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Abstract

We show that the graph-theoretic DNA hybridization models of pot tiles [4, 5]
and of sticker complexes [3, 2] are equivalent. This allows one to carry over
known results from one model to the other. In addition, we introduce the
concept of “greedy” hybridization and compare it to “regular” hybridization.
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1. Introduction

During the process of self-assembly, intricate structures are obtained by
spontaneous assembly of smaller building blocks. Self-assembly may appear at
various scales [8], e.g., it may appear on the level of molecules or on the level of
organisms [1]. A prime example of the former is self-assembly of algorithmically-
designed DNA molecules through hybridization (see, e.g., [9, 6, 7]).

Hybridization, as a self-assembly process, has been studied in [10] from a
computational point of view, where the families of regular, context-free, and
recursively enumerable languages are characterized by three different hybridiza-
tion models. The hybridization model for the family of recursively enumerable
languages relies on two-dimensional sheets to provide the necessary context-
sensitivity. On the other hand, the hybridization model for the family of context-
free only uses branched junction DNA molecules for its computation.

In [4, 5], a hybridization model similar to the context-free model of [10]
is used to characterize whether or not complexes without sticky ends may be
obtained through hybridization from a given set of branched junction DNA
molecules. Intuitively, as hybridization in this model is context-free, the precise
physical structure of a complex is irrelevant — only the multiset of sticky ends
matters. The model in [4], which we refer to as the pot tile model, is therefore
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quite general and may potentially be used for other types of self-assembly as
well.

Inspired by the potential of DNA computing for database applications, a
formal database model using DNA complexes is presented in [3]. A crucial op-
eration within this database model is a context-free type of hybridization. This
context-free type of hybridization, which we refer to as the sticker complex hy-
bridization model, is more thoroughly studied in [2]. There it is shown, using
graph-theoretical arguments, that it can be decided in polynomial time whether
or not the set of DNA complexes obtainable (up to isomorphism) through hy-
bridization is infinite for a given initial complex (appearing in a unbounded
multiplicity).

In this paper, we show that the hybridization models of pot tiles [4] and
sticker complexes [2] are equivalent. In this way, results from either of the
two models may be carried over to the other model. Of course, either model
may then be chosen to present the results of the two models uniformly — we
have chosen in this paper for (a streamlined version of) the pot tile model.
Furthermore, to capture the fact that sticky ends within a complex are much
more likely to interact than sticky ends between two complexes, we introduce
in this paper the notion of greedy hybridization. Finally, we fit this notion into
a result of [4].

This paper is organized as follows. In Section 2 we recall basic notions and
notation regarding multisets and graphs. We recall the pot tile model of [4] in
Section 3, and the sticker complex hybridization model of [3, 2] in Section 4. In
Section 5 we show that both models are equivalent. In Section 6 we motivate
and define the notion of greedy hybridization, and in Sections 7 and 8 we present
known results of both hybridization models within a common framework and
moreover carry over a result to greedy hybridization. Finally, a discussion is
given in Section 9.

2. Preliminaries

In order to fix notation and terminology, we recall in this section some basic
notions concerning multisets and graphs.

A multiset m (over set S) is a function S → N0. Intuitively, m “is” the
set S where elements of S can appear more than once. For a ∈ S, we write
|m|a = m(a), i.e., the number of occurrences of a in m. A multiset m can be
represented by a set Sm = ∪a∈S{(a, 1), . . . , (a,m(a))}. We say that Sm is the
set corresponding to m. We may also write m as a string, e.g., aaab over {a, b, c}
means m(a) = 3, m(b) = 1, and m(c) = 0 (the ordering of the letters in the
string is irrelevant). The set of multisets over S is denoted by MS .

