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A NEW GEOMETRIC APPROACH TO STURMIAN WORDS

KAISA MATOMÄKI AND KALLE SAARI

Abstract. We introduce a new geometric approach to Sturmian words by
means of a mapping that associates certain lines in the n× n-grid and sets of
finite Sturmian words of length n. Using this mapping, we give new proofs of
the formulas enumerating the finite Sturmian words and the palindromic finite
Sturmian words of a given length. We also give a new proof for the well-known
result that a factor of a Sturmian word has precisely two return words.

1. Introduction

An infinite binary word is Sturmian if it has exactly n + 1 factors of length n
for all integers n ≥ 0. Factors of Sturmian words are called finite Sturmian words.
For definitions and notation, see Lothaire [6].

The purpose of this note is to introduce a new geometric approach to Sturmian
words by means of a mapping that associates certain lines in the n × n-grid and
sets of finite Sturmian words of length n. We demonstrate the power of the ap-
proach by giving new proofs for enumeration formulas for finite Sturmian words
and palindromes as well as for the fact that a factor of Sturmian word has precisely
two returns. We believe that this new approach can be used to study also other
properties of Sturmian words.

Let us describe the stated applications more precisely before going to the details
of the geometric approach in Section 2. Let An denote the set of finite Sturmian
words of length n ≥ 0. The formula

(1) |An| = 1 +

n
∑

k=1

(n+ 1− k)ϕ(k),

where ϕ is Euler’s totient function, seems to have been proven first by Lipatov [5].
Subsequently, proofs have been given by Mignosi [9] by means of Farey sequences,
by Berstel and Pocchiola [1] with geometric arguments, and de Luca and Mignosi [8]
with combinatorial arguments. In Section 3 we give an alternate geometric proof
of (1) based on the setting introduced in Section 2. Our approach partially parallels
to that of Berstel and Pocchiola, but is somewhat more elementary; in particular,
it avoids the use of Euler’s formula that relates the number of edges, faces, and
vertices of a planar graph.

Key words and phrases. Sturmian word, geometric approach, palindrome, enumeration, return
word.
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It was shown by de Luca and De Luca [7], using combinatorial arguments, that
the number of palindromic finite Sturmian words of length n is

(2) 1 +

⌈n/2⌉−1
∑

k=0

ϕ(n− 2k).

Applying the new geometric approach, we give a new proof of (2) in Section 4.
Let ω be an infinite word and u its factor. A word v is called a return word of u

in ω if vu occurs in ω and it has precisely two occurrences of u in it: one as a prefix
and the other as a suffix. It is well-known that each factor of an infinite Sturmian
word has exactly two return words, see [3, 10]. In Section 5, we give a new proof
for this result, as well.

2. A mapping relating lines and Sturmian words

We start by relating Sturmian words to lines: First we will describe a well-known
geometric interpretation of Sturmian words and then utilize it to find a mapping
which relates every finite Sturmian word of length n with a line which has at least
two integer points in n× n-grid.

An infinite word ω = a0a1a2 · · · ak · · · with ak ∈ {0, 1} is Sturmian if and only
if there exist an irrational number α ∈ (0, 1) and a real number ρ such that

ak = ⌊(k + 1)α+ ρ⌋ − ⌊kα+ ρ⌋
for all k ≥ 0 (see [6, Ch. 2]). Since every finite Sturmian word is a prefix of an infinite
Sturmian word, this implies that a finite word w = a0a1a2 · · ·an−1 with ak ∈ {0, 1}
is a finite Sturmian word if and only if there exist real numbers α ∈ (0, 1) and
ρ ∈ (0, 1) such that

(3) ak = ⌊(k + 1)α+ ρ⌋ − ⌊kα+ ρ⌋ (0 ≤ k ≤ n− 1).

Note that, while it is clear that one can restrict to ρ ∈ [0, 1), in case of finite
Sturmian words one can indeed restrict to ρ ∈ (0, 1): If a word w is obtained from
(3) with ρ = 0 and some α ∈ (0, 1), one can increase ρ slightly to make it positive;
If this change is small enough, the letters ak are unaffected for 0 ≤ k ≤ n − 1.
Furthermore, unlike in the case of an infinite Sturmian word, here α may also be
rational because in that case one can increase α slightly to make it irrational: Again,
if this change is small enough, the letters ak are unaffected for 0 ≤ k ≤ n− 1, and
so the obtained w is indeed a finite Sturmian word.

