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Abstract

We show that the problemk-DOMINATING SET and its several variants includingk-CONNECTED

DOMINATING SET, k-INDEPENDENTDOMINATING SET, andk-DOMINATING CLIQUE, when param-
eterized by the solution sizek, are W[1]-hard in either multiple-interval graphs or theircomplements
or both. On the other hand, we show that these problems belongto W[1] when restricted to multiple-
interval graphs and their complements. This answers an openquestion of Fellows et al. In sharp contrast,
we show thatd-DISTANCE k-DOMINATING SET for d ≥ 2 is W[2]-complete in multiple-interval graphs
and their complements. We also show thatk-PERFECTCODE andd-DISTANCE k-PERFECTCODE for
d ≥ 2 are W[1]-complete even in unit 2-track interval graphs. In addition, we present various new results
on the parameterized complexities ofk-VERTEX CLIQUE PARTITION andk-SEPARATING VERTICES

in multiple-interval graphs and their complements, and present a very simple alternative proof of the
W[1]-hardness ofk-IRREDUNDANT SET in general graphs.

1 Introduction

We introduce some basic definitions. Theintersection graphΩ(F) of a family of setsF = {S1, . . . , Sn}
is the graph withF as the vertex set and with two different verticesSi andSj adjacent if and only if
Si∩Sj 6= ∅; the familyF is called arepresentationof the graphΩ(F). Let t ≥ 2 be an integer. At-interval
graph is the intersection graph of a family oft-intervals, where eacht-interval is the union oft disjoint
intervals in the real line. At-track interval graphis the intersection graph of a family oft-track intervals,
where eacht-track interval is the union oft disjoint intervals ont disjoint parallel lines called tracks, one
interval on each track. Note that thet disjoint tracks for at-track interval graph can be viewed ast disjoint
“host intervals” in the real line for at-interval graph. Thust-track interval graphs are a subclass oft-interval
graphs. If at-interval graph has a representation in which all intervalshave unit lengths, then the graph is
a unit t-interval graph. If a t-interval graph has a representation in which thet disjoint intervals of each
t-interval have the same length (although the intervals fromdifferentt-intervals may have different lengths),

∗A preliminary version of this article appeared in two parts in COCOON 2011 [21] and IPEC 2011 [22].
†Supported in part by NSF grant DBI-0743670.
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then the graph is abalancedt-interval graph. Similarly we define unitt-track interval graphs and balanced
t-track interval graphs. We refer to Figure 1 and Figure 2 for two examples.
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Figure 1: A 2-interval representation of the graphK5,3.
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Figure 2: A unit 2-track interval representation of the graphK4,3.

As generalizations of the ubiquitous interval graphs, multiple-interval graphs such ast-interval graphs
and t-track interval graphs have numerous applications, traditionally to scheduling and resource alloca-
tion [26, 1], and more recently to bioinformatics [5, 18]. For this reason, a systematic study of various
classical optimization problems in multiple-interval graphs has been undertaken by several groups of re-
searchers. In terms of approximability, Bar-Yehuda et al. [1] presented a2t-approximation algorithm for
MAXIMUM INDEPENDENT SET in t-interval graphs, and Butman et al. [2] presented approximation al-
gorithms for MINIMUM VERTEX COVER, M INIMUM DOMINATING SET, and MAXIMUM CLIQUE in t-
interval graphs with approximation ratios2− 1/t, t2, and(t2 − t+ 1)/2, respectively.

Fellows et al. [11] initiated the study of multiple-interval graph problems from the perspective of pa-
rameterized complexity. In general graphs, the four problemsk-VERTEX COVER, k-INDEPENDENT SET,
k-CLIQUE, andk-DOMINATING SET, parameterized by the solution sizek, are exemplary problems in pa-
rameterized complexity theory [9]: it is well-known thatk-VERTEX COVER is in FPT,k-INDEPENDENT

SET andk-CLIQUE are W[1]-complete, andk-DOMINATING SET is W[2]-complete. Sincet-interval graphs
are a special class of graphs, all FPT algorithms fork-VERTEX COVER in general graphs immediately carry
over tot-interval graphs. On the other hand, the parameterized complexities ofk-INDEPENDENT SET, k-
CLIQUE, andk-DOMINATING SET in t-interval graphs are not at all obvious. Indeed, in general graphs,
k-INDEPENDENTSET andk-CLIQUE are essentially the same problem (the problemk-INDEPENDENTSET

in any graphG is the same as the problemk-CLIQUE in the complement graphG), but in t-interval graphs,
they manifest different parameterized complexities. Fellows et al. [11] showed thatk-INDEPENDENT SET

in t-interval graphs is W[1]-hard for anyt ≥ 2, then, in sharp contrast, gave an FPT algorithm fork-CLIQUE

in t-interval graphs parameterized by bothk andt. Fellows et al. [11] also showed thatk-DOMINATING SET

in t-interval graphs is W[1]-hard for anyt ≥ 2. Recently, Jiang [19] strengthened the two hardness results
for t-interval graphs, and showed thatk-INDEPENDENT SET andk-DOMINATING SET remain W[1]-hard
even in unitt-track interval graphs for anyt ≥ 2. In particular, we have the following theorem on the
parameterized complexity ofk-DOMINATING SET in unit 2-track interval graphs:
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Theorem 1 (Jiang 2010 [19]). k-DOMINATING SET in unit 2-track interval graphs is W[1]-hard with
parameterk.

The lack of symmetry in the parameterized complexities ofk-INDEPENDENT SET andk-CLIQUE in
multiple-interval graphs and their complements leads to a natural question aboutk-DOMINATING SET,
which is known to be W[1]-hard in multiple-interval graphs:Is it still W[1]-hard in the complements of
multiple-interval graphs? Our following theorem (here “co-3-track interval graphs” denotes “complements
of 3-track interval graphs”) gives a positive answer:

Theorem 2. k-DOMINATING SET in co-3-track interval graphs is W[1]-hard with parameterk.

A connected dominating setin a graphG is a dominating setS inG such that the induced subgraphG(S)
is connected. Anindependent dominating setin a graphG is both a dominating set and an independent set
in G. A dominating cliquein a graphG is both a dominating set and a clique inG. With connectivity taken
in account, the problemk-DOMINATING SET has three important variants:k-CONNECTED DOMINATING

SET, k-INDEPENDENT DOMINATING SET, andk-DOMINATING CLIQUE. Recall the sharp contrast in
parameterized complexities of the two problemsk-INDEPENDENT SET andk-CLIQUE in multiple-interval
graphs and their complements. This leads to more natural questions aboutk-DOMINATING SET: Are the two
problemsk-INDEPENDENT DOMINATING SET andk-DOMINATING CLIQUE still W[1]-hard in multiple-
interval graphs and their complements? Also, without veering to either extreme, how aboutk-CONNECTED

DOMINATING SET?
We show that our FPT reduction for the W[1]-hardness ofk-DOMINATING SET in co-3-track interval

graphs in Theorem 2 also establishes the following theorem:

Theorem 3. k-CONNECTEDDOMINATING SET andk-DOMINATING CLIQUE in co-3-track interval graphs
are both W[1]-hard with parameterk.

Similarly, it is not difficult to verify that the FPT reduction for the W[1]-hardness ofk-DOMINATING

SET in unit 2-track interval graphs [19] also establishes the following theorem:

Theorem 4. k-INDEPENDENTDOMINATING SET in unit 2-track interval graphs is W[1]-hard with param-
eterk.

For the two problemsk-CONNECTED DOMINATING SET andk-DOMINATING CLIQUE in multiple-
interval graphs, we obtain a weaker result:

Theorem 5. k-CONNECTED DOMINATING SET and k-DOMINATING CLIQUE in unit 3-track interval
graphs are both W[1]-hard with parameterk.

Recall thatk-DOMINATING SET in general graphs is W[2]-complete. Fellows et al. [11] asked whether
it remains W[2]-complete int-interval graphs fort ≥ 2. Our following theorem shows that this is very
unlikely:

Theorem 6. k-DOMINATING SET, k-CONNECTED DOMINATING SET, k-INDEPENDENT DOMINATING

SET, andk-DOMINATING CLIQUE in t-interval graphs and co-t-interval graphs for all constantst ≥ 2 are
in W[1].

A generalization ofk-DOMINATING SET is calledd-DISTANCE k-DOMINATING SET, where each ver-
tex is able to dominate all vertices within a threshold distanced. Note thatk-DOMINATING SET is simply
d-DISTANCE k-DOMINATING SET with d = 1. On the other hand,d-DISTANCE k-DOMINATING SET in
any graphG is simply k-DOMINATING SET in the dth power ofG. In contrast to Theorems 1 and 6, we
have the following theorem ford-DISTANCE k-DOMINATING SET:
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Theorem 7. d-DISTANCE k-DOMINATING SET for anyd ≥ 2 in unit 2-track interval graphs, ford = 2 in
co-3-interval graphs, and for anyd ≥ 3 in co-4-interval graphs is W[2]-hard with parameterk.

The last variant ofk-DOMINATING SET that we study in this paper is calledk-PERFECT CODE. For
a graphG = (V,E) and a vertexu ∈ V , we define theopen neighborhood ofu in G asN(u) := {v |
{u, v} ∈ E}, and define theclosed neighborhood ofu in G asN [u] := N(u) ∪ {u}. A perfect codein
a graphG = (V,E), also known as aperfect dominating setor anefficient dominating set, is a subset of
verticesV ′ ⊆ V that includes exactly one vertex from the closed neighborhood of each vertexu ∈ V . The
problemk-PERFECTCODE is that of deciding whether a given graphG has a perfect code of size exactlyk.

The problemk-PERFECT CODE is W[1]-complete with parameterk in general graphs [8, 4]. It is
also known to be NP-complete inr-regular graphs for anyr ≥ 3 [23] and in planar graphs of maximum
degree3 [12]. Since every graph of maximum degree3 is the intersection graph of a family of unit 2-track
intervals [20, Theorem 4], it follows thatk-PERFECTCODE is NP-complete in unit 2-track interval graphs.
In the following theorem, we show thatk-PERFECT CODE is indeed W[1]-hard in unit 2-track interval
graphs:

Theorem 8. k-PERFECT CODE in unit 2-track interval graphs is W[1]-hard with parameterk.

