
 An infinite hierarchy of languages defined by dP systems

 Gheorghe Păun, Mario J. Pérez-Jiménez

Keywords:

Membrane computing
dP system
Infinite hierarchy
Simple matrix grammar

 a b s t r a c t

Here, we continue the study of the recently introduced dP automata. They are
symport/antiport P systems consisting of a number of components, each one accepting a
string, and working together in recognizing the concatenation of these separate strings;
the overall string is distributed to the dP automaton components in a balanced way, i.e.,
in equal parts up to one symbol, like in the communication complexity area. The question
whether or not the number of components induces an infinite hierarchy of the recognized
languageswas formulated as an open problem in the literature.We solve here affirmatively
this question (by connecting P automata with right linear simple matrix grammars), then
we also briefly discuss the relation between the balanced and the non-balanced way of
splitting the input string among components; settling this latter problem remains as a
research topic. Some other open problems are also formulated.

1. Introduction

In the membrane computing area (the reader is referred to [9,12], and to the domain website [15] for details), there are
many classes of computing devices, generating or accepting multisets, numbers or strings. Here we deal with devices which
accept strings, namely, based on symport/antiport rules. (Couples of objects are passed simultaneously across a membrane,
in the same direction in the case of symport and in opposite directions in the case of antiport). Basically, the objects which
are taken from the environment during a halting computation are arranged in a string in the order of ‘‘reading’’ them, and
the obtained string is said to be accepted by the system. This idea was first explored in [3] (the paper was presented during
theWorkshop onMembrane Computing, Curtea de Argeş, 2002; the respective devices were called P automata) and, almost
concomitantly, in [6], in a simplified version. Several papers were devoted to these devices (in particular, characterizations
of regular, context-free, and recursively enumerable languages were obtained, and complexity investigations were carried
out); we refer to [2] for details, including references.

Although all P systems are distributed computing machinery, the result of a computation – in particular, the string to
be accepted by a P automaton – is produced in a single membrane (or as the input of a single membrane), distinguished
in advance. In order to solve a problem – in particular, to accept a string – in a distributed way, a class of P systems was
introduced in [10], called dP systems. In the general case, such systems consist of a given number of usual P systems, of any
type, which can have their separate inputs and communicate from skin to skin membranes by means of antiport rules (like
in tissue-like P systems). In this framework, communication complexity issues can be investigated, as in [7]. The case of P
automata (based on symport/antiport rules) was considered in some details – and this leads to the notion of dP automata.
These devices were further investigated in [5,11], by comparing their power with that of usual P automata andwith families

http://dx.doi.org/10.1016/j.tcs.2011.12.053
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:gpaun@us.es
mailto:George.Paun@imar.ro
mailto:marper@us.es
http://dx.doi.org/10.1016/j.tcs.2011.12.053

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

★

✧

✥

✦

✬

✫

✩

✪

✬

✫

✩

✪

REG

LIN

CF

CS

LP

LdP∗

L1

L2

L3

L5

L4

Fig. 1. The place of the families LP and LdP in Chomsky hierarchy.

of languages in the Chomsky hierarchy. As expected, due to the distribution (and synchronization), dP automata are strictly
more powerful than P automata, but the family of languages recognized by them is strictly included in the family of context-
sensitive languages. Also expected is the fact that each regular languages can be recognized by a P automaton – see precise
details in Fig. 1. (Note that we compare here non-extended P and dP automata, hence without a distinguished terminal
alphabet; in the extended case, the P automata are known to be computationally complete.)

A problem left open in [11] asks whether or not the number of components of a dP automaton induces an infinite
hierarchy of accepted languages – and this problem is settled here affirmatively. The proof uses a natural connection between
dP automata with certain properties and right linear simple matrix grammars, an ‘‘old" notion in formal language theory,
[8,4]. In this context we provide a simplified proof of the fact that each regular language can be recognized by a P automaton.
The possibility to extend such a result/construction to right linear simple matrix grammars and dP automata is formulated
as a conjecture.