The letter ak can be determined geometrically as follows. Consider the line ℓ
given by the equation y = αx+ ρ drawn in the integer grid [0, n]× [0, n] (or simply
n× n-grid). The letter ak equals 1 precisely when ℓ intersects a horizontal bar (or
a grid point) at some x ∈ (k, k + 1]; see Figure 1 for an example. Thus any finite
Sturmian word a0a1a2 · · · an−1 may be identified with a broken line starting from
(0, 0) in the n× n-grid such that ak corresponds to a diagonal line if ak = 1 and a
horizontal line if ak = 0; again, consult Figure 1 for an example.

In what follows, we identify a finite Sturmian word w = a0a1a2 · · ·an−1 with a
broken line as explained above. Hence we may say that w goes through the point

p = (i, j), where i and j are integers with 0 ≤ i, j ≤ n, if the number of 1s in the
first i letters of w is j. For example, the word in Figure 1 goes through the point
(7, 3). We will often use i and j to denote the coordinates of a point p and thus
write p1 = (i1, j1), for example.



A NEW GEOMETRIC APPROACH TO STURMIAN WORDS 3

0 1 0 0 1 0 1 0 0 1 0

Figure 1. Identifying a finite Sturmian word with a broken line.
Here α = (3−

√
5)/2, ρ = 2/5, and n = 11.

Let Sn be the set of all lines in the n× n-grid with equations of the form

y = αx + ρ with α ∈ (0, 1) and ρ ∈ (0, 1).

It follows from the identification of finite Sturmian words with broken lines that,
on the one hand, each line in Sn defines a finite Sturmian word of length n (even if
α is rational) and, on the other hand, each word is determined by some lines in Sn.

Next we will define another set of lines in the n×n-grid. For any line ℓ and real
number k, let Zk(ℓ) be the number of integer points (i, j) ∈ Z×Z on the line with
0 ≤ i ≤ k. Now we let Ln be the set of all lines

y = αx + ρ with α ∈ [0, 1], ρ ∈ [0, 1], and Zn(ℓ) ≥ 2.

Informally speaking, we will assosiate to each ℓ ∈ Ln the set of those Sturmian
words that are defined by lines ℓ′ ∈ Sn that go just above more than half of the
integer points of ℓ and just below the rest. By “just above a point” (or just below)
we mean that ℓ′ goes so little above (or below) the point that there are no integer
points between ℓ and ℓ′ anywhere in the grid. For a formal definition recall that An

denotes the set of finite Sturmian words of length n and write 2An for the power
set of An.

Definition 1. Let m : Ln → 2An be the mapping for which one has w ∈ m(ℓ) (with
ℓ ∈ Ln and w ∈ An) if and only if there exists a line ℓ′ ∈ Sn such that

(i) The line ℓ′ defines the word w;
(ii) There are no grid points between the lines ℓ and ℓ′;
(iii) The line ℓ′ goes above two integer points p1, p2 ∈ ℓ with i1 ≤ n/2 < i2.

For example, if ℓ ∈ L10 is given by y = 1
2x+ 1

2 , then

m(ℓ) = {1010101010, 0110101010, 0101101010, 1010101001}.
The word 1010101001 is given by the line l′ ∈ S10 depicted in Figure 2. In this
case we may choose p1 = (3, 2) and p2 = (7, 4).

The next lemma is crucial to our work as it shows that the mapping m gives a
very nice correspondence between Ln and An.
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ℓ
ℓ′

1 0 1 0 1 0 1 0 0 1

Figure 2. Line l ∈ L10 given by 1
2x + 1

2 and a line l′ ∈ S10 that
goes just above the points p1 = (3, 2) and p2 = (7, 4) giving the
word 1010101001.

Lemma 2. For all n ≥ 1, the sets m(ℓ) with ℓ ∈ Ln form a partition of An. In

particular, we have

(4) |An| =
∑

ℓ∈Ln

|m(ℓ)|.

Proof. First, we show that
⋃

ℓ∈Ln

m(ℓ) = An. Consider a Sturmian word w ∈ An

and let αx + ρ ∈ Sn be a line defining it. Without changing the word w, we can
decrease ρ until the line touches at least one integer point (i, j). If i ≤ n/2, we let
this point be p1 and we rotate the line clockwise around (i, j) until we reach a line
with at least two integer points, and hence a line in Ln. The line will meet from the
above an integer point (i′, j′) with i′ > n/2, which we call p2. If i > n/2, then we
take (i, j) = p2, rotate the line counter-clockwise and proceed similarly. In either
case we reach a line in Ln which maps to the word w.