The distance variant ofk-PERFECT CODE, denoted asd-DISTANCE k-PERFECTCODE, is also studied
in the literature [23]. Recall thatd-DISTANCE k-DOMINATING SET in any graphG is simplyk-DOMINATING SET

in thedth power ofG. Similarly,d-DISTANCE k-PERFECTCODE in any graphG is simplyk-PERFECTCODE

in thedth power ofG. Sincek-PERFECTCODE in general graphs is in W[1] [4], it follows thatd-DISTANCE

k-PERFECT CODE in general graphs is also in W[1]. In the following theorem, we show thatd-DISTANCE

k-PERFECTCODE is W[1]-hard even in unit 2-track interval graphs:

Theorem 9. d-DISTANCE k-PERFECT CODE for anyd ≥ 2 in unit 2-track interval graphs is W[1]-hard
with parameterk.

At the end of their paper, Fellows et al. [11] listed four problems that are W[1]-complete in general
graphs, and suggested that a possibly prosperous directionfor extending their work would be to investigate
whether these problems become fixed-parameter tractable inmultiple-interval graphs. The four problems
arek-VERTEX CLIQUE COVER, k-SEPARATING VERTICES, k-PERFECT CODE, andk-IRREDUNDANT

SET.
The problemk-VERTEX CLIQUE COVER has a close relative calledk-EDGE CLIQUE COVER. Given a

graphG = (V,E) and an integerk, the problemk-VERTEX CLIQUE COVER asks whether the vertex setV
can be partitioned intok disjoint subsetsVi, 1 ≤ i ≤ k, such that each subsetVi induces a complete subgraph
of G, and the problemk-EDGE CLIQUE COVER asks whether there arek (not necessarily disjoint) subsets
Vi of V , 1 ≤ i ≤ k, such that each subsetVi induces a complete subgraph ofG and, moreover, for each edge
{u, v} ∈ E, there is someVi that contains bothu andv. The two problemsk-VERTEX CLIQUE COVER

andk-EDGE CLIQUE COVER are also known in the literature ask-CLIQUE PARTITION andk-CLIQUE

COVER, respectively, and are both NP-complete [13, GT15 and GT17]. To avoid possible ambiguity, we
will henceforth use the termk-VERTEX CLIQUE PARTITION instead ofk-VERTEX CLIQUE COVER or
k-CLIQUE PARTITION.

Although the two problemsk-VERTEX CLIQUE PARTITION andk-EDGE CLIQUE COVER are both
NP-complete, they have very different parameterized complexities. The problemk-EDGE CLIQUE COVER

is fixed-parameter tractable in general graphs [16]; hence it is also fixed-parameter tractable in multiple-
interval graphs and their complements. On the other hand, the problemk-VERTEX CLIQUE PARTITION in
any graphG is the same as the problemk-VERTEX COLORING in the complement graphG. It is known
that 3-VERTEX COLORING of planar graphs of maximum degree4 is NP-hard [15]. It is also known
that k-VERTEX COLORING in circular-arc graphs is NP-hard ifk is part of the input [14]. Since graphs

4



of maximum degree4 are unit 3-track interval graphs [20, Theorem 4], and since circular-arc graphs are
obviously 2-track interval graphs (by a simple cutting argument), we immediately have the following easy
theorem on the complexity ofk-VERTEX CLIQUE PARTITION in the complements of multiple-interval
graphs:

Theorem 10. 3-VERTEX CLIQUE PARTITION in co-unit 3-track interval graphs is NP-hard; thus, unless
NP=P, k-VERTEX CLIQUE PARTITION in co-unit 3-track interval graphs does not admit any FPT algo-
rithms with parameterk. Also,k-VERTEX CLIQUE PARTITION in co-2-track interval graphs is NP-hard if
k is part of the input.

For the complexity ofk-VERTEX CLIQUE PARTITION in multiple-interval graphs, we obtain the fol-
lowing theorem:

Theorem 11. k-VERTEX CLIQUE PARTITION in unit 2-interval graphs is W[1]-hard with parameterk.

Given a graphG = (V,E) and two integersk andl, the problemk-SEPARATING VERTICES is that of
deciding whether there is a partitionV = X ∪ S ∪ Y of the vertices such that|X| = l, |S| ≤ k, and there
is no edge betweenX andY ? In other words, is it possible to cutl vertices off the graph by deletingk
vertices?

The problemk-SEPARATING VERTICES is one of several closely related graph separation problems
considered by Marx [24] in terms of parameterized complexity. Marx showed thatk-SEPARATING VER-
TICES is W[1]-hard in general graphs with two parametersk andl, but is fixed-parameterized tractable with
three parametersk, l, and the maximum degreed of the graph. In the following two theorems, we show that
with two parametersk andl, k-SEPARATING VERTICESremains W[1]-hard in multiple-interval graphs and
their complements:

Theorem 12. k-SEPARATING VERTICESin balanced 2-track interval graphs is W[1]-hard with parameters
k and l.

Theorem 13. k-SEPARATING VERTICES in co-balanced 3-track interval graphs is W[1]-hard with param-
etersk and l.

The problemk-SEPARATING VERTICESwas studied under the name CUTTING l VERTICESby Marx [24],
who also studied two closely related variants called CUTTING l CONNECTED VERTICES and CUTTING

INTO l COMPONENTS. In CUTTING l CONNECTED VERTICES, the l vertices that are separated from the
rest ofG must induce a connected subgraph ofG. In CUTTING INTO l COMPONENTS, the objective is
to delete at mostk vertices such that the remaining graph is broken into at least l connected components.
Marx showed that CUTTING l CONNECTED VERTICES is W[1]-hard when parameterized by eitherk or l,
and is fixed-parameter tractable when parameterized by bothk and l. We observe that his W[1]-hardness
proof with parameterl involves only line graphs, which are obviously a subclass ofunit 2-interval graphs.
Marx also showed that CUTTING INTO l COMPONENTSis W[1]-hard when parameterized by bothk andl.
In the following two theorems, we extend these W[1]-hardness results to multiple-interval graphs and their
complements:

Theorem 14. CUTTING l CONNECTED VERTICES in balanced 2-track interval graphs and co-balanced
3-track interval graphs is W[1]-hard with parameterk.

Theorem 15. CUTTING INTO l COMPONENTSin balanced 2-track interval graphs and co-balanced 3-track
interval graphs is W[1]-hard with parametersk and l.
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The problemk-PERFECT CODE has been covered in Theorems 8 and 9. We now move on to the last
problem,k-IRREDUNDANT SET. Recall that for a graphG = (V,E), the open neighborhoodof u is
N(u) = {v | {u, v} ∈ E}, and that theclosed neighborhoodof u is N [u] = N(u) ∪ {u}. For a subset
V ′ ⊆ V of vertices, we define theopen neighborhood ofV ′ in G asN(V ′) := ∪u∈V ′N(u) and define the
closed neighborhood ofV ′ in G asN [V ′] := ∪u∈V ′N [u]. An irredundant setin a graphG = (V,E) is a
subsetV ′ ⊆ V such that each vertexu ∈ V ′ is irredundant, i.e.,N [V ′ − {u}] is a proper subset ofN [V ′].
Equivalently, anirredundant setin a graphG = (V,E) is a subsetV ′ ⊆ V such that each vertexu ∈ V ′ has
aprivate neighborπ(u) ∈ V satisfying one of the two following conditions:

1. π(u) is adjacent tou but not to any other vertexv ∈ V ′.

2. π(u) is u itself, andu is not adjacent to any other vertexv ∈ V ′. In this case, we say thatu is
self-private.

Note that an independent set is an irredundant set in which every vertex is self-private.
Bothk-PERFECTCODE andk-IRREDUNDANT SET are very important problems in the development of

parameterized complexity theory. The problemk-PERFECT CODE was shown to be W[1]-hard as early as
1995 [8], but its membership in W[1] was proved much later in 2002 [4]. Indeed this problem was once
conjectured by Downey and Fellows [9, p. 487] either to represent an intermediate between W[1] and W[2],
or to be complete for W[2]. Similarly, the problemk-IRREDUNDANT SET was shown to be in W[1] in
1992 [7], and was once conjectured as an intermediate between FPT and W[1] before it was finally proved
to be W[1]-hard in 2000 [10]:

Theorem 16 (Downey, Fellows, and Raman [10]). k-IRREDUNDANT SET in general graphs is W[1]-hard
with parameterk.

The celebrated proof of Downey et al. [10] was a major breakthrough in parameterized complexity
theory, but it is rather complicated, spanning seven pages.In this paper, we give a very simple alternative
proof (less than two pages) of Theorem 16. Our proof is based on an FPT reduction from the W[1]-complete
problemk-MULTICOLORED CLIQUE [11]: Given a graphG of n vertices andm edges, and a vertex-
coloring κ : V (G) → {1, 2, . . . , k}, decide whetherG has a clique ofk vertices containing exactly one
vertex of each color (without loss of generality, we assume that no edge inG connects two vertices of
the same color). Indeed all proofs of W[1]-hardness in this paper are based on FPT reductions from this
problem. After its invention, this technique quickly became a standard tool for parameterized reductions. It
was used by researchers to prove new W[1]-hardness results as well as to simplify existing W[1]-hardness
proofs in many different settings.

The problem of recognizing multiple-interval graphs is NP-hard in general [20]. This aspect of compu-
tational complexity involving the recognition of a class ofgraphs is quite different from the computational
complexities of various optimization problems in such graphs. To avoid confusion, for all optimization
problems in multiple-interval graphs and their complements that are studied in this paper, we assume that
the multiple-interval representation of the graph is givenas part of the input.

2 Dominating Set

In this section we prove Theorem 2. We show thatk-DOMINATING SET in co-3-track interval graphs is
W[1]-hard by an FPT reduction from the W[1]-complete problem k-MULTICOLORED CLIQUE [11].

Let (G,κ) be an instance ofk-MULTICOLORED CLIQUE. We will construct a familyF of 3-track
intervals such thatG has a clique ofk vertices containing exactly one vertex of each color if and only if the
complement of the intersection graphGF of F has a dominating set ofk′ vertices, wherek′ = k +

(
k
2

)
.
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Vertex selection: Let v1, . . . , vn be the set of vertices inG, sorted by color such that the indices of all
vertices of each color are contiguous. For each colori, 1 ≤ i ≤ k, let Vi = {vp | si ≤ p ≤ ti} be the set of
verticesvp of color i. For each vertexvp, 1 ≤ p ≤ n, let 〈vp〉 be avertex 3-track intervalconsisting of the
following three intervals on the three tracks:

〈vp〉 =





track 1: (p − 1, p)
track 2: (p − 1 +m+ 1, p +m+ 1)
track 3: (p − 1 +m+ 1, p +m+ 1).