We also briefly discuss the relationship between the balanced and the non-balanced distribution of a string among the
components of a dP automaton, conjecturing that the non-balanced case is more powerful – but the complete solution
remains as a task for further research.

2. dP automata

The reader is assumed to have some familiarity with basics of membrane computing, e.g., from [9,12], and of formal
language theory, e.g., from [4,13,14], but we recall below all necessary notions.

In what follows, V ∗ is the free monoid generated by the alphabet V , λ is the empty word, V+
= V ∗

−{λ}, |x| denotes the
length of the string x ∈ V ∗, andmi(x) is themirror image of x ∈ V ∗. REG, LIN, CF , CS, RE denote the families of regular, linear,
context-free, context-sensitive, and recursively enumerable languages, respectively. As usual in membrane computing, the
multisets over an alphabet V are represented by strings in V ∗; a string and all its permutations correspond to the same
multiset, with the number of occurrences of a symbol in a string representing the multiplicity of that object in the multiset.
(We work here only with multisets of finite multiplicity.) The terms ‘‘symbol" and ‘‘object" are used interchangeably, all
objects are here represented by symbols.

A dP automaton (of degree n ≥ 1) is a construct

∆ = (O, E, Π1, . . . , Πn, R),

where:
(1) O is an alphabet (of objects);
(2) E ⊆ O (the objects available in arbitrarily many copies in the environment);

(3) Πi = (O, µi, wi,1, . . . , wi,ki , E, Ri,1, . . . , Ri,ki) is a symport/antiport P system of degree ki (O is the alphabet of objects,
µi is a membrane structure of degree ki, wi,1, . . . , wi,ki are the multisets of objects present in the membranes of µi in
the beginning of the computation, E is the alphabet of objects present – in arbitrarily many copies – in the environment,
and Ri,1, . . . , Ri,ki are finite sets of symport/antiport rules associated with the membranes of µi; the symport rules are
of the form (u, in), (u, out), where u ∈ O+, and the antiport rules are of the form (u, out; v, in), where u, v ∈ O+), with
the skin membrane labeled with (i, 1) = si, for all i = 1, 2, . . . , n;

(4) R is a finite set of rules of the form (si, u/v, sj), where 1 ≤ i, j ≤ n, i ≠ j, and u, v ∈ O∗, uv ≠ λ.

The systems Π1, . . . , Πn are called components of ∆ and the rules in R are called communication rules. For a rule
(si, u/v, sj), |uv| is the weight of this rule.

Using a rule (u, in), (u, out) associated with a membrane i means to bring in the membrane, respectively out of it the
multiset u; using a rule (u, out; v, in) associated with a membrane i means to send out of the membrane the objects of
multiset u and, simultaneously, to bring in the membrane, from the region surrounding membrane i, the objects of multiset
v. A communication rule (si, u/v, sj) moves the objects of u from the skin region of component Πi to the skin region of
component Πj, simultaneously with moving the objects in the multiset v in the opposite direction.

Each component Πi can take an input, work on it by using the rules in sets Ri,1, . . . , Ri,ki , and communicate with other
components. The communication is done by means of rules in R, but, because the environment is common, the components
can also communicate, in two steps, through the environment. In the constructions involved in the proofs of the results
given below this latter possibility is systematically avoided.

A halting computation with respect to∆ accepts the string x = x1x2 . . . xn over O if the componentsΠ1, . . . , Πn, starting
from their initial configurations, using the symport/antiport rules as well as the inter-components communication rules, in
the non-deterministic maximally parallel way (at each step, one uses a nondeterministically chosen applicable multiset of
rules which is maximal in the sense of inclusion), bring from the environment, symbol by symbol, the substrings x1, . . . , xn,
respectively, and eventually halts.

The dP automata are synchronized devices, a universal clock exists for all components, marking the time in the sameway
for the whole dP automaton.

