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Abstract

We show that the problem-DOMINATING SET and its several variants includirkg CONNECTED
DOMINATING SET, k-INDEPENDENTDOMINATING SET, andk-DOMINATING CLIQUE, when param-
eterized by the solution size are W[1]-hard in either multiple-interval graphs or theamplements
or both. On the other hand, we show that these problems bé&towg1] when restricted to multiple-
interval graphs and their complements. This answers an@pestion of Fellows et al. In sharp contrast,
we show thatl-DISTANCE k-DOMINATING SET for d > 2 is W[2]-complete in multiple-interval graphs
and their complements. We also show tha®PERFECTCODE andd-DISTANCE k-PERFECTCODE for
d > 2 are W[1]-complete even in unit 2-track interval graphs.ddition, we present various new results
on the parameterized complexities/efV ERTEX CLIQUE PARTITION andk-SEPARATING VERTICES
in multiple-interval graphs and their complements, andsené a very simple alternative proof of the
WI[1]-hardness of:-IRREDUNDANT SET in general graphs.

1 Introduction

We introduce some basic definitions. Tinéersection graph)(F) of a family of setsF = {S1,...,S,}

is the graph with7 as the vertex set and with two different verticBsand S; adjacent if and only if
SiNS; # 0; the family F is called arepresentatiorof the graph(F). Lett > 2 be an integer. A-interval
graphis the intersection graph of a family ofintervals, where eactinterval is the union oft disjoint
intervals in the real line. A-track interval graphis the intersection graph of a family éftrack intervals,
where each-track intervalis the union oft disjoint intervals ort disjoint parallel lines called tracks, one
interval on each track. Note that thelisjoint tracks for &-track interval graph can be viewed tadisjoint
“host intervals” in the real line for &interval graph. Thus-track interval graphs are a subclasg-iriterval
graphs. If at-interval graph has a representation in which all intervege unit lengths, then the graph is
a unit t-interval graph If a ¢-interval graph has a representation in which ttdisjoint intervals of each
t-interval have the same length (although the intervals fidferent¢-intervals may have different lengths),

*A preliminary version of this article appeared in two pant<GOCOON 2011[21] and IPEC 2011 |22].
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then the graph is balancedt-interval graph Similarly we define unit-track interval graphs and balanced
t-track interval graphs. We refer to Figure 1 and Figure 2viar €xamples.
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Figure 1: A 2-interval representation of the grafghs.
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Figure 2: A unit 2-track interval representation of the dradp, 5.

As generalizations of the ubiquitous interval graphs, ipldtinterval graphs such asinterval graphs
and t-track interval graphs have numerous applications, imaditly to scheduling and resource alloca-
tion [26,[1], and more recently to bioinformatids [5,! 18]. rRbis reason, a systematic study of various
classical optimization problems in multiple-interval ghs has been undertaken by several groups of re-
searchers. In terms of approximability, Bar-Yehuda et/Hl.presented &t-approximation algorithm for
MAXIMUM INDEPENDENT SET in t-interval graphs, and Butman et &ll [2] presented appraokimeal-
gorithms for MNIMUM VERTEX COVER, MINIMUM DOMINATING SET, and MaxIMUM CLIQUE in t-
interval graphs with approximation rati@s— 1/t, t2, and(t?> — t + 1) /2, respectively.

Fellows et al.[[11] initiated the study of multiple-intehvgraph problems from the perspective of pa-
rameterized complexity. In general graphs, the four proBlg-VERTEX COVER, k-INDEPENDENT SET,
k-CLIQUE, andk-DOMINATING SET, parameterized by the solution sizeare exemplary problems in pa-
rameterized complexity theory|[9]: it is well-known th&atV ERTEX COVER is in FPT,k-INDEPENDENT
SET andk-CLIQUE are W[1]-complete, and-DOMINATING SET is W[2]-complete. Sinceé-interval graphs
are a special class of graphs, all FPT algorithmg:f&fERTEX COVER in general graphs immediately carry
over tot-interval graphs. On the other hand, the parameterized lexitips of k-INDEPENDENT SET, k-
CLIQUE, andk-DOMINATING SET in t-interval graphs are not at all obvious. Indeed, in generaplgs,
k-INDEPENDENT SET andk-CLIQUE are essentially the same problem (the probleiNDEPENDENT SET
in any graphGi is the same as the problefCLIQUE in the complement grap®), but int-interval graphs,
they manifest different parameterized complexities. dvedl et al.[[11] showed that-INDEPENDENT SET
in t-interval graphs is W[1]-hard for anty> 2, then, in sharp contrast, gave an FPT algorithnkf&LIQUE
in t-interval graphs parameterized by bétandt. Fellows et al.[[11] also showed thatDOMINATING SET
in t-interval graphs is W[1]-hard for any> 2. Recently, Jiang [19] strengthened the two hardness sesult
for t-interval graphs, and showed thaiNDEPENDENT SET and k-DOMINATING SET remain W[1]-hard
even in unitt-track interval graphs for any > 2. In particular, we have the following theorem on the
parameterized complexity @-DOMINATING SET in unit 2-track interval graphs:



Theorem 1 (Jiang 2010/[[19]) k-DOMINATING SET in unit 2-track interval graphs is W[1]-hard with
parameterk.

The lack of symmetry in the parameterized complexitie&-0NDEPENDENT SET and £-CLIQUE in
multiple-interval graphs and their complements leads t@atml question about-DOMINATING SET,
which is known to be W[1]-hard in multiple-interval graphis it still W[1]-hard in the complements of
multiple-interval graphs? Our following theorem (here-&rack interval graphs” denotes “complements
of 3-track interval graphs”) gives a positive answer:

Theorem 2. k-DOMINATING SET in co-3-track interval graphs is W[1]-hard with parametkr

A connected dominating seta graphG is a dominating sef in G such that the induced subgra@tis)
is connected. Aindependent dominating skt a graphG is both a dominating set and an independent set
in G. A dominating cliquén a graphG is both a dominating set and a cliqueGh With connectivity taken
in account, the problerh-DOMINATING SET has three important variants: CONNECTED DOMINATING
SET, k-INDEPENDENT DOMINATING SET, and k-DOMINATING CLIQUE. Recall the sharp contrast in
parameterized complexities of the two problelaBNDEPENDENT SET andk-CLIQUE in multiple-interval
graphs and their complements. This leads to more naturatiqne abouk-DOMINATING SET: Are the two
problemsk-INDEPENDENT DOMINATING SET and k-DOMINATING CLIQUE still W[1]-hard in multiple-
interval graphs and their complements? Also, without vegeto either extreme, how abok#CONNECTED
DOMINATING SET?

We show that our FPT reduction for the W[1]-hardnes&-@OMINATING SET in co-3-track interval
graphs in Theorein 2 also establishes the following theorem:

Theorem 3. k-CONNECTED DOMINATING SET andk-DOMINATING CLIQUE in co-3-track interval graphs
are both W[1]-hard with parametet.

Similarly, it is not difficult to verify that the FPT reductiofor the W[1]-hardness af-DOMINATING
SET in unit 2-track interval graphs [19] also establishes tHiefang theorem:

Theorem 4. k-INDEPENDENTDOMINATING SET in unit 2-track interval graphs is W[1]-hard with param-
eterk.

For the two problems-CONNECTED DOMINATING SET and k-DOMINATING CLIQUE in multiple-
interval graphs, we obtain a weaker result:

Theorem 5. k-CONNECTED DOMINATING SET and k-DOMINATING CLIQUE in unit 3-track interval
graphs are both W[1]-hard with parametér

Recall thatkc-DOMINATING SET in general graphs is W[2]-complete. Fellows etlall[11] askénether
it remains W[2]-complete in-interval graphs fot > 2. Our following theorem shows that this is very
unlikely:

Theorem 6. k-DOMINATING SET, k-CONNECTED DOMINATING SET, k-INDEPENDENT DOMINATING
SET, andk-DOMINATING CLIQUE in t-interval graphs and ca-interval graphs for all constants> 2 are
in W[1].

A generalization ok-DOMINATING SET is calledd-DISTANCE k-DOMINATING SET, where each ver-
tex is able to dominate all vertices within a threshold distad. Note thatk-DOMINATING SET is simply
d-DISTANCE k-DOMINATING SET with d = 1. On the other hand{-DISTANCE k-DOMINATING SET in
any graphG is simply k-DOMINATING SET in the dth power of G. In contrast to Theorenis 1 ahd 6, we
have the following theorem fat-DISTANCE k-DOMINATING SET:
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Theorem 7. d-DISTANCE k-DOMINATING SET for anyd > 2 in unit 2-track interval graphs, fod = 2 in
co-3-interval graphs, and for any > 3 in co-4-interval graphs is W[2]-hard with parametér

The last variant of.-DOMINATING SET that we study in this paper is callédPERFECT CODE. For
a graphG = (V, E) and a vertexu € V, we define theopen neighborhood af in G asN(u) := {v |
{u,v} € E}, and define thelosed neighborhood aof in G as N[u] := N(u) U {u}. A perfect coden
a graphG = (V, E), also known as perfect dominating setr anefficient dominating sets a subset of
verticesV’ C V that includes exactly one vertex from the closed neighbmithaf each vertex. € V. The
problemk-PeERFECT CODE is that of deciding whether a given graghhas a perfect code of size exactly
The problemk-PERFECT CODE is W[1]-complete with parametet in general graphs [8,14]. Itis
also known to be NP-complete mregular graphs for any > 3 [23] and in planar graphs of maximum
degree3 [12]. Since every graph of maximum degr&es the intersection graph of a family of unit 2-track
intervals [20, Theorem 4], it follows th&tPERFECT CODE is NP-complete in unit 2-track interval graphs.
In the following theorem, we show that+PeERFECT CODE is indeed W[1]-hard in unit 2-track interval
graphs:

Theorem 8. k-PERFECTCODE in unit 2-track interval graphs is W[1]-hard with parametgr

The distance variant ¢f-PERFECT CODE, denoted ag-DISTANCE k-PERFECT CODE, is also studied
in the literature[[28]. Recall that-DISTANCE k-DOMINATING SET in any graph is simplyk-DOMINATING SET
in thedth power ofG. Similarly, d-DISTANCE k-PERFECTCODE in any graphy is simplyk-PERFECT CODE
in thedth power ofG. Sincek-PERFECTCODE in general graphs is in W[1] [4], it follows thatDISTANCE
k-PERFECT CODE in general graphs is also in W[1]. In the following theoreng show that/-DISTANCE
k-PERFECT CODE is W[1]-hard even in unit 2-track interval graphs:

Theorem 9. d-DISTANCE k-PERFECT CODE for anyd > 2 in unit 2-track interval graphs is W[1]-hard
with parameterk.