For each colori, 1 ≤ i ≤ k, let 〈Vi〉 be the following 3-track interval:

〈Vi〉 =





track 1: (ti,m+ n+ 1)
track 2: (0, si − 1 +m+ 1)
track 3: (m,m+ 1).

Edge selection: Let e1, . . . , em be the set of edges inG, also sorted by color such that the indices of
all edges of each color pair are contiguous. For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, let
Eij = {er | sij ≤ r ≤ tij} be the set of edgesvpvq such thatvp has colori andvq has colorj. For each
edgeer, 1 ≤ r ≤ m, let 〈er〉 be anedge 3-track intervalconsisting of the following three intervals on the
three tracks:

〈er〉 =





track 1: (r − 1 + n+ 1, r + n+ 1)
track 2: (r − 1, r)
track 3: (r − 1, r).

For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, let 〈Eij〉 be the following 3-track interval:

〈Eij〉 =





track 1: (0, sij − 1 + n+ 1)
track 2: (tij, n +m+ 1)
track 3: (m,m+ 1).

Validation: For each edgeer = vpvq such thatvp has colori andvq has colorj, let 〈vper〉 and〈vqer〉 be
the following 3-track intervals:

〈vper〉 =





track 1: (p, sij − 1 + n+ 1)
track 2: (tij, p − 1 +m+ 1)
track 3: (r − 1, r),

〈vqer〉 =





track 1: (q, sij − 1 + n+ 1)
track 2: (tij , q − 1 +m+ 1)
track 3: (r − 1, r).

LetF be the following family ofn+m+ k +
(k
2

)
+ 2m 3-track intervals:

F =
{
〈vp〉 | 1 ≤ p ≤ n

}
∪
{
〈er〉 | 1 ≤ r ≤ m

}

∪
{
〈Vi〉 | 1 ≤ i ≤ k

}
∪
{
〈Eij〉 | 1 ≤ i < j ≤ k

}

∪
{
〈vper〉, 〈vqer〉 | er = vpvq ∈ Eij , 1 ≤ i < j ≤ k

}
.

This completes the construction. We refer to Figure 3 for an example. The following five properties of the
construction can be easily verified:

1. For each colori, 1 ≤ i ≤ k, all 3-track intervals〈vp〉 for vp ∈ Vi are pairwise-disjoint.

2. For each colori, 1 ≤ i ≤ k, 〈Vi〉 intersects all other 3-track intervals except the vertex 3-track
intervals〈vp〉 for vp ∈ Vi.
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Figure 3: Top: A graphG of n = 4 verticesv1, v2, v3, v4 andm = 4 edgese1 = v1v3, e2 = v1v4, e3 =
v2v4, e4 = v3v4, with k = 3 colorsκ(v1) = κ(v2) = 1, κ(v3) = 2, andκ(v4) = 3. V1 = {v1, v2}, V2 =
{v3}, V3 = {v4}; E12 = {e1}, E13 = {e2, e3}, E23 = {e4}. K = {v1, v3, v4} is a3-multicolored clique.
Bottom: A familyF of n+m+k+

(k
2

)
+2m = 22 3-track intervals.D = {〈v1〉, 〈v3〉, 〈v4〉, 〈e1〉, 〈e2〉, 〈e4〉}

is a6-dominating set in the complement of the intersection graphof F .

3. For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, all 3-track intervals〈er〉 for er ∈ Eij are
pairwise-disjoint.

4. For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, 〈Eij〉 intersects all other 3-track intervals
except the edge 3-track intervals〈er〉 for er ∈ Eij.

5. For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, for each edgeer ∈ Eij and each vertexvp
incident toer, 〈vper〉 intersects all other 3-track intervals except the vertex 3-track interval〈vp〉 and
the edge 3-track intervals for the edges inEij other than〈er〉.
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Lemma 1. G has ak-multicolored clique if and only ifGF has ak′-dominating set.

Proof. For the direct implication, ifK ⊆ V (G) is ak-multicolored clique inG, then the following subset
D ⊆ F of 3-track intervals is ak′-dominating set inGF :

D =
{
〈vp〉 | vp ∈ K

}
∪
{
〈er〉 | vp, vq ∈ K, er = vpvq

}
.

To verify this, check that each〈vp〉 /∈ D is dominated by〈vp′〉 ∈ D for some vertexvp′ of the same color
asvp (Property 1), each〈er〉 /∈ D is dominated by〈er′〉 ∈ D for some edgeer′ of the same color pair aser
(Property 3), each〈Vi〉 is dominated by〈vp〉 ∈ D for somevp ∈ Vi (Property 2), each〈Eij〉 is dominated by
〈er〉 ∈ D for someer ∈ Eij (Property 4), and each〈vper〉 is dominated either by〈vp〉 ∈ D, whenvp ∈ K,
or by 〈er′〉 ∈ D for some edgeer′ of the same color pair aser, whenvp /∈ K (Property 5).

For the reverse implication, suppose thatD ⊆ F is a k′-dominating set inGF . We will find a k-
multicolored cliqueK ⊆ V (G) in G. For each colori, 1 ≤ i ≤ k, D must include either〈Vi〉 or at least
one of its neighbors inGF . Thus by Properties 1 and 2, we can assume without loss of generality thatD
does not include〈Vi〉 but includes at least one vertex 3-track interval〈vp〉 for somevp ∈ Vi. Similarly, for
each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, we can assume by Properties 3 and 4 thatD does not
include〈Eij〉 but includes at least one edge 3-track interval〈er〉 for someer ∈ Eij . Sincek′ = k +

(k
2

)
,

it follows thatD includes exactly one vertex 3-track interval of each color,and exactly one edge 3-track
interval of each color pair. For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, let er = vpvq be the edge
whose 3-track interval〈er〉 is included inD. By Property 5 of the construction, the two 3-track intervals
〈vper〉 and〈vqer〉 cannot be dominated by〈er〉 and hence must be dominated by〈vp〉 and〈vq〉, respectively.
Therefore the vertex selection and the edge selection are consistent, and the set ofk vertex 3-track intervals
in D corresponds to ak-multicolored cliqueK in G.

3 Connected Dominating Set, Independent Dominating Set, and Dominat-
ing Clique

In this section we prove Theorems 3, 4, and 5.
For Theorem 3, to show the W[1]-hardness ofk-CONNECTED DOMINATING SET andk-DOMINATING

CLIQUE in co-3-track interval graphs, let us review our FPT reduction for Theorem 2, in particular, the
proof of Lemma 1, in the previous section. Observe that for the direct implication of Lemma 1, our proof
composes a dominating setD of pairwise-disjoint 3-track intervals, and that for the reverse implication
of Lemma 1, our proof uses only the fact thatD is a dominating set without any assumption about its
connectedness. This implies that our FPT reduction for Theorem 2 also establishes Theorem 3. By a similar
argument, it is not difficult to verify that the FPT reductionfor the W[1]-hardness ofk-DOMINATING SET

in unit 2-track interval graphs [19] also establishes the W[1]-hardness ofk-INDEPENDENT DOMINATING

SET in unit 2-track interval graphs in Theorem 4.
For Theorem 5, to show the W[1]-hardness ofk-CONNECTED DOMINATING SET andk-DOMINATING

CLIQUE in unit 3-track interval graphs, we use the same construction as in the previous FPT reduction for
the W[1]-hardness ofk-DOMINATING SET in unit 2-track interval graphs [19] for the first two tracks.Then,
on track 3, we use the same (coinciding) unit interval for allmultiple-intervals in

F ′ =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}
∪
{
ûivj left, ûivj right | uv ∈ Eij , 1 ≤ i < j ≤ k

}
,

and use a distinct unit interval disjoint from all other unitintervals for each of the remaining multiple-
intervals. Now the dominating set composed in the direct implication of the proof in [19] becomes a clique.
Since the reverse implication of the proof in [19] does not depend on the additional intersections between
the multiple-intervals inF ′, the modified reduction establishes Theorem 5.
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4 W[1]-membership of Dominating Set and Its Variants

In this section we prove Theorem 6. We show thatk-DOMINATING SET, k-CONNECTED DOMINATING

SET, k-INDEPENDENT DOMINATING SET, andk-DOMINATING CLIQUE in t-interval graphs and co-t-
interval graphs for all constantst ≥ 2 are in W[1] by FPT reductions to the W[1]-complete problem SHORT

TURING MACHINE COMPUTATION [3]. The same problem has been used to prove the W[1]-membership of
k-PERFECTCODE in general graphs [4] and ofk-DOMINATING SET in rectangle intersection graphs [25].

We start with two FPT reductions fromk-DOMINATING SET in t-interval graphs and co-t-interval
graphs, respectively, to SHORT TURING MACHINE COMPUTATION. Let GF be the intersection graph
of a familyF of n t-intervals. Without loss of generality, we assume that the2nt interval endpoints of the
t-intervals inF are all distinct. By a standard technique, we can transform any family I of intervals, in
polynomial time, into a familyI ′ of intervals with distinct endpoints, such thatI andI ′ represent the same
interval graph.

We first construct a (nondeterministic) Turing machineM that accepts an empty string inf(k) steps for
some functionf if and only if GF has ak-dominating set. The crucial observation is the following.Let
D ⊆ F be a subfamily ofk t-intervals. Suppose thatD is not a dominating set forGF . Then there must exist
a t-intervalI in F − D that is disjoint from allt-intervals inD. LetP be the set of2kt interval endpoints
of thek t-intervals inD, and letP ′ = P ∪ {−∞,∞}. For thesth intervalIs of thet-intervalI, 1 ≤ s ≤ t,
let ls be the rightmost point inP ′ to the left ofIs, and letrs be the leftmost point inP ′ to the right ofIs.
Then each pair of pointsls andrs, 1 ≤ s ≤ t, specifies a constraintls < Is < rs on thet-intervalI. Thet
constraints together form a multiple-interval “range”I ′ = (l1, r1) ∪ · · · ∪ (lt, rt). Observe thatI ⊂ I ′ but
no t-intervalJ in D intersectsI ′.