The string to be accepted can be distributed to the dP system components in either the balanced way or in the arbitrary
way. Like in communication complexity area, [7], balanced means to have the parts equal in length modulo one symbol.
Formally, for a dP automaton ∆ of degree n we define the language L(∆), of all strings x ∈ O∗ such that we can write
x = x1x2 . . . xn, with ||xi| − |xj|| ≤ 1 for all 1 ≤ i, j ≤ n, each component Πi of ∆ takes as input the string xi, 1 ≤ i ≤ n,
and the computation halts. (The restriction to have the string distributed in a balanced way is here a property of the system,
not an external condition.) If this restriction is not imposed, hence any decomposition of the string x can be considered,
then a superlanguage of L(∆) is obtained, which we denote by L′(∆). (Note that we do not take here into account also the
communication complexity of accepting a string, as done in [1,10].)

We denote by LdPn, L′dPn the families of languages L(∆), L′(∆), respectively, for ∆ of degree at most n. A dP automaton
of degree 1 is a usual P automaton – of a non-extended type: all symbols are introduced in the accepted string. If
a terminal set of objects is considered, then we obtain an extended P automaton (formally, we have a device Π =

(O, T , µ,w1, . . . , wm, E, R1, . . . , Rm), with T ⊆ O, working as a usual P automaton and considering only the symbols from T
in the accepted strings and ignoring those fromO−T).We denote by LP the family of languages recognized by non-extended
P automata (hence LP = LdP1) and by ELP the family of languages recognized by extended P automata. (Note that we ignore
the weight of symport and antiport rules, but these parameters, usual when investigating symport/antiport P systems, can
be considered also here.) If the subscript n in LdPn or L′dPn is arbitrary, then we replace it by ∗.

A terminal alphabet can be considered also for dP automata, but this is not of much interest: ELdP1 = ELP , which is
known to equal RE.

Specific dP automata will be given in the proofs below, hence we do not provide examples of such devices here.

3. The power of P and dP automata

We recall from [5,11] the diagram in Fig. 1, indicating the relationships between families of languages accepted by (non-
extended) P and dP automata and families in the Chomsky hierarchy. The languages indicated in the diagram are as follows
(f is the morphism defined by f (a) = a′, f (b) = b′):

L1 = {(a2c)s(b2d)s | s ≥ 1},
L2 = {(ab)s(ac)s | s ≥ 1},
L3 = {wf (w) | w ∈ {a, b}∗},
L4 = {(wf (w))s | w ∈ {a, b}+, s ≥ 2},
L5 = {w mi(w) | w ∈ {a, b}∗},

Note that the fact that L5 /∈ LdP∗ is only a conjecture, but the place of other languages in the diagram is proved in [5,11].

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✲ ✲

❄

✛✛

✻

c

1

2k

. . .

(c, out)

2

3

4

(c, out; a, in)

(a, out; b, in)

(s1, b/λ, s2)

(b, out; a, in)

(a, out; c, in)

(s2, c/λ, s3)

(c, out; a, in)

(a, out; b, in)

(s3, b/λ, s4)

(b, out; a, in)

(a, out; c, in)
(s4, c/λ, s5)(s2k−1, b/λ, s2k)

(b, out; a, in)

(a, out; c, in)

(s2k, c/λ, s1)

Fig. 2. The dP system in the proof of Lemma 4.1.

4. The hierarchy of families LdPn

By definition, we have the inclusion LdPn ⊆ LdPn+1 for all n ≥ 1, and LdP1 = LP ⊂ LdP2, but it is not known whether
also the other inclusions are proper. We prove here that this is the case, by using the following sequence of languages (and
variations of them):

Lk = {((ab)m(ac)m)k | m ≥ 0}, k ≥ 1.

Lemma 4.1. Lk ∈ LdP2k for all k ≥ 1.

Proof. We consider the following dP automaton (also given in a graphical form in Fig. 2):

∆ = (O, E, Π1, . . . , Π2k, R), where :

O = E = {a, b, c},
Π1 = (O, []1, c, E, {(c, out), (c, out; a, in), (a, out; b, in)},
Πi = (O, [] i, λ, E, {(b, out; a, in), (a, out; c, in)}, i = 2, 4, . . . , 2k,
Πi = (O, [] i, λ, E, {(c, out; a, in), (a, out; b, in)}, i = 3, 5, . . . , 2k − 1,
R = {(si, b/λ, si+1) | i = 1, 3, . . . , 2k − 1}

∪ {(si, c/λ, si+1) | i = 2, 4, . . . , 2k − 2} ∪ {(s2k, c/λ, s1)}.