At the end of their paper, Fellows et al. [11] listed four gesbs that are W[1]-complete in general
graphs, and suggested that a possibly prosperous dirdotiextending their work would be to investigate
whether these problems become fixed-parameter tractalteiliiple-interval graphs. The four problems
are k-VERTEX CLIQUE COVER, k-SEPARATING VERTICES k-PERFECT CODE, and k-|RREDUNDANT
SET.

The problemk-VERTEX CLIQUE COVER has a close relative callédEDGE CLIQUE COVER. Given a
graphG = (V, E) and an integek, the problemk-VERTEX CLIQUE COVER asks whether the vertex sét
can be partitioned intd disjoint subset¥;, 1 <1 < k, such that each subsgtinduces a complete subgraph
of GG, and the problenk-EDGE CLIQUE COVER asks whether there ake(not necessarily disjoint) subsets
V;of V, 1 < i < k, such that each subsgtinduces a complete subgraph@®@fand, moreover, for each edge
{u,v} € E, there is somé&; that contains botlu andv. The two problems:-VERTEX CLIQUE COVER
and k-EDGE CLIQUE COVER are also known in the literature #sCLIQUE PARTITION and k-CLIQUE
COVER, respectively, and are both NP-compléte! [13, GT15 and GTI@]avoid possible ambiguity, we
will henceforth use the termd-VERTEX CLIQUE PARTITION instead ofk-VERTEX CLIQUE COVER oOr
k-CLIQUE PARTITION.

Although the two problem%-VERTEX CLIQUE PARTITION and k-EDGE CLIQUE COVER are both
NP-complete, they have very different parameterized ceriipts. The problent-EDGE CLIQUE COVER
is fixed-parameter tractable in general graphs [16]; hehizalso fixed-parameter tractable in multiple-
interval graphs and their complements. On the other haedyrtbblemk-VERTEX CLIQUE PARTITION in
any graphG is the same as the problelaVERTEX COLORING in the complement grap®'. It is known
that 3-VERTEX COLORING of planar graphs of maximum degrdeis NP-hard [[15]. It is also known
that k-VERTEX COLORING in circular-arc graphs is NP-hard if is part of the input[[14]. Since graphs
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of maximum degred are unit 3-track interval graphs _[20, Theorem 4], and sirioaular-arc graphs are
obviously 2-track interval graphs (by a simple cutting angmt), we immediately have the following easy
theorem on the complexity 0f-VERTEX CLIQUE PARTITION in the complements of multiple-interval
graphs:

Theorem 10. 3-VERTEX CLIQUE PARTITION in co-unit 3-track interval graphs is NP-hard; thus, unless
NP=P, k-VERTEX CLIQUE PARTITION in co-unit 3-track interval graphs does not admit any FPTaalg
rithms with parametek. Also,k-VERTEX CLIQUE PARTITION in co-2-track interval graphs is NP-hard if
k is part of the input.

For the complexity of:-VERTEX CLIQUE PARTITION in multiple-interval graphs, we obtain the fol-
lowing theorem:

Theorem 11. k-VERTEX CLIQUE PARTITION in unit 2-interval graphs is W[1]-hard with parametér.

Given a graphG = (V, E) and two integerg and!, the problemk-SEPARATING VERTICESIs that of
deciding whether there is a partition = X U .S UY of the vertices such thai | = [, |S| < k, and there
is no edge betweeX andY? In other words, is it possible to cutvertices off the graph by deleting
vertices?

The problemk-SEPARATING VERTICES is one of several closely related graph separation problems
considered by Marx [24] in terms of parameterized compyexilarx showed thak-SEPARATING VER-
TICESis W[1]-hard in general graphs with two parametetand/, but is fixed-parameterized tractable with
three parameters, [, and the maximum degrekof the graph. In the following two theorems, we show that
with two parameterg and!, k-SEPARATING VERTICESremains W[1]-hard in multiple-interval graphs and
their complements:

Theorem 12. k-SEPARATING VERTICESIn balanced 2-track interval graphs is W[1]-hard with paraters
k andl.

Theorem 13. k-SEPARATING VERTICESIn co-balanced 3-track interval graphs is W[1]-hard withrpan-
etersk andl.

The problemk-SEPARATING VERTICESWas studied under the nam@CrTING [ VERTICESbhy Marx [24],
who also studied two closely related variants callegr@NG | CONNECTED VERTICES and QUTTING
INTO [ COMPONENTS In CUTTING [ CONNECTED VERTICES thel vertices that are separated from the
rest of G must induce a connected subgraphGaf In CUTTING INTO [ COMPONENTS the objective is
to delete at most vertices such that the remaining graph is broken into at leesnnected components.
Marx showed that OTTING | CONNECTED VERTICESis W[1]-hard when parameterized by eithieor [,
and is fixed-parameter tractable when parameterized by /atid/. We observe that his W[1]-hardness
proof with parametet involves only line graphs, which are obviously a subclassrof 2-interval graphs.
Marx also showed that CrTING INTO [ COMPONENTSIs W[1]-hard when parameterized by bdifandi.

In the following two theorems, we extend these W[1]-hardnesults to multiple-interval graphs and their
complements:

Theorem 14. CUTTING [ CONNECTED VERTICES in balanced 2-track interval graphs and co-balanced
3-track interval graphs is W[1]-hard with parametér

Theorem 15. CUTTING INTO | COMPONENTSIN balanced 2-track interval graphs and co-balanced 34rac
interval graphs is W[1]-hard with parametefsand!.



The problemk-PERFECT CODE has been covered in Theorehis 8 ahd 9. We now move on to the last

problem, k-IRREDUNDANT SET. Recall that for a grapliz = (V, E), the open neighborhoodf v is

N(u) = {v | {u,v} € E}, and that theclosed neighborhoodf u is N[u] = N(u) U {u}. For a subset

V' C V of vertices, we define thepen neighborhood df’ in G asN (V') := U,y N(u) and define the
closed neighborhood df’ in G asN[V’] := U,eyN[u]. An irredundant sein a graphG = (V, E) is a
subset’” C V such that each vertex € V' isirredundant i.e., N[V’ — {u}] is a proper subset a¥[V"].
Equivalently, arirredundant setn a graphG = (V, E) is a subset”’ C V such that each vertexe V' has
aprivate neighborr(u) € V satisfying one of the two following conditions:

1. 7(u) is adjacent ta: but not to any other vertex € V.

2. w(u) is u itself, andw is not adjacent to any other vertexc V’. In this case, we say that is
self-private

Note that an independent set is an irredundant set in whiety exertex is self-private.

Both k-PERFECTCODE andk-IRREDUNDANT SET are very important problems in the development of
parameterized complexity theory. The problésPERFECT CODE was shown to be W[1]-hard as early as
1995 [8], but its membership in W[1] was proved much later @92 [4]. Indeed this problem was once
conjectured by Downey and Fellows [9, p. 487] either to repne an intermediate between W[1] and W[2],
or to be complete for W[2]. Similarly, the probleft|RREDUNDANT SET was shown to be in W[1] in
1992 [7], and was once conjectured as an intermediate betiRe& and W[1] before it was finally proved
to be W[1]-hard in 2000 _[10]:

Theorem 16 (Downey, Fellows, and Raman [10]k-IRREDUNDANT SET in general graphs is W[1]-hard
with parameterk.

The celebrated proof of Downey et dl. [10] was a major breakifph in parameterized complexity
theory, but it is rather complicated, spanning seven palgethis paper, we give a very simple alternative
proof (less than two pages) of Theorenh 16. Our proof is basethd-PT reduction from the W[1]-complete
problem k-MULTICOLORED CLIQUE [11]: Given a graphG of n vertices andn edges, and a vertex-
coloringx : V(G) — {1,2,...,k}, decide whetheti has a clique of vertices containing exactly one
vertex of each color (without loss of generality, we assuhmg ho edge inG connects two vertices of
the same color). Indeed all proofs of W[1]-hardness in tlaipgr are based on FPT reductions from this
problem. After its invention, this technique quickly beamstandard tool for parameterized reductions. It
was used by researchers to prove new W[1]-hardness resuliglbas to simplify existing W[1]-hardness
proofs in many different settings.

The problem of recognizing multiple-interval graphs is N&d in general [20]. This aspect of compu-
tational complexity involving the recognition of a classgsfphs is quite different from the computational
complexities of various optimization problems in such ¢nap To avoid confusion, for all optimization
problems in multiple-interval graphs and their complemsdhat are studied in this paper, we assume that
the multiple-interval representation of the graph is giasrpart of the input.

