defining a function for combining supplies. Tkise&lpful for a sub-
sequent definition that considers matching supplies testask

Definition 3.10. Given supplies;, S; € S we defineS; ® S, as

S1 if Sy = FIN
So if S| = FIN
5152 =9 Sie/Tjes ;U B (Qrer.anas, aus, Pk © Qiespas,aus, Q)

if S dﬁf Zie] a;:P; anng d;f Zje.] ﬂj:Qj
Essentially, the joined supply; ® S, joins together the various summands of the
individual supplies as follows: in its topmost summand ites all available grants of
S; with all available grants of,, while the continuation process consists of the join of
those continuations of; and.S; which appear after “maximal” subsets of the initial
action in question. For example we have:
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0:{F}:0:FIN®@0:0:{F}: FIN = 0:{r}:{F}:FIN
0:{7F}:0:FINQ@:0:{r}:FIN+{7r}:0:0:FIN)
= Q:{F}:{F}:FIN+{7}:{7}:0: FIN
Using this definition we now move to define themandof a task. The demand of
atask is intended to capture the optimal supply that candsdbe task in the sense we

have already discussed. The main point to note in this diefimiis that we combine all
same-prefixed nondeterministic choices of a task by a sipgfixed supply.

Definition 3.11. Given a taskl’ € T*, we define itslemandas the following element
of S:

demand(T) &' Z o ® demand(T")]
T 75T

Example 3.12. Consider tasks

Ty = {(r2)}:0:0:T4+0:{(r,D}:0: T +0:0:{(r,3)}: T
o = {(rn,)}:0:0:Ta+0:{(r,2)}:0:To+0:{(r,2)}:T)
T3 = {(r,D)}:{(r,)}:FIN+ {(r,2)}:0: T3

Their demands are given by, X5, X3 below, respectively.

Xy, = {7}:0:0:X1+40:{7}: {7} : X4
Xo = {7}:0:0:Xo+4+0:({F}:0: Xo4+0:{7}: X5)
X3 = {F}:0:X3

a
The next lemma considers the optimality dmand(7") following the requirements
posed at the beginning of this section. We wiite< w’ for the infinite tracesy =
a1 ... anduw’ = ﬂlﬁg o if a - Bj for a”_] > 1.

Lemma 3.13. If w € traces(demand(T")) thenT possesses a live-cylinder and if
w € traces(T") then there exists’ € traces(demand(T")) such thatw < w’.

PROOF. Supposalemand(T) % S; 2% Sy 2% ... We will show that for thew-
cylinderA = U;> A; of T, wherew = oo .. ., we haveS; = ®(p.s.0)ca, demand(Q)
and A is live. Consider an arbitrarg; and supposé; = ®(Pﬁ7Q)€Ai demand(Q)
where A; # () and A, does not contain elements of the foftR, 5,5). Then, since

Qi1

S; —, by the definition ofg, it must be that
aiv1 = J{a | (P,B,Q) € A;,demand(Q) —*}.
In addition,S; % @, ; demand(T"), B = {T" | (P, 3,Q) € A;,Q 5 T", <

ai1}. But, B = A;4 and by the construction ef; 1, 4,11 # () andA is live, which
completes the first part of the proof.
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To establish the second part of the proof it is sufficient ttertbat if 7 - 7"
thendemand(T) —%» demand(T”) ® S for someS and, further, if5; —+ 5} then
S1® Sy LN S ® Sh, wherea C o for someS),. Then, by the definition odemand,
itis easy to see that % 77 22 Ty %% ..., thendemand(T) 2% demand(T1)®
S1 2 demand(Th) ® Sy 2% ..., whereaZaly ... < Bis .. .

O
Thus, we may conclude that a tefkis schedulable bgemand (7). Furthermore,
demand(T") is an optimal supply fof” since each of its executions schedules exactly a
cylinder of T, i.e. it offers exactly the resources necessary for scivggithe cylinder,
and each possible scheduleTofs captured by an execution @émand(T).

3.2. Compositional Theory

We proceed to consider the schedulability problem of a setsdfcomponents. The
first issue we tackle is the compositionality problem: If anpmnentl’ is schedulable
by S; and an independent componéfit by S, can we combines; and S; into a
collective supply that schedul&$||7>? We begin by noting a subtlety pertaining to this
problem which we need to consider before answering it. Clemnghe two components
below each consisting of one task:

7y = {(r,1)}:0:FIN + 0:{(r, 1) }:FIN
T, = {(r,1)}:0:FIN + 0:{(r, 1) }:{(r, 1) }:FIN

These components are schedulable by suppties 0:{7}:FIN andS; = {7}:(:FIN,
respectively. That is, it is sufficient for componéiitto obtain resource during the
second time unit and for compon€r} during the first time unit. However, a supply
S = {7}:{7}:FIN, offeringr during both time units, fails to schedulg||T,. This is
due to the fact that the supply for resourcduring the first time unit is intended for
componentl; but may be consumed by compondhtleading to a deadlock of the
system during the third time unit. Moreover,7if employed its resources at priority
level 2, this would in fact be destined to happen.