We start with a unique object inside the system, c in component Π1, and always we have only one object in the system,
circulating along the cycle Π1, Π2, . . . , Π2k, Π1. When visited by this object, each component takes two objects from the
environment, in two consecutive steps; the second object (b or c) cannot go to the environment, hence it shouldmove to the
next component, thus the substrings recognized by each component grow synchronously. When the object c returns to the
first component, it can start a new cycle or it can exit the system, by the rule (c, out), and the computation halts. Therefore,
L(∆) = Lk, and the proof is completed. �

Appending a block (ad)m to the strings in Lk we can get a language L′

k which will belong to LdP2k+1, thus covering also the
case of dP systems of an odd degree; here and in what follows, the necessary changes in the proofs are left to the reader,
and we continue by considering only the languages Lk.

The languages Lk have a property which makes them easy to handle in terms of dP automata: no two adjacent symbols
can be swapped without leaving the language. Because of its usefulness, we give a name to this property: a language L ⊆ V ∗

is said to be frozen if there is no string xaby ∈ L, for some a, b ∈ V , x, y ∈ V ∗, such that xbay ∈ L. (In particular, the two
symbols can be identical, hence no string in L contains a substring a2, for a ∈ V .)

Now, if a language L(∆) is frozen, the components of the dP automaton ∆ can never bring two or more objects from
the environment at the same time (then either of the permutations of these symbols is a substring of the accepted string).
Therefore, the rules by which the automaton can bring objects inside can be of one of the two forms: (a, in), (u, out; a, in),
for some object a and multiset u. However, if a ∈ E (i.e., a is available in the environment in arbitrarily many copies),
then a rule (a, in) is not allowed, as the system would be flooded with infinitely many objects. That is, such rules can be
used only for symbols present in the initial configuration of ∆ and not in E. In turn, rules (u, out; a, in) do not increase
the number of objects inside the system. Consequently, the dP automaton never contains more objects than in the initial
configuration, which means that the number of configurations reachable from the initial configuration is finite. We say that
the dP automaton itself is finite.

This makes possible the simulation of a dP automaton (generating a frozen language) by means of a right linear simple
matrix grammar in the sense of [8]—see also [4].

Such a grammar of degree n ≥ 1 is a construct of the form G = (N1, . . . ,Nn, T , S,M), where N1,N2, . . . ,Nn, T are
pairwise disjoint alphabets (we denote by N the union of N1, . . . ,Nn), S /∈ T ∪ N , and M contains matrices (of context-free
rules) of the following forms:
(i) (S → x), x ∈ T ∗,
(ii) (S → A1A2 . . . An), Ai ∈ Ni, 1 ≤ i ≤ n,
(iii) (A1 → x1B1, . . . , An → xnBn), Ai, Bi ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n,
(iv) (A1 → x1, . . . , An → xn), Ai ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n.

A derivation starting with a matrix of type (ii) continues with an arbitrary numbers of steps which use matrices of type
(iii) and ends by applying a matrix of type (iv).

We denote by L(G) the language generated in this way by G and by RSMn the family of languages L(G) for right linear
simple matrix grammars G of degree at most n, for n ≥ 1. The union of all these families is denoted by RSM∗.

Clearly, a normal form can be easily found for these grammars: inmatrices of type (iii) we can ask to have xi ∈ T∪{λ}, 1 ≤

i ≤ n, and in matrices of type (iv) to have xi = λ for all 1 ≤ i ≤ n.
The similarity of producing a string in a finite dP system and in a right linear simple matrix grammar is apparent, and

this makes expected the following result (and construction).

Lemma 4.2. If L ∈ LdPk and L is frozen, then L ∈ RSMk, for all k ≥ 1.