2 Dominating Set

In this section we prove Theorem 2. We show thaDOMINATING SET in co-3-track interval graphs is
WI[1]-hard by an FPT reduction from the W[1]-complete praoble-MULTICOLORED CLIQUE [11].

Let (G, k) be an instance ok-MULTICOLORED CLIQUE. We will construct a familyF of 3-track
intervals such thatr has a clique of vertices containing exactly one vertex of each color if anly d the
complement of the intersection graph- of 7 has a dominating set @f vertices, wheré’ = k + (’;)



Vertex selectionLet vy, ..., v, be the set of vertices i@, sorted by color such that the indices of all
vertices of each color are contiguous. For each cglor< i < k, letV; = {v, | s; < p < t;} be the set of
verticesu,, of color :. For each vertex,, 1 < p < n, let(v,) be avertex 3-track intervatonsisting of the
following three intervals on the three tracks:

track 1: (p—1,p)
(vp) =4q track2: (p—1+m+1Lp+m+1)
track3: (p—1+m+1,p+m+1).

For each coloi, 1 < i < k, let (V) be the following 3-track interval:

track 1: (t;,m+n+1)
(Viy =< track2: (0,s; —1+m+1)
track 3: (m,m+1).

Edge selectionLet ey, ..., e, be the set of edges i@, also sorted by color such that the indices of
all edges of each color pair are contiguous. For each paiistihdt colorsi andj, 1 < i < j < k, let
Ei; = {e, | sij < r < t;;} be the set of edges,v, such thaw, has colori andv, has colorj. For each
edgee,, 1 < r < m, let(e,) be anedge 3-track intervatonsisting of the following three intervals on the
three tracks:

trackl: (r—1+n+1,r+n+1)
(e,) =< track2: (r—1,r)
track 3: (r—1,r).

For each pair of distinct colorsandyj, 1 <i < j <k, let (E;;) be the following 3-track interval:
track 1: (0,s;; —1+n+1)

<EZ]> = track 2: (tija n-—+m -+ 1)
track 3: (m,m+1).

Validatiort For each edge, = v,v, such that,, has colori andv, has colorj, let (v,e,) and(v,e,) be
the following 3-track intervals:

track 1: (p,s;j —1+n+1) track 1: (g,si; —1+n+1)
(vper) = ¢ track2: (tij,p—14+m+1) (vee,) =4 track2: (t;,¢q—1+m+1)
track 3: (r—1,7), track 3: (r—1,7).

Let F be the following family ofn +m + k + (5) + 2m 3-track intervals:

fz{(vp>|1§p§n}U{<e¢>|1§r§m}
U{(Vi |1 <i<k}U{(Ej) |1<i<j<k}
U {{vper), (vger) | er = vpvg € By, 1 <i < j < k}.

This completes the construction. We refer to Figure 3 forxamgple. The following five properties of the
construction can be easily verified:

1. For each colof, 1 < i <k, all 3-track intervalgv,) for v, € V; are pairwise-disjoint.

2. For each coloi, 1 < i < k, (V;) intersects all other 3-track intervals except the vertearasdk
intervals(v,) for v, € V;.



U1 U2

€1 €3

U3 €4 V4

track 1 track 2 track 3

Figure 3. Top: A graplG of n = 4 verticesvy, v9, v3,v4 andm = 4 edgese; = viv3,e9 = v1vy4,€3 =
vy, €4 = v3vy, With k = 3 colorsk(vy) = k(ve) = 1, k(v3) = 2, andk(vg) = 3. V1 = {vy, v}, Vo =
{2)3},‘/}, = {2)4}; FEio = {61},E13 = {62,63},E23 = {64}. K = {2)1,2)3,2}4} is a3-multicolored clique.
Bottom: A family 7 of n+m+k+ (’;’) +2m = 22 3-track intervalsD = {(v1), (vs), (v4), (€1), (e2), {e4)}
is a6-dominating set in the complement of the intersection gi@ph.

3. For each pair of distinct colorisandj, 1 < i < j < k, all 3-track intervals(e,) for e, € E;; are
pairwise-disjoint.

4. For each pair of distinct colorsandj, 1 < i < j < k, (E;;) intersects all other 3-track intervals
except the edge 3-track intervdls.) for e, € E;;.

5. For each pair of distinct coloisandj, 1 < ¢ < j < k, for each edge, € E;; and each vertex,
incident toe,, (vye,) intersects all other 3-track intervals except the vertésadk interval(v,) and
the edge 3-track intervals for the edgedFip other than(e,).



Lemmal. G has ak-multicolored clique if and only i  has ak’-dominating set.

Proof. For the direct implication, ik C V(G) is ak-multicolored clique inG, then the following subset
D C F of 3-track intervals is &’-dominating set irG r:

D= {<Up> | vp € K}U{(eﬁ | vp,vg € K, e :Upvq}.

To verify this, check that eacfv,) ¢ D is dominated byv,/) € D for some vertex,, of the same color
asv, (Property 1), eaclle,) ¢ D is dominated by, ) € D for some edge, of the same color pair as
(Property 3), eacklV;) is dominated byv,) € D for somev, € V; (Property 2), eackE;;) is dominated by
(er) € D for somee, € E;; (Property 4), and eacfv,e,) is dominated either byv,) € D, whenv, € K,
or by (e,») € D for some edge, of the same color pair as., whenv, ¢ K (Property 5).

For the reverse implication, suppose tfatC F is a k’-dominating set inGz. We will find a k-
multicolored cliqueK C V(G) in G. For each colog, 1 < i < k, D must include eithe(V;) or at least
one of its neighbors i’ . Thus by Properties 1 and 2, we can assume without loss ofajiépehat D
does not includeV;) but includes at least one vertex 3-track interftg)) for somev, € V;. Similarly, for
each pair of distinct colorsandj, 1 <i < j < k, we can assume by Properties 3 and 4 thatoes not
include (E;;) but includes at least one edge 3-track interva) for somee, € E;;. Sincek’ = k + (’5)
it follows that D includes exactly one vertex 3-track interval of each cadmri exactly one edge 3-track
interval of each color pair. For each pair of distinct coloesdj, 1 <i < j <k, lete, = v,v, be the edge
whose 3-track intervale,) is included inD. By Property 5 of the construction, the two 3-track intesval
(vper) and(vge,) cannot be dominated by,.) and hence must be dominated fay) and(v,), respectively.
Therefore the vertex selection and the edge selection aigstent, and the set &fvertex 3-track intervals
in D corresponds to A-multicolored cliqueK in G. O

3 Connected Dominating Set, | ndependent Dominating Set, and Dominat-
ing Clique

In this section we prove Theoreind 3, 4, and 5.

For Theorenmi 3, to show the W[1]-hardnessie€EONNECTED DOMINATING SET andk-DOMINATING
CLIQUE in co-3-track interval graphs, let us review our FPT redactior Theoreni 2, in particular, the
proof of Lemmd.lL, in the previous section. Observe that ferdinect implication of Lemmal 1, our proof
composes a dominating sét of pairwise-disjoint 3-track intervals, and that for theeese implication
of Lemmall, our proof uses only the fact tHatis a dominating set without any assumption about its
connectedness. This implies that our FPT reduction for fidra@ also establishes Theorem 3. By a similar
argument, it is not difficult to verify that the FPT reductifor the W[1]-hardness of-DOMINATING SET
in unit 2-track interval graphs [19] also establishes theljardness ok-INDEPENDENT DOMINATING
SET in unit 2-track interval graphs in Theordm 4.

For Theorenmi 5, to show the W[1]-hardnessieé€EONNECTED DOMINATING SET andk-DOMINATING
CLIQUE in unit 3-track interval graphs, we use the same constmicmin the previous FPT reduction for
the W[1]-hardness df-DOMINATING SET in unit 2-track interval graphs [19] for the first two trackhen,
on track 3, we use the same (coinciding) unit interval fonalltiple-intervals in

Fr={a; [u€Vi, 1 <i < kU {05, 405 4, | w0 € Bij, 1 <i < j < kY,

and use a distinct unit interval disjoint from all other umtervals for each of the remaining multiple-
intervals. Now the dominating set composed in the direclizafion of the proof in[[19] becomes a clique.
Since the reverse implication of the proof in [19] does ngiedel on the additional intersections between
the multiple-intervals inF’, the modified reduction establishes Theotém 5.
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4 W]1]-membership of Dominating Set and Its Variants

In this section we prove Theoremh 6. We show thadDOMINATING SET, k-CONNECTED DOMINATING
SET, k-INDEPENDENT DOMINATING SET, and k-DOMINATING CLIQUE in t-interval graphs and ct-
interval graphs for all constants> 2 are in W[1] by FPT reductions to the W[1]-complete problerc&T
TURING MACHINE COMPUTATION [3]. The same problem has been used to prove the W[1]-meimpet
k-PERFECT CODE in general graphs [4] and éEDOMINATING SET in rectangle intersection graphs [25].

We start with two FPT reductions frok-DOMINATING SET in t-interval graphs and codinterval
graphs, respectively, toHORT TURING MACHINE COMPUTATION. Let Gr be the intersection graph
of a family F of n t-intervals. Without loss of generality, we assume thatzheinterval endpoints of the
t-intervals inF are all distinct. By a standard technique, we can transfamnfamily Z of intervals, in
polynomial time, into a familyZ’ of intervals with distinct endpoints, such tlaandZ’ represent the same
interval graph.