As an example, consider the situation in Figure 2. When l′ is moved down-wards,
the first integer point it meets is (7, 4). Then, when the line is rotated counter-
clockwise around (7, 4), the point (3, 2) is among the next integer points the line
meets.

Second, we show that m(ℓ) ∩ m(ℓ′) = ∅ for all distinct ℓ, ℓ′ ∈ Ln. Suppose
contrary that w ∈ m(ℓ) ∩ m(ℓ′). Then there are points p1, p2 ∈ ℓ and p′1, p

′
2 ∈ ℓ′

such that i1 ≤ n/2 < i2 and i′1 ≤ n/2 < i′2, and the broken line of w goes through
points p1, p2, p

′
1, and p′2. This implies that p1 and p2 must be below ℓ′ and p′1 and

p′2 must be below ℓ. This is possible only if the lines intersect to the right from p1
and p2 and to the left from p′1 and p′2 or vice versa. However, this is not possible
since i1 < i′2 and i′1 < i2, a contradiction.

Again, as an example, consider Figure 2. It is clear that there cannot be a line
different from ℓ that goes above both (3, 2) and (7, 4) and through integer points
of the word on both sides of x = 10/2 = 5. �

Next we show that in situations where one is allowed to swap to considering
extensions of original words, we can restrict to the technically simpler case where
the word goes through all grid points of the corresponding line.
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Lemma 3. Let w be a finite Sturmian word. Then there exists a finite Sturmian

word w′ such that w is a prefix of w′ and w′ goes through all grid points of the line

ℓ′ ∈ L|w′| for which w′ ∈ m(ℓ′).

Proof. Let w be of length n and defined by a line y = αx+ ρ, where α is irrational
and α, ρ ∈ (0, 1). By increasing ρ slightly if needed we can assume that the line has
no integer points in the n× n-grid. Let ω be the corresponding infinite word.

Let n0 be the smallest integer > n such that

αn0 + ρ− ⌊αn0 + ρ⌋ < min
0≤m≤n

(αm+ ρ− ⌊αm+ ρ⌋).

Such n0 exists since the right hand side is positive and the irrationality of α implies
that {αk (mod 1): k ∈ N} is dense in R/Z (see [4, Theorem 439]). Notice that now

αn0 + ρ− ⌊αn0 + ρ⌋ = min
0≤m≤n0

(αm+ ρ− ⌊αm+ ρ⌋).

We take w′ to be the length n0 prefix of ω. To find the corresponding ℓ′ we
repeat the first part of the proof of Lemma 2. When we decrease ρ as there, the
first integer point the line y = αx+ ρ reaches in the n0 ×n0-grid is (n0, j) for some
integer j. Then, when we rotate the line counter-clockwise around (n0, j) to reach
a line ℓ′ with at least two grid points, all the grid points which the line meets are
met from the above. Hence the claim follows. �

3. The enumeration of finite Sturmian words

Now we are ready to give a new proof of the following enumeration formula for
finite Sturmian words.

Theorem 4. For all n ≥ 1, we have

(5) |An| = 1 +
n
∑

k=1

k
∑

l=1

ϕ(l) = 1 +
n
∑

k=1

(n+ 1− k)ϕ(k).

This counting formula is proved by calculating the sum on the right hand side
of (4). To do this, we use the next two lemmas.

Lemma 5. Let ℓ ∈ Ln be the line y = αx+ρ, in which case α ∈ [0, 1] and ρ ∈ [0, 1].
Then we have

|m(ℓ)| =































0 if α = ρ = 1

1 if α = ρ = 0

Zn(ℓ)− 1 if α, ρ ∈ (0, 1)

Zn(ℓ)− Zn/2(ℓ) if ρ = 0 and α ∈ (0, 1]

Zn/2(ℓ)− 1 if ρ = 1 and α ∈ [0, 1).

Notice that the remaining options for α and ρ above, namely that α = 0 and
ρ ∈ (0, 1) or that α = 1 and ρ ∈ (0, 1), do not correspond to any line in Ln.