Proof. Let ∆ be a dP automaton of degree k (with the set of objects O) recognizing a frozen language; as observed above,
the dP automaton is then finite. Let σ0, σ1, . . . , σp be the set of all configurations of ∆ which can be reached from the initial
configuration, σ0. We construct the following right linear simple matrix grammar:

G = (N1, . . . ,Nk,O, S,M), with
Ni = {(σj)i | 0 ≤ j ≤ p}, i = 1, 2, . . . , k,
M = {(S → (σ0)1(σ0)2 . . . (σ0)k)}

∪ {(σi)1 → α1(σj)1, . . . , (σi)k → αk(σj)k) |

from configuration σi the dP automaton ∆ can pass to
the configuration σj by a transition, taking from the
environment the objects α1, . . . , αk by its k components, where
αs ∈ O ∪ {λ}, 1 ≤ s ≤ k}
∪ {(σh)1 → λ, . . . , (σh)k → λ) | σh is a halting configuration}.

Note that all nonterminals in the rules of a matrix contain the same ‘‘core information", namely the current configuration
of the system, hence the complete control of the system working is obtained in this way. The equality L(∆) = L(G) is
obvious. �

The previous result (and construction) cannot be extended to arbitrary languages in LdP∗: remember that ELP = RE,
while each language in ELP is obtained from a language in LP = LdP1 by means of an erasing morphism which removes
the objects which we do not want to keep as ‘‘terminal". However, the family RSM∗ is closed under arbitrary morphisms
(Theorem 1.5.6 in [4]). If we had LdP∗ ⊆ RSM∗, then RSM∗ = RE, which is not true (RSM∗ is placed in the Chomsky hierarchy
in a similar position as LdP∗ in Fig. 1: it includes REG, is included in CS, and it is incomparable with LIN and CF). Thus, we
have the next result:

Corollary 4.1. LdP∗ − RSM∗ ≠ ∅.

Actually, RSM∗ can be replaced here with the much larger family CFSM∗, of languages generated by context-free simple
matrix grammars, which is also closed under arbitrary morphisms and is strictly included in CS.

It would be worth recalling here a technical result from [4], Lemma 1.5.4, which basically says that any language in RSMk
can be ‘‘projected" on the k ‘‘components" of a right linear simple matrix grammar such that the k obtained languages are
regular (we state here the version dealing with this particular case, but it also holds, in adequate versions, for context-free
and linear simple matrix grammars).

Lemma 1.5.4 ([4]). For each language L ∈ RSMn there are n regular languages L1, L2, . . . , Ln such that:

(i) L ⊆ L1L2 . . . Ln,
(ii) for each i, 1 ≤ i ≤ n, and for each xi ∈ Li, there are xj ∈ Lj, 1 ≤ j ≤ n, i ≠ j, such that x1x2 . . . xn ∈ L.

A property as in this lemma is also visible from the construction of the grammar G in the previous proof, and this leads
to the following result.

Corollary 4.2. Lk /∈ LdP2k−1 for all k ≥ 1.

Proof. Start from the language Lk, generated by a dP automaton ∆ (of degree 2k, as in Lemma 4.1), and perform the
construction of a right linear simple matrix grammar G as in the proof of Lemma 4.2. Then, remove all objects αi, for i ≥ 2,
from all matrices of G. All rules different from those on the first position in each matrix are now useless, their information
is also contained in the first rule. By removing these superfluous rules, we get a right linear grammar G′, generating the
language of strings accepted by the first component of ∆. Consequently, this language is regular.

However, distributing in a balanced way a string ((ab)m(ac)m))k into 2k − 1 parts which are equal modulo one symbol,
we get a string (ab)m(ac)m/(2k−1) in the first component.