We now describe the reduction. LetQ be the set of2nt interval endpoints of then t-intervals inF , and
letQ′ = Q ∪ {−∞,∞}. Enumerate all combinationsC of t constraints based onQ′. For eachC, compute
the value of the boolean functionnonempty(C) on whether there exists at-intervalI in F that satisfiesC.
These values will be incorporated directly into the Turing machine as its internal states and transitions. The
following is a high-level description of the Turing machineM :

1. Guess a subfamilyD ⊆ F of k t-intervals. (This is the only nondeterministic part; the rest of the
computation is deterministic.)

2. Let P be the set of2kt interval endpoints of thek t-intervals inD, and letP ′ = P ∪ {−∞,∞}.
Enumerate all combinationsC of t constraints based onP ′. For eachC, do the following:

(a) Check whether there exists at-interval J in D that intersects the multiple-interval “range”I ′

formed byC.

(b) If no sucht-intervalJ exists, query the precomputed value of the boolean functionnonempty(C).
Reject if it is true.

3. Accept.

Recall thatt is a constant. With the boolean functionnonempty(·) precomputed and incorporated into
the interval states and transitions of the Turing machineM , the maximum number of steps of any nondeter-
ministic branch ofM is at mostf(k) for some functionf . In particular, it does not depend onn although
the size ofM itself (i.e., the alphabet size, the number of internal states and transitions, etc.) depends on
n. Moreover, we can computenonempty(·), construct the Turing machineM itself, and compute an upper
boundf(k) on the maximum number of steps ofM , all in time g(k) · poly(n) for some functiong. Thus
we have an FPT reduction fromk-DOMINATING SET in t-interval graphs to SHORT TURING MACHINE

COMPUTATION.
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We next construct a (nondeterministic) Turing machineM that accepts an empty string inf(k) steps
for some functionf if and only ifGF has ak-dominating set. The crucial observation is the following.Let
D ⊆ F be a subfamily ofk t-intervals. Suppose thatD is not a dominating set forGF . Then there must
exist at-interval I in F − D that intersects allt-intervals inD. Let P be the set of2kt interval endpoints
of thek t-intervals inD, and letP ′ = P ∪ {−∞,∞}. For thesth intervalIs = (ps, qs) of the t-interval
I, 1 ≤ s ≤ t, let lps be the rightmost point inP ′ to the left ofps, let rps be the leftmost point inP ′ to the
right of ps, let lqs be the rightmost point inP ′ to the left ofqs, and letrqs be the leftmost point inP ′ to the
right of qs. Then each pair of pointslps andrps, 1 ≤ s ≤ t, specifies a constraintlps < ps < rps, and
each pair of pointslqs andrqs, 1 ≤ s ≤ t, specifies a constraintlqs < qs < rqs, on thet-intervalI. LetC
be this combination of2t constraints. Observe that anyt-interval I ′ (not necessarily inF) that satisfiesC
intersects allt-intervals inD.

We now describe the reduction. LetQ be the set of2nt interval endpoints of then t-intervals inF , and
letQ′ = Q∪{−∞,∞}. Enumerate all combinationsC of 2t constraints based onQ′. For eachC, compute
the value of the boolean functionnonempty(C) on whether there exists at-intervalI in F that satisfiesC.
These values will be incorporated directly into the Turing machine as its internal states and transitions. The
following is a high-level description of the Turing machineM :

1. Guess a subfamilyD ⊆ F of k t-intervals. (This is the only nondeterministic part; the rest of the
computation is deterministic.)

2. LetP be the set of2kt interval endpoints of thek t-intervals inD, and letP ′ = P ∪ {−∞,∞}. Sort
P ′. Enumerate all combinationsC of 2t constraints based onP ′, subject to the additional condition
that the two points in each pair (i.e., the two pointslps andrps in the pair(lps, rps), or the two points
lqs andrqs in the pair(lqs, rqs), 1 ≤ s ≤ t) are consecutive inP ′. (This additional condition is to
ensure that not-interval inD satisfiesC.) For eachC, do the following:

(a) Check whether there exists at-interval I ′ (not necessarily inF) that satisfiesC and intersects
all t-intervals inD.

(b) If such at-intervalI ′ exists, query the precomputed value of the boolean functionnonempty(C).
Reject if it is true.

3. Accept.

The analysis is the same as before. Thus we have an FPT reduction from k-DOMINATING SET in
co-t-interval graphs to SHORT TURING MACHINE COMPUTATION.

Finally, to adapt the two reductions to work for the other variants,k-CONNECTED DOMINATING SET,
k-INDEPENDENT DOMINATING SET, andk-DOMINATING CLIQUE, it suffices to augment the two Turing
machinesM andM with an additional step that checks whether the subgraph induced by the guessed
subfamilyD of k t-intervals is connected, is an independent set, and is a clique, respectively.

5 Distance Dominating Set

In this section we prove Theorem 7. We show that for anyd ≥ 2 d-DISTANCE k-DOMINATING SET

in multiple-interval graphs and their complements is W[2]-hard by FPT reductions from the W[2]-hard
problemk-COLORFUL RED-BLUE DOMINATING SET [6]: Given a bipartite graphG = (R ∪B,E) and a
vertex-coloringκ : R → {1, 2, . . . , k}, decide whetherG has a set ofk distinctly colored verticesD ⊆ R
such that each vertex inB is adjacent to at least one vertex inD. We call such a setD a colorful red-blue
dominating setof G.
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Distance Dominating Set in Multiple-Interval Graphs. First we consider the cased = 2. Let (G,κ)
be an instance ofk-COLORFUL RED-BLUE DOMINATING SET. We will construct a familyF of 2-track
intervals as illustrated in Figure 4.

x d1
d2

u1 u2 uφ d′1 d′2

b1 b2 bψ

b′1 b′2 b′ψ

track 1

track 2

Figure 4: An illustration of the gadgets constructed in the proof of Theorem 7: the gadget forVi (left) and
the gadget forB (right).

For each colori, 1 ≤ i ≤ k, let Vi ⊆ R be the set of vertices of colori. Write |Vi| = φ. We constructk
gadgets, one for eachVi, 1 ≤ i ≤ k. There are three intervals on track 1 labeled withx, d1, d2. x intersects
with d1 andd1 intersects withd2. On track 2, there areφ+2 disjoint intervals labeled withu1, . . . , uφ, d′1, d

′
2.

For each vertexu = us ∈ Vi, we add a 2-track interval〈u〉 = (x, us) to F . For each gadget forVi, we also
add two dummy 2-track intervals(d1, d′1) and(d2, d′2) to F .

We then construct one gadget forB. Write |B| = ψ. Let b1, . . . , bψ be vertices inB. On track 1,
there areψ pairwise disjoint intervals labeled withb1 . . . , bψ. Similarly, on track 2, there areψ pairwise
disjoint intervals labeled withb′1, . . . , b

′
ψ. For each vertexb = bt ∈ B, add a 2-track interval〈b〉 = (bt, b

′
t)

to F . Finally, for each edgee = (us, bt) ∈ E with us ∈ Vi for somei andbt ∈ B, add a 2-track interval
〈e〉 = (bt, us) toF . This completes the construction.

In summary, the construction gives us the following familyF of 2-track intervals:

F =
{
〈u〉 | u ∈ Vi, 1 ≤ i ≤ k

}
∪
{
〈b〉 | b ∈ B

}
∪
{
〈e〉 | e ∈ E

}
∪ DUMMIES,

where DUMMIES is the set of2k dummy 2-track intervals.

Lemma 2. G has ak-colorful red-blue dominating set if and only if the intersection graphGF of F has a
2-distancek-dominating set.

Proof. We first prove the direct implication. SupposeG has ak-colorful red-blue dominating setK ⊆ R,
then it is easy to verify the familyD =

{
〈u〉 | u ∈ K

}
of 2-track intervals is a2-distancek-dominating set

in GF .
We next prove the reverse implication. Suppose thatD is a 2-distancek-dominating set inGF . To

dominate the two dummy 2-track intervals(d1, d′1) and(d2, d′2) in the gadget forVi, we can assume without
loss of generality thatD includes at least one〈u〉 from each gadget forVi. SinceD has sizek, we must
have exactly one〈u〉 from each gadget forVi. For anyb ∈ B, 〈b〉 must be dominated by some〈u〉 ∈ D.
By the construction, this implies that(u, b) ∈ E. Therefore, the set{u | 〈u〉 ∈ D} is ak-colorful red-blue
dominating set forG.

To generalize the above construction to handle the cased > 2, it suffices to make only two changes to
GF :

1. For each colori, 1 ≤ i ≤ k, replace the two dummy vertices by a “path” ofd dummy vertices with
one end free and one end connected to all vertices inVi.

2. For each vertexb ∈ B, add a “path” ofd−2 dummy vertices with one end free and one end connected
to b.

Clearly each dummy vertex can be represented by a unit 2-track interval as before.
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Distance Dominating Set in Complements of Multiple-Interval Graphs. To show thatd-DISTANCE

k-DOMINATING SET is W[2]-hard ford = 2 in co-3-interval graphs, we construct a co-3-interval graph
GF ′ which is very similar toGF . We then use the same arguments as in Lemma 2 to show thatG has a
k-colorful red-blue dominating set if and only ifGF ′ has a 2-distancek-dominating set.

v1

v2

v3

b1

b2

b3

x3
1

x3
2

y11
y12

y21
y22

v1
1

v1
2

v1
3

b1
1

b1
2

b1
3

x11
x12
e11
e12
e13
e14
e15

x21
x22

e31
e32
e33
e34
e35

v2
1

v2
2

v2
3

b2

y3

Figure 5: Top: An input graphG = (R ∪ B,E) for k-COLORFUL RED-BLUE DOMINATING SET, with
R = {v1, v2, v3}, B = {b1, b2, b3}, andE = {e1 = v1b1, e2 = v1b2, e3 = v2b1, e4 = v3b1, e5 = v3b3}.
There are two color groupsV1 = {v1, v2}, V2 = {v3}. Bottom: The corresponding construction ofGF ′ .
Note that the labele2r (1 ≤ r ≤ 5), for the interval betweene1r ande3r , is omitted.