Proof. If α = ρ = 1, then ℓ is the line y = x + 1, which does not have any image
words, i.e., |m(ℓ)| = 0. If α = ρ = 0, then ℓ maps only to the word 0

n, so that
|m(ℓ)| = 1. If α, ρ ∈ (0, 1), then a line defining w ∈ m(ℓ) has two possibilities:

• It can first go just below one to Zn/2(ℓ) − 1 first integer points of ℓ and
then go just above the rest. There are Zn/2(ℓ)− 1 such words.
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• It can first go just above Zn/2(ℓ) + 1 to Zn(ℓ) integer points of ℓ and then
go just below the rest. There are Zn(ℓ)− Zn/2(ℓ) such words.

Thus there are altogether Zn(ℓ)− 1 words in m(ℓ) when α, ρ ∈ (0, 1).
If ρ = 0 and α ∈ (0, 1], then ℓ is given by y = αx. Then ℓ maps only to words

whose defining line starts by going above some integer points of ℓ since the defining
line must go above origin, which is the first integer point of the line. Therefore ℓ
maps to Zn(ℓ)− Zn/2(ℓ) words.

If ρ = 1 and α ∈ [0, 1), then ℓ is the line y = αx+ 1, which maps only to words
whose defining line first goes below some points in the line. There are Zn/2(ℓ)− 1
such words.

�

Lemma 6. For all n ≥ 1, we have

(6)
∑

ℓ∈Ln

α∈(0,1],ρ∈[0,1)

(Zn(ℓ)− 1) =

n
∑

i=1

i
∑

j=1

ϕ(j).

Proof. For i ∈ {1, . . . , n}, let L∗
i be the set of all those lines in Li with α ∈ (0, 1]

and ρ ∈ [0, 1) that have an integer point (i, j) for some j ∈ {1, . . . , i}. A line ℓ
counted on the left hand side of (6) belongs to Zn(ℓ) − 1 sets in the collection
{L∗

i : 1 ≤ i ≤ n} (indeed ℓ ∈ L∗
i if and only if i is an x-coordinate of a non-leftmost

grid point of ℓ). Hence

(7)
∑

ℓ∈Ln

α∈(0,1],ρ∈[0,1)

(Zn(ℓ)− 1) =

n
∑

i=1

|L∗
i |.

The set L∗
i consists of lines y = b

ax+ c
a with a, b, c satisfying

0 < b ≤ a ≤ i, 0 ≤ c < a, gcd(a, b) = 1, and c ≡ −bi (mod a),

where the condition a ≤ i is needed since the line must contain an integer point
with x-coordinate ∈ {0, 1, . . . , i − 1} besides the one with x-coordinate i. Now a
and b determine c uniquely, so that

|L∗
i | =

i
∑

a=1

∑

1≤b≤a
gcd(b,a)=1

1 =

i
∑

a=1

ϕ(a),

and the lemma follows by combining this with (7). �

We are finally ready to wrap up the proof of Theorem 4.

Theorem 4. First notice that, for α 6= 0, 1, the cardinalities of the setsm(ℓ : y = αx)
and m(ℓ : y = αx + 1) add up to Zn(ℓ : y = αx) − 1. Likewise, the cardinalities
of m(ℓ : y = x) and m(ℓ : y = 1) add up to Zn(ℓ : y = x) − 1. Therefore, using



A NEW GEOMETRIC APPROACH TO STURMIAN WORDS 7

Lemma 5, we get
∑

ℓ∈Ln

|m(ℓ)| = |m(ℓ : y = 0)|+
∑

ℓ∈Ln

α,ρ∈(0,1)

|m(ℓ)|+
∑

ℓ∈Ln

ρ=0,α∈(0,1]

|m(ℓ)|+
∑

ℓ∈Ln

ρ=1,α∈[0,1)

|m(ℓ)|

= 1 +
∑

ℓ∈Ln

α,ρ∈(0,1)

|m(ℓ)|+
∑

ℓ∈Ln

ρ=0,α∈(0,1)

|m(ℓ)|+ |m(ℓ : y = x)|

+
∑

ℓ∈Ln

ρ=1,α∈(0,1)

|m(ℓ)|+ |m(ℓ : y = 1)|

= 1 +
∑

ℓ∈Ln

α,ρ∈(0,1)

|m(ℓ)|+
∑

ℓ∈Ln

ρ=0,α∈(0,1)

(

Zn(ℓ)− 1
)

+
(

Zn(ℓ : y = x)− 1
)

= 1 +
∑

ℓ∈Ln

α∈(0,1],ρ∈[0,1)

(

Zn(ℓ)− 1
)

.