Indeed, the string should be distributed in parts of length

|((ab)m(ac)m)k|

2k − 1
=

4mk
2k − 1

,

hence, besides (ab)m (of length 2m), the first component must also read a string (ac)x (plus or minus one symbol) such that

2m + 2x =
4mk

2k − 1
,

which, by a simple calculation, gives x = m/(2k − 1).
The language of all such strings, form ≥ 0, is not regular, a contradictionwhich prevents the existence of a dP automaton

of degree 2k − 1 which generates Lk. �

We have obtained the strict inclusion LdP2k−1 ⊂ LdP2k for all k ≥ 1. As suggested before, by a simple modification of
the languages Lk we can get also the strictness of inclusions LdP2k ⊂ LdP2k+1, k ≥ 1, hence we have the main result of this
paper:

Theorem 4.1. LdPk, k ≥ 1, is an infinite hierarchy, all inclusions LdPk ⊂ LdPk+1, k ≥ 1, being proper.

A counterpart to the result in Lemma 4.2, i.e., the inclusion RSM∗ ⊆ LdP∗, is rather plausible. We conjecture that this
inclusion holds true (the normal form mentioned before Lemma 4.2 could be useful in proving this). For instance, this
conjecture is supported by the fact that REG ⊂ LP , as proved in [5]. Passing from REG to RSMn looks like passing from a
usual P automaton to a dP automaton of degree n, so it might be possible to extend the construction in [5] to RSMn. That is
why we provide here a new proof of the inclusion REG ⊆ LP , significantly simpler than that in [5].

Theorem 4.2. REG ⊆ LP.

Proof. Let us consider a finite automaton A written as in [14], A = (V , K , s0, sf , P), where V is the alphabet, K is the set of
states, s0 is the initial state, sf is the final state, and P is a finite set of transitions, given as rewriting rules of the form sia → sj,
for si, sj ∈ K , a ∈ V . Without loss of generality, we may assume that there is no rule of the form sf a → sj in P (if there is
such a rule, then we consider a new final state, s′f , and for each rule sia → sf we also introduce in P the rule sia → s′f ; this
change leads to an equivalent finite automaton).

Let K ′ be the set {s′i | si ∈ K}. For a finite set X , we identify by X also the multiset consisting of one copy of each element
in X .

We construct now the following P automaton—its initial configuration is shown in Fig. 3.

Π = (O, µ,w1, w2, w3, E, R1, R2, R3),

O = V ∪ K ∪ K ′
∪ {d,#},

µ = [[]2[]3]1,

w1 = d, w2 = V ∪ K ∪ K ′, w3 = s0#,

E = V ,

R1 = {(d, out, a, in) | a ∈ V }

∪ {(a, out; b, in) | a, b ∈ V },

R2 = {(s′ja, out; sia, in), (sj, out; s′j, in) | sia → sj ∈ P}

∪ {(sia, in) | sia → sf ∈ P}

∪ {(#, in), (#, out)},
R3 = {(s0, out)} ∪ {(#, out; si, in) | si ∈ K}.

✬

✫

✩

✪
★
✧
✥
✦

✬

✫

✩

✪

1
3

2

V

K

K ′

(s′ja, out; sia, in)

(sj, out; s′j, in)

sia → sj ∈ P

(sia, in)

sia → sf ∈ P

(#, in)

(#, out)

d

(s0, out)

(si, in;#, out), si ∈ K

(d, out; a, in)

a ∈ V

(a, out; b, in)

a, b ∈ V

s0 #

Fig. 3. Simulating a finite automaton by a P automaton.

The automatonworks as follows. In the first step, the state-object s0 is released frommembrane 3, and a rule (d, out; a, in)
brings an object a ∈ V from the environment.

No object si ∈ K can stay unused in the skin membrane, because otherwise it releases the trap object # frommembrane
3, which then will oscillate forever across membrane 2. Thus, we cannot use once again a rule from R1, bringing one further
object from the environment, but we have to use a rule (s′ja, out; sia, in) from R2, the only other rule applicable at this step,
and such a rule exists if and only if a rule sia → sj exists in the finite automaton.

Now, the object a will bring a new symbol b ∈ V from the environment, simultaneously with exchanging the primed
version of s′j with the unprimed one. We are in a situation as after the first step.