We first construct a (nondeterministic) Turing machiviethat accepts an empty string jitk) steps for
some functionf if and only if Gx has ak-dominating set. The crucial observation is the followiriget
D C F be a subfamily ok t-intervals. Suppose th@t is not a dominating set faF . Then there must exist
at-interval I in F — D that is disjoint from all-intervals inD. Let P be the set oRkt interval endpoints
of thek ¢-intervals inD, and letP’ = P U {—o0, oc}. For thesth interval I, of thet-interval I, 1 < s < t,
let I, be the rightmost point i’ to the left of I, and letr, be the leftmost point if”’ to the right of .
Then each pair of points andr,, 1 < s < t, specifies a constraiff < I, < r, on thet-interval I. Thet
constraints together form a multiple-interval “rang®é”= (Iy,71) U --- U (I;,,). Observe thaf C I’ but
not-interval J in D intersectd’.

We now describe the reduction. L@tbe the set o2nt interval endpoints of the t-intervals inF, and
let @' = Q U {—o00, c0}. Enumerate all combinatior of ¢ constraints based af’. For eachC', compute
the value of the boolean functiarnempty(C') on whether there existstainterval I in F that satisfies”'.
These values will be incorporated directly into the Turingamine as its internal states and transitions. The
following is a high-level description of the Turing machine:

1. Guess a subfamilp C F of k t-intervals. (This is the only nondeterministic part; thetref the
computation is deterministic.)

2. Let P be the set oRkt interval endpoints of thé ¢-intervals inD, and letP’ = P U {—o0, c0}.
Enumerate all combinatior of ¢ constraints based aft’. For each”, do the following:

(a) Check whether there existst-anterval J in D that intersects the multiple-interval “rangé”
formed byC.

(b) If no sucht-interval J exists, query the precomputed value of the boolean funetiaempty (C').
Reject if it is true.

3. Accept.

Recall thatt is a constant. With the boolean functiannempty(-) precomputed and incorporated into
the interval states and transitions of the Turing machiheghe maximum number of steps of any nondeter-
ministic branch ofM is at mostf (k) for some functionf. In particular, it does not depend analthough
the size of)M itself (i.e., the alphabet size, the number of internalest@nd transitions, etc.) depends on
n. Moreover, we can computenempty (-), construct the Turing machin® itself, and compute an upper
boundf (k) on the maximum number of steps df, all in time g(k) - poly(n) for some functiory. Thus
we have an FPT reduction froktDOMINATING SET in ¢-interval graphs to S8ORT TURING MACHINE
COMPUTATION.
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We next construct a (nondeterministic) Turing machiethat accepts an empty string ji{k) steps
for some functionf if and only if G has ak-dominating set. The crucial observation is the followihgt
D C F be a subfamily of t-intervals. Suppose tha is not a dominating set fo& . Then there must
exist at-interval I in 7 — D that intersects all-intervals inD. Let P be the set oRkt interval endpoints
of the k ¢-intervals inD, and letP’ = P U {—oc0,0}. For thesth interval I, = (ps, ¢s) of the t-interval
I,1 < s <t,letlps be the rightmost point i’ to the left ofps, let rp, be the leftmost point i’ to the
right of p,, letiq, be the rightmost point i’ to the left ofg,, and letrg, be the leftmost point id®’ to the
right of ¢;. Then each pair of pointg, andrp,, 1 < s < t, specifies a constrairip;, < ps < rps, and
each pair of pointsgs andrgs, 1 < s < t, specifies a constraiy; < ¢g; < rg¢s, on thet-interval I. LetC
be this combination of¢ constraints. Observe that amynterval I’ (not necessarily itF) that satisfieg”
intersects alt-intervals inD.

We now describe the reduction. L@tbe the set o2nt interval endpoints of the t-intervals inF, and
let @' = QU{—o0,00}. Enumerate all combinatior(s of 2¢ constraints based dp’. For eachC, compute
the value of the boolean functiarnempty(C) on whether there existstanterval I in F that satisfies”.
These values will be incorporated directly into the Turingafmine as its internal states and transitions. The
following is a high-level description of the Turing machiné:

1. Guess a subfamil{p C F of k t-intervals. (This is the only nondeterministic part; thetref the
computation is deterministic.)

2. LetP be the set okt interval endpoints of thé ¢-intervals inD, and letP’ = P U {—o0, cc0}. Sort
P’. Enumerate all combinatiors of 2¢ constraints based af’, subject to the additional condition
that the two points in each pair (i.e., the two poihisandrp, in the pair(ips, 7ps), or the two points
lgs andrgs in the pair(lgs,rqs), 1 < s < t) are consecutive i®’. (This additional condition is to
ensure that ne-interval inD satisfiesC'.) For each”’, do the following:

(a) Check whether there existg-@nterval I’ (not necessarily iF) that satisfies” and intersects
all t-intervals inD.

(b) If such ai-interval I’ exists, query the precomputed value of the boolean funaii@empty (C).
Reject if it is true.

3. Accept.

The analysis is the same as before. Thus we have an FPT m@ddicim k-DOMINATING SET in
co-t-interval graphs to SORT TURING MACHINE COMPUTATION.

Finally, to adapt the two reductions to work for the otheriamats, k-CONNECTED DOMINATING SET,
k-INDEPENDENT DOMINATING SET, andk-DOMINATING CLIQUE, it suffices to augment the two Turing
machines)M and M with an additional step that checks whether the subgraphcedl by the guessed
subfamilyD of k t-intervals is connected, is an independent set, and is as;ligspectively.

5 Distance Dominating Set

In this section we prove Theorelm 7. We show that for dny 2 d-DISTANCE k-DOMINATING SET

in multiple-interval graphs and their complements is W§2Fd by FPT reductions from the W[2]-hard
problemk-CoOLORFUL RED-BLUE DOMINATING SET [6]: Given a bipartite grapli: = (RU B, E) and a
vertex-colorings : R — {1,2,...,k}, decide whethe€ has a set ok distinctly colored verticeD C R
such that each vertex iB is adjacent to at least one vertex/in We call such a seb a colorful red-blue
dominating sebf G.
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Distance Dominating Set in Multiple-Interval Graphs. First we consider the case= 2. Let (G, k)
be an instance of-CoLORFUL RED-BLUE DOMINATING SET. We will construct a familyF of 2-track
intervals as illustrated in Figufe 4.

track 1 T—dy 2tz 2

uy dd A v

Figure 4: An illustration of the gadgets constructed in theop of Theorenil7: the gadget féf (left) and
the gadget foB (right).

For each coloi, 1 < i < k, letV; C R be the set of vertices of coler Write |V;| = ¢. We construck
gadgets, one for eadl}, 1 < i < k. There are three intervals on track 1 labeled with, d>. x intersects
with d; andd; intersects withly. On track 2, there ar¢+-2 disjoint intervals labeled withy, . . . , ug, d}, db.
For each vertex, = us € V;, we add a 2-track interval) = (x, us) to F. For each gadget fdr;, we also
add two dummy 2-track intervalgl;, d}) and(ds, d5) to F.

We then construct one gadget fBr. Write |B| = . Letby,..., b, be vertices inB. On track 1,
there arey pairwise disjoint intervals labeled with ..., b,. Similarly, on track 2, there arg¢ pairwise
disjoint intervals labeled with, ..., b),. For each vertex = b; € B, add a 2-track interval) = (b, b;)
to F. Finally, for each edge = (us,b;) € E with us € V; for somei andb, € B, add a 2-track interval
(e) = (bt, us) to F. This completes the construction.

In summary, the construction gives us the following fandyof 2-track intervals:

F={(u|ueV;,1<i<k}u{(d)|be B}U{(e)|eec E} UDUMMIES,
where DUMMIES is the set dfk dummy 2-track intervals.

Lemma 2. G has ak-colorful red-blue dominating set if and only if the intecfen graphG = of F has a
2-distancek-dominating set.

Proof. We first prove the direct implication. Suppo&ehas ak-colorful red-blue dominating sét” C R,
then it is easy to verify the familpp = {<u> |ue K } of 2-track intervals is 2-distancek-dominating set
in Gr.

We next prove the reverse implication. Suppose fhas a 2-distancek-dominating set inGx. To
dominate the two dummy 2-track intervdls, d; ) and(ds, d5) in the gadget fol/;, we can assume without
loss of generality thaD includes at least oné.) from each gadget foV;. SinceD has sizek, we must
have exactly onéu) from each gadget fov;. For anyb € B, (b) must be dominated by some) € D.
By the construction, this implies thét, b) € E. Therefore, the seftu | (u) € D} is ak-colorful red-blue
dominating set fo(5. O

To generalize the above construction to handle the €ase2, it suffices to make only two changes to
Gr:

1. For each colof, 1 < i < k, replace the two dummy vertices by a “path”dflummy vertices with
one end free and one end connected to all verticés.in

2. For each vertek € B, add a “path” ofd — 2 dummy vertices with one end free and one end connected
tob.

Clearly each dummy vertex can be represented by a unit R-inéerval as before.
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Distance Dominating Set in Complements of Multiple-Interval Graphs. To show thatd-DISTANCE
k-DOMINATING SET is W[2]-hard ford = 2 in co-3-interval graphs, we construct a co-3-interval grap
G 7 which is very similar toG . We then use the same arguments as in Lefmma 2 to showsthas a
k-colorful red-blue dominating set if and onlydf - has a 2-distance-dominating set.