To resolve this issue, we associate components with theaimmg supplies by an-
notating each resource reference by a number which disshgs the component in
which the resource is employed/supplied. Precisely, waraeghat each component
is associated with a component identifier and if resourterequested by a compo-
nent with identifieri we write r[i] for the request and, similarly, if a supply ofis
intended for the component with identifiewe write r[:] for the supply. So, we say

that componen{(r[1], 1) }:FIN is schedulable by supply-[1]}:FIN and component
{(r[2],3)}:FIN by supply{r[2]}:FIN. However, note that resourcefl] andr[2] do
refer to the same resource and for all other purposes sheulgated as the same. So,

for example{r[1]} N {r[2]} # 0. To model this precisely we write:

o PJi] for the proces® with all its resources renamed as]:] (and, thusdemand(P)]i]
for the procesglemand(P) with all its resources renamed as:]).

e aNg pfor{reR|r[] e resa)andrj] € regF)}.
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Furthermore, we use the notatiefi] = {r[i] | » € a} and, ifw = ajaq ..., w[i] =
aq[i]as[i] . ... We have the following result:

Lemma 3.14. If T} is schedulable by, T» is schedulable by, and S;||.S; does not
deadlock, thefd [1]||72[2] is schedulable by [1]]]S2[2].

PrRooF We will show thatR, below, is a supply simulation relation.
R = {(Tl[l]”TQ [2], 51[1} HSQ [2]) ‘ S ': Ty, So ): T, 51[1} HS2 [2] does not deale(}k

Let (T1[1]||T2[2], S1[1]]]S2[2]) € R. By the definition ofR, Si[1]||S2[2] —. So
considerS; [1][S2[2] —= Si[1]]|S5[2]. It must be thatr = a;[1] © az[2], where
S i) S{, So 2) Sé anda; Nag = 0. Since .S ': Ty, S ): T5, we have
PPN T/, 8] = T3, and similarlyT; 2y T3, Sy = T5. In fact, for allTy TN Ty,
B1 <1, a1, it holds thatS; E T, and for allT;, LN T3, B2 41, s, it holds that
S}, | T4. This implies that for allT} [1]||72[2] N TINT5[2], B Dryay)msf2
(TY[I1T512], S1[1]11S%[2]) € R and there exists at least one syghransition. This
completes the proof. ]
However, note that even #, ||S, deadlocks, it is still possible that the suppligs
andS, can be combined to produce a supply 14| 75. In particular, we may suspect
that every infinite trace of ||S: is capable of scheduling || 7%, and in fact we can
show that the part of the transition system that pertainsotedeadlocking behavior
achieves exactly that. The following operator on suppliesaets this type of behavior.

Definition 3.15. Given suppliess; and.S; € S we define their product; x S; by

S if S = FIN
So if S = FIN

S1xSy =4 (aUB)(S, xSy ifS;=aS|, S=p:S,angB=0,5 xS, +6
5 if 1 =a:57,8, =B:S5,anrB#ADorSix S,=4

Sierjes(Six S3) if Sy =SicsSi, 89 = %,cs5)

Note that the set of recursive equations used in the definitic; x S; may allow
more than one solution. Consider, for example= {71} : S; andSy = {73} : Ss. It
is easy to see theff; x Sy = ¢ is a trivial solution. However, we are interested in the
maximal solution to this set of equations, which in this cas&; x Sy = {71,723} :
S1 x Ss. Intuitively, solutions can be ordered by the set of terna tire set t@: the
fewer terms are deadlocked, the “larger” the solution. Wethe following lemma to
make this notion precise and show that, for finite-stategsses, the maximal solution
exists and can be computed iteratively:

Lemma 3.16. Given supplies; and .S, the set of equations which arise throughx
S, has a greatest fixed point.

PrRoOOF. Consider the tern$; x Ss. LetSg, 5, = {S | S1 = SorS; = S} and
S35, = 9515, U[Ssy.5, X Ss,.5,]. Thatis,Sg g, is aset containing all derivatives
of S; or Sy and all pairs of these derivatives. For finite-state prm@h Ss is finite.
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Consider the set of relations &if;, 5, W = {W |W C Sg, g, x S ,}, ordered by
set inclusion. Becausd/ is a powerset of a finite sety is a complete lattice of finite
height.

Consider relatio?V where, if (wq,w2) € W, thenw; € [Ss, 5, X Ss,.5,] and
wy € Sgh& appears on the right-hand side of the equationufor disregarding the
recursive part of the third clause and the fourth clausehab t

o if S; = FIN then(Sy x Sy, S35_;) € W,

o if S} = a:S], Sy = B:S5 and(S; x Sz, 8] x Sh) € W, thenang B # 0,

o if S =NicsS], 82 =%;cs5) and(Sy x Sy, 57 x Sh) € W thensS| = S for
some; € I andS), = S for somej € J.

Thus, such a relatiol relates a product; x .S, with some of its possible deriva-
tives according to the selected part of the definition. Farteuppose that whenever
w € [Ss,.5, X Ss,,5,] and there existsy; such that(w, w) € W, then there also
existsws such tha{w, w2) € W. Then, suchV is a fixed point of the set of equations
defining.S; x S;. This is because, according to the complete definitignx Sy has
some derivative, if and only if w has a derivative (i.ew # 9).

