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Abstract

Mateescu, Salomaa, and Yu asked: is it decidable whether a given

subword history assumes only non-negative values for all words over a

given alphabet. In this paper, we solve this open problem by proving that

this problem is undecidable even under stronger conditions than supposed

originally.

1 Subword history and inequality

Let Σ be an alphabet, and by Σ∗ we denote the set of all words over Σ including
the empty word λ.

Parikh mappings (vectors), introduced in [10], provide us with numerical
properties of a word and a set of words. Some specific ordering of the letters in
Σ = {a1, . . . , an} in mind, the Parikhmapping of a wordw is (|w|a1

, |w|a2
, . . . , |w|an

),
where |w|a denotes the number of occurrences of a letter a ∈ Σ in a word
w ∈ Σ∗ (for instance, |aab|a = 2 and |aab|b = 1). This idea can be generalized
as counting in w the number of occurrences of another word u as a (contin-
uous) subword or a scattered subword. The latter is of especial interest. In
general, u is a scattered subword of w if there exist an integer k ≥ 1 and words
x1, . . . , xk, y0, y1, . . . , yk, some of which are possibly empty, such that

u = x1 · · ·xk and w = y0x1y1 · · ·xkyk.

For various usages of terminologies, the reader is referred to [12]. Then we can
generalize the notation |w|a as |w|u to denote the number of occurrences of u
as a scattered subword of w. For instance, |aab|ab = 2 because two occurrences
of a precede that of b. It is a convention made in [7] to assume that |w|λ = 1
for the empty word λ and any word w ∈ Σ∗.

The number of scattered subwords can provide more information about the
word w itself than Parikh mapping. For Σ = {a, b}, the Parikh mapping (3, 3)
admits all 20 words in aaa ∃ bbb like ababba as w, where ∃ is the shuffle operation.
Adding a condition |w|ab = 8 to this Parikh mapping reduces the candidate of
w to aababb [7]. More advanced logic can be implemented by adding and/or
multiplying such conditions; |w|a × |w|b = 4 implies that w ∈ a ∃ bbbb∪ aa ∃ bb ∪
aaaa ∃ b. This idea led Mateescu, Salomaa, and Yu to propose the notion of
subword history as follows.
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Definition 1 ([7]). A subword history in Σ and its value in a word w are defined
recursively as follows:

• Every word u in Σ∗ is a subword history in Σ, referred to as monomial,
and its value in w equals |w|u.

• Assume that SH1 and SH2 are subword histories with values α1 and α2,
respectively. Then

−(SH1), (SH1) + (SH2), and (SH1)× (SH2)

are subword histories with respective values

−α1, α1 + α2, and α1α2.

The notation |w|u is now further generalized as |w|SH for a subword history SH

to denote the value of SH in w.
For a non-negative integer e ≥ 0 and a subword history SH , we denote

e times
︷ ︸︸ ︷

SH × SH × · · · × SH by
∏e

SH . For instance,
∏

2
SH = SH × SH and

∏
3
SH = SH×SH×SH . Let us set

∏
0
SH be λ for any subword history SH .

In light of the next proposition, this setting does not contradict the convention
that |w|λ = 1 for any word w.

Proposition 1. Let SH be a subword history in Σ with value α, c be an integer,
and e be a non-negative integer. Then c(SH) and

∏e
SH are subword histories

with respective values cα and αe.

Two subwords SH1 and SH2 are equivalent if |w|SH1
= |w|SH2

for every
word w ∈ Σ∗. It is not difficult to observe that the subword histories a× b and
ab+ba assume the same value in any word (see [7]). These two subword histories
are hence equivalent. A subword history is linear if it is obtained without using
the operation ×. We say that a linear subword history is of degree n if its longest
monomial is of length n. For instance, the degree of abb+ 2c+ 3 is 3 due to its
first term. More generally, we can define the degree of a subword history as the
minimum degree of equivalent linear subword histories.

Mateescu, Salomaa, and Yu proposed a method of constructing from a
given subword history an equivalent linear subword history, and as its corol-
lary, the problem of deciding the equivalence of two given subword histories
turned out to be decidable [7]. In the paper, the authors called for a contin-
uation of research on inequalities between subword histories. Specifically, they
left the following problem open: for a given subword history SH , is it decidable
whether |w|SH ≥ 0 holds for every word w in Σ∗. Let us call this problem
SubwordIneqAbsoluteness. From the point of view of decidability, it is irrel-
evant whether this problem is formalized with ≥ or with >. Indeed, deciding
whether |w|SH > 0 holds for every word w ∈ Σ∗ is equivalent to deciding
whether |w|SH−λ ≥ 0; note that SH − λ is a valid subword history with value
|w|SH − 1.
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2 Main results

In this section, we prove that SubwordIneqAbsoluteness is undecidable even
under strong restrictions (Corollary 2). This is our main contribution in this
paper.

