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Abstract

Reaction automata are a formal model that has been introduced to investigate the com-
puting powers of interactive behaviors of biochemical reactions([14]). Reaction automata
are language acceptors with multiset rewriting mechanism whose basic frameworks are
based on reaction systems introduced in [4].

In this paper we continue the investigation of reaction automata with a focus on the
formal language theoretic properties of subclasses of reaction automata, called linear-
bounded reaction automata (LRAs) and exponentially-bounded reaction automata (ERAs).
Besides LRAs, we newly introduce an extended model (denoted by λ-LRAs) by allowing
λ-moves in the accepting process of reaction, and investigate the closure properties of
language classes accepted by both LRAs and λ-LRAs. Further, we establish new relation-
ships of language classes accepted by LRAs and by ERAs with the Chomsky hierarchy.
The main results include the following :
( i ) the class of languages accepted by λ-LRAs forms an AFL with additional closure
properties,
(ii) any recursively enumerable language can be expressed as a homomorphic image of a
language accepted by an LRA,
(iii) the class of languages accepted by ERAs coincides with the class of context-sensitive
languages.

Keywords: biochemical reaction model; bounded reaction automata; abstract family
of languages; closure property

1. Introduction

There exist two major categories in the research of mathematical modeling of bio-
chemical reactions. One is an analytical framework based on ordinary differential equa-
tions (ODEs) in which macroscopic behaviors of molecules are formulated as ODEs by
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means of approximating a massive number of molecules (or molecular concentration) by
a continuous quantity. The other is a discrete framework based on the multiset rewriting
in which a set of various sorts of molecular species in small quantities is represented by a
multiset and a biochemical reaction is simulated by replacing the multiset with another
one, under a prescribed condition ([1, 2, 12, 13, 18]).

Among many models that have been investigated from the viewpoint of the latter
category mentioned above, Ehrenfeucht and Rozenberg have introduced a formal model
called reaction systems for investigating interactive behaviors between biochemical re-
actions in which two basic components (reactants and inhibitors) play a key role as a
regulation mechanism in controlling biochemical functionalities ([4, 5, 6]). In the same
framework, they also introduced the notion of time into reaction systems and investi-
gated notions such as reaction times, creation times of compounds and so forth. Rather
recent two papers [7, 8] continue the investigation of reaction systems, with the focuses
on combinatorial properties of functions defined by random reaction systems and on the
dependency relation between the power of defining functions and the amount of available
resource. In the theory of reaction systems, a biochemical reaction is formulated as a
triple a = (Ra, Ia, Pa), where Ra is the set of molecules called reactants, Ia is the set of
molecules called inhibitors, and Pa is the set of molecules called products. Let T be a set
of molecules, and the result of applying a reaction a to T , denoted by resa(T ), is given
by Pa if a is enabled by T (i.e., if T completely includes Ra and excludes Ia). Otherwise,
the result is empty. Thus, resa(T ) = Ra if a is enabled on T , and resa(T ) = ∅ otherwise.
The result of applying a reaction a is extended to the set of reactions A, denoted by
resA(T ), and an interactive process consisting of a sequence of resA(T )’s is properly
introduced and investigated.

Inspired by the works of reaction systems, we have introduced in [14] computing
devices called reaction automata and showed that they are computationally universal by
proving that any recursively enumerable language is accepted by a reaction automaton.
The notion of reaction automata may be regarded as an extension of reaction systems
in the sense that our reaction automata deal with multisets rather than (usual) sets
as reaction systems do, in the sequence of computational process. However, reaction
automata are introduced as computing devices that accept the sets of string objects (i.e.,
languages over an alphabet). This feature of a string accepting device based on multiset
computing can be realized by introducing a simple idea of feeding an input to the device
from the environment and by employing a special encoding technique.

In reaction systems, a number of working assumptions are adopted among which there
are two to be remarked : Firstly, the threshold supply of elements (molecules) requires
that for each element, either enough quantity of it is always supplied to react or it is not
present at all. (Thus, reaction systems work with sets rather than multisets.) Secondly,
the non-permanency of elements means that any element not involved in the active
reaction ceases to exist. (Thus, each element has a limited life-span of the unit time.)
In contrast, reaction automata assume properties rather orthogonal to those features of
reaction systems: They are defined as computing devices that deal with multisets (rather
than sets) in the computing process of biochemical interactions. It is also assumed that
each element is sustained for free if it is not invloved in the reaction.