We briefly describe howGF ′ is constructed. Refer to Figure 5 for an illustration. For convenience,
we specify some 3-intervals inF ′ as 2-intervals, and assume an implicit extension of each 2-interval to a
3-interval by adding an extra interval that is disjoint fromall other intervals. Given an input graphG =
(R ∪ B,E) and a vertex-coloringκ : R → {1, 2, . . . , k}. Let v1, . . . , vm be an ordering of the vertices in
R such that all vertices in any color groupVi are consecutive in the ordering. For each vertexvi ∈ R, add
a 2-interval(v1i , v

2
i ) to F ′. Let b1, . . . , bn be the vertices inB. For each vertexbj ∈ B, add a 2-interval

(b1j , b
2) toF ′. The intervalb2 intersects allv2i . For each edgeer = (vs, bt) ∈ E, add a 3-interval(e1r , e

2
r , e

3
r)

to F ′ such that the three intervals together intersect allv1i andb1j exceptv1s andb1t . We then addk dummy
3-intervals(x1p, x

2
p, x

3
p), 1 ≤ p ≤ k, to F ′, such thatx1p andx2p together intersect allv1i andb1j except those

v1s for vs ∈ Vp. The intervalsx3p, 1 ≤ p ≤ k, are pairwise disjoint. Finally we addk more dummy 3-
intervals(y1q , y

2
q , y

3), 1 ≤ q ≤ k, toF ′ such thaty1q andy2q together intersect allx3p exceptx3q. The interval
y3 intersects allv2i , all e3r, andb2.

One can check that the intersection graphGF ′ is almost identical toGF constructed in Figure 4. The
only difference is that inGF ′ all vertices inR form a big clique whereas inGF the vertices in each color
groupVi form a clique, separately. The arguments in Lemma 2 still apply. Therefored-DISTANCE k-
DOMINATING SET is W[2]-hard ford = 2 in co-3-interval graphs.

Let G2 = GF ′ be the co-3-interval graph that we just constructed ford = 2. To generalize the above
construction to handle the cased ≥ 3, it suffices to extend the graphG2 to a graphGd by making the same
two changes as before, i.e., adding more dummy vertices. Thedifficulty now is that for the complements
of multiple-interval graphs, three intervals for each vertex are not enough to encode all the edges in the
construction. Nevertheless, we show that ford ≥ 3, four intervals for each vertex are enough. Our proof is
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by induction. We already have the co-3-interval graphG2 for the base cased = 2. Next we consider the
inductive step.

For d = 3, to obtainG3 from G2, we start with the co-3-interval graph that encodesG2, then extend
each dummy path by one more vertex at the free end. LetR2 be the interval region of the real line that
contains all 3-intervals inG2. To encode the connection between the new dummy vertices inG3 and the
existing vertices inG2, we take an unused interval regionR3 of the real line to the right ofR2. For each
vertex inG2, we place one disjoint interval inR3. For each new dummy vertex inG3, we place two disjoint
intervals inR3, to cover all ofR3 except the interval for its only neighbor. Thus we have a co-4-interval
graphG3 represented by four intervals for each vertex in the subgraph G2 and two intervals for each new
dummy vertex inG3 −G2.

Now, for anyd ≥ 4, to obtainGd from Gd−1, we extend the interval regionRd−2 (to the left whend
is even, or the right whend is odd) to a longer interval regionRd. To encode the connection between the
new dummy vertices inGd and the existing vertices inGd−1, we place one disjoint interval inRd − Rd−2

for each dummy vertex inGd−1 −Gd−2, and place two disjoint intervals inRd for each new dummy vertex
in Gd −Gd−1, to cover all ofRd except the interval inRd − Rd−2 for its only neighbor inGd−1 −Gd−2.
Thus we have a co-4-interval graphGd represented by at most four intervals for each vertex of the subgraph
Gd−1 and two intervals for each new dummy vertex inGd −Gd−1.

6 Perfect Code

In this section we prove Theorem 8. We show thatk-PERFECT CODE in unit 2-track interval graphs is
W[1]-hard by a reduction fromk-MULTICOLORED CLIQUE.

Let (G,κ) be an instance ofk-MULTICOLORED CLIQUE. We will construct a familyF of unit 2-
track intervals such thatG has ak-multicolored clique if and only if the intersection graphGF of F has a
k′-perfect code, wherek′ = k + 2

(k
2

)
.

u1u′1

dummy

track 1

u2u′2track 2

dummy

Figure 6: An illustration of a vertex-selection gadget.

Vertex selection: For each colori, 1 ≤ i ≤ k, let Vi be the set of vertices of colori. We construct a
vertex-selection gadget forVi as illustrated in Figure 6. Write|Vi| = φ. On each track, we start with2φ
unit intervals arranged inφ rows and two (slanted) columns. Theφ intervals in each column are pairwise-
intersecting. The two intervals in each row slightly overlap such that each interval in the left column inter-
sects with all intervals in the same or higher rows in the right column. For therth vertexu in Vi, 1 ≤ r ≤ φ,
we add avertex 2-track interval〈u〉 = (u1, u2) to F , whereu1 andu2 are the intervals in therth row and
the right column on tracks 1 and 2, respectively. Denote byu′1 andu′2 the intervals in therth row and the
left column on tracks 1 and 2, respectively; they will be usedfor validation. Besides theφ vertex 2-track
intervals〈u〉, we also add two dummy 2-track intervals toF . The first (resp. second) dummy 2-interval
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consists of a unit interval on track 1 (resp. track 2) that intersects all intervals in the right column and no
interval in the left column, and a unit interval on track 2 (resp. track 1) that is disjoint from all other intervals.

u1u′1

u2u′2

u′′1û1

u′′2û2

v′′1v̂1

v′′2v̂2

v1v′1

v2v′2

Figure 7: An illustration of an edge-selection gadget (middle) and the corresponding vertex-selection gad-
gets (left and right). Two edge 2-track intervals(û1, v̂2) and (û2, v̂1) are represented by dashed lines.
Dummy 2-track intervals are omitted from the figure.

Edge selection: For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, letEij be the set of edgesuv
such thatu has colori andv has colorj. We construct an edge selection gadget forEij as illustrated in
Figure 7. We start with four disjoint groups of intervals, two groups on each track, with two columns of
intervals in each group. Write|Vi| = φi and |Vj | = φj . The two groups on the left correspond to colori
and haveφi rows; the two groups on the right correspond to colorj and haveφj rows. Different from the
formation in the vertex selection gadgets, here in each group each interval in the left column intersects with
all intervals in higher rows in the right column but not the interval in the same row. In the two groups on
the left, for therth vertexu ∈ Vi, 1 ≤ r ≤ φi, denote bŷu1 and û2 the intervals in therth row and the
left column on tracks 1 and 2, respectively, and denote byu′′1 andu′′2 the intervals in therth row and the
right column on tracks 1 and 2, respectively. Similarly, foreach vertexv ∈ Vj , denote bŷv1, v̂2, v′1, v

′
2 the

corresponding intervals in the two groups on the right. For each edgeuv ∈ Eij, we add twoedge 2-track
intervals 〈uv〉1 = (û1, v̂2) and〈uv〉2 = (û2, v̂1) to F . Besides these edge 2-track intervals, we also add
four dummy 2-track intervals toF , one for each group of intervals. The dummy 2-track intervalfor each
group consists of a unit interval that intersects all intervals in the left column and no interval in the right
column in the group, and a unit interval on the other track that is disjoint from all other intervals.

Validation: For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, we add2|Vi| + 2|Vj | validation 2-
track intervalstoF as illustrated in Figure 7. Specifically, for each vertexu ∈ Vi, we add〈u∗ij〉1 = (u′1, u

′′
2)

and〈u∗ij〉2 = (u′2, u
′′
1), and for each vertexv ∈ Vj, we add〈∗vij〉1 = (v′1, v

′′
2 ) and〈∗vij〉2 = (v′2, v

′′
1 ).

In summary, the construction gives us the following familyF of unit 2-track intervals:

F =
{
〈u〉 | u ∈ Vi, 1 ≤ i ≤ k

}
∪
{
〈uv〉1, 〈uv〉2 | uv ∈ Eij , 1 ≤ i < j ≤ k

}

∪
{
〈u∗ij〉1, 〈u∗ij〉2, 〈∗vij〉1, 〈∗vij〉2 | u ∈ Vi, v ∈ Vj , 1 ≤ i < j ≤ k

}
∪ DUMMIES,

where DUMMIES is the set of2k + 4
(k
2

)
dummy 2-track intervals.

Lemma 3. G has ak-multicolored clique if and only ifGF has ak′-perfect code.

Proof. We first prove the direct implication. SupposeG has ak-multicolored cliqueK ⊆ V (G), then it is
easy to verify that the following subfamilyD of unit 2-track intervals is ak′-perfect code inGF :

D =
{
〈u〉 | u ∈ K

}
∪
{
〈uv〉1, 〈uv〉2 | u, v ∈ K

}
.
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We next prove the reverse implication. SupposeD is ak′-perfect code inGF . Observe that the dummy
2-track intervals in our construction are pairwise-disjoint. Moreover, the two dummies in each vertex gadget
share the same open neighborhood which is not empty, and the same is true about the two dummies associ-
ated with the two groups of intervals, the left group on track1 and the right group on track 2 (resp. the right
group on track 1 and the left group on track 2) of each edge gadget. It follows that these dummies cannot
be included inD. In order to perfectly dominate the dummies,D must include exactly one vertex 2-track
interval 〈u〉 from each vertex selection gadget and two edge 2-track intervals 〈uv〉1 and〈xy〉2 from each
edge selection gadget. Consider an edge 2-track interval〈uv〉1 = (û1, v̂2) from the edge selection gadget
for Eij , and observe the validation 2-track intervals dominated by〈uv〉1. To perfectly dominate the valida-
tion 2-track intervals〈w∗ij〉2 for all w ∈ Vi, D must include〈u〉 from the vertex selection gadget forVi.
Similarly, to perfectly dominate the validation 2-track intervals〈∗wij〉1 for all w ∈ Vj, D must include〈v〉
from the vertex selection gadget forVj . Then, to perfectly dominate the validation 2-track intervals〈w∗ij〉1
for all w ∈ Vi, and〈∗wij〉2 for all w ∈ Vj, the two intervalŝu2 andv̂1 must be used. This implies that the
other edge 2-track interval from the same edge selection gadget must be〈uv〉2 = (û2, v̂1). Therefore the
subset of verticesK = {u ∈ V (G) | 〈u〉 ∈ D} is ak-multicolored clique inG.