First of all, we show that this problem is at least as hard as the problem
of deciding for given two subword histories SH1 and SH2 whether there exists
a word w ∈ Σ∗ such that |w|SH1

= |w|SH2
holds. Let us call the latter prob-

lem SubwordEqSolvability. The reader can consult [11, 2], if needs arise, on
undecidability, polynomial-time Karp reduction, and NP-hardness.

Lemma 1. SubwordEqSolvability is polynomial-time Karp reducible to SubwordIneqAbsoluteness.

Proof. Assume that as an instance of SubwordEqSolvability two subword his-
tories SH1 and SH2 are given. Let SH = SH1 − SH2. Then, the answer to
this instance is no if and only if |w|SH×SH > 0 for every word w ∈ Σ∗. Note
that SH × SH is a valid subword history (Proposition 1), and its value in w is
(|w|SH)2.

In order to prove the undecidability of SubwordIneqAbsoluteness, there-
fore, it suffices to prove that SubwordEqSolvability is undecidable.

Theorem 1. SubwordEqSolvability is undecidable.

Proof. This proof is based on the unsolvability of Diophantine equation proved
by Matiyasevich in [8], the answer to the Hilbert’s tenth problem. Let a Dio-
phantine equation

∑

1≤i≤ℓ

cix
ei,1
1

x
ei,2
2

· · ·xei,m
m = 0

be given, where ℓ ≥ 1, c1, . . . , cℓ are integer constants, x1, x2, . . . , xm are positive
integer variables, and ei,1, ei,2, . . . , ei,m are non-negative integer exponents for
1 ≤ i ≤ ℓ. (It is well known that we can restrict the attention to positive integer
variables, see [11].)

Let Σ = {a1, . . . , am}. Consider a word w in an1

1

∃ an2

2

∃ · · · ∃ anm
m for some

non-negative integers n1, . . . , nm. Then for 1 ≤ j ≤ m, we have

|w|aj
= nj .

Proposition 1 implies that
∏ei,j aj is a subword history for any 1 ≤ i ≤ ℓ, and

its value in w is n
ei,j
j . Using the proposition once again, we see that

ci

(ei,1∏

a1 ×

ei,2∏

a2 × · · · ×

ei,m∏

am

)

is a subword history whose value in w is cin
ei,1
1

n
ei,2
2

· · ·n
ei,m
m . Let us denote this

subword history by SHi, and let SH =
∑

1≤i≤ℓ SHi, which is also a subword
history. Now it should be clear that

|w|SH =
∑

1≤i≤ℓ

cin
ei,1
1

n
ei,2
2

· · ·nei,m
m . (1)
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This is the value we can obtain by substituting (n1, . . . , nm) into the given Dio-
phantine equation. Therefore, if the Diophantine equation has a positive integer
solution (n1, n2, . . . , nm), then for such w, |w|SH = 0. Conversely, assume that
there exists a word v ∈ Σ∗ such that |v|SH = 0. According to Definition 1 and
Eq. (1),

|v|SH =
∑

1≤i≤ℓ

ci|v|
ei,1
a1

|v|ei,2a2
· · · |v|ei,mam

.

Since this value is 0, (|v|a1
, |v|a2

, . . . , |v|am
) is a positive integer solution to

the given Diophantine equation. Consequently, if SubwordEqSolvability were
decidable, then we would be able to determine the solvability of the given Dio-
phantine equation, a contradiction.

Corollary 1. SubwordIneqAbsoluteness is undecidable.

As being mentioned previously, the equivalence of two subword histories is
decidable, and note that this does not contradict Corollary 1.

It is worth observing that in the proof of Theorem 1, we reduce a given
Diophantine equation into an element of a restricted class of subword histories,
which we call the class of letter-restricted subword histories. The definition of
letter-restricted subword history is obtained by restricting that monomials be
letters in Σ or λ in Definition 1.

It is well known that the Diophantine equations remain unsolvable even if
the number of variables involved is limited to be 9 [9]. In the proof of The-
orem 1, the number of variables equals that of letters in Σ. Thus, over an
alphabet of 9 letters, SubwordEqSolvability is undecidable, and hence, so is
SubwordIneqAbsoluteness. Combining this with what was mentioned in the
last paragraph, now we present our strongest result on the undecidability of
these problems as of this moment.

Theorem 2. If the Diophantine equations are unsolvable over n variables, then
SubwordEqSolvability and SubwordIneqAbsoluteness are unsolvable even
for the class of letter-restricted subword histories over an alphabet of n letters.

Corollary 2. SubwordEqSolvability and SubwordIneqAbsoluteness are un-
decidable even for the class of letter-restricted subword histories over a nonary
alphabet.

Corollary 2 does not mean that SubwordEqSolvabilityor SubwordIneqAbsoluteness
is decidable over an alphabet of size at most 8. It is conjectured that Diophan-
tine equations remain unsolvable even over three variables. If so, then Theo-
rem 2 implies that these problems would be undecidable even for the class of
letter-restricted subword histories over a ternary alphabet.