Before introducing the formal definition of reaction automata in the later section, we
want to describe with an example how a reaction automaton behaves in an interactive
way with a given input. Figure 1 illustrates an intuitive idea of the behavior of a reaction
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Figure 1: A graphic illustration of interactive biochemical reaction processes for accepting the language
L = {anbncn | n ≥ 0} in terms of the reaction automaton A0.

automataA0 = (S,Σ, A, p0, f), where S = {p0, a, b, c, a′, b′, c′, f} is the set of objects with
the input alphabet Σ = {a, b, c}, A = {a1 = (a, {b, b′}, a′), a2 = (a′b, {c, c′}, b′), a3 =
(b′c, ∅, c′), a4 = (p0, {a, b, c, a′, b′}, f)} is the set of reactions, p0 is the initial multiset, and
f is the special object to indicate a final multiset. Note that in a reaction a = (Ra, Ia, Pa),
multisets Ra and Pa are represented by string forms, while Ia is given as a set. In Figure
1, each reaction ai is applied to a multiset (of a test tube) after receiving an input
symbol (if any is provided from the environment). We assume in this example that
no input symbol being fed implies that the input has already been completed. Thus,
for instance, when a4 is applied to the initial multiset {p0} without any input symbol
being fed, which implies that the input is the empty string λ and that it is accepted
by A0. For each n ≥ 0, let Tn = {p0, a′n}. Then, reactions a1 and a2 are enabled
by the multiset Tn only when inputs a and b are received, which result in producing
Tn+1 = {p0, a′n+1} and T ′

n = {p0, a′n−1, b′}, respectively. Once applying a2 to Tn has
brought b′ into T ′

n, A0 has no possibility of applying a1 furthermore, because of its
inhibitor {b, b′}. Afterwards, a successful reaction process can continue only when either
b or c is fed, and only an input sequence of bn−1 followed by cn eventually leads the
reaction process to a multiset T ”n = {f, c′n} from which no further multiset is derived
and this reaction process terminates. One may easily see that A0 accepts the language
L = {anbncn | n ≥ 0}. One important assumption we would like to remark is that
reaction automata allow a multiset of reactions α to apply to a multiset of objects T in
an exhaustive manner (what is called maximally parallel manner), and the interactive
process sequence of computation is nondeterministic in that the reaction result from T
may produce more than one product. The details are formally described in the sequel.

In this paper we continue the investigation of reaction automata with a focus on the
formal language theoretic properties of subclasses of reaction automata, called linear-
bounded reaction automata (LRAs) and exponentially-bounded reaction automata (ERAs).
Besides LRAs, we will newly introduce an extended model (denoted by λ-LRAs) by allow-
ing λ-moves in the accepting process of reaction, and investigate the closure properties of
language classes LRA and λ-LRA accepted by LRAs and λ-LRAs, respectively. We also
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investigate the relationships of language classes LRA and ERA (the class of languages
accepted by ERAs) with the Chomsky hierarchy.

This paper is organized as follows. After preparing the basic notions and notations
from formal language theory in Section 2, we formally describe the notion of reaction
automata (RAs) and introduce several subclasses of reaction automata such as LRAs,
λ-LRAs and ERAs, based on their volume (space) complexity in Section 3. Then, the
closure properties of the language classes LRA and λ-LRA are investigated in Section 4
and Section 5, respectively. It is shown that λ-LRA forms an AFL with some additional
closure properties. In Section 6, we also establish the relations of language classes LRA
and ERA to the classes in the Chomsky hierarhy. Specifically, we show that any recur-
sively enumerable language can be expressed as a homomorphic image of a language in
LRA. It is also shown that the language class ERA coincides with the class of context-
sensitive languages. Finally, concluding remarks as well as future research topics are
briefly discussed in Section 7.

2. Preliminaries

We assume that the reader is familiar with the basic notions of formal language theory.
For unexplained details, refer to [11].

Let V be a finite alphabet. For a set U ⊆ V , the cardinality of U is denoted by |U |.
The set of all finite-length strings over V is denoted by V ∗. The empty string is denoted
by λ. For a string x in V ∗, |x| denotes the length of x, while for a symbol a in V we
denote by |x|a the number of occurences of a in x.

A morphism h : V ∗ → U∗ such that h(a) ∈ U for all a ∈ V is called a coding, and
it is a weak coding if h(a) ∈ U ∪ {λ} for all a ∈ V . A weak coding is a projection if
h(a) ∈ {a, λ} for each a ∈ V .

We use the basic notations and definitions regarding multisets that follow [3, 12].
A multiset over an alphabet V is a mapping µ : V → N, where N is the set of non-
negative integers and for each a ∈ V , µ(a) represents the number of occurrences of a in
the multiset µ. The set of all multisets over V is denoted by V #, including the empty
multiset denoted by µλ, where µλ(a) = 0 for all a ∈ V . A multiset µ may be represented
as a vector, µ(V ) = (µ(a1), . . . , µ(an)), for an ordered set V = {a1, . . . , an}. We can

also represent the multiset µ by any permutation of the string wµ = a
µ(a1)
1 · · ·a

µ(an)
n .