As usual, an (undirected) multigraph (thus allowing both parallel edges and
loops) is formalized as a tuple (V,E, ǫ) where V is the set of vertices, E is the
set of edges, and ǫ : E → ΩV the endpoint mapping, where ΩV = {{u, v} |
u, v ∈ V, u 6= v} ∪ {{u} | u ∈ V }. For e ∈ E, if ǫ(e) = {u}, then e is a loop on
u. Let Σ be some alphabet. A labelled multigraph (over Σ) is a tuple (V,E, ǫ, l)
where (V,E, ǫ) is a multigraph and l : V → Σ is a vertex labelling function.
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3. Pots and Hybridization

In this section we recall the hybridization model described in [4]. This model
is also defined in its extended version [5], however the definition in [4] is more
concise. For notational convenience, the formulation below is slightly altered
w.r.t. [4].

We fix some finite alphabet ∆, and let ∆̄ = {x̄ | x ∈ ∆} be a disjoint
copy of ∆. We let ¯̄x = x, i.e., the bar operator is an involution. We define
Σ = ∆∪ ∆̄. The elements of Σ are called sticky-end types. We say that a and ā

are complementary for a ∈ Σ. The sticky-end types represent DNA sequences,
where complementary sticky-end types are the Watson-Crick complement of
each other. As the same DNA sequence may occur multiple times in the en-
vironment, we make a distinction between a sticky-end type, which is a DNA
sequence, and a sticky-end, which is an occurrence of a particular DNA sequence
in the environment.

No particular physical structure is assumed for the DNA building blocks
that contain the sticky ends. Hence, a building block, called tile, is simply a
multiset of sticky-end types.

Definition 1. A pot type H (over Σ) is a finite set of tiles. A pot P of H is a
multiset of tiles in H .

A pot type H is called proper if for any x that appears in some tile m1 ∈ H ,
x̄ also appears in some tile m2 ∈ H .

Example 2. Let us fix ∆ = {a, b}. Then H = {aab, bb̄, āb̄} is a pot type of Σ,
and P = {aab, āb̄, āb̄} is a pot of H . Note that H is proper.

Although a tile does not fix a particular physical interpretation, the definition
of a tile is motivated in [4] by one such interpretation: the branched junction
DNA molecules. These molecules are star shaped with a sticky-end at the end
of each arm, and these arm are flexible enough such that complementary free
sticky-ends (between molecules or within a molecule) can always engage in a
bonding. Intuitively, this accounts for the context-freeness of the model. As an
example, the branched junction DNA molecule for the tile t = aab, is given in
Figure 1. The intuition of a pot P is then a test tube containing these branched
junction DNA molecules in the multiplicity given by the multiset P .

With the definition of pot P in place, hybridization is now simply a matching
of complementary sticky ends between the tiles in P . We will now formalize
this notion.

Let P be a pot of some type H . Let SP be the standard set representation
of P , where thus (m, i) ∈ SP denotes the ith occurrence of m ∈ H in P .

Definition 3. Let P be a pot of some type H . A matching over P is a set B
of unordered pairs c = {(t, a), (t′, ā)} where t, t′ ∈ SP , a ∈ Σ, and such that for
all x ∈ SP and b ∈ Σ, we have |{c | (x, b) ∈ c ∈ B}| ≤ |h|b where x = (h, i) for
some integer i.
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Figure 1: Branched junction DNA molecule for tile t = aab.

a

b̄

āa
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Figure 2: A matching of the pot of Example 4.

If a pot type H is not proper, say x ∈ Σ appears in some tile of H while
x̄ does not, then x is not “interacting”. That is, each of occurrence of x may
never engage in a matching. Consequently, the family of proper pot types may
be seen as a normal form for the family of all pot types. Therefore, we assume
without loss of generality that each pot type under consideration is proper.

The next example illustrates the concept of matching over a pot.

Example 4. Consider again the pot type H = {aab, bb̄, āb̄} and pot P =
{aab, āb̄, āb̄} from Example 2. Then SP = {t1, t2, t3} where t1 = (aab, 1),
t2 = (āb̄, 1), and t3 = (āb̄, 2). Let B = {c1, c2, c3} where c1 = {(t1, a), (t2, ā)},
c2 = {(t1, b), (t2, b̄)}, and c3 = {(t1, a), (t3, ā)}. By Definition 3, P is a matching
over P . Indeed, e.g., the ordered pair (t1, a) = ((aab, 1), a) appears not more
than 2 times in B, and similarly the ordered pair (t1, b) = ((aab, 1), b) appears
not more than once in B. Matching B is visualized in Figure 2, where the tiles
are represented by vertices and the matching pairs by dashed edges.