The process continues as long as rules from P can handle the current state present in membrane 1 and the symbol from
V brought inside. If this is not the case, the trap object is released and the computation never stops.

If a correct parsing in A is followed, and we reach the final state sf by a rule sia → sf , then the rule in R2 to use is
(sia, in), and the computation halts. The only objects taken from the environment were those of the string recognized by
the automaton A, that is, L(Π) = L(A). �

5. Balanced versus non-balanced distribution

We expect to have a separation between these cases, with a strict decrease in power in the case of the balanced
distribution of strings, but we only settle here this question for dP systems with two components. Namely, we consider
the language

K4 = {an−1b3n | n ≥ 2}.

We have K4 ∈ LdP4, as proved by the dP automaton in Fig. 4. This systemworks as follows. The object a in Π1 and objects
b in Π2, Π3, Π4 repeatedly bring copies of a, respectively, b from the environment, thus increasing the accepted string. The
process can continue as long as the membrane 1′ does not expel the four copies of c present in it (they can oscillate across
membrane 1′′ for an arbitrary number of steps and then, nondeterministically, can exit membrane 1′). Object c cannot stay
in membrane 1. If two copies of it arrive in the same component Π2, Π3, Π4, then one of it can exit together with b, but the
otherwill release the trap object # and the computation never stops (object #will exit the system and enter back indefinitely
by means of rules (#, out), (#, in) present in each of Π2, Π3, Π4). Therefore, exactly one c has to arrive in each component
Π2, Π3, Π4 and the one remaining in Π1 exits together with a (if it exits together with #, then the computation continues
forever). In this way, the computation halts. Note that while c comes to Π2, Π3, Π4, one additional b is brought into these
components, hence indeed we recognize the language K4.

This language is not in the family LdP2: distributing a string am−1b3m in a balanced way into two parts (equal modulo at
most one symbol) means getting am−1bm+x with x ∈ {0, 1} in the fist component and b2m−x in the second one. The language

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪
✬

✫

✩

✪

✬

✫

✩

✪

✲

✲

✲

1

1′

1′′

a #

c4

c4

(c4, out; c4, in)

(c4, out)

(a, out; a, in)

(ca, out)

(c#, out)

(s1, c/λ, s2)

(s1, c/λ, s3)

(s1, c/λ, s4)

2

b

✗
✖
✔
✕

✗
✖
✔
✕

✗
✖
✔
✕

2′ #

(#, out; c, in)

(b, out; b, in)

(cb, out)

(#, out)

(#, in)

3

3′

b

#

(#, out; c, in)

(b, out; b, in)

(cb, out)

(#, out)

(#, in)

4

4′

b

#

(#, out; c, in)

(b, out; b, in)

(cb, out)
(#, out)

(#, in)

Fig. 4. A dP automaton of degree 4 recognizing the language K4 .

✬

✫

✩

✪

✬

✫

✩

✪

✲✛

1

b f

(b, out; a, in)
(s1, a/c, s2)

(s1, c/b, s2)

(s1, bf /λ, s2)

c

(a, out; b3, in)

(bf , out; b3, in)

2

Fig. 5. A dP automaton recognizing in the unbalanced way the language K4 .

of all such strings, am−1bm+x with x ∈ {0, 1}, for m ≥ 0, is not regular, which contradicts the result established in the proof
of Corollary 4.2 showing that the language of strings accepted by the first component of a dP automaton is regular.1

However, K4 is in L′dP2, as proved by the simple dP automaton from Fig. 5. We start by introducing the object a in the
first component. This object goes to Π2 (in exchange of object c) and there brings three copies of b. Two of these copies exit
immediately, the third one must go to Π1, in exchange of c , hence the configuration is restored. The process is iterated until
using the communication rule (s1, bf /λ, s2); bf will introduce one further block b3 in Π2 and the computation stops.