Define a function” : W — W asF(W) = W — {(wy,ws) | wa € [Ss;,8, X
Ssy.8,] A Yw, (we,w) & W}. SinceF can only remove elements frofir, (W) <
W. Furthermore, ifit; < Wy, thenF(W;) < F(W5); that is,.F is monotonic. Let
us construct the sé¥, using the definition of; x Ss, again by omittingS; x S} # §
from clause 3 and} x S5 = ¢ from clause 4. Clearly, any fixed point 6f x S5,
Ws, xs, satisfiesWs, s, < W, since fewer terms are set &an W,. Since)V is a
complete lattice, by the Tarski-Knaster theorem, the gstdixed point exists and is
unique. Since the lattice is of finite height, the fixed poiah de computed starting
from W, and iteratively applyingF until the fixed point is reached. |

It is easy to see that, §; ||S; does not deadlock thefy x Sy # J. However, the
opposite is not true. By the constructionxof S; x S, selects the part of the transition

system ofS || S, that does not lead to deadlocked states. For example, miodéf
{F}:{F}:FIN + 0:{7}:{F}:FIN andS, %' §:{F}:FIN + {F}:0:FIN. Then, although
11182 5 (FLFIN|[{F}FIN = 6, Sy x S; = {F}:({7}:{r}:FIN x 0:FIN), and
({7}:{7}:FIN x 0:FIN) = {7}:{7}:FIN.

Lemma 3.17. If T is schedulable by, T is schedulable by, and S| x Sy # 6,
thenT [1]||T»[2] is schedulable by, [1] x S2[2].

PROOF. The proof is similar to that of Lemma 3.14. m]

At this point we turn our attention to the problem of constinug an interface for
a set of mutually schedulable tasks. To do this, we employtiien of demands and
we prove the following:

Lemma 3.18. If w € traces(71[1]||72[2]) then there exists atraee’ € traces(demand(Ty[1]) x
demand(73[2])) such thatw < w'.
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PROOFE Suppose thaty € traces(T1[1]]|72[2]). It is easy to see thab[l] andw[2]
give rise to traces of’[1] and75[2]. Then, by Lemma 3.13, there exist andw;
such thatw[l] < w; andw[2] < wy such thatw; € traces(demand(73[1])) and
wy € traces(demand(T3[2])). Suppose thatr; = ajs ... andwy = 15, ... and
write w’ = ~172 ..., wherevy; = a; U ;. Then, from the definition ok we may
conclude thatv’ a trace oflemand (73 [1]) x demand(7%[2]), and, in additioniz < w’,
as required. ]
This result implies that all alternatives of schedulifigl]||7%[2] will be explored
by demand(T3[1]) x demand(75[2]). It can be extended to the composition of an
arbitrary number of tasks. We are now ready to present oun thabrem:

Theorem 3.19. T} [1]||T2[2] is schedulable if and only dfemand (77 [1]) xdemand (75[2]) #
. Moreover, if itis schedulable, then it is schedulablelbyand (73 [1]) xdemand (7% [2]).

PROOFE Suppose€l;[1]||72[2] is schedulable. Then, by Lemma 3.9, it has a live
cylinder. Letw, be the trace of an execution6f[1]||7:[2] occurring within the cylin-
der. Then, by Lemma 3.18, there is a tracg w; < ws such thatws is a trace of
demand(71[1]) xdemand(7%[2]). Thisimplies thatlemand (7} [1]) xdemand(7%[2]) #
0. On the other hand, demand(T}[1]) x demand(7»[2]) # J, then, since, addition-
ally, demand(71[1]) scheduleqd? [1] and(7%[2]) schedule§5[2], then, by Lemma 3.17,
T [1]||T»[2] is schedulable byemand(T;[1]) x demand(T3[2]). O

Based on this result we may determine the schedulabilityaaredated scheduler
for a set of taskqd?, . .., T, as follows: For each task, extract its demand and compute
the productsD; = demand(71) x demand(T:), Do = D; x demand(T3),.... If
this process does not reduce to sofe= § then the tasks are schedulableBy_;.
Furthermore, according to Theorem 3.19, if they are indebddulable the®,,_; #
0. Thus, this method is guaranteed to produce a schedule gxists.

3.3. Examples

3.3.1. Scheduling periodic tasks

We first consider a simple periodic task with perjpeind execution timev which
requires usage of some resourGel'ask,, , = To.0,w,p- This is defined by the fol-
lowing equations where is the accumulated execution time of resouraguring the
current period andthe total elapsed time during the current period, anslthe prior-
ity of the resource access.

0: Te,t+1,w,p if e=w andt < P

T _ TO,O,w,p if e=wandt = p
Gbwp = Y ). Tetriwp +{(rm} Tt t41,0p fe<wandw—e<p—t
{(r, M)} Teqi 41,0, ife<wandw —e=p—t

Note that in our definition, the task cannot idle if idling Wwitake it miss the dead-
line. If the supply can avoid giving the resource to the taskhis case, the system
will have an unmet resource request transition that sigmatsschedulability (by Def-
inition 3.1). Let us consider an instance of a classical dalieg problem for a set
of periodic tasks running on a single processor resoufesks; s||Tasks 7|.S, where
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S = {7} : S. In the figure below, we show the initial part of the state spatthe
example where we assume that the priorities of all resowgeasts in both tasks are
the same and equal to Each state is represented as a tuplém, wherei and j
are the first two parameters of the first task &nandm are the first two parameters
of the second task. The other two parameters do not changararamitted to avoid
cluttering the figure. We also omit labels on the transitialktransitions are labeled

by {(¥,1)}.