Figure 2 suggests a graph representation of a matching, which is called a
complex, where the vertices are the tiles and the edges between the tiles are the
matchings. For administrative purposes the unused sticky ends appear as labels
of the vertices. Intuitively, a complex is a graph that represents the structure
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b̄

Figure 3: The complex of the matching of Figure 2.

obtained when hybridizing the branched junction DNA molecules associated
with the tiles. The formal definition given here is much more concise than
the formal definition in [5] which explicitly uses star graphs that join together
according to a specific type of graph homomorphism.

Definition 5. Let B be a matching over some pot P . The complex of B and P

is the labelled multigraph G = (V,E, ǫ, l) where V = SP is the set corresponding
to P , E = B, for {(u, a), (v, ā)} ∈ E, ǫ(e) = {u, v} if u 6= v and ǫ(e) = {u}
otherwise, and l : V → MΣ such that for v ∈ V and a ∈ ∆, |l(v)|a = |tv|a−|{z ∈
B | (v, a) ∈ z}|, where tv is the tile corresponding to v.

Note that the label of a vertex v of a complex in Definition 5 is obtained from
the tile tv corresponding to v by removing the sticky ends of tv that appear in
B.

Note also that as the case t = t′ is allowed in the definition of matching B,
a complex may have loops.

A complex G of a matching B is called terminal if each vertex of G is labelled
by the empty multiset. As we assume that pot types are proper, terminal
complexes represent precisely those DNA complexes which cannot be extended
any further (i.e., these DNA complexes cannot engage in a bonding with other
DNA complexes through sticky ends).

Remark 6. It is, of course, possible to extend the notion of a complex by
introducing an edge labelling function which assigns to each edge the label in ∆
that was used in the matching. For our purposes in this paper we do not need
this labelling.

Example 7. The complex of the matching B in Example 4 (visualized in Fig-
ure 2) is given in Figure 3. Note that the labels of the vertices representing t1
and t2 are the empty multiset as the number of occurrences of each letter l in
t1 (t2, resp.) is exactly the number of occurrences of (t1, l) ((t2, l), resp.) in
pairs in B. Also, the label of the vertex representing t3 contains one occurrence
of b̄ since the number of occurrences of b̄ in t3 is one more than the number of
occurrences of (t3, b̄) in pairs in B (which, in fact, is zero).

The next definition illustrates that a pot type H can be considered as a
particular kind of graph grammar.

Definition 8. Let H be a pot type. The language of H , denoted by L(H), is
the set of connected complexes of matchings of a pot of type H . Moreover, the
terminal language of H , denoted by TL(H), is the set of terminal complexes of
L(H).
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Figure 4: A sticker complex.

4. Sticker complex data model

We now recall the DNA sticker complex model defined in [3]. It is used in
[3] as a data model for database computations in which hybridization is one of
several DNA operations defined by the model. In this paper we do not recall the
other DNA operations which form together with hybridization the full database
model, as these other DNA operations are not used or considered in this paper.
Hybridization in this model is studied in more detail in [2], and for notational
convenience we recall now the more succinct description of this model formulated
in [2].

Recall from Section 3 that we let Σ = ∆ ∪ ∆̄ where ∆ is some fixed finite
alphabet.

Definition 9. A pre-complex is a 4-tuple C = (V, L, λ, µ) where

1. D = (V, L) is a digraph without loops (i.e., (v, v) 6∈ L for all v ∈ V ),
2. λ : V → Σ is a vertex labelling function, and
3. µ ⊆ {{v, w} | v, w ∈ V, v 6= w, and λ(v) = λ(w)} is a partial matching on

the set of vertices, i.e., each vertex occurs in at most one pair in µ.