This identity together with Lemmas 2 and 6 readily implies (5), completing the
proof. �

4. The enumeration of palindromic Sturmian words

In the first part of this section we study how palindromes behave with respect
to the mapping m. First we show that any palindrome must go through all integer
points of the corresponding line ℓ ∈ Ln.

Lemma 7. Let w be a Sturmian palindrome of length n, and let ℓ ∈ Ln be such

that w ∈ m(ℓ). Then the broken line of w goes through all integer points of ℓ. In

particular, there are no palindromes in the set m(ℓ : y = αx+ 1) for any α ∈ [0, 1].

Proof. Let ℓ′ ∈ Sn be a line defining w. If, contrary to what we want to prove,
w does not go through all integer points of ℓ, then there exist three grid points
p1, p2, p3 ∈ ℓ such that i1 ≤ n/2 < i2 and the line ℓ′ goes just above p1 and p2 and
below p3. Let us assume that p3 is the first grid point in ℓ with this property. Also,
write ℓ = b

ax+ c
a with (a, b) = 1.

Suppose first that i3 > i2. Then the prefix of w of length i3 − 1 has period a,
but the period breaks at position i3. This means that, while every block of length
a in the first half of w has exactly b occurrences of the letter 1, there is a block of
length a in the second half of w with only b − 1 occurrences of 1. Thus w is not a
palindrome, a contradiction.

The other possibility for i3 is that i3 < i1. This situation is analogous to the
first case, and hence contradictory; we omit details. �

The previous lemma in particular implies that every line ℓ ∈ Ln corresponds to
at most one palindrome. Next we figure out which lines actually give a palindrome.

Lemma 8. There is a bijective correspondence between the palindromic Sturmian

words 6= 1
n of length n ≥ 1 and the lines ℓ ∈ Ln given by y = b

ax + c
a satisfying

(a, b) = 1, 0 ≤ b < a ≤ n, 0 ≤ c < a, and

(8) 2c ≡ −bn− 1 (mod a).
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Proof. Let w 6= 1
n be a Sturmian palindrome of length n. Then w ∈ m(ℓ) for a

line ℓ ∈ Ln with equation y = b
ax + c

a ∈ Ln, where (a, b) = 1 and 0 ≤ b < a ≤ n.
Furthermore, Lemma 7 implies that the broken line of w goes through all grid
points of ℓ and 0 ≤ c < a. In what follows, we will verify (8).

Since bx + c (mod a) ranges all possible values 0, 1, . . . , a − 1 when x ranges
0, 1, . . . , n, there exists an integer k such that the vertical distance between ℓ and
the broken line of w is (a− 1)/a at x = k, see Figure 3.

Rotate the plane by 180 ◦ and, if necessary, shift the grid so that the obtained
broken line starts from the origin, see Figure 4. The new broken line corresponds
to the word wR, the reversal of w. Let ℓR denote the line obtained from ℓ. Fur-
thermore, let ℓ′ ∈ Ln be the line for which wR ∈ m(ℓ′), see Figure 5.

(a− 1)/a

ℓ

w

Figure 3. Before rotation. Here ℓ = 2
3x+ 1

3 and the broken line
corresponds to w = 10110.

ℓR

wR

Figure 4. After rotation. Here the broken line corresponds to
wR = 01101, and ℓR denotes the line ℓ after rotation.

By Lemma 2, the word w is a palindrome iff w = wR iff ℓ′ = ℓ and wR goes
through all integer points of ℓ′. In particular ℓ′ must have the same slope b/a as ℓ.
The original ℓ goes through the point (n, bn/a + c/a), hence ℓR starts from the
point

(

0,−(bn/a+ c/a) (mod 1)
)

. As ℓ′ must touch but not intersect the broken

line of wR, it must be (a− 1)/a above ℓR. Hence the equation of ℓ′ is

y ≡ b

a
x−

(

b

a
n+

c

a

)

+
a− 1

a
(mod 1).

This should be the same as the original line so that

−
(

b

a
n+

c

a

)

+
a− 1

a
≡ c

a
(mod 1) ⇐⇒ 2c ≡ −bn− 1 (mod a),

and so (8) is verified.
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ℓR

wR

ℓ′

Figure 5. The line ℓ′ = 2
3x added to the grid in Figure 4.