00|00 11]0%t> 22|02= 00|43 11134 224%5 00426 134+GR|01=00]12—> 11|13> -

SN N/ NS

0111 12|12 01124~ 12125 12111 01]23—= -

The tasks are schedulable according to the Definition 3.ttanttansition system
of the composite process, shown above, can be seen as thiicatiea of feasible
schedulers for the task set. Nondeterminism in the trams#lystem represents differ-
ent decisions that a scheduler can make. For example, tte atang the top of the
figure corresponds to the rate-monotonic scheduling politych gives higher prior-
ity to T'asks 3 as it has the smallest period. Indeed, to consider schetitylamder a
specific scheduling policy, we would simply need to spedify appropriate priorities
and check for the schedulability of the system within the tramsition system.

We now consider the demand of a periodic task defined aboigeedtsy to see that
the task process deterministic that is, whenever ; ., ,, =1 andTy ;. p LN
T, thenT} = T,. For a deterministic task, the demand is obtained by a $itaig
forward replacement of requested resources by matchiregeaffresources. Thus,
demand(Task. ) = Xo,0,w,p IS defined below:

0: Xett1,wp ife=w,t<p

X ) Xo,0wp fe=w,t=p
etwp — 0: Xe,t-l—l,w,p + {F} : Xe-l—l,t-‘rl,w,p if e < w,w—e<p—t
{F} : Xet1.t41,0,p fe<w,w—e=p—t

It is easy to check thatemand(T'ask; 3)||demand(Tasks 7) does not deadlock and
thus can schedule the two tasks according to Lemma 3.14.

Let us now consider a task with variable execution time wisdtes betweehand
w time units to completeT'asky ,, , = T'askyp, + Taskpy1,p + ... + Tasky,,,. One
can see thademand(T'asky ,, ,) = demand(T'ask,, ;). This observation matches the
well-known fact from the real-time systems theory that fudépendent periodic tasks
it is sufficient to consider the worst-case execution timeaufh task [17].

3.3.2. Scheduling with partial supplies

To illustrate compositional analysis with partial supplieve begin with a sim-
ple example of time-partitioned supplies that are widelgdus practice. Consider
a periodic time partition with period®, durationD < P, and relative start timey,
which essentially offers a resouredor the intervallty,to + D) during each period:
Party, p.r = Poy,.p,p is defined as follows where, again, addition is modBto

P _J {7} Pyagepp  ifto<t<to+D
t,to,D, P 0:Pii1ty.D.p otherwise
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Figure 3: Scheduling with a periodic resource

Itis clear that partitions with the same period and non-eygring service intervals
[t,t + D) do not conflict. We can now analyze schedulability of taskscalted to a
partition separately from any other task in the system., fiolsexample, trivial to see
that partitionPart;, p,p can schedule a taskaskp, p for anyt.

We can similarly define more complex partial supplies. Cadasifor example,
compositional scheduling based on periodic resource red@8, 24]. A periodic
resource model is a supply that guaranteesnits of resource execution within a
period P, however, the availability of the resource within the pdris unknowna
priori. We can straightforwardly model a periodic resource modeP&M,, p =
demand(Task,, p). We can then analyze whether a set of tasks is schedulabiie wit
respect to this supply. This analysis will not be limited talépendent periodic or
sporadic tasks, unlike existing approaches in the liteeatu

As an example, consider the syst@in = Task; 3||Task: 5||PRM; 5 where all
priorities of resource requests are fixed td-igure 3 shows the initial state space using
the same notation as above, except now the state tuple alsol@s the parametees
andt of the supply. Note that, in this transition system we hawvions pertaining
to resource consumption, abbreviated Toyactions pertaining to resource requests,
abbreviated by, and idling actions. Recall that idling and consumed resactions
are incomparable in the preemption relation, while idlinggmpts unsatisfied resource
requests. We see that a poor scheduling decision can faka ; miss its deadline.
The scenario is seen on the right side of the figure: in thetfirsttime units, one unit
of resource goes @, 5 and the other unit of resource is denied to both tasks (tfis ca
happen in any order). If on the third step the supply deniessto the resource again,
the first task cannot idle, thus we reach a transition lableyeft-}, which implies that
the task misses its deadline, leading to a violation of Defini3.1.

If instead we wish to consider schedulability of the taskdarran EDF (earliest-
deadline-first) policy, we would have to repeat our analysisperiodic tasks with
priorities defined as below.

0 Te,t+1,w,p if e = w,t < p
T0,0,w,p ife=w,t=p
Te,t,w,p = Q) : Te,t+1,w,p + {(7“, Dmaz - (P - t))} : Te+1,t+1,w,p
fe<ww—e<p—t
{(ryDimaz — (P =)} : Tet1.t41,w,p ife<ww—e=p—t

whereD,, .. is a number exceeding the largest period in the task setisinghw setting,
the compositiorily, = Task; 3||Task: 5| PRMs 5, whereD,,q,, = 6, is schedulable

20



73 0000 | 00

- J5]
r,1\

-, 11101111 011111 01]01]01

2ose . waf Y
121222 12|02|1\r,4 02|12]12 02]02]0:
R 73 o s

001323 ~ 0010313
7.3 2 ra ¥73
1111434 0114|724 1104124

v v ¥

Figure 4: EDF scheduling with a periodic resource

as shown in Figure 4. In the figure, preempted transitionsaresed out. Note that
the problematic action of the previous example is no longer present because, in the
initial state, actior(?, 1) is preempted by actio@_“), 3), and from stat®1|01|01 action

(?, 2) is preempted by actioﬁﬁ 4), and thus the trees pointed to by these preempted
actions in the transition system are pruned away, inclutliegequest action.