A strand of a pre-complex C = (V, L, λ, µ) is a connected component of the
digraphD = (V, L) (so ignoring µ). A component of C is a connected component
of C regarding both L and µ as edges (so not ignoring µ). The length of a strand
is its number of vertices. The vertices of C that do not appear in µ are called
free (in C).

Definition 10. A sticker complex is a pre-complex with the following restric-
tions on the strands:

1. Each node has at most one incoming and at most one outgoing edge. Thus,
each strand has the form of a chain or a cycle.

2. Strands are homogeneously labeled: the vertex labels of a strand are either
all in ∆ (a positive strand) or all in ∆̄ (a negative strand).

3. Every negative strand has length one or two, and if it has length two, then
it must have a single edge (i.e., it cannot be a 2-cycle).

Example 11. A sticker complex C is given in Figure 4. The dashed lines
indicate the unordered pairs of µ. The sticker complex consists of five strands:
two positive strands (both of length 3) and three negative strands (two of length
2 and one of length 1). There are three components. The component in the
middle of the figure has two free vertices, one labelled by b̄ and the other by b,
and all vertices of the other two components are free.

6



a a b
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Figure 5: A MHE of the sticker complex of Figure 4.

We define now hybridization for sticker complexes. Intuitively, we start
with a sticker complex C that specifies the types of complexes that appear in
arbitrary multiplicity in the environment (e.g., a test tube). The components
obtained during hybridization are the components obtained by extending the
partial matching µ within and between copies of components of C. Formally,
for sticker complexes C and C′, C′ is a redundant variation of C if for each
component D′ of C′ there is a component D of C isomorphic to D′. For a
sticker complex C = (V, L, λ, µ), a hybridization extension of C is a sticker
complex (V, L, λ, µ′) with µ′ ⊇ µ. A multiplying hybridization extension (MHE
for short) for C is a hybridization extension of a redundant variation of C. The
hybridization of C, denoted by hybr(C), is the set of components of MHE’s of
C. We, similar as for the pot tile model, assume without loss of generality that
a sticker complex is proper, i.e., if a vertex v is free in C, then there is a vertex
w free in C with λ(v) = λ(w). A component Q of an MHE of a sticker complex
C is called finished if there is no free vertex v of Q and free vertex w of C such
that λ(v) = λ(w). The set of finished components of hybr(C) is denoted by
fhybr(C).

Example 12. Consider again the sticker complex C of Figure 4. Let us denote
the three components of C from left to right by Q1, Q2 and Q3. The MHE of
C given in Figure 5 is obtained from a redundant variation of C, consisting of
one isomorphic copy of Q1 and two isomorphic copies of Q3, by a hybridization
extension where three pairs are added to µ.

5. Equivalence of Hybridization Models

We now show that the pot tile hybridization model recalled in Section 3
is equivalent to hybridization in the sticker complex data model recalled in
Section 4. By equivalent we mean that although the basic building blocks
for hybridization are different, hybridization operates in exactly the same way:
building blocks may stick to other building blocks if they have complementary
sticky ends. The correspondence is more precisely described as follows.

Let C be a sticker complex, and let Q be a component of C. Let FQ be
the set of free vertices of Q. Let tile(Q) be the multiset over Σ where |mQ|a =
|{v ∈ FQ | λ(v) = a}|. In this way, the sticker complex C corresponds to the
pot type pottype(C) consisting of the tiles tile(Q) for Q a component of C. A
redundant variation C′ of C corresponds to a pot, denoted by pot(C′), which is
the multiset of tiles tile(Q) with Q a component of C′. A hybridization extension
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a1 a2 · · · ak b1 b2 · · · bl

b̄1 b̄2 b̄l

b̄1 b̄2 b̄l

Figure 6: A sticker complex that simulates a tile.

of C′ (an MHE) is a matching of free vertices of C′, and corresponds therefore
to a matching B over pot(C′). Therefore, the set of components of MHE’s of C
(i.e., hybr(C)) corresponds then to the connected components of the complexes
G of matchings B (recall that a complex is the natural graph representation of
a matching B) over pots of type HC , i.e., the language L(HC). Moreover, the
set of finished components of MHE’s of C (i.e., fhybr(C)) corresponds to the
set of terminal complexes of L(HC), i.e., TL(HC).