We have thus established a mapping between Sturmian palindromes 6= 1
n of

length n and the lines satisfying conditions described above. Injectivity of the
mapping follows from Lemma 2 and surjectivity is shown by tracing back the steps
taken above. �

Now we are ready to give a new proof of the following theorem by de Luca and
De Luca [7].

Theorem 9. The number of Sturmian palindromes of length n is

(9) 1 +

⌈n/2⌉−1
∑

k=0

ϕ(n− 2k).

Proof. Let us denote the set of lines in Ln satisfying the conditions of Lemma 8 by
Pn. We will prove the claim by enumerating this set.

For every i, we count the number of the lines ℓ ∈ Pn whose leftmost integer
point is (i, j) for some 0 ≤ j ≤ i. Thus i runs through values 0,1,. . . , ⌈n/2⌉ − 1.
Line through (i, j) with slope b/a (where gcd(a, b) = 1) has equation

y − j =
b

a
(x− i) ⇐⇒ y =

b

a
x+

aj − bi

a
,

so that (8) can be expressed as

−2bi ≡ −bn− 1 (mod a) ⇐⇒ b(n− 2i) ≡ −1 (mod a).

This is soluble on b if and only if gcd(a, n − 2i) = 1 in which case it has a unique
solution satisfying 0 ≤ b < a and gcd(b, a) = 1. Notice also that j is determined
uniquely by the condition 0 ≤ aj − bi < a.

Since {i + ak | k ∈ Z} ∩ [0, n] is the set of x-coordinates of all integer points of
ℓ in the n× n-grid, the point (i, j) is the leftmost of at least two integer points if
and only if

i ≤ a− 1 and i ≤ n− a ⇐⇒ i+ 1 ≤ a ≤ n− i.

Therefore, the number of lines in Pn is

⌈n/2⌉−1
∑

i=0

n−i
∑

a=i+1
gcd(a,n−2i)=1

1 =

⌈n/2⌉−1
∑

i=0

ϕ(n− 2i).

Recalling that Pn does not include the line in Ln for the word 1
n, we obtain the

attested formula (9). �
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5. Return words

Recall the definition of a return word from the end of Section 1. To get hold of
occurrences of a factor u in a given word, we prove the following lemma.

Lemma 10. Let 0 ≤ b < a with gcd(b, a) = 1 and let u be a finite word defined by

the line

(10) y =
b

a
x+

c′

a
with 0 ≤ x ≤ |u|

for some c′. Then there are integers 0 ≤ c1 ≤ c2 < a such that (10) represents u if

and only if c′ ∈ [c1, c2] (mod a). Furthermore, of the lines representing u, only the

one with c′ = c2 goes through a point (x, y) with x ∈ {0, . . . , |u|} and y ≡ (a− 1)/a
(mod 1).

Proof. Let c1 be the smallest and c2 the greatest c′ ∈ {0, . . . , a − 1} such that
(10) represents u. Then there cannot be integer points between the lines (10) with
c′ = c1 and c′ = c2 since otherwise these two lines would represent different words.
Hence (10) represents u also for any c′ ∈ [c1, c2].

For any c, the lines (10) with c′ = c and c′ = c + 1 represent different words if
and only if there is an integer point in the line with c′ = c + 1. This is equivalent
to the line with c′ = c having a point (x, y) with x ∈ {0, . . . , |u|} and y = (a− 1)/a
(mod 1). Now the second assertion of the lemma follows from the first. �

Let us now state and prove our final application, a new proof of the following
theorem from [3, 10].

Theorem 11. Every Sturmian word has exactly two returns.

Proof. Let ω be a Sturmian word and let u be a factor of ω. If u had only one
return, then ω would be eventually periodic, which is a contradiction. Therefore it
is enough to prove that u has at most two returns.

Clearly it is enough to consider a finite Sturmian factor w, and by Lemma 3 we
can assume that w goes through all integer points of the line ℓ for which w ∈ m(ℓ).
The case w = 1

n is trivial, so assume that w 6= 1
n. Now the line ℓ is defined by an

equation

y =
b

a
x+

c

a
, where 0 ≤ b < a, 0 ≤ c < a and gcd(b, a) = 1.

We say that a factor beginning from position i starts from (bi+ c)/a (mod 1). So,
for example, w starts from c/a.