U1 b1
V2 bo
U3 @ b3
3 3 1 1 1 1 1 1 2 2 2
T ) U1 U3 U3 by bs bs U1 U3 U3
1 2 1 2
Yr — Yyi Ty — 7 b?
T a2 1 2 3
Y2 Yas T3 T Yy
e — et
e — e
e} e
el - €}
e e

Figure 5: Top: An input grapliz = (R U B, E) for k-COLORFUL RED-BLUE DOMINATING SET, with
R = {1)1,1)2,1)3}, B = {bl,bg,bg}, andE = {61 = v1b1,e9 = v1by,e3 = voby,eq4 = v3bi,e5 = Ugbg}.
There are two color groupg; = {vi,v2}, Vo = {v3}. Bottom: The corresponding construction @f.
Note that the labet? (1 < r < 5), for the interval between’ ande?, is omitted.

We briefly describe howis =/ is constructed. Refer to Figuté 5 for an illustration. Fonwamnience,
we specify some 3-intervals i’ as 2-intervals, and assume an implicit extension of eaciie2vial to a
3-interval by adding an extra interval that is disjoint frath other intervals. Given an input gragh =

(RU B, E) and a vertex-coloring : R — {1,2,...,k}. Letvy,..., v, be an ordering of the vertices in
R such that all vertices in any color grodip are consecutive in the ordering. For each vettex R, add
a 2-interval(v},v?) to F'. Letby,...,b, be the vertices imB. For each vertex; € B, add a 2-interval

(b}, b?) to F'. The intervalh? intersects alb?. For each edge, = (vs,b;) € E, add a 3-intervale}, €, ¢?)
to 7' such that the three intervals together intersectalindb} exceptv; andb;. We then add: dummy
3-intervals(z,, 7, z3), 1 < p < k, to F, such thatr, andz;, together intersect all} andb; except those
v} for vy € V,. The intervaISr;:’,, 1 < p < k, are pairwise disjoint. Finally we add more dummy 3-
intervals(y,, y2, ), 1 < q < k, to ' such that)} andy? together intersect alt} exceptz3. The interval
y? intersects alb?, all 2, andb?.

One can check that the intersection grapf is almost identical ta7 z constructed in Figurgl4. The
only difference is that irG’ z all vertices inR form a big clique whereas i@’ = the vertices in each color
group V; form a clique, separately. The arguments in Lenitha 2 stillyappherefored-DISTANCE k-
DOMINATING SET is W[2]-hard ford = 2 in co-3-interval graphs.

Let Gy = G# be the co3-interval graph that we just constructed fbr= 2. To generalize the above
construction to handle the cage> 3, it suffices to extend the gragh, to a graphz; by making the same
two changes as before, i.e., adding more dummy vertices.diffieulty now is that for the complements
of multiple-interval graphs, three intervals for each gerare not enough to encode all the edges in the
construction. Nevertheless, we show thatdor 3, four intervals for each vertex are enough. Our proof is
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by induction. We already have the co-3-interval gr&phfor the base casé = 2. Next we consider the
inductive step.

Ford = 3, to obtainGs from G5, we start with the c@-interval graph that encodes,, then extend
each dummy path by one more vertex at the free end. Reelbe the interval region of the real line that
contains all 3-intervals id7s. To encode the connection between the new dummy verticés iand the
existing vertices inG,, we take an unused interval regidty of the real line to the right oRR,. For each
vertex inG2, we place one disjoint interval iR3. For each new dummy vertex {#s, we place two disjoint
intervals in R3, to cover all of R except the interval for its only neighbor. Thus we have aldnterval
graphGs represented by four intervals for each vertex in the suligapand two intervals for each new
dummy vertex inGs — Gs.

Now, for anyd > 4, to obtainG, from G4_1, we extend the interval regioR;_- (to the left whend
is even, or the right whed is odd) to a longer interval regioR;. To encode the connection between the
new dummy vertices id-; and the existing vertices i¥;_1, we place one disjoint interval iR; — Rq_o
for each dummy vertex it;_1 — G4_o, and place two disjoint intervals iR for each new dummy vertex
in Gg — G4_1, to cover all ofR; except the interval ilR; — R4_» for its only neighbor inG4_1 — G4_o.
Thus we have a cd-interval graph7,; represented by at most four intervals for each vertex ofubgaph
G4—1 and two intervals for each new dummy vertexdp — G4—_1.

6 Perfect Code

In this section we prove Theoremh 8. We show thaPERFECT CODE in unit 2-track interval graphs is
WI[1]-hard by a reduction fromt-MULTICOLORED CLIQUE.

Let (G, k) be an instance of-MULTICOLORED CLIQUE. We will construct a familyF of unit 2-
track intervals such that has ak-multicolored clique if and only if the intersection graphr of F has a
k'-perfect code, wherg' = k + 2(%).

dummy

U1

track 1 u}

dummy

Uz

track 2 u)

Figure 6: An illustration of a vertex-selection gadget.

Vertex selectionFor each coloi, 1 < i < k, let V; be the set of vertices of colar We construct a
vertex-selection gadget fdr; as illustrated in FigurE]l6. Writd;| = ¢. On each track, we start withy
unit intervals arranged in rows and two (slanted) columns. Thdntervals in each column are pairwise-
intersecting. The two intervals in each row slightly ovpriuch that each interval in the left column inter-
sects with all intervals in the same or higher rows in thetr@humn. For the'th vertexu in V;, 1 < r < ¢,
we add avertex 2-track intervalu) = (u1,u2) to F, whereu; andusy are the intervals in theth row and
the right column on tracks 1 and 2, respectively. Denote/pgnd, the intervals in the'th row and the
left column on tracks 1 and 2, respectively; they will be utmdvalidation. Besides the vertex 2-track
intervals (u), we also add two dummy 2-track intervals ¥a The first (resp. second) dummy 2-interval
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consists of a unit interval on track 1 (resp. track 2) thagnscts all intervals in the right column and no
interval in the left column, and a unit interval on track Zfvetrack 1) that is disjoint from all other intervals.

Figure 7: An illustration of an edge-selection gadget (rf@jldnd the corresponding vertex-selection gad-
gets (left and right). Two edge 2-track intervdls,, v2) and (uq,v1) are represented by dashed lines.
Dummy 2-track intervals are omitted from the figure.

Edge selectionFor each pair of distinct colorsandj, 1 < i < j < k, let E;; be the set of edgesv
such thatu has color; andv has colorj. We construct an edge selection gadgetfipy as illustrated in
Figure[T. We start with four disjoint groups of intervals,otgroups on each track, with two columns of
intervals in each group. Writd/;| = ¢; and|V;| = ¢;. The two groups on the left correspond to calor
and havep; rows; the two groups on the right correspond to cgland havep; rows. Different from the
formation in the vertex selection gadgets, here in eachmeach interval in the left column intersects with
all intervals in higher rows in the right column but not théenval in the same row. In the two groups on
the left, for therth vertexu € V;, 1 < r < ¢;, denote byi; ands the intervals in the'th row and the
left column on tracks 1 and 2, respectively, and denote/bgnd ) the intervals in the'th row and the
right column on tracks 1 and 2, respectively. Similarly, éaich vertexo € V;, denote byo, 02, v}, v5 the
corresponding intervals in the two groups on the right. Fmheedgewv € F;;, we add twoedge 2-track
intervals (uv); = (41,02) and(uv)s = (ug2,0;) to F. Besides these edge 2-track intervals, we also add
four dummy 2-track intervals t@, one for each group of intervals. The dummy 2-track intefgaleach
group consists of a unit interval that intersects all ireds\in the left column and no interval in the right
column in the group, and a unit interval on the other track ighdisjoint from all other intervals.

Validatiort For each pair of distinct colorsandj, 1 < i < j < k, we add2|V;| + 2|V}| validation 2-
track intervalsto 7 as illustrated in Figurgl 7. Specifically, for each vertex V;, we add(ux;;)1 = (u, u5)
and(ux;;)2 = (uh,u!), and for each vertex € V;, we add(xv;;)1 = (v, v5) and(xv;;)o = (vh,v]).

In summary, the construction gives us the following fandyof unit 2-track intervals:

F={(u)|ueV;, 1<i<k}U{{uw),(uv)s |uv € E;j, 1 <i<j<k}
U {(u*ij>17 <u*ij>27 <*Uij>17 <>I<’Uij>2 ‘ u € V;,’U S V}', 1 < 1 <j < k} U DUMM'ES,
where DUMMIES is the set af + 4(%) dummy 2-track intervals.
Lemma 3. G has ak-multicolored clique if and only if7 = has ak’-perfect code.

Proof. We first prove the direct implication. SuppoSehas ak-multicolored cliquek” C V(G), then itis
easy to verify that the following subfamil of unit 2-track intervals is &'-perfect code irG z:

D= {(u) |ue K}U{(uv), (uv)s | u,v € K}.
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We next prove the reverse implication. Supp@ses ak’-perfect code inGx. Observe that the dummy
2-track intervals in our construction are pairwise-disfoiMoreover, the two dummies in each vertex gadget
share the same open neighborhood which is not empty, an@the is true about the two dummies associ-
ated with the two groups of intervals, the left group on tracnd the right group on track 2 (resp. the right
group on track 1 and the left group on track 2) of each edgeeajadigfollows that these dummies cannot
be included inD. In order to perfectly dominate the dummid3,must include exactly one vertex 2-track
interval (u) from each vertex selection gadget and two edge 2-trackvaite(uv); and(xy), from each
edge selection gadget. Consider an edge 2-track intémwal = (i1, v2) from the edge selection gadget
for E;;, and observe the validation 2-track intervals dominateduay;. To perfectly dominate the valida-
tion 2-track intervalwx;;)> for all w € V;, D must include(u) from the vertex selection gadget fof.
Similarly, to perfectly dominate the validation 2-trackervals (xw;;), for all w € V;, D must include(v)
from the vertex selection gadget fof. Then, to perfectly dominate the validation 2-track ingds\(wx;;)1
for all w € V;, and(xw;;)» for all w € Vj, the two intervalsi, and9; must be used. This implies that the
other edge 2-track interval from the same edge selectiogegadust bguv)s = (i2,01). Therefore the
subset of vertice®( = {u € V(G) | (u) € D} is ak-multicolored clique inG. O

7 Distance Perfect Code

In this section we prove Theoreimh 9. We show that for dny 2 d-DISTANCE k-PERFECT CODE is
WI[1]-hard in unit 2-interval graphs by FPT reductions fréaM ULTICOLORED CLIQUE.