4. Hierarchies on tasks and supplies

In the previous section we defined an approach for schedalisgt of tasks via
analysis of theidlemand processes which are supply processes capturing the precise
resource allocation required by tasks to complete theicwi@n. In this section we
proceed to provide machinery that will allow us to reasonhbé@rarchical approaches
to scheduling that rely on approximating the necessarylgupmaking it more gener-
ous than necessary, in exchange to a simple representéipecifically, we define
an ordering relation between tasks and two ordering relati@tween supplies which
describe when a task/supply requires/offers greater res@llocation than another.

4.1. Task demands

We proceed to consider the notiontafk deman@nd we define a relation on tasks
which characterizes when a task is more “demanding” thathanin the sense that it
places more requirements on the available supply.

Definition 4.1. ArelationD € T x T is ademand relatioiif for all (T1,T») € D, if
T, -5 then
1. there existTy —» T} with sat(8, o), and Ty —%» T/, such tha(T!, T}) € D,
2. forall Ty NN T3, if <, a U B, a<r, U B and for noy, Ty SN andjs g,y
and~y <7, a U 8, then there exist§; — T7 such that(T},T3) € D.

We write<p, for the largest demand relation and we say that a tAsks more demand-
ing than a taskls, T, <p T1, if there exists a demand relatidd with (71, T3) € D.

According to this definition, iff; is more demanding thdh, then for every action
« enabled by, (1) there is a move df; which can be matched by somemove of
T1, (2) if 8 anda are maximal moves df, andT7, respectively, with respect toU 3,
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and, additionally, there is ng-move ofT; such thats is a maximal move of; with
respect toy and~ is a maximal move of; with respeciv U 3, then all3-derivatives
of Ty are related to some-derivative ofT}.

To better understand the definition, let us first considerpibiat relating to the
existenceof an o« move of T} (instead of universality) as required by the first clause:
let

T Y {1, 1)} {(r2,2)} : FIN+ {(ry, 1)} : {(r3, 1)} : FIN

T Y {1, 1)} {(r2,1)} : FIN

Although T, cannot match the second summandI®f it is intuitive thatT; should
be considered as more demanding tHan This is because faf; to be scheduled
successfully it is imperative that after being offergdt will be offered simultaneously
bothr, andrs. Thus, it is sufficient fofl, to match one of thg(r;, 1)} actions ofT;.
The second clause of the definition is concerned with contibins.of actionsyU 5

whereT; - andT5 L, and it aims to ensure that, if a supply offers the resources
in o U 8 then, if it is able to schedule the-continuation off; it should also be able to
schedule thes continuation ofT3, that is, T} should continue to be more demanding
thanT. Clause (2) of the definition enunciates this requiremesiming thaiv andg

are maximal actions with respectdaJ 3, since this is necessary for them to constitute
relevant responses to a supplycf) 5 and furthermore, that no action @i, v, lies
between3 anda U 3, since, if such as exists andl;, — T7, itis sufficient thafl? is
more demanding thah,. For example, for

Tl déf {(7"1,1),(?"3,1)} : {(’1"2,1),(7’3,1)} : FIN
def

T2 = {(7‘271)} : {(7’2,0)} : FIN+ {(7’1,1), (7"3, ].)} : {(7"370)} : FIN

we may check that, according to the definitidn,is more demanding thaf,. Note
that supplyS e {71,72,73} : {F2,73} : FIN, schedules both tasks. Moreover, for

def

I = {(7‘1,1),(7’2,1)7(7"3,1)} :{(T271)7(T471)} : FIN
+ {(r1,1),(r3, 1), (ra, 1)} : {(r2,1), (r5,1)} : FIN
T, € {(r, 1)} {(rs,0)} : FIN + {(ry, 1), (r5, 1)} : {(r2,1), (r4, 1)} : FIN

if we we apply the definition of a demand relation and take {(r1, 1), (rs, 1), (r4,1)}
andg = {(r1,1),(r2,1)} it is not necessary for the-derivative of T} to be more
generous than thg-derivative of T, which is not. This is becausg 2, where
v ={(r1,1), (re,1),(rs,1)} and g <p, v andy <1, a U 5. Nonetheless]; is more
demanding thaff; according to our definition and for a supply that offers theoreces
aU g, ifit may scheduld’; then it must schedule both itsand~y derivatives and, con-
sequently, it must also scheddlg.
Some further examples follow:
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Example 4.2. Consider the following tasks.

Y (D)0

T, € (D)} 0:To+0:{(r1)}: T

Ty € (D} 0:0:Ts+0:{(r D)} :0:Ts+0:0:{(r,1)}: Ty
Ty < ()} 0:0:T+0: (D)} :0:Ty+0: {(r,1)}:Ty)
s < 0:0:{(r1)}: Ty

To < 0.0 {r, D)} T +{(r, 1)} {(r, )} : {(r, 1)} : Tt

T1 andT5, request resourceonce in every two time units with the distinction thH&t
requires the resource during the first time unit whefais satisfied with an allocation
during either time units. We may verify that is more demanding thaf,. Note that

actionT; %, need not be matched By since, according to the definition, it is not a
maximal move ofl% with respect td) U {(r,1)}.