Example 13. Consider again the sticker complex C of Figure 4 containing the
components Q1, Q2 and Q3. Then tile(Q1) = aab, tile(Q2) = bb̄, and tile(Q3) =
āb̄. HenceH = pottype(C) = {aab, bb̄, āb̄}. Consider the redundant variation C′

of C of Example 12. The pot P corresponding to C′ is pot(C′) = {aab, āb̄, āb̄}.
Note that pot type H and pot P are equal to the pot type and pot of Example 2.

Consider now the hybridization extension C′′ of C′ of Example 12, i.e., the
MHE given in Figure 5. We find that C′′ corresponds to the matching B over
pot(C′) given in Figure 2.

Conversely, we start with a tile t. Let t = a1 · · · ak b̄1 · · · b̄l with all the ai’s and
bi’s in ∆. In Figure 6 a connected sticker complex compSticker(t) corresponding
to t is constructed. Note that the labels of the free vertices of compSticker(t)
form precisely the multiset t. Hence, tile(compSticker(t)) = t. Given a pot type
H , we construct in this way a complex sticker(H) such that the components
Q of sticker(H) correspond one-to-one with occurrences of tiles t ∈ H where
Q is isomorphic to compSticker(t). Consequently, pottype(sticker(H)) = H .
Evidently, a pot P of type H corresponds (in exactly the same way as before)
to a redundant variation C′ of CH , and moreover a matching B of a pot P

corresponds to a hybridization extension of C′. Again, the (terminal) connected
components of the complexes G of matchings B correspond to the (finished)
components of MHE’s of C.

From this equivalence the next result follows.

Theorem 14. Let C be a sticker complex. Then hybr(C) is infinite (empty,
resp.) iff L(pottype(C)) is infinite (empty, resp.). Similarly, fhybr(C) is infi-
nite (empty, resp.) iff TL(pottype(C)) is infinite (empty, resp.).

As pottype(sticker(H)) = H for each pot type H , we have the following
corollary to Theorem 14.
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Figure 7: A greedy matching.

Corollary 15. Let H be a pot type. Then hybr(sticker(H)) is infinite (empty,
resp.) iff L(H) is infinite (empty, resp.). Similarly, fhybr(sticker(H)) is infinite
(empty, resp.) iff TL(H) is infinite (empty, resp.).

We may use either of these two hybridization models to unify known re-
sults of these models. In the rest of this paper we will work with the pot tile
hybridization model (of Section 3).

6. Greedy hybridization

As noted in [5] it is natural to assume that sticky ends within a connected
DNA complex are much more likely to interact than sticky ends between two
complexes. In this way, when two DNA complexes meet to form a single con-
nected DNA complex, all complementary sticky ends in the newly formed DNA
complex will hybridize before interactions with other DNA complexes occur.
Sticky ends will thus bond in a “greedy” way. To this aim, it is assumed in
[5] that all complexes in L(H) (for pot type H) are stable, where the notion of
stable is defined as follows.

Definition 16. Let C = (V,E, ǫ, l) be a complex (as defined in Definition 5).
Then C is called stable when, for all v, v′ ∈ V , if a ∈ l(v), then ā 6∈ l(v′) (we
allow v = v′).

Example 17. The complex C of Figure 3 is stable. Indeed, b̄ is the only sticky
end of C, and thus there are no two complementary sticky ends in C.

However, one may argue that the condition of stable is not enough to capture
the above described greedy way of hybridizing. Indeed, consider the pot P =
{ab, ab, āb̄}. When a tile of type ab hybridizes in a greedy way with a tile of
type āb̄, all sticky ends will bond to obtain a stable complex of two vertices, see
Figure 7. (Note that the obtained complex is indeed stable as it has no sticky
ends — they are all used in the matching.) As a consequence, the (perfectly
valid) matching B of P given in Figure 8 may not be obtained by hybridizing
in a greedy way.