We consider the casé = 2 first. Let(G, k) be an instance of-MULTICOLORED CLIQUE. We will
construct a familyF of unit 2-intervals as illustrated in Figuré 8 such tltahas ak-multicolored clique if
and only if the intersection graphi = of F has a&2-distancek’-perfect code, wherg’ = k + (’2“)

Figure 8: The vertex gadget fof (left) is connected to the edge gadget 9y (right) by a validation gadget
(middle).

Vertex selectionFor each coloi, 1 < i < k, let V; be the set of vertices of colar We construct a
vertex-selection gadget fdr; as illustrated in Figurgl8. Writé;| = ¢. On track 1 there is an interval
labeled byx. On track 2 there are disjoint intervals, one for each vertex . For therth vertexu in V;,

1 <r < ¢, we add a 2-track interval) = (z,u) to F. We also add four dummy 2-track intervalso
two dummy 2-track intervals intersect wiih the other two dummy 2-track intervals intersect with thstfir
two dummy 2-track intervals, respectively. In figlite 8, oohe interval (on track 1) of each dummy 2-track
intervals is drawn.

Edge selectionFor each pair of distinct colorsandj, 1 < i < j < k, let E;; be the set of edgesv
such that has colori andv has colorj. Write |E;;| = . There arep disjoint intervals on track 1, one
for each edge if;;. There is an interval labeled hyon track 2. For each edgec E;;, add a 2-track
interval (e) = (y,e) to F. We also add four dummy 2-track intervals ¥oin the similar way as in each
vertex selection gadget.
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Validation selectionFor each pair of distinct colofisandj, 1 < i < j < k, we construct two validation
gadgets that connect the two vertex gadgetdfandV;, respectively, to the edge gadget f6y;. First we
describe the validation gadget between the vertex gadgéf fand the edge gadget féf;;. Write |V;| = ¢
and|E;;| = . On track 1, there arg¢ interval arranged i rows and two (slanted) columns. The
intervals in each column are pairwise-intersecting. Mweeoeach interval in the left column intersects
with all intervals in higher rows in the right column but nbgtinterval in the same row. For théh vertex
u € V;, 1 <r < ¢, denote byi; andu’ the left and right intervals, respectively, in thi row. On track 2,
the arrangement of th&p intervals are similar except that each interval in the lefumn intersects with all
intervals in the higher ronandthe interval in the same row. Denote & and, the left and right intervals,
respectively, in theth row. We ad®2¢ + ¢ validation 2-track intervals t&. For each vertex; € V;, add
(uxij)1 = (u, ) and(ux;;)2 = (1, U2) to F. For each edge = uv € E;j;, add(u, e) = (e, u”) to F.

The validation gadget between the vertex gadgetlfoand the edge gadget fdr;; (not shown in
Figure[8) is constructed similarly. For each vertex V;, we add(xv;;)1 = (v,v") and (xv;j)o = (01, 02)
to . For each edge = wv € E;;, we add(v,e) = (e,v”) to F.

In summary, the construction gives us the following fandyof unit 2-track intervals:

F={(u)|ueV,1<i<k}uU{(e)|e€Ej, 1<i<j<k}
U {(wkig)1, (usig)a, (xvi)1, (xvijhe |u € Viu € Vi, 1 <i < j < k}
U{(u,e),(v,e) |e=uv € Ej;,1 <i<j<k}UDUMMIES,

where DUMMIES is the set ofk + 4(5) dummy 2-track intervals.
Lemma4. G has ak-multicolored clique if and only if7 » has a2-distancek’-perfect code.

Proof. We first prove the direct implication. Suppo&ehas ak-multicolored cliqgueK C V(G), then one
can verify that the following subfamil of 2-track intervals is @-distancek’-perfect code irG r:

D={(u)|ue K}U{(e) | e=uv, u,v € K}.

We next prove the reverse implication. Suppose fhas a 2-distancek’-perfect code inGr. By a
similar argument as in the proof of Lemia 3, the dummies dabadncluded inD. In order to perfectly
dominate the dummied) must include exactly oné:) from each vertex gadget and exactly gjag from
each edge gadget. For thih vertexu andtth vertexw in V;, we writeu <; wif » < tandu >; wif r > t.
Consider(e) from the edge gadget fdt;;, wheree = uv. Observe that in the validation gadget between
the vertex gadget fov; and the edge gadget fé;;, the 2-track intervalg (wx;;)2 | w € V;,w <; u} are
within distance 2 from(e). Then, to perfectly dominate the 2-track interv@lex;;)s | w € Vi, w >; u},
the 2-track intervalu) from the vertex gadget fdr; must be included i®. Similarly, to perfectly dominate
the 2-track intervalg+w;;)- in the other validation gadget, the 2-track interyal from the vertex gadget
for V; must also be included i®. Therefore the subset of verticés = {u € V(G) | (v) € D}isa
k-multicolored clique inG. O

The above construction can be generalized to handle thedcas2. The generalizations for even and
odd d are slightly different. We first describe the generalizatfor evend. Extend each vertex gadget to
included pairs of dummy 2-track intervals instead of two pairs, andétuded—1 disjoint intervals for each
vertexu, labeled byu,, 1 < s < d — 1, whereu, is on track 2 for odds and on track 1 for eves. Instead
of two 2-track intervalgz, u) and(u, u’), d 2-track intervalz, uy), (u1,us), . .., (ug—2, ug—1), (ug_1,u’)
are added toF. Extend each edge gadget in a similar way to incldg®irs of dummy 2-track intervals,
and to included — 1 disjoint intervals for each edge labeled bye,, 1 < s < d — 1, wheree, is on track 1
for odd s and on track 2 for even. Instead ofy, ¢) and(e, v”), we have(y, e1), (e1,€2), ..., (e4—2,€4-1),
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(eqa—1,u”). The generalization for odd is the same as the generalization for evieexcept that for each
validation gadget we need to swap the intervals on the tweks$tato ensure thatu, 1, u’), (vg_1,v"),
(eq—1,u”), and(eq_1,v") are indeed 2-track intervals.

8 Vertex Cligue Partition

In this section we prove Theordml11. We show thatERTEX CLIQUE PARTITION in unit 2-interval graphs
is W[1]-hard by an FPT reduction from the W[1]-complete gevb k-MULTICOLORED CLIQUE [11]].

Let (G, k) be an instance ok-MULTICOLORED CLIQUE. We will construct a familyF of unit 2-
intervals such thatr has a clique of vertices containing exactly one vertex of each color if anly d the
vertices of the intersection grajghr of F can be partitioned int&’ cliques, where:’ = 3k + 2(’;)

Denote by, the cycle graph of. verticescy, . . . , ¢, andn edges;c;+1, 1 <i <n —1, ande,c;. We
first prove the following technical lemma:

Lemma5. For each integem > 1, the cycle graplCy,,+, satisfies the following properties:
1. The chromatic number @fy,, 1 is 3.

2. The chromatic number of the graph obtained fiOm 1 by deleting at least and at mosgn vertices,
is 2.

3. In any partition of the vertices @fy,, 1 into 3 independent sets, at most one independent set can have
size one.

4. The complement graphy, 11 is a unit 2-interval graph. Moreover, there existgartition A,, U
Bs,+1 of the vertices such that the graph can be represented by onenterval for each vertex
a; € A,, 1 < i <n,and two unit intervals for each vertéx € B3, 11,1 < j < 3n+ 1.

Proof. We prove the four properties one by one:

1. Cy,11 is an odd cycle; hence it is not bipartite and has chromatiober at leas8. To achieve the
chromatic numbes, we can assign each vertexthe colorl if 7 is odd but not equal tén + 1, the
color2 if i is even, and the cold if 7 is equal todn + 1.

2. With any vertex deleted frorfiy,, 11, the resulting graph does not have any cycles and henceas bip
tite, with chromatic number at mo8t Note that the number of edges @y, 1 is 4n + 1, and that
each vertex is incident t® edges. With at mosin vertices deleted froniy,, 11, the resulting graph
has at least one edge remaining, and hence has chromati@natribasp.

3. Letl; U Iy U I3 be any partition of the vertices 6y, 11 into 3 independent sets. Again note that the
number of edges iy, 11 is4n + 1 > 5, and that each vertex is incident2@dges. If both/; and/,
have size one, then ti¥evertices inl; U I are together incident to at mesedges, and there must be
at least one edge remaining between two verticdsg,iwhich contradicts our assumption that it is an
independent set.