7 Distance Perfect Code

In this section we prove Theorem 9. We show that for anyd ≥ 2 d-DISTANCE k-PERFECT CODE is
W[1]-hard in unit 2-interval graphs by FPT reductions fromk-MULTICOLORED CLIQUE.

We consider the cased = 2 first. Let (G,κ) be an instance ofk-MULTICOLORED CLIQUE. We will
construct a familyF of unit 2-intervals as illustrated in Figure 8 such thatG has ak-multicolored clique if
and only if the intersection graphGF of F has a2-distancek′-perfect code, wherek′ = k +

(k
2

)
.

x

u

û1 u′

û2u′′

e

y

Figure 8: The vertex gadget forVi (left) is connected to the edge gadget forEij (right) by a validation gadget
(middle).

Vertex selection: For each colori, 1 ≤ i ≤ k, let Vi be the set of vertices of colori. We construct a
vertex-selection gadget forVi as illustrated in Figure 8. Write|Vi| = φ. On track 1 there is an interval
labeled byx. On track 2 there areφ disjoint intervals, one for each vertex inVi. For therth vertexu in Vi,
1 ≤ r ≤ φ, we add a 2-track interval〈u〉 = (x, u) to F . We also add four dummy 2-track intervals toF :
two dummy 2-track intervals intersect withx; the other two dummy 2-track intervals intersect with the first
two dummy 2-track intervals, respectively. In figure 8, onlyone interval (on track 1) of each dummy 2-track
intervals is drawn.

Edge selection: For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, letEij be the set of edgesuv
such thatu has colori andv has colorj. Write |Eij | = ψ. There areψ disjoint intervals on track 1, one
for each edge inEij . There is an interval labeled byy on track 2. For each edgee ∈ Eij, add a 2-track
interval 〈e〉 = (y, e) to F . We also add four dummy 2-track intervals toF in the similar way as in each
vertex selection gadget.
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Validation selection: For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, we construct two validation
gadgets that connect the two vertex gadgets forVi andVj , respectively, to the edge gadget forEij . First we
describe the validation gadget between the vertex gadget for Vi and the edge gadget forEij . Write |Vi| = φ
and |Eij | = ψ. On track 1, there are2φ interval arranged inφ rows and two (slanted) columns. Theφ
intervals in each column are pairwise-intersecting. Moreover, each interval in the left column intersects
with all intervals in higher rows in the right column but not the interval in the same row. For therth vertex
u ∈ Vi, 1 ≤ r ≤ φ, denote bŷu1 andu′ the left and right intervals, respectively, in therth row. On track 2,
the arrangement of the2φ intervals are similar except that each interval in the left column intersects with all
intervals in the higher rowsandthe interval in the same row. Denote byu′′ andû2 the left and right intervals,
respectively, in therth row. We add2φ + ψ validation 2-track intervals toF . For each vertexu ∈ Vi, add
〈u∗ij〉1 = (u, u′) and〈u∗ij〉2 = (û1, û2) toF . For each edgee = uv ∈ Eij, add〈u, e〉 = (e, u′′) to F .

The validation gadget between the vertex gadget forVj and the edge gadget forEij (not shown in
Figure 8) is constructed similarly. For each vertexv ∈ Vj, we add〈∗vij〉1 = (v, v′) and〈∗vij〉2 = (v̂1, v̂2)
toF . For each edgee = uv ∈ Eij , we add〈v, e〉 = (e, v′′) toF .

In summary, the construction gives us the following familyF of unit 2-track intervals:

F =
{
〈u〉 | u ∈ Vi, 1 ≤ i ≤ k

}
∪
{
〈e〉 | e ∈ Eij, 1 ≤ i < j ≤ k

}

∪
{
〈u∗ij〉1, 〈u∗ij〉2, 〈∗vij〉1, 〈∗vij〉2 | u ∈ Vi, v ∈ Vj, 1 ≤ i < j ≤ k

}

∪
{
〈u, e〉, 〈v, e〉 | e = uv ∈ Eij , 1 ≤ i < j ≤ k

}
∪ DUMMIES,

where DUMMIES is the set of4k + 4
(k
2

)
dummy 2-track intervals.

Lemma 4. G has ak-multicolored clique if and only ifGF has a2-distancek′-perfect code.

Proof. We first prove the direct implication. SupposeG has ak-multicolored cliqueK ⊆ V (G), then one
can verify that the following subfamilyD of 2-track intervals is a2-distancek′-perfect code inGF :

D =
{
〈u〉 | u ∈ K

}
∪
{
〈e〉 | e = uv, u, v ∈ K

}
.

We next prove the reverse implication. Suppose thatD is a 2-distancek′-perfect code inGF . By a
similar argument as in the proof of Lemma 3, the dummies cannot be included inD. In order to perfectly
dominate the dummies,D must include exactly one〈u〉 from each vertex gadget and exactly one〈e〉 from
each edge gadget. For therth vertexu andtth vertexw in Vi, we writeu ≤i w if r ≤ t andu >i w if r > t.
Consider〈e〉 from the edge gadget forEij , wheree = uv. Observe that in the validation gadget between
the vertex gadget forVi and the edge gadget forEij , the 2-track intervals{〈w∗ij〉2 | w ∈ Vi, w ≤i u} are
within distance 2 from〈e〉. Then, to perfectly dominate the 2-track intervals{〈w∗ij〉2 | w ∈ Vi, w >i u},
the 2-track interval〈u〉 from the vertex gadget forVi must be included inD. Similarly, to perfectly dominate
the 2-track intervals〈∗wij〉2 in the other validation gadget, the 2-track interval〈v〉 from the vertex gadget
for Vj must also be included inD. Therefore the subset of verticesK = {u ∈ V (G) | 〈u〉 ∈ D} is a
k-multicolored clique inG.

The above construction can be generalized to handle the cased > 2. The generalizations for even and
oddd are slightly different. We first describe the generalization for evend. Extend each vertex gadget to
included pairs of dummy 2-track intervals instead of two pairs, and toincluded−1 disjoint intervals for each
vertexu, labeled byus, 1 ≤ s ≤ d− 1, whereus is on track 2 for odds and on track 1 for evens. Instead
of two 2-track intervals(x, u) and(u, u′), d 2-track intervals(x, u1), (u1, u2), . . . , (ud−2, ud−1), (ud−1, u

′)
are added toF . Extend each edge gadget in a similar way to included pairs of dummy 2-track intervals,
and to included− 1 disjoint intervals for each edgee, labeled byes, 1 ≤ s ≤ d− 1, wherees is on track 1
for odds and on track 2 for evens. Instead of(y, e) and(e, u′′), we have(y, e1), (e1, e2), . . . , (ed−2, ed−1),
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(ed−1, u
′′). The generalization for oddd is the same as the generalization for evend except that for each

validation gadget we need to swap the intervals on the two tracks, to ensure that(ud−1, u
′), (vd−1, v

′),
(ed−1, u

′′), and(ed−1, v
′′) are indeed 2-track intervals.

8 Vertex Clique Partition

In this section we prove Theorem 11. We show thatk-VERTEX CLIQUE PARTITION in unit 2-interval graphs
is W[1]-hard by an FPT reduction from the W[1]-complete problemk-MULTICOLORED CLIQUE [11].

Let (G,κ) be an instance ofk-MULTICOLORED CLIQUE. We will construct a familyF of unit 2-
intervals such thatG has a clique ofk vertices containing exactly one vertex of each color if and only if the
vertices of the intersection graphGF of F can be partitioned intok′ cliques, wherek′ = 3k + 2

(k
2

)
.

Denote byCn the cycle graph ofn verticesc1, . . . , cn andn edgescici+1, 1 ≤ i ≤ n− 1, andcnc1. We
first prove the following technical lemma:

Lemma 5. For each integern ≥ 1, the cycle graphC4n+1 satisfies the following properties:

1. The chromatic number ofC4n+1 is 3.

2. The chromatic number of the graph obtained fromC4n+1 by deleting at least1 and at most2n vertices,
is 2.

3. In any partition of the vertices ofC4n+1 into 3 independent sets, at most one independent set can have
size one.

4. The complement graphC4n+1 is a unit 2-interval graph. Moreover, there exists a2-partition An ∪
B3n+1 of the vertices such that the graph can be represented by one unit interval for each vertex
ai ∈ An, 1 ≤ i ≤ n, and two unit intervals for each vertexbj ∈ B3n+1, 1 ≤ j ≤ 3n+ 1.

Proof. We prove the four properties one by one:

1. C4n+1 is an odd cycle; hence it is not bipartite and has chromatic number at least3. To achieve the
chromatic number3, we can assign each vertexci the color1 if i is odd but not equal to4n + 1, the
color 2 if i is even, and the color3 if i is equal to4n + 1.

2. With any vertex deleted fromC4n+1, the resulting graph does not have any cycles and hence is bipar-
tite, with chromatic number at most2. Note that the number of edges inC4n+1 is 4n + 1, and that
each vertex is incident to2 edges. With at most2n vertices deleted fromC4n+1, the resulting graph
has at least one edge remaining, and hence has chromatic number at least2.

3. LetI1 ∪ I2 ∪ I3 be any partition of the vertices ofC4n+1 into 3 independent sets. Again note that the
number of edges inC4n+1 is 4n+1 ≥ 5, and that each vertex is incident to2 edges. If bothI1 andI2
have size one, then the2 vertices inI1 ∪ I2 are together incident to at most4 edges, and there must be
at least one edge remaining between two vertices inI3, which contradicts our assumption that it is an
independent set.

4. Consider4n + 1 vertices spread evenly on a circle of unit perimeter. Connect each vertex to the two
farthest vertices by two edges. Then we obtain the cycle graphC4n+1. The complement graphC4n+1

is clearly a circular-arc graph, i.e., the intersection graph of a set of circular-arcs, where each vertex
is represented by an open circular arc of length2n

4n+1
. LetAn be anyn consecutive vertices along the

circle and letB3n+1 be the remaining3n + 1 vertices. Then the circular-arc representation ofC4n+1
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Figure 9: Leta1 . . . anb1 . . . b3n+1 be the4n+1 vertices along the circle. ThenC4n+1 can be represented by
one unit interval for eachai and two unit intervals for eachbj in the orderb1 . . . b3n+1a1 . . . anb1 . . . b3n+1.

can be easily “cut” and “stretched” into a 2-interval representation, with one unit interval for each
vertexai ∈ An, 1 ≤ i ≤ n, and with two unit intervals for each vertexbj ∈ B3n+1, 1 ≤ j ≤ 3n + 1.
We refer to Figure 9 for an example withn = 3.