We now define the class of greedy matchings. This class formalizes the
intuitive notion of greedy hybridization: two different complexes may only glue
together when they are both stable.

9
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ā

b̄

ā
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Figure 8: A non-greedy matching.

Definition 18. Let P be a pot (of some type H). A matching B over P is
called greedy if there is a linear ordering c1, . . . , cn of B such that

1. Cn is stable, and

2. if Cj+1 has less connected components than Cj for some j ∈ {1, . . . , n−1},
then Cj is stable,

where Ci for i ∈ {1, . . . , n} denotes the complex of the matching {c1, . . . , ci}
over P .

Note that “Cj+1 has less connected components than Cj” is equivalent to “Cj+1

has one connected component less than Cj” in Condition 2 in Definition 18.
Evidently, the complex of a greedy matching is stable, but we have seen in

Figure 8 that the converse does not hold.
We (may) now trivially define the language and terminal language w.r.t. this

greedy way of hybridization.

Definition 19. Let H be a pot type. The greedy language of H , denoted by
GL(H), is the set of connected complexes of greedy matchings of a pot of type
H . Moreover, the terminal greedy language of H , denoted by TGL(H), is the
set of terminal complexes of GL(H).

7. Existence of terminal graphs

In [5], among other related problems, the problem of whether or not the
terminal language of a pot type H is empty (i.e., whether or not TL(H) = ∅)
is investigated. In this section we recall the characterization of emptiness of
TL(H) in [5] and show that this result carries over when restricting to greedy
languages.

We associate to each multiset m over Σ = ∆∪ ∆̄ the row vector vm over the
integers indexed by ∆ where, for each a ∈ ∆, vm(a) = |m|a − |m|ā. Here vm(a)
denotes the value on the position a in vector vm.
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Example 20. Let ∆ = {a, b, c} and m = aaāb̄b̄. Then vm = (1,−2, 0) where
the values are in the order a, b, c, e.g., vm(b) = −2.

The following result links the emptiness conditions of TL(H) and TGL(H) to
basic linear algebra. The second “iff” statement in this result is essentially from
[5]. For convenience and clarity of exposition we give here a full proof without
resorting to [5]. We denote by Q+ the set of nonnegative rational numbers.

Theorem 21. Let H = {m1,m2, . . . ,mn} be a pot type. Then TGL(H) = ∅

iff TL(H) = ∅ iff vm1
, vm2

, . . . , vmn
are linearly independent over Q+.

Proof. Let us denote the three conditions in the theorem by (i), (ii), and (iii)
respectively.

We first prove that (i) implies (iii). If vm1
, vm2

, . . . , vmn
are linearly depen-

dent over Q+, then there are k1, . . . , kn ∈ Q+ (not all zero) such that k1vm1
+

k2vm2
+ · · ·+ knvmn

is equal to the null vector. Let z be least common multi-
ple of the denominators of k1, . . . , kn. Then zk1, . . . , zkn ∈ N0 and (zk1)vm1

+
(zk2)vm2

+ · · · + (zkn)vmn
is equal to the null vector (thus, vm1

, vm2
, . . . , vmn

are linearly dependent over N0). Let P be the pot with P (mi) = zki for all
i ∈ {1, . . . , n}. By the construction of P the number of sticky ends of every
type x ∈ Σ among the tiles in P is equal to the number of sticky ends of type
x̄ ∈ Σ. Let B be an arbitrary maximal greedy matching of P , i.e., B is a greedy
matching of P but no proper superset of B is a greedy matching. Now, as the
number of sticky ends of type x ∈ Σ and of type x̄ ∈ Σ are equal, B matches
every sticky end. Hence, the complex CB of B is stable and thus CB ∈ TGL(H).
Therefore, TGL(H) 6= ∅.