By Lemma 10, there are integers 0 ≤ c1 ≤ c2 < a such that a factor of length
|u| is u if and only if it starts from a point in [c1/a, c2/a] (mod 1). For i = c1, c1 +
1, . . . , c2, let vi be the return word corresponding to the occurrence of u starting
from i/a.

If we move the line ℓ upwards by 1/a and consider also the word w+ correspond-
ing to the moved line, the only difference to the word w is at points where

y ≡ a− 1

a
(mod 1) moves to y ≡ 1 (mod 1),

i.e., the line reaches an integer point (and there 01 → 10). By Lemma 10 this must
happen in u starting from c2/a and only in that u.
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Comparing w and w+, those u starting from i/a with i < c2 change to u starting
from (i+ 1)/a, so that vi → vi+1. By above vi+1 equals vi unless vi starts or ends
with c2/a. Let this happen for vc2 and vk. We get

vc1 = vc1+1 = · · · = vk 6= vk+1 = vk+2 = · · · = vc2 ,

so that there can be at most two different vi. �

To illustrate the proof of Theorem 11, let us take w = 10001001001000100 and
u = 100. The broken line of w is given by

ℓ : y =
3

10
x+

7

10
,

see Figure 6. The numbers above the line ℓ are numerators of the “starts” of factors
of w.

7
0

3
6

9
2

5
8

1
4

7
0

3
6

9
2

5
8

1 0 0 0

v7

1 0 0

v9

1 0 0

v8

1 0 0 0

v7

1 0 0

v9

Figure 6. Line ℓ and the broken line of w.

Now, the possible starting points for u are 7
10 ,

8
10 , and

9
10 , so that c1 = 7 and

c2 = 9. Next, by moving the line ℓ upwards by 1
10 , we reach the line given by

y = 3
10x + 8

10 ; this is depicted in Figure 7. In this transition, we see that v7 → v8
and v8 → v9. Since v7 ends with c2

a = 9
10 , there is a change, so that v7 6= v8. The

word v8 does not start nor end end with c2
a = 9

10 , so v8 = v9.

8
1

4
7

0
3

6
9

2
5

8
1

4
7

0
3

6
9

1 0 0

v8

1 0 0 0

v7

1 0 0

v9

1 0 0

v8

1 0 0 0

v7

Figure 7. Moving the line upwards by 1/10 reaching the line
given by y = 3

10x + 8
10 and corresponding to the word w+ =

10010001001001000 .



12 KAISA MATOMÄKI AND KALLE SAARI

6. Acknowledgements

We thank the anonymous referees for helpful comments on the exposition of the
paper and for pointing out the reference [5].

References

[1] J. Berstel and M. Pocchiola. A geometric proof of the enumeration formula for Sturmian
words, Internat. J. Algebra Comput. 3:349–355, 1993.

[2] S. Dulucq and D. Gouyou-Beauchamps. Sur les facteurs des suites de Sturm, Theoret. Com-

put. Sci. 71:381–400, 1990.
[3] J. Justin and L. Vuillon. Return words in Sturmian and episturmian words, Theor. Inform.

Appl. 34(5):343–356, 2000.

[4] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers, fourth ed.,
Clarendon Press, Oxford, 1960.

[5] E. P. Lipatov. A classification of binary collections and properties of homogeneity classes,
Problemy Kibernet. 39: 67–84, 1982.

[6] M. Lothaire. Algebraic Combinatorics on Words. Vol. 90 of Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 2002.
[7] A. de Luca and A. De Luca. Combinatorial properties of Sturmian palindromes, Internat. J.

Found. Comput. Sci. 17(3):557–573, 2006.
[8] A. de Luca and F. Mignosi. Some combinatorial properties of Sturmian words, Theoret.

Comput. Sci. 136:361–385, 1994.
[9] F. Mignosi. On the number of factors of Sturmian words, Theoret. Comput. Sci. 82:71–84,

1991.
[10] L. Vuillon. A characterization of Sturmian words by return words, European J. Com-

bin. 22:263–275, 2001.

Department of Mathematics, University of Turku, 20014 Turku, Finland

E-mail address: ksmato@utu.fi

E-mail address: kasaar@utu.fi


	1. Introduction
	2. A mapping relating lines and Sturmian words
	3. The enumeration of finite Sturmian words
	4. The enumeration of palindromic Sturmian words
	5. Return words
	6. Acknowledgements
	References