Conversely, with any string x ∈ V ∗ one can associate the multiset µx : V → N defined
by µx(a) = |x|a for each a ∈ V . In this sense, we often identify a multiset µ with its
string representation wµ or any permutation of wµ. Note that the string representation
of µλ is λ, i.e., wµλ

= λ.
A usual set U ⊆ V is regarded as a multiset µU such that µU (a) = 1 if a is in U

and µU (a) = 0 otherwise. In particular, for each symbol a ∈ V , a multiset µ{a} is often
denoted by a itself.

For two multisets µ1, µ2 over V , we define one relation and three operations as follows:

Inclusion : µ1 ⊆ µ2 iff µ1(a) ≤ µ2(a), for each a ∈ V,
Proper inclusion : µ1 ⊂ µ2 iff µ1 ⊆ µ2 and µ1 6= µ2,
Sum : (µ1 + µ2)(a) = µ1(a) + µ2(a), for each a ∈ V,
Intersection : (µ1 ∩ µ2)(a) = min{µ1(a), µ2(a)}, for each a ∈ V,
Difference : (µ1 − µ2)(a) = µ1(a)− µ2(a), for each a ∈ V (for the case µ2 ⊆ µ1).
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A multiset µ1 is called a multisubset of µ2 if µ1 ⊆ µ2. The sum for a family of multisets
M = {µi}i∈I is also denoted by

∑

i∈I µi. For a multiset µ and n ∈ N, µn is defined by
µn(a) = n · µ(a) for each a ∈ V . The weight of a multiset µ is |µ| =

∑

a∈V µ(a).

We introduce an injective function stm : V ∗ → V # that maps a string to a multiset
in the following manner:

{

stm(a1a2 · · ·an) = a2
n−1

1 · · · a2n−1an (for n ≥ 1)
stm(λ) = λ.

Let us denote by REG (resp. LIN , CF , CS,RE) the class of regular (resp. linear
context-free, context-free, context-sensitive, recursively enumerable) languages.

3. Reaction Automata and Bounded Variants

Inspired by the works of reaction systems, we have introduced the notion of reaction
automata in [14] by extending sets in each reaction to multisets. Here, we start by
recalling basic notions concerning reaction automata and their restricted variants called
bounded reaction automata.

Definition 1. For a set S, a reaction in S is a 3-tuple a = (Ra, Ia, Pa) of finite multisets,
such that Ra, Pa ∈ S#, Ia ⊆ S and Ra ∩ Ia = ∅.

The multisets Ra and Pa are called the reactant of a and the product of a, respectively,
while the set Ia is called the inhibitor of a. These notations are extended to a multiset
of reactions as follows: For a set of reactions A and a multiset α over A,

Rα =
∑

a∈A

Rα(a)
a

, Iα =
⋃

a⊆α

Ia, Pα =
∑

a∈A

Pα(a)
a

.

In what follows, we usually identify the set of reactions A with the set of labels of
reactions in A, and often use the symbol A as a finite alphabet.

Definition 2. Let A be a set of reactions in S and α ∈ A# be a multiset of reactions
over A. Then, for a finite multiset T ∈ S#, we say that
(1) α is enabled by T if Rα ⊆ T and Iα ∩ T = ∅,
(2) α is enabled by T in maximally parallel manner if there is no β ∈ A# such that α ⊂ β,
and α and β are enabled by T .
(3) By Enp

A(T ) we denote the set of all multisets of reactions α ∈ A# which are enabled
by T in maximally parallel manner.
(4) The results of A on T , denoted by ResA(T ), is defined as follows:

ResA(T ) = {T −Rα + Pα |α ∈ Enp
A(T )}.

Note that we have ResA(T ) = {T } if Enp
A(T ) = ∅. Thus, if no multiset of reactions

α ∈ A# is enabled by T in maximally parallel manner, then T remains unchanged.

Notes 1. ( i ) As is mentioned earlier, the definition of the results of A on T given in
(4) is in contrast to the original one in [4], because we adopt the assumption that any
element that is not a reactant for any active reaction does remain in the result after the
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reaction.
(ii) In general, Enp

A(T ) may contain more than one element, and therefore, so may
ResA(T ).
(iii) For simplicity, Ia is often represented as a string rather than a set.

We are now in a position to introduce the notion of reaction automata.