Next we prove that (iii) implies (ii). Assume TL(H) 6= ∅. Then there is a
pot P : H → N0 of typeH and a matchingB of P such that the complex CB ofB
is stable. As each sticky end in each tile in P is matched with a complementary
sticky end, the number of occurrences of x ∈ Σ in P is equal to the number
of occurrences of x̄ ∈ Σ in P . Consequently, P (m1)vm1

+ P (m2)vm2
+ · · · +

P (mn)vmn
is the null vector and vm1

, vm2
, . . . , vmn

are linearly dependent.
Finally, (ii) implies (i) as the set of greedy matchings is a subset of the set

of matchings.

We illustrate Theorem 21 by two examples.

Example 22. Consider the pot type H1 = {ab, āb̄}. Then vab = (1, 1) and
vāb̄ = (−1,−1), where the vectors are indexed by a, b (in this order). Clearly,
vab and vāb̄ are linearly dependent over Q+ (their sum is the null vector). By
Theorem 21, TGL(H1) 6= ∅. Indeed, a greedy matching of a pot of H1 is given
in Figure 7.

Example 23. Consider now the pot type H2 = {aab, b̄b̄}. Then vaab = (2, 1)
and vb̄b̄ = (0,−2), where again the vectors are indexed by a, b (in this or-
der). Clearly, vaab and vb̄b̄ are linearly independent over Q+. By Theorem 21,
TL(H2) = ∅. Hence, there is no matching of a pot of type H2 for which the
complex is stable.

11



Let A be the matrix where the columns ofA are the vectors vm1
, vm2

, . . . , vmn

of Theorem 21 (given as column vectors). Then vm1
, vm2

, . . . , vmn
are linearly

dependent over Q+ iff there is a vector x with nonnegative entries such that
Ax = 0 over Q. This problem can be formulated as a linear programming
problem. Such problems (over Q) are known to be solvable in time polynomial
in the number of variables (which in our case is equal to the number of vectors
n). Hence, the following holds.

Corollary 24 ([5]). Let H be a pot type. It is decidable in polynomial time
whether or not TL(H) = ∅ (and whether or not TGL(H) = ∅).

8. Termination

We say that H is terminating if L(H) is finite and H is otherwise called
nonterminating. This notion is characterized in [2] in the sticker complex model
of Section 4. We refer to [2] for a detailed motivation for studying this notion.
By the equivalence shown in Section 4 of the sticker complex model and hy-
bridization model of [4] (recalled in Section 3), the results of [2] carry over to
the latter model essentially unchanged. The main differences are notational.
Therefore, in this section, we omit proofs. They can be found, w.r.t. the sticker
complex model, in [2].

We say that a cycle C in a graph is simple if all edges of C are distinct. The
next result is (implicitly) shown in [2].

Theorem 25 ([2]). Let H be a pot type. Then H is nonterminating iff there is
a G ∈ L(H) containing a simple cycle.

Moreover, [2] shows that a simple cycle in a graph G ∈ L(H) is equivalent
to an alternating cycle in a graph, called the hybridization graph, of a pot type
H — this latter condition is computable in polynomial time. Combining this
with Theorem 25 the following result is obtained.

Corollary 26 (Corollary 1 of [2]). Let H be a pot type. It is decidable in
polynomial time whether or not H is nonterminating.

Although by Corollary 26 it is decidable in polynomial time whether or not
L(H) is finite, it is an open problem whether or not the finiteness of GL(H)
is decidable in polynomial time. In fact, it is also open whether or not the
finiteness of TL(H) or of TGL(H) is decidable in polynomial time.

9. Discussion

We have shown that the hybridization models of pot tiles [4, 5] and of sticker
complexes [3, 2] are equivalent and we illustrated this by fitting results from each
of these models into a single framework. We also considered greedy hybridization
to model the greedy nature of hybridization.

Although the precise physical structure of DNA building blocks for context-
free hybridization is irrelevant, it, of course, may matter for certain applications.
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For example, for the “full” sticker complex database model of [3], which consists
of several operations in addition to hybridization, the ordering of the sticky ends
in the sticker complexes is important.

Open problems remain on the decidability of various graph language classes,
in particular those associated with greedy hybridization.
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