1 The relation K4 /∈ LdP2 was pointed out to us by a referee.

6. Final remarks

A counterpart of Theorem 4.1 is probably true: the language Lk cannot be recognized by a dP automaton with less
than 2k components (Corollary 4.2), but, symmetrically, it cannot be recognized by a dP automaton with more than 2k
components either. For instance, if we have 2k + 1 components, then, because of the balanced distribution of the strings
((ab)m(ac)m)k, the second component does not accept a regular language (the first component accepts a prefix of (ab)m, but
the second one accepts a suffix of (ab)m concatenated with a prefix of (ac)m, the two strings being of a total length which is
imposed by the balanced distribution—and such a string cannot be regular). The details are left to the reader, as well as the
task to consider further cases than that of dP automata of degree 2k + 1. (Are there values s ≥ 2k + 1 such that Lk ∈ LdPs?)

The property of a language to be frozen is very ‘‘fragile": all standard operations in language theory (except the mirror
image) make frozen languages to become non-frozen. In particular, the family of frozen languages form an anti-AFL (it is
closed to none of the six AFL operations: union, concatenation, Kleene +, morphisms, inverse morphisms, and intersection
with regular languages) — which is easy to prove.

Many other problems remain to be investigatedwith respect to dP automata – several of them can be found in [11], hence
we refer the reader to that paper.

Acknowledgements

This work is supported by the Proyecto de Excelencia con Investigador de Reconocida Valía, de la Junta de Andalucía,
grant P08 – TIC 04200. Thanks are due to three anonymous referees who have carefully read the paper.

References

[1] H. Adorna, Gh. Păun, M.J. Pérez-Jiménez, On communication complexity in evolution-communication P systems, in: M.A. Martínez-del-Amor, et al.
(Eds.), Proc. 8th Brainstorming Week on Membrane Computing, Sevilla, February 2010, Fenix Editora, 2010, pp. 1–21; Romanian Journal of
Information Theory and Applications 13 (2) (2010) 113–130.

[2] E. Csuhaj-Varjú, M. Oswald, G. Vaszil, P automata, Chapter 6 in [12], pp. 144–167.
[3] E. Csuhaj-Varjú, G. Vaszil, P automata or purely communicating accepting P systems, in: Gh. Păun, et al. (Eds.), Membrane Computing. International

Workshop, WMC 2002, Curtea de Argeş, Romania, August 2002. Revised Papers, in: LNCS, vol. 2597, Springer, 2003, pp. 219–233.
[4] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1989.
[5] R. Freund, M. Kogler, Gh. Păun, M.J. Pérez-Jiménez, On the power of P and dP automata, Annals of Bucharest University. Mathematics-Informatics

Series 63 (2009) 5–22.
[6] R. Freund, M. Oswald, A short note on analysing P systems, Bulletin of the EATCS 79 (October) (2002) 231–236.
[7] J. Hromkovic, Communication Complexity and Parallel Computing: The Application of Communication Complexity in Parallel Computing, Springer,

Berlin, 1997.
[8] O. Ibarra, Simple matrix grammars, Information and Control 17 (1970) 359–394.
[9] Gh. Păun, Membrane Computing. An Introduction, Springer, Berlin, 2002.

[10] Gh. Păun, M.J. Pérez-Jiménez, Solving problems in a distributed way in membrane computing: dP systems, International Journal of Computers,
Communication and Control 5 (2) (2010) 238–252.

[11] Gh. Păun, M.J. Pérez-Jiménez, P and dP automata: a survey, in: C.S. Calude, G. Rozenberg, A. Salomaa (Eds.), Rainbow of Computer Science, in: LNCS,
vol. 6570, Springer, Berlin, 2011, pp. 102–115.

[12] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Handbook of Membrane Computing, Oxford University Press, 2010.
[13] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 3, Springer, Berlin, 1998.
[14] A. Salomaa, Formal Languages, Academic Press, New York, 1973.
[15] The P Systems Website: http://ppage.psystems.eu.

http://ppage.psystems.eu

	An infinite hierarchy of languages defined by dP systems
	Introduction
	dP automata
	The power of P and dP automata
	The hierarchy of families LdPn
	Balanced versus non-balanced distribution
	Final remarks
	Acknowledgements
	References