Vertex selection: Refer to Figure 10(a). For each colori, 1 ≤ i ≤ k, let Vi be the set of vertices of
color i. Let ni = |Vi|. Construct a graphC4ni+1 on theni vertices inVi and3ni + 1 additional dummy
vertices, represented (using Property 4) by one unit interval for each vertex inVi, and two unit intervals for
each dummy vertex. This leaves one free interval for each vertex in Vi. Put theseni free intervals aside,
pairwise-disjoint. Thus we haveni unit 2-intervals including one unit 2-interval〈u〉 for each vertexu ∈ Vi,
and3ni + 1 additional dummy unit 2-intervals.

Edge selection: Refer to Figure 10(b). For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, letEij be
the set of edgesuv such thatu has colori andv has colorj. Letmij = |Eij |. Construct a graphC4mij+1

on mij vertices (one for each edge inEij) and3mij + 1 additional dummy vertices, represented (using
Property 4) by one unit interval for each vertex that corresponds to an edge inEij , and two unit intervals for
each dummy vertex. For each edgeuv = e ∈ Eij , we construct two unit 2-intervals〈ue〉 and〈ve〉. Let 〈e〉
be the unit interval in the representation ofC4mij+1 that corresponds to the edgee. The two unit 2-intervals
〈ue〉 and〈ve〉 share〈e〉 as one unit interval, and each of them has one more free interval. Thus we have
2mij unit 2-intervals including two unit 2-intervals〈ue〉 and〈ve〉 for each edgeuv = e ∈ Eij, and3mij+1
additional dummy unit 2-intervals.

Validation: Refer to Figure 10(c). For each edgeuv = e ∈ Eij, place the free interval of〈ue〉 to
coincide with the free interval of〈u〉, and place the free interval of〈ve〉 to coincide with the free interval of
〈v〉.
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Figure 10: An illustration of the construction fork-VERTEX CLIQUE PARTITION. (a) Vertex selection. (b)
Edge selection. (c) Validation.

LetF be the following family ofn+ 2m+ (3n + 3m+ k +
(k
2

)
) unit 2-intervals:

F =
{
〈u〉 | u ∈ Vi, 1 ≤ i ≤ k

}
∪
{
〈ue〉, 〈ve〉 | uv = e ∈ Eij , 1 ≤ i < j ≤ k

}
∪ DUMMIES,

where DUMMIES is the set of
∑

i(3ni+1)+
∑

ij(3mij+1) = 3n+3m+k+
(k
2

)
dummy unit 2-intervals.

This completes the construction.

Lemma 6. G has ak-multicolored clique if and only ifGF has ak′-vertex clique partition.

Proof. We first prove the direct implication. Suppose thatG has ak-multicolored cliqueK. We partition
GF into k′ = 3k + 2

(k
2

)
cliques as follows:

• For each colori, 1 ≤ i ≤ k, let Si be the subgraph ofGF represented by the4ni + 1 2-intervals for
theni vertices inVi and the3ni + 1 additional dummy vertices. Letui be the vertex of colori in
K. Put the 2-interval〈ui〉, together with the 2-intervals〈uie〉 for all edgese incident toui, into one
clique. SinceSi is isomorphic toC4ni+1, it follows by Property 2 that the remaining4ni 2-intervals
in Si can be partitioned into two cliques. Thus we have three cliques for each color.

• For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, letSij be the subgraph ofGF represented by
the5mij + 1 2-intervals including the two 2-intervals〈ue〉 and〈ve〉 for each edgeuv = e ∈ Eij and
the3mij + 1 additional dummy vertices. LetS′

ij be the graph obtained fromSij by contracting each
pair of vertices represented by〈ue〉 and〈ve〉 for some edgee (they have the same open neighborhood
in Sij) into a single vertex represented by〈e〉. ThenS′

ij is isomorphic toC4mij+1. Let uivj = eij
be the edge inK such thatui has colori andvj has colorj. The two 2-intervals〈uieij〉 and〈vieij〉
have already been included in the two cliques containing〈ui〉 and〈vi〉, respectively. Excluding〈eij〉,
the remaining4mij 2-intervals inS′

ij can be partitioned into two cliques by Property 2. Now expand
each contracted vertex back into two vertices. The two cliques inS′

ij remain two cliques inSij. Thus
we have two cliques for each pair of distinct colors.
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We next prove the reverse implication. Suppose thatGF has ak′-vertex clique partition. We will
find a k-multicolored clique inG. Define the subgraphsSi, 1 ≤ i ≤ k, and the subgraphsSij andS′

ij,
1 ≤ i < j ≤ k, as before. By Property 1, each subgraphSi of GF can be partitioned into3 but no less than
3 cliques. DefineS′′

ij, 1 ≤ i < j ≤ k, as the subgraph ofSij (and ofS′
ij) induced by the3mij + 1 dummy

vertices. SinceS′′
ij can be obtained fromC4mij+1 by deletingmij vertices, it follows by Property 2 thatS′′

ij

can be partitioned into2 but no less than2 cliques. Observe that thek subgraphsSi and the
(k
2

)
subgraphs

S′′
ij do not have edges in between. Sincek′ = 3k + 2

(k
2

)
, we must partition each subgraphSi into exactly3

cliques, and partition each subgraphS′′
ij into exactly2 cliques. The remaining 2-intervals〈ue〉 and〈ve〉 for

the edgese are then added to these cliques. For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, sinceS′
ij

is isomorphic toC4mij+1, it follows by Property 1 that there exists at least one edgeuv = e ∈ Eij such that
neither〈ue〉 nor 〈ve〉 is included in the two cliques forS′′

ij . Then〈ue〉 must be included in one of the three
cliques forSi that includes〈u〉 (and〈ve〉 must be included in one of the three cliques forSj that includes
〈v〉). Since〈ue〉 intersects〈u〉 but not the other 2-intervals inSi, this clique includes only one 2-interval
〈u〉 from Si. By Property 3, at most one of the three cliques forSi can include only one 2-interval fromSi.
Now for each colori, 1 ≤ i ≤ k, find the unique vertexui such that the 2-interval〈ui〉 appears in a clique
without any other 2-intervals fromSi. Then the set ofk verticesui corresponds to ak-multicolored clique
in G.

9 Separating Vertices

In this section we prove Theorems 12, 13, 14, and 15. We use thenotation(a, b) to represent a 2-track
interval wherea andb are intervals on different tracks. We use similar notationsfor 3-track intervals.

Proof of Theorem 12. Following the approach of Marx [24], we show thatk-SEPARATING VERTICES in
balanced 2-track interval graphs is W[1]-hard with parametersk andl by an FPT reduction fromk-CLIQUE.

LetG = (V,E) be an input instance ofk-CLIQUE with n vertices andm edges. We construct a family
F of balanced 2-track intervals as shown in Figure 11, and an input instance(GF , k

′, l′) for k-SEPARATING

VERTICESwith k′ = k andl′ = 2
(
k
2

)
.

track 1
x e

track 2
u

u1 u2 ua

v

v1 v2 vb

Figure 11: An illustration of the construction ofGF in Theorem 12.

On track 1 there arem+ 1 disjoint intervals. The first interval, labeled byx, has lengthn; the otherm
intervals, one for each edgee ∈ E, have length 1. On track 2 there are two rows of intervals. Thefirst row
hasn disjoint intervals of lengthn, one for each vertex inV . For a vertexu ∈ V , if the degree ofu is a, then
there area disjoint intervalsu1, u2, . . . , ua of length 1 on the second row, all intersecting with the interval
for u in the first row.

There aren + 2m balanced 2-track intervals inF . For every vertexu ∈ V , add a 2-track interval
(x, u) to F . For every vertexu, since there area = deg(u) many edges incident tou, fix an one-to-one
correspondence between edges incident tou and intervalsui with 1 ≤ i ≤ a. For an edgee = {u, v}, let
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ui (1 ≤ i ≤ a) andvj (1 ≤ j ≤ b, whereb is the degree ofv) be the intervals associated withe, add two
2-track intervals(e, ui) and(e, vj) toF .

From the construction ofGF , it is clear thatGF has a clique of sizen, represented by the set of 2-track
intervals{(x, u) | u ∈ V }. For an edgee = {u, v} in G, GF has a path of length three, represented by
2-track intervals(x, u), (e, ui), (e, vj), (x, v), with the middle two vertices being degree-two.

If there is ak-cliqueK inG, then we can cut the set ofk vertices inGF represented by{(x, u) | u ∈ K}.
By doing this, we separate2

(k
2

)
vertices represented by{(e, u), (e, v) | e ∈ E, e = {u, v}}. For the other

direction, supposek′ vertices can be deleted fromGF such thatl′ vertices are separated from the rest ofGF .
We partitionk′ deleted vertices into two partsX andY . LetX be the set of vertices from the clique of size
n in GF andY be the set of degree-two vertices inGF . Assumen > k + 2

(k
2

)
, after deletingX the rest of

the clique inGF has size greater thanl′, so thel′ separated vertices must be degree-two vertices inGF . It is
easy to see that by deletingX at most2

(|X|
2

)
degree-two vertices are separated from the rest ofGF , and by

deletingY at most|Y | degree-two vertices are separated from the rest ofGF . Thus we have|X|+ |Y | = k
and2

(|X|
2

)
+ |Y | ≥ 2

(k
2

)
. Whenk ≥ 2, these conditions hold only when|X| = k and|Y | = 0. This implies

that the set ofk vertices{u | (x, u) ∈ X} induces a clique inG.

Proof of Theorem 13. The reduction is also fromk-CLIQUE. Given an input instanceG = (V,E) with
n vertices andm edges fork-CLIQUE, we construct a familyF of 3-track intervals as shown in Figure 12.
We then showk-CLIQUE reduces tok-SEPARATING VERTICES in GF .

track 1

e

v11 v1i v1j v1n

e1

track 2

v21 v2i v2j v2n

e2

track 3

v31 v3i v3j v3n

e3

Figure 12: An illustration of the construction ofGF in Theorem 13. Only the 3-track interval(e1, e2, e3)
corresponding to one edgee is drawn.