How small do we have to make the size of alphabet to make these problems
decidable? We cannot help but leave this matter unsettled in this paper, but can
provide a result to illustrate how hard SubwordIneqAbsoluteness is. Manders
proved that it is NP-complete to decide the solvability of a given Diophantine
equation of the form c1x

2 + c2y + c3 = 0 [6]. Our construction of a subword
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history from a given Diophantine equation in the proof of Theorem 1 can be done
in a polynomial time. In addition, the subword history thus constructed can be
transformed in a polynomial time into a linear subword history c1a + 2c1aa +
c2b + c3 of degree 2 by the above-mentioned product elimination by Mateescu,
Salomaa, and Yu, where the letters a and b correspond to the variables x and
y, respectively. With Lemma 1, we can prove the following theorem, though it
does not settle the question at the beginning of this paragraph.

Theorem 3. SubwordEqSolvability and SubwordIneqAbsoluteness are NP-
hard even for the class of letter-restricted subword histories of degree 2 over a
binary alphabet.

3 System of Diophantine equations

In this section, we glance at the polynomial-time Karp reduction from a given
system of Diophantine equations to a subword inequality. The reduction should
be in itself trivial from our proof of Theorem 1, but let us spend some space for
this because of an implication it has on a significant problem called preimage
problem.

A system of Diophantine equations is a finite collection (Eq1, Eq2, . . . , Eqk)
of Diophantine equations. Using our method, the equations Eq1, . . . , Eqk are
transformed into the respective subword histories SH1, . . . , SHk. From them,
we construct the following subword history:

SH :=
∏

1≤i≤k

((SHi × SHi) + 1).

Then, for w ∈ Σ∗, |w|SH = 1 if and only if for all 1 ≤ i ≤ k, |w|SHi
= 0. Since

SH always assumes a positive integer value, deciding whether |w|SH = 1 can
be done both by equation and by inequality.

Given a subword history SH and a word w ∈ Σ∗, it is a pen-and-paper
calculation to obtain the value of SH in w, and it remains the case no matter how
many subword histories are given. From the subword histories SH1, . . . , SHk

and the values n1, . . . , nk thus calculated from w, we can build the following
system of subword equations:







SH1 = n1

...
SHk = nk

and after that, we hide w. Can we find w, or more desirably, can we eliminate
the candidates of w? In Section 1, an example was cited from [7] to see the
uniqueness of the word w ∈ {a, b}∗ satisfying |w|a = |w|b = 3 and |w|ab = 8.
This is interpreted in the above-mentioned framework as finding w when (3, 3, 8)
is given (assume that we know to what subword history each coordinate is
related in this vector). Problems of this type are collectively termed preimage
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problems (see, e.g., [1, 5] for a preimage problem in chemoinformatics). Preimage
problems can be formalized not only for words but for various objects like graphs
so long as some of their properties can be quantified. What we mentioned in
the previous paragraph, however, demonstrates how computationally-hard the
preimage problem is even for words. One reason for this hardness is that in
counting occurrences of a subword, search range covers the whole of a given
word (global scope) in our current formalization. As such, if we reformulated
problems so as to confine the search range, then the reformulated preimage
problem could be solved even efficiently. In [1], Akutsu and Fukagawa counted
only the occurrences of words as a continuous subword, and showed that in this
setting, the preimage problem can be solved in a polynomial time.

4 Concluding remarks, discussions, and future

directions

In this paper, it was proved to be undecidable whether there exists a word
in which an equation between given two subword histories holds. With the
polynomial-time Karp reduction, this amounted to the answer to the open prob-
lem by Mateescu, Salomaa, and Yu posed in [7]. This problem was proved to
remain undecidable even under conditions on the size of alphabet, on the class
of subword histories considered, and on the length of monomials involved. As
such, our main results are stronger than a solution to the original open problem.

Results in this paper are oriented toward unsolvability, and therefore, cannot
be employed to make use of a number of known decidability results on the solv-
ability of Diophantine equations (see [3]). This motivates us to make a research
on the characterization of subword histories that is polynomial-time Karp re-
ducible to a Diophantine equation whose solvability is decidable. It might be
worth recalling that the Diophantine equations are reduced to the very restricted
class SH of letter-restricted subword histories. Thus, for any class of subword
histories that does not contain SH as a subset, it remains unknown whether
SubwordEqSolvability or SubwordIneqAbsoluteness is decidable. The most
significant difference between Diophantine equations and equations on subword
histories is that the latter is defined on the group which is not Abelian. In this
paper, this difference has been barely encountered because our attention was
mainly on the class of letter-restricted subword histories, in which commuta-
tivity does not count so much. This observation gives us an impression that
combinatorics on words will play an important role in working on the above-
mentioned problems (see [4] and the references therein).
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