Moving on to taskg3z andT, we observe that they both require resouramce in
every three time units but they pose slightly different netedministic requirements:
T3 is defined as the nondeterministic choice between the aptibasingr during one
of the first three time units, whereds initially offers the choice between acquiring
the resource and idling for two time units or idling and thexquring the resource
during one of the next two time units. We may check tiiatis more demanding
than both taskds andT, which demand- once every three time units. In addition,
T, is more demanding that, but not of 75 sinceT3; may choose to respond to an
initial @ action with the third summand which it less demanding thai, given
that it requests resoureeduring the third time unit. A comparison betwe#h and
T4 shows thatl’; is more demanding thah,. Finally, note that tasi; is not more

demanding than task;. Intuitively, we can see that tagk can be scheduled by supply

g {F} : 0 : {7} : S but taskTs cannot. Furthermore, according to the definition,

actionTg {(L’lg} needs to be examined as it is a maximal actiofipfvith respect to

# U {(r,1)} and clearly one that illustrates the absence of a demaniibrelzetween

the two tasks. This example brings out the subtle treatnesntired for the actions of
the less demanding task. ]

We now proceed to justify our notion ofiore demandingTo begin with we may
easily prove thakp, is reflexive and transitive. Furthermore, we may verify tihate
demanding tasks place more requirements on their supplipsolving that if taski” is
more demanding than tagK then a supply that can scheddlecan also schedulg'.

Lemma 4.3. Suppose that task; is schedulable by supply and that7; is more
demanding thafl,. Then, taskl; is also schedulable by suppsy

PROOF. The proof consists of showing that the relation

S = {(T,S)|3 demand relatiorD, supply simulation relatio® and
T, eT, (11, T,) € D,(T1,5) € R}
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is a supply simulation. Suppo$#,S) € S andT; is a task such thatry, Ts) € D,
whereD is a demand relation, and1,S) € R, whereR is a supply simulation
relation. Suppos& — S’. We confirm that the two clauses of Definition 3.5 are
satisfied as follows:

e Since(Ty, S) € S, there existd] with T} N Ty, B <1, « @and(7y,5’) € R.
Then, by clause (1) of Definition 4.1, there exigts such thafl, LN T4 with
sat(6’, 8), and for somely’, Ty N T/, (17',T4) € D. By Definition 3.5 it

is also the case thaf}’, S’) € R, while, clearly,sat(5’, ). This implies that
(T3,5") € S as required.

e Next supposés, LN T4. Two cases exist:

If there existsTy —— T/, v <7, o and 8y <7, 7. Then(T7,5’) € R and
(T7,T4) € D. Thus,(Ty, S) € S as required.

Now suppose there exists i@ — T/, v <, a andf, <7, 7. Nonetheless,

sinceS scheduled, there existd} N T/, /1 <1, aand(7y,S’) € R. Now
consider’; US,. It must be the case that both<p, 51 U 52 andfy <p, f1 U fBa,
otherwise we would have contradictions to our assumptibas® <p, « and
B1 <1, . Now, suppose there existssuch thatly 5 with B2 <, v and

v <p, 81 U B2. Sincey dp, 1 U Ba, sat(f1, «) andsat(Bz, ), we have that
sat(v, «), which implies that eithety <1, « or, if not, there exists’ with v <
v, sat(v/, ) andy’ <r, o while 8 <, 4/. This contradicts the assumption
of the case and it implies that there existsnas the one just described and,
consequently, by Definition 4.1(2), there exi§té such thatT; - 77 and
(T, T3) € D. By Definition 3.5 it is also the case théfy’,S’) € R. Thus
(T3, S") € S which completes the proof.

O

4.2. Supply generosity

Similarly to demands, we now proceed to define a hierarchyupplges. This
hierarchy is built on the basis of simulation relations tbapture when a supply is
more “generous” than another, where the intended meanifgeokrosity” is that the
more generous a supply the more tasks it can schedule. Bedodetfine two such
notions.

4.2.1. Strong generosity
Definition 4.4. ArelationR € SxS is astrong generosity relatidhfor all (S1,.52) €
Ra

1. if S9 — thenS; —.
2. if S — andS; -+ S then we have thag, =+ S} and (5], S5) € R.

We write<g for the largest strong generosity relation and we say thatpdy S; is
strongly more generous thaopplySs,, S2 <g 1, if there existsR with (51, S2) € R.
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According to the definitionS; is strongly more generous tha&f if: (1) whenever
Sy is not deadlocked thefi is also not deadlocked, and (2) whene$gris not dead-
locked then any action enabled By is also enabled by,. Intuitively, this definition
aims to establish that any task scheduled by the less gensumply,S,, can also be
scheduled by the more general sup@dy, To implement this,S; is required to offer a
subset of the behaviors 6%, in this way it is guaranteed that each£fs executions
is also possible ith; and, thus, any task schedulable $ywill be schedulable bys; .
Thus, in Example 3.25; is a strongly more generous supply thén

Note that the notion of strong generosity captures an easheervation that the
introduction of nondeterministic alternatives in suppl@minishes their potential of
scheduling tasks. This is because, as viewed by a task, dyswith more choices
constitutes an environment with more uncertainty, and tbeerways in which a supply
may offer resources implies a need for greater flexibilitybemalf of a task. As an
example consider

TE0:{(r, 1)} FIN+ {(r, 1)} : {(r,2)} : {(r, 1)} : FIN

and

S %0 {7} FIN+ {7} : {7} : FIN, S, % 0: {7} : FIN

Although S> can schedul&’, this is not the case with;. The same is true in the case
that we allow a supply to offer a wider range of resources. dxample,S; def {7} :
{7} : FIN also fails to schedule task.