4. Considern + 1 vertices spread evenly on a circle of unit perimeter. Conaach vertex to the two
farthest vertices by two edges. Then we obtain the cyclehgfap,,. The complement grapfiy,,+1
is clearly a circular-arc graph, i.e., the intersectiornptraf a set of circular-arcs, where each vertex
is represented by an open circular arc of Ienﬁ%. Let A,, be anyn consecutive vertices along the

circle and letBs,, 11 be the remainingn + 1 vertices. Then the circular-arc representatio”gf, |
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by by b3 by bs bg by by by bip a1 az az by by bz by bs bg by bg by bio

Figure 9: Leta; ... a,b; ... b3, 11 be thedn+ 1 vertices along the circle. Theri,,,; can be represented by
one unit interval for each; and two unit intervals for eadhy in the orderb; ... b3, r1a1 ... apb1 ... b3pi1.

can be easily “cut” and “stretched” into a 2-interval remstion, with one unit interval for each
vertexa; € Ap, 1 <17 < n, and with two unit intervals for each vertéx € B3,11,1 < j < 3n+ 1.
We refer to Figur&l9 for an example with= 3.

O

Vertex selection Refer to Figuré 1I0(a). For each colgrl < i < k, let V; be the set of vertices of
colori. Letn; = |V;|. Construct a grapli’y,,,+1 on then; vertices inV; and3n; + 1 additional dummy
vertices, represented (using Property 4) by one unit iatdor each vertex if;, and two unit intervals for
each dummy vertex. This leaves one free interval for eactexen V;. Put thesen; free intervals aside,
pairwise-disjoint. Thus we have unit 2-intervals including one unit 2-intervél,) for each vertex: € V;,
and3n; + 1 additional dummy unit 2-intervals.

Edge selectionRefer to Figuré€ I0(b). For each pair of distinct coloendj, 1 <i < j <k, let E;; be
the set of edgesv such thatu has colori andv has colorj. Letm;; = [E;;|. Construct a graply,,,; 11
on m,; vertices (one for each edge ii;) and3m,;; + 1 additional dummy vertices, represented (using
Property 4) by one unit interval for each vertex that coroesis to an edge if;;, and two unit intervals for
each dummy vertex. For each edge= e € E;;, we construct two unit 2-interval.e) and(ve). Let (e)
be the unit interval in the representation(®f;,,, +1 that corresponds to the edgeThe two unit 2-intervals
(ue) and (ve) share(e) as one unit interval, and each of them has one more free aitefhus we have
2m,; unit 2-intervals including two unit 2-intervals.e) and(ve) for each edgew = e € E;j, and3m;; +1
additional dummy unit 2-intervals.

Validation Refer to Figuré_10(c). For each edge = e € E;j, place the free interval ofue) to
coincide with the free interval dfu), and place the free interval ¢fie) to coincide with the free interval of

().
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Figure 10: An illustration of the construction farVERTEX CLIQUE PARTITION. (a) Vertex selection. (b)
Edge selection. (c) Validation.

Let F be the following family ofn + 2m + (3n + 3m + k + (})) unit 2-intervals:
F={{u)|ueV;, 1<i<k}U{(ue),(ve) |uv=e € E;j, 1 <i<j<k}UDUMMIES,

where DUMMIES is the set of,(3n; +1) +3_,,(3mi; +1) = 3n+3m+k+ (’;) dummy unit 2-intervals.
This completes the construction.

Lemma6. G has ak-multicolored clique if and only if7 = has ak’-vertex clique partition.

Proof. We first prove the direct implication. Suppose tliahas ak-multicolored cliqueK. We partition
Grinto k' = 3k + 2(£) cliques as follows:

e For each colot, 1 < ¢ < k, let S; be the subgraph aF  represented by thén; + 1 2-intervals for
the n; vertices inV; and the3n; + 1 additional dummy vertices. Let; be the vertex of colof in
K. Put the 2-intervalu;), together with the 2-interval&.;e) for all edgese incident tou;, into one
clique. SincesS; is isomorphic toCly,, +1, it follows by Property 2 that the remaining; 2-intervals
in S; can be partitioned into two cliques. Thus we have three eBdor each color.

e For each pair of distinct colorsandj, 1 < i < j < k, let S;; be the subgraph af » represented by
the 5m;; + 1 2-intervals including the two 2-intervals.e) and(ve) for each edgew = e € E;; and
the 3m;; + 1 additional dummy vertices. Léi‘;j be the graph obtained froi$}; by contracting each
pair of vertices represented loye) and(ve) for some edge (they have the same open neighborhood
in S;;) into a single vertex represented (y). ThenSij is isomorphic toCy,,; +1. Letu;v; = e;;
be the edge ik such thaiu; has colori andv; has colorj. The two 2-intervalgu;e;;) and(v;e;;)
have already been included in the two cliques contairting and(v;), respectively. Excludinge;;),
the remainingim,; 2-intervals inSij can be partitioned into two cliques by Property 2. Now expand
each contracted vertex back into two vertices. The two elign.S;; remain two cliques irf;;. Thus
we have two cligues for each pair of distinct colors.
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We next prove the reverse implication. Suppose that has ak’-vertex clique partition. We will
find a k-multicolored clique inG. Define the subgraphs;, 1 < i < &, and the subgraphS;; and ng,
1 <7< j <k, as before. By Property 1, each subgraflof G~ can be partitioned int® but no less than
3 cliques. Defines}i, 1 <i < j <k, as the subgraph d;; (and ofS};) induced by thedm;; + 1 dummy
vertices. Sinces;; can be obtained frord'y,,,,; 1 by deletingm;; vertices, it follows by Property 2 tha:
can be partitioned int@ but no less thag cligues. Observe that thesubgraphsS; and the(’g) subgraphs

s;;. do not have edges in between. Siite- 3k + 2(’5) we must partition each subgragshinto exactly3
cligues, and partition each subgraﬁj? into exactly2 cliques. The remaining 2-intervalse) and(ve) for
the edgeg are then added to these cliques. For each pair of distinotohndj, 1 <i < j <k, sinceSij

is isomorphic taCy,,,,; 11, it follows by Property 1 that there exists at least one edge- ¢ € E;; such that
neither(ue) nor (ve) is included in the two cliques fo;;. Then(ue) must be included in one of the three
cliques forsS; that includes(u) (and (ve) must be included in one of the three cliques fgrthat includes
(v)). Since(ue) intersects{u) but not the other 2-intervals ifi;, this clique includes only one 2-interval
(uy from S;. By Property 3, at most one of the three cliquesSpcan include only one 2-interval frot,.
Now for each color, 1 < i < k, find the unique vertex; such that the 2-interval;) appears in a clique
without any other 2-intervals frorf;. Then the set ok verticesu; corresponds to &-multicolored clique
inG. O

9 Separating Vertices

In this section we prove Theorers| 12] [3] 14, 15. We usadtagion (a, b) to represent a 2-track
interval wherexz andb are intervals on different tracks. We use similar notatifomsS-track intervals.

Proof of Theorem Following the approach of Marx [24], we show tHalSEPARATING VERTICESIN
balanced 2-track interval graphs is W[1]-hard with parasrsdt and/ by an FPT reduction frorh-CLIQUE.

Let G = (V, E) be an input instance &f-CLIQUE with n vertices andn edges. We construct a family
F of balanced 2-track intervals as shown in Fidure 11, andjauttimstance G £, £/, 1) for k-SEPARATING
VERTICESWith &' = k andl’ = 2(}).

€T
trackl ——— — — - —

track 2
UL U2 Ug V1 V2 (%)

Figure 11: Anillustration of the construction 6fz in Theoreni_1P.

On track 1 there arer + 1 disjoint intervals. The first interval, labeled by has length; the otherm
intervals, one for each edgec F, have length 1. On track 2 there are two rows of intervals. fireerow
hasn disjoint intervals of lengtin, one for each vertex iir. For a vertex: € V, if the degree of. is a, then
there arez disjoint intervalsuy, us, . . . , u, Of length 1 on the second row, all intersecting with the wekr
for u in the first row.

There aren + 2m balanced 2-track intervals i#. For every vertex: € V, add a 2-track interval
(z,u) to F. For every vertexu, since there are = deg(u) many edges incident to, fix an one-to-one
correspondence between edges incident &md intervalsu; with 1 < i < a. For an edge = {u,v}, let
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u; (1 <7 < a)andy; (1 < 5 < b, whereb is the degree ob) be the intervals associated withadd two
2-track intervalge, u;) and(e, v;) to F.

From the construction ai r, it is clear thatG r has a clique of size, represented by the set of 2-track
intervals{(x,u) | v € V}. For an edge = {u,v} in G, Gr has a path of length three, represented by
2-track intervalqz, u), (e, u;), (e, v;), (z,v), with the middle two vertices being degree-two.

If there is ak-clique K in G, then we can cut the set bivertices inG r represented by(z, u) | u € K}.

By doing this, we separam(’;) vertices represented Hye, u), (e,v) | e € E,e = {u,v}}. For the other
direction, supposg’ vertices can be deleted fro6z such that’ vertices are separated from the restof.
We partitionk’ deleted vertices into two parf§ andY . Let X be the set of vertices from the clique of size
nin Gr andY be the set of degree-two verticesGhr. Assumen > k + 2(%), after deletingX the rest of
the clique inG £ has size greater thdf) so thel’ separated vertices must be degree-two verticészAnlt is
easy to see that by deletidg at mosIQ( X ‘) degree-two vertices are separated from the re&tafand by
deletingY” at most|Y'| degree-two vertices are separated from the re&taf Thus we haveX | + |Y| =k
and2('51) +[v] > 2(%). Whenk > 2, these conditions hold only whéf(| = k and|Y'| = 0. This implies
that the set of: vertices{u | (z,u) € X} induces a clique it.

Proof of Theorem The reduction is also fromk-CLIQUE. Given an input instanc& = (V, E) with
n vertices andn edges fork-CLIQUE, we construct a familyF of 3-track intervals as shown in Figurel12.
We then show-CLIQUE reduces td:-SEPARATING VERTICESINn G r.