Fix an orderingv1, . . . , vn of the vertices inG. On trackk (1 ≤ k ≤ 3), there aren disjoint intervals
vk1 , . . . , v

k
n. For every vertexvi ∈ V , add a 3-track interval(v1i , v

2
i , v

3
i ) to F . For every edgee = {vi, vj}

with i < j, add a 3-track interval(e1, e2, e3) (see Figure 12) toF , such thate1 intersects withv1l for all
l < i on track 1,e2 intersects withv2l for all i < l < j on track 2, ande3 intersects withv3l for all l > j on
track 3. The 3-track intervals for edges are pairwise intersecting at both left endpoint on track 1 and right
endpoint on track 3.

It is clear thatGF has a clique of sizen, represented by the set of 3-track intervals{(v1i , v
2
i , v

3
i ) |

vi ∈ G}. For each edgee = {vi, vj} in G, GF has a path of length two, represented by 3-track intervals
(v1i , v

2
i , v

3
i ), (e

1, e2, e3), (v1j , v
2
j , v

3
j ) with the middle vertex(e1, e2, e3) being degree-two. Setk′ = k and

l′ =
(k
2

)
. The rest of the proof is similar to the proof of Theorem 12.

For the sake of simple illustration, we did not draw the 3-intervals as balanced 3-intervals in Figure 12.
Now we show how to transform them into balanced 3-intervals.First make all intervals of the formvki
(1 ≤ i ≤ n, 1 ≤ k ≤ 3) unit-length open intervals. On track 1 align them next to each other without any gap
betweenv1i andv1i+1 for all 1 ≤ i < n. Do the same for track 3. But on track 2, align them with a gap of
lengthn betweenv2i andv2i+1 for all 1 ≤ i < n. Then, for any edgee = {vi, vj} with i < j, we can always
use a balanced 3-track interval(e1, e2, e3) to achieve the same intersecting pattern as shown in Figure 12.
In particular, first choose an appropriate length (betweenn andn2) for e2 so thate2 intersects withv2l for
all i < l < j on track 2, then makee1 ande3 the same length by extendinge1 to the left ande3 to the right
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if necessary.

Proof of Theorem 14. For the W[1]-hardness in balanced 2-track interval graphs,we use the same con-
struction as in the proof of Theorem 12, and ask whetherl = n+ 2m− 2

(k
2

)
− k connected vertices can be

separated fromGF by deletingk vertices. Similarly, for the W[1]-hardness in co-balanced3-track interval
graphs, we use the same construction as in the proof of Theorem 13, and ask whetherl = n+m−

(
k
2

)
− k

connected vertices can be separated fromGF by deletingk vertices.

Proof of Theorem 15. Use the same constructions as in the proofs of Theorem 12 and Theorem 13. Ask
whetherGF (orGF ) can be separated intol =

(
k
2

)
+ 1 components by deletingk vertices.

10 Irredundant Set

In this section we prove Theorem 16. We show thatk-IRREDUNDANT SET is W[1]-hard by an FPT reduc-
tion from the W[1]-complete problemk-MULTICOLORED CLIQUE [10].

Let (G,κ) be an instance ofk-MULTICOLORED CLIQUE. We will construct a graphG′ such thatG has
a clique ofk vertices containing exactly one vertex of each color if and only if G′ has an irredundant set of
k′ vertices, wherek′ = 3k + 5

(k
2

)
.

Vertex Selection: For each colori, 1 ≤ i ≤ k, the graphG′ contains a subgraphG′
i as thevertex gadget

for the colori. LetVi be the set of vertices inG with color i. For each vertexu ∈ Vi,G′
i includes3 vertices

u1, u2, u3 forming a3-clique. The vertices from different3-cliques inG′
i are disjoint.

Edge Selection: For each pair of distinct colorsi andj, 1 ≤ i < j ≤ k, the graphG′ contains a subgraph
G′
ij as theedge gadgetfor the color pairij. LetEij be the set of edgesuv such thatu has colori andv

has colorj. For each edgee = uv ∈ Eij, G′
i includes5 verticese1, e2, e3, e4, e5 forming a5-clique. The

vertices from different5-cliques inG′
ij are disjoint.

Validation: Each edge gadgetG′
ij is connected to the two vertex gadgetsG′

i andG′
j as follows. For each

edgee = uv ∈ Eij, each of the5 verticese1, e2, e3, e4, e5 is connected to each of the3 verticesu1, u2, u3
and to each of the3 verticesv1, v2, v3. In addition, we connect the edge gadgetG′

ij to each vertex gadget
G′
z, z ∈ {1, 2, . . . , k} − {i, j}, by adding all possible edges between them. Also, we connectdifferent

edge gadgets to each other, and connect different vertex gadgets to each other, by adding all possible edges
between them.

Lemma 7. G has a clique ofk vertices containing exactly one vertex of each color if and only if G′ has an
irredundant set ofk′ vertices, wherek′ = 3k + 5

(k
2

)
.

Proof. We first prove the direct implication. Suppose thatG has a cliqueK of k vertices containing exactly
one vertex of each color. LetI be the set ofk′ vertices inG′ including the3 verticesu1, u2, u3 for each
vertexu ∈ V (K) and the5 verticese1, e2, e3, e4, e5 for each edgee ∈ E(K). Observe thatI is a clique in
G′. It follows thatI is an independent set hence also an irredundant set inG′.

We next prove the reverse implication. Suppose thatG′ has an irredundant setI of k′ vertices. We start
with two simple propositions:

1. For each colori, I includes at most3 vertices in the subgraphG′
i. Moreover, ifI includes exactly3

vertices inG′
i, then they must be the verticesu1, u2, u3 from a3-clique inG′

i corresponding to some
vertexu ∈ Vi.

2. For each color pairij, I includes at most5 vertices in the subgraphG′
ij . Moreover, ifI includes

exactly5 vertices inG′
ij , then they must be the verticese1, e2, e3, e4, e5 from a5-clique inG′

ij corre-
sponding to some edgee ∈ Eij .
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To prove the first proposition, observe that any two verticesin the same3-clique inG′
i has the same

open neighborhood inG′. If I includes two or more vertices from the same3-clique inG′
i, then all these

vertices must be self-private, andI cannot include any vertex from a different3-clique inG′
i. Suppose that

I includes three or more vertices inG′
i that are not all from the same3-clique, then these vertices must

come from distinct3-cliques inG′
i. Let α, β, γ be three such vertices. Observe thatγ is adjacent to both

α andβ in G′
i. Also observe that the open neighborhood ofγ in G′ is contained in the union of the open

neighborhoods ofα andβ in G′. Thusγ cannot have a private neighbor, self-private or not. Similarly for α
andβ. This contradicts their membership inI.

To prove the second proposition, observe that any two vertices in the same5-clique inG′
ij has the same

open neighborhood inG′. If I includes two or more vertices from the same5-clique inG′
ij , then all these

vertices must be self-private, andI cannot include any vertex from a different5-clique inG′
ij . Suppose that

I includes five or more vertices inG′
ij that are not all from the same5-clique, then these vertices must come

from distinct5-cliques inG′
ij . Letα, β, γ, µ, ν be five such vertices. These vertices are pairwise adjacent in

G′
ij , so they cannot be self-private. Observe that within the subgraphG′

ij , the open neighborhood of each of
these five vertices is contained in the union of the open neighborhoods of any two of the other four vertices.
Also observe that within any gadget subgraph exceptG′

i, G
′
j , andG′

ij , any two of these five vertices have
the same (empty) open neighborhood. From these observations, it follows that these five vertices must have
private neighbors inG′

i andG′
j . Then, at least three of the five vertices must have private neighbors either

all inG′
i or all inG′

j . Assume without loss of generality that the three verticesα, β, γ have private neighbors

in G′
i. If any two of the three vertices have the same open neighborhood inG′

i, then the two vertices cannot
both have private neighbors inG′

i. Otherwise, the open neighborhood of any one of the three vertices is
contained in the union of the open neighborhoods of the othertwo, so none of the three vertices can have a
private neighbor inG′

i. We have reached a contradiction.
There are exactlyk vertex gadgets and exactly

(
k
2

)
edge gadgets in our construction. Note thatk′ =

3k + 5
(k
2

)
. From the two propositions, it follows thatI must include exactly3 verticesu1, u2, u3 from

each vertex gadgetGi corresponding to a vertexu ∈ Vi, and exactly5 verticese1, e2, e3, e4, e5 from each
edge gadgetGij corresponding to an edgee ∈ Eij . Moreover, thesek′ vertices are all self-private, so the
irredundant setI is indeed an independent set inG′. Then the correspondingk vertices and

(
k
2

)
edges inG

must be consistent, forming a multicolored clique with exactly one vertex of each color.

11 Concluding Remarks

Although we have managed to devise a simpler proof for the W[1]-hardness ofk-IRREDUNDANT SET in
general graphs, we were unable to strengthen this result by proving the W[1]-hardness ofk-IRREDUNDANT

SET in t-interval graphs or co-t-interval graphs for any constantt. Both the graph in the previous proof
of Downey et al. [10] and the graph in our simpler proof contain very large complete bipartite graphs and
complements of complete bipartite graphs. It is known [17] that the interval number of the complete bipartite
graphK⌊n/2⌋,⌈n/2⌉ is ⌈n+1

4
⌉, i.e.,⌈n+1

4
⌉ is the smallest numbert such thatK⌊n/2⌋,⌈n/2⌉ is at-interval graph.

Therefore, unless with new techniques, the existing constructions cannot be directly adapted to prove the
W[1]-hardness ofk-IRREDUNDANT SET in t-interval graphs or co-t-interval graphs even ift is a parameter
of the problem besidesk.

A general direction for extending our work is to strengthen the existing hardness results for more re-
stricted graph classes. For example, we showed in Theorem 2 that k-DOMINATING SET in co-3-track
interval graphs is W[1]-hard with parameterk. Is it still W[1]-hard in co-2-track interval graphs or co-unit
3-track interval graphs? Many questions can be asked in the same spirit. In particular, arek-INDEPENDENT

DOMINATING SET andk-PERFECTCODE W[1]-hard in co-t-interval graphs for some constantt ≥ 2?
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