It it easy to show thats is reflexive and transitive. Furthermore, the following
result establishes that generosity preserves schedtyabil

Lemma 4.5. If task T" is schedulable by suppl§, and S; is strongly more generous
than supplySs thenT is also schedulable by supp$ .

PrROOF. The proof consists of showing that the relation

S {(T, S1)|3 Sz € S, supply simulation relatiofk and strong generosity

relationg, (S1, S2) € G and(T, S2) € R}

is a supply simulation relation. Suppo&E, S;) € S and S, is a supply such that
(T, S2) € R, whereR is a supply simulation relation a1, S2) € G whereG is a
strong generosity relation. SuppaSe —>+ S;. By Definition 4.4(2),S; —~ S, with
(51,5%) € G. Thus:

1. There existg” -5 17, B <r awith (T7, 5%) € R. By definition, (77, 57) € S

as required.
2. Supposd’ Ny B <t a. Again we haveT’,S}) € R and(T",57) € S
which completes the proof. |

In fact, we can also show that:

Lemma 4.6. S is strongly more generous théf if and only if each task schedulable
by supplyS; is also schedulable by supp$y.
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PrRoOF. The = direction follows by the previous lemma. To demonstrate t&-'
direction we will show that the following relation is a stigogenerosity relation.

R = {(S1,52)|VT - T schedulable byy, =—> T schedulable by }

Suppos€ Sy, S2) € R. We have the following:

1. Supposes, —~+ S} and consider the set of taska : T|T schedulable by} .
Then, this set, being schedulable $y; is also schedulable b, , which implies
thatS; — by Definition 3.5, as required.

2. Supposes; —+ S} and in order to reach a contradiction suppose further that

Sy /. Consider task® ' >, i ¢ FIN 4+ o« T whereT" is not
schedulable bys] nor by any ofSy's derivatives. Theri is schedulable by

S, but notSy, resulting in a contradiction. This implies théy —— S% and
(51,5%) € R as required. a

As an example for strong generosity consider supfieand S, below
S, ¥ om0,
So Y T (T 0S40 (T S) 40 T} (T} S

where S; offers supplyr during the first two out of every three units of execution
and .S, offersr for two out of every three time units where the precise timafighe
offerings is nondeterministic. We may easily verify tiftis more generous thash,
and, as such, it may schedule at least as many taskks.a3hus, the deterministic
nature ofS; makes it more generous th&h.

Generalizing this example, we may also see that a periodie partition with
period P, durationD < P, and relative start timey, Part,, p p, defined in Sec-
tion 3.3.2, is strongly more generous than the periodicuresomodelPRMp p that
guarantee® time units of resource usage within every perlddThe former presents
one of the possible behaviors of the latter, this making itevgenerous, and able to
schedule at least as many tasks.

4.2.2. Weak generosity

Itturns out that the definition of strong generosity presers from comparing other
supply models which one might be interested in comparing.ifi&iance, supphb;
above which offers a resource during the first two out of etlerge time units, would

be intuitively considered as being more generous than mﬁzpiiﬁf {F}:0:0: Ss.
However,S; is not strongly more generous th&y, according to our definition and, for
instance, althougls; offers more resources tha it fails to schedule tasi’ below
which is in fact schedulable by the more stingy.

T {(r,0)}:[0:0: FIN + {(r,0)} : {(r,0)} : FIN]
Nonetheless, we would like to relax the notion of supply gesiéy to encompass a
wider set of supplies at the expense of Lemma 4.5. Specifida#low we define a
weaker notion of generosity which is subsequently consii@rithin a restricted class
of tasks. This definition is as follows.
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Definition 4.7. ArelationR € S x S is aweak generosity relatioififor all (S1,.53) €
R!

1. if Sy — thenS; —.
2. if S, — andS; -2 S/ then we have thaf, 2+ S}, 8 C a and(S!, S4).

We write <y for the largest weak generosity relation and we say that sugp is
weakly more generous thaupplySs, S 2w Si, if there exists a weak generosity
relation R with (51, S3) € R.

This definition follows along the lines of that of strong gersty with the excep-
tion that we allow the less generous supflyto match the supply af; with a subset
of its resourceg C a. Although we have shown that in this caSgis not guaranteed
to schedule all tasks schedulable $ this new notion allows to explore the intuition
that offering more resources makes for more generous @gpflhe following hold:

e SuppliesS; andS; considered above are such tisatis weakly more generous
thanSs.

e The partial supplyPart,, p,p is weakly more generous than the partial supply
Partto’p/,p, whereD’ < D.

e The periodic resource mod€lRM,, p, defined in Section 3.3.2, is weakly more
generous than the periodic resource ma@&M,, p, w' < w.

e The periodic resource mod&lR M, 4 is notweakly more generous than the pe-
riodic resource moddaP R M, ». We may confirm this by considering the execu-
tion PRMj; 4 QQLL PRM, 4 and observing that it cannot be matched
by PRM, » as required by the definition of weak generosity. Note thsk ta
Task; 2 is schedulable by supplly RM; - but it isnotschedulable by’ RM; 4.

Regarding the ability of weakly more generous supplies tedale tasks we have
the following result. Consider the class of periodic taSksith periodp and execution
timew, Task, p, defined in Section 3.3.1. We may prove that:

Lemma 4.8. IftaskT" € C is schedulable by suppls andS; is weakly more generous
than supplyS., thenT is also schedulable by supp$y.