1 1 1 1 2 2 2 2 3 3 3 3
LT B o A
61 62 83
e R
track 1 track 2 track 3

Figure 12: An illustration of the construction 6fr in Theoren{IB. Only the 3-track intervad!, e?, e3)
corresponding to one edgéds drawn.

Fix an orderinguy, . .., v, of the vertices inG. On trackk (1 < k < 3), there aren disjoint intervals
of, ..., vk, For every vertex)Z eV, add a 3-track intervalv}, v?, v3) to F. For every edge = {v;, v;}
with i < j, add a 3-track intervale!, %, ¢®) (see Figuré_12) toF, such that! intersects withv; for all
| < iontrack 1¢? intersects withy? for all i < [ < j on track 2, and? intersects with}* for all ! > jon
track 3. The 3-track intervals for edges are pairwise imigting at both left endpoint on track 1 and right
endpoint on track 3.

It is clear thatG'+ has a clique of size:, represented by the set of 3-track intervals;, v?,v3) |

v; € G}. For each edge = {v;,v;} in G, Gx has a path of Iength two, represented by 3-track intervals

1,2

(vi,v7,07), (', €2, €), (v}, v7,v?) with the middle vertexe', e?, ¢*) being degree-two. Sét = & and
I = (¥). The rest of the proof is similar to the proof of Theorm 12.

For the sake of simple illustration, we did not draw the Ziméls as balanced 3-intervals in Figlré 12.
Now we show how to transform them into balanced 3-intervddsst make all intervals of the form?
(1 <i<n,1 <k <3)unit-length open intervals. On track 1 align them next tcheather without any gap
betweenw; andv},, for all 1 < i < n. Do the same for track 3. But on track 2, align them with a gap of
lengthn betweerw? andv§+1 forall 1 <i < n. Then, for any edge = {v;,v;} with i < j, we can always
use a balanced 3-track interv@l', €2, ¢3) to achieve the same intersecting pattern as shown in Figlire 1
In particular, first choose an appropriate length (betweamdn?) for ¢* so thate? intersects withy? for

alli < 1 < j ontrack 2, then make' ande? the same length by extending to the left and? to the right

22



if necessary.

Proof of Theorem[I4 For the W[1]-hardness in balanced 2-track interval graplesyse the same con-
struction as in the proof of Theordml12, and ask whethem + 2m — 2(’;) — k connected vertices can be
separated fronds » by deletingk vertices. Similarly, for the W[1]-hardness in co-balan&ttack interval
graphs, we use the same construction as in the proof of TinéB8eand ask whethér=n +m — (§) — k
connected vertices can be separated f€@mby deletingk vertices.

Proof of Theorem[I5. Use the same constructions as in the proofs of Thebrém 12 la@oréni 18. Ask
whetherG = (or Gr) can be separated into= (£) + 1 components by deleting vertices.

10 Irredundant Set

In this section we prove Theordm]16. We show thdRREDUNDANT SET is W[1]-hard by an FPT reduc-
tion from the W[1]-complete problerh-MuULTICOLORED CLIQUE [10].

Let (G, k) be an instance df-MULTICOLORED CLIQUE. We will construct a grapl’ such thaiG has
a clique ofk vertices containing exactly one vertex of each color if anly G’ has an irredundant set of
k' vertices, wherd’ = 3k + 5(5).

Vertex SelectianFor each coloi, 1 < i < k, the graph’ contains a subgrapf¥; as thevertex gadget
for the colori. LetV; be the set of vertices i@ with colori. For each vertex € V;, G, includes3 vertices
u1, ug, uz forming a3-clique. The vertices from differerdcliques inG;, are disjoint.

Edge SelectianFor each pair of distinct coloiisandj, 1 < i < j < k, the graphG’ contains a subgraph
G;j as theedge gadgefor the color pairij. Let E;; be the set of edgesv such thatu has colori andv
has colorj. For each edge = uwv € E;;, G} includes5 verticesey, ez, e3, e, e5 forming a5-clique. The
vertices from different-cliques inG;j are disjoint.

Validationt Each edge gadgét;j is connected to the two vertex gadgél’lsandG; as follows. For each
edgee = uv € E;j;, each of theb verticesey, ez, e3, e4, €5 is connected to each of tifeverticesu, , ug, uz
and to each of th8 verticesv, v, v3. In addition, we connect the edge gadglﬁ;\} to each vertex gadget
G,z € {1,2,...,k} — {i,j}, by adding all possible edges between them. Also, we cordiffetent
edge gadgets to each other, and connect different vertayetgmtb each other, by adding all possible edges
between them.

Lemma7. G has a clique ok vertices containing exactly one vertex of each color if anty if G’ has an
iredundant set of’ vertices, wherd’ = 3% + 5(5).

Proof. We first prove the direct implication. Suppose thahas a cliquek of k vertices containing exactly
one vertex of each color. Ldtbe the set ok’ vertices inG’ including the3 verticesu, us, uz for each
vertexu € V(K) and theb verticese, es, es, e4, e5 for each edge € E(K). Observe thaf is a clique in
G'. It follows that! is an independent set hence also an irredundant €&t in

We next prove the reverse implication. Suppose @gtas an irredundant sétof &’ vertices. We start
with two simple propositions:

1. For each colof, I includes at moss vertices in the subgrapfi}. Moreover, if includes exactly
vertices inG’, then they must be the vertices, us, uz from a3-clique inG’, corresponding to some
vertexu € V;.

2. For each color paiij, I includes at mosb vertices in the subgrapl];. Moreover, ifI includes

exactly5 vertices inG—;j, then they must be the vertices, e, e3, e4, e5 from abs-clique in G;j corre-
sponding to some edgec E;;.
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To prove the first proposition, observe that any two verticethe same3-clique in G, has the same
open neighborhood 6. If I includes two or more vertices from the sashelique in G/, then all these
vertices must be self-private, adccannot include any vertex from a differesyclique in G;. Suppose that
I includes three or more vertices @, that are not all from the samiclique, then these vertices must
come from distincB-cliques inG,. Let«, 3,~ be three such vertices. Observe thas adjacent to both
aandg in 5; Also observe that the open neighborhoodyah G’ is contained in the union of the open
neighborhoods ofr and3 in G’. Thusy cannot have a private neighbor, self-private or not. Sityitr «
andg. This contradicts their membership in

To prove the second proposition, observe that any two eiic the samé-clique mG has the same

open neighborhood 6. If I includes two or more vertices from the safmelique in GU, then all these
vertices must be self-private, adiccannot include any vertex from a differektlique mG . Suppose that
I includes five or more vertices 'ﬁ;j that are not all from the sandeclique, then these vertices must come

from distinct5-cliques inG/ Leta, 3,7, u, v be five such vertices. These vertices are pairwise adjacent i

Gg ;1 SO they cannot be self -private. Observe that within th@ﬁaﬂhG’ the open neighborhood of each of
these five vertices is contained in the union of the open heigtoods of any two of the other four vertices.

Also observe that within any gadget subgraph ex«ié(ptG’ andG’ any two of these five vertices have
the same (empty) open neighborhood. From these obsersaindollows that these five vertices must have

private neighbors ir@ and@.. Then, at least three of the five vertices must have privatghhers either
allin @ orallin @ Assume without loss of generality that the three vertiegs, v have private neighbors

in G/ If any two of the three vertices have the same open neiglbbdrin G/ then the two vertices cannot
both have private neighbors (ﬂ;. Otherwise, the open neighborhood of any one of the threicesris
contained in the union of the open neighborhoods of the dtherso none of the three vertices can have a
private neighbor i@ . We have reached a contradiction.

There are exactly vertex gadgets and exact()Z) edge gadgets in our construction. Note that=
3k + 5(5). From the two propositions, it follows thdtmust include exactlys verticesur, uz, ug from
each vertex gadge¥; corresponding to a vertex € V;, and exactlys verticeseq, es, e3, e4, 5 from each
edge gadgefs;; corresponding to an edgec E;;. Moreover, thesé’ vertices are all self-private, so the
irredundant sef is indeed an independent setGh. Then the correspondinkg vertices anc(g) edges inG
must be consistent, forming a multicolored clique with akagne vertex of each color. O

11 Concluding Remarks

Although we have managed to devise a simpler proof for the]\W§tdness ofk-IRREDUNDANT SET in
general graphs, we were unable to strengthen this resultdwyng the W[1]-hardness df-|IRREDUNDANT
SET in t-interval graphs or coe-interval graphs for any constant Both the graph in the previous proof
of Downey et al.[[10] and the graph in our simpler proof comteéry large complete bipartite graphs and
complements of complete bipartite graphs. Itis knawn [ba} the interval number of the complete bipartite
graphK |, /2|, rn/2] |s[ 17, ie., (”“1 is the smallest numbersuch thati(,, 5| r,, /21 is at-interval graph.
Therefore, unless Wlth new techniques, the existing coastms cannot be directly adapted to prove the
WI[1]-hardness ok-IRREDUNDANT SET in ¢-interval graphs or ce-interval graphs even ifis a parameter
of the problem besidess.

A general direction for extending our work is to strengthke éxisting hardness results for more re-
stricted graph classes. For example, we showed in ThebrdmtZtDOMINATING SET in co-3-track
interval graphs is W[1]-hard with parameter Is it still W[1]-hard in co-2-track interval graphs or caiti
3-track interval graphs? Many questions can be asked iratie spirit. In particular, are-INDEPENDENT
DOMINATING SET andk-PERFECT CODE W[1]-hard in co#-interval graphs for some constant 27?
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