PrROOF. The proof consists of showing that the following relatisrai supply simula-
tion relation.

R ={Te,t,w,p,51) | 352 €S, supply simulation relatiols and weak generosity
relationW - (S1, S2) € W and (T ¢.w.p, S2) € S, for somee’ < e}
So, considerT. ;. p, S1) € R and suppose there exist a supgly, a supply

simulation relationS and a weak generosity relatio, such that(S;, S2) € W
and (Tyr ¢.w.p, S2) € S for somee’ < e. SupposeS; — S;. We will show that

.ty — T wherep <1, ..., @ @nd(T, Sy) € R. First note that sincé; — 5]
and(Sy, S2) € W, Sy — S5, v C awand(S, S4) € W. The following cases exist:
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1] 1]
elfe =w e =¢€ andt < D thenTe’,t,w,p — Te’,t+1,w,p: Te,t,w,p —

Tet41,0,p (Ter tw,p, S5) € S, and, thus(Te ¢41.,p,57) € R as required.

o Ife=w,e<e andt <p,thenT, ;. AN Terr 141,00, Wheree” € {e/, ¢’ +

1}, depending on whethétr € . In any casee” < e, Te ;. p BN Tet41,0ps
(Ter t,w,p,55) € S, and, thus(Te 1 41,w,p, S7) € R as required.

o If e = w andt = p, then sincel, ; ,, , is schedulable by, it must be that
e’ = w and the proof follows as in the next case.

elfe<w w—e<p-—t w—e < p—tthe following cases exist. If € ~,

(r,m) (rym)

then” € a andTr 4w p = Tert1,t41,0,p0 Letwp — Tet1,t4+1,w,p, Where
(Ter+1,441,w,p,59) € S, and, thus(T. 11 1+1,w,p, 51) € R as required. If & ~

— 0 (rm)
and7 € « thenTe/7t,w7p — Te/,t-‘rl,w,pv Te,t,’w,p — Te-l—l,t-‘rl,w,pa where

(Ter 41,0, 55) € S, and, thus(Teq1 141,00, 51) € R as required. Finally, if

_ _ ] 0
T¢~vyandT € athenTy 1 0wp — Tort+1,wpr Letwp — Tett1,w,p, Where
(Ter 141,w,p595) € S, and, thus(T, y41,4,p, S1) € R as required.

o If e <w,w—e<p—tandw — e = p —t, then the proof follows similarly to
the first case of the previous clause.

e Finally, if e < w andw — e = p — t, then, sincel, ; ., , iS sSchedulable by,

(r,m) (r,m)

e=¢,7evyandthusy € a andTe s wp — Tert1i41,wpr Letwp —
Tet1,t41,w,p0 WhEIe(Ter i1 141,0,p,55) € S, and, thus(Te1 141,09, 51) € R
which completes the proof. a

Example 4.9. Consider a system composed of two applications competintdnéous-
age of a single resource, the first consisting of the task’sek; 3||T'ask; 5 running
under an EDF scheduler and the second consisting of the éagkask; ¢||Task: 5
running under a rate-monotonic (RM) scheduler (i.e. thellemine period the higher
the priority). We may verify that the assignment of suppl® M 5 to the first appli-
cation andP R M 5 to the second application leads to the schedulability osjtstem.
This can be achieved by constructing the demand-procestestavo applications and
verifying that

1. PRMs 5 is weakly more generous thaamand(T'asks || Task: 5) and

2. PRM, 5 is weakly more generous thademand(T'asky ¢||Task: 5). ad

As the above example illustrates, our study of generosiffioens complement our
compositionality results for schedulability analysis e&ktime systems. Specifically,
our framework represents a formal approach for hierartsi@eduling which allows
us (1) to check compositionally whether a hierarchicalaysis schedulable and ex-
tract appropriate (optimal) supplies for its componentstiiedemand function, and
(2) to construct practical schedulers for the componenggi@stion by isolating simple
supplies that are at least as generous as the componentdien@ur framework may
also be used to formally represent the hierarchical scireglapproaches based on re-
source models [23] that rely on approximating the necessapply, making it more
generous than necessary, in exchange for a simple repaisent
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5. Conclusions

In this paper, we have presented PADS, a process algebrasimunce demand and
supply. The algebra can be used to describe a task procegs dethand on resources
necessary for the execution of a real-time task as well ap@\sprocess that describes
the behavior of a resource allocator. We have defined pigdlse notion of schedu-
lability using demand and supply, that is, when a processbeascheduled under a
supply process, and provided a compositional theory of deksapply schedulabil-
ity. We believe that PADS is the first process algebra thatdestribe the behavior of
demand and supply processes and compositional schedtylaktiween them.

There are several directions in which the current work caexdbended. We are cur-
rently developing a tool which implements our techniquessfthedulability analysis
and compositional scheduling of real-time systems and welaveloping the theory
of the process algebra via the study of the precongruengeepies and the axiomati-
zations of the preorders proposed in this paper. We planteméxour work in order to
handle dependencies between tasks. Furthermore, we vikeitd define the notion of
aresidualsupply which captures the supply available after a systesithaesource de-
mands satisfied and which will enable to perform incremesithkduling of systems.
It would also be interesting to explore how to extend theardf schedulability to
the notion ofresource satisfiabilitpetween demand and supply of arbitrary resources
that are not shared mutually exclusively. Another extemgao explore demand and
supply processes in the presence of probabilistic behavior
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