Definition 3. (Reaction Automata) A reaction automaton (RA) A is a 5-tuple A =
(S,Σ, A,D0, f), where

• S is a finite set, called the background set of A,

• Σ(⊆ S) is called the input alphabet of A,

• A is a finite set of reactions in S,

• D0 ∈ S# is an initial multiset,

• f ∈ S is a special symbol which indicates the final state.

Definition 4. Let A = (S,Σ, A,D0, f) be an RA and w = a1 · · · an ∈ Σ∗. An interactive
process in A with input w is an infinite sequence π = D0, . . . , Di, . . ., where

{

Di+1 ∈ ResA(ai+1 +Di) (for 0 ≤ i ≤ n− 1), and
Di+1 ∈ ResA(Di) (for all i ≥ n).

In order to represent an interactive process π, we also use the “arrow notation” for π :
D0 →a1 D1 →a2 D2 →a3 · · · →an−1 Dn−1 →an Dn → Dn+1 → · · · . By IP (A, w) we
denote the set of all interactive processes in A with input w.

For an interactive process π in A with input w, if Enp
A(Dm) = ∅ for some m ≥ |w|,

then we have that ResA(Dm) = {Dm} and Dm = Dm+1 = · · · . In this case, considering
the smallest m, we say that π converges on Dm (at the m-th step). If an interactive
process π converges on Dm, then Dm is called the converging state of π and each Di of
π is omitted for i ≥ m+ 1.

Definition 5. Let A = (S,Σ, A,D0, f) be an RA. Then, we define:

IP a(A, w) = {π ∈ IP (A, w) | π converges on Dm at the m-th step for some m ≥ |w|

and f ⊆ Dm}.

The language accepted by A, denoted by L(A), is defined as follows:

L(A) = {w ∈ Σ∗ | IP a(A, w) 6= ∅}.

Let A be an RA. Motivated by the notion of a workspace for a phrase-structure
grammar ([17]), we define: for w ∈ L(A) with n = |w|, and for π in IP a(A, w),

WS(w, π) = max
i

{|Di| | Di appears in π }.

Further, the workspace of A for w is defined as:

WS(w,A) = min
π

{WS(w, π) | π ∈ IP a(A, w) }.
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Figure 2: Reaction diagram for accepting c8 in A.

Definition 6. Let s be a function defined on N.
(1) An RA A is s(n)-bounded if for any w ∈ L(A) with n = |w|, WS(w,A) is bounded
by s(n).
(2) If a function s(n) is a constant k (resp. linear, polynomial, exponential), then
A is termed k-bounded (resp. linearly-bounded, polynomially-bounded, exponentially-
bounded), and denoted by k-RA (resp. lin-RA, poly-RA, exp-RA). Further, the class
of languages accepted by k-RAs (resp. lin-RAs, poly-RAs, exp-RAs, arbitrary RAs) is
denoted by k-RA (resp. LRA,PRA, ERA,RA).

Proposition 1. (Theorem 3 in [14]) The following inclusions hold :
(1). REG = k-RA ⊂ LRA ⊆ PRA ⊂ ERA ⊆ RA = RE (for each k ≥ 1).
(2). LRA ⊂ CS ⊆ ERA.
(3). LIN (CF) and LRA are incomparable.

Example 1. Let A = (S,Σ, A,D0, f) be an LRA defined as follows:

S = {c, p0, p1, n1, c1, c2, d, e, f},with Σ = {c},

A = {a1, a2, a3, a4, a5, a6, a7, a8}, where

a1 = (p0, c, p1), a2 = (p1, ef, p1n1),

a3 = (c, p1, c1), a4 = (c21, p0c2e, c2), a5 = (c22, p0c1e, c1),

a6 = (c1d, p0c2, e), a7 = (c2d, p0c1, e), a8 = (e, p0cc1c2, f),

D0 = dp0.

Then, it holds that L(A) = {c2
n

|n ≥ 0}. Figure 2 illustrates the interactive process in
A with the input c8.

4. The closure properties of LRA

We investigate the closure properties of the class LRA under various language op-
erations. To this aim, it is convenient to prove the following that one may call normal
form lemma for a bounded class of RAs.

In what follows, we assume that (i) the symbols (such as S,Σ′, S1, S2, Q,etc.) used in
the construction for the background set in the proof denote mutually disjoint sets, and
(ii) the symbols (such as p0, p1, c, d, f

′,etc.) are newly introduced in the proof.

Definition 7. An s(n)-bounded RA A = (S,Σ, A,D0, f) is said to be in normal form if
f appears only in a converging state of an interactive process.
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Lemma 1. For an s(n)-bounded RA A = (S,Σ, A,D0, f), there exists an s(n)-bounded
RA A′ = (S′,Σ, A′, D′

0, f
′) such that L(A) = L(A′) and f ′ appears only in a convergeing

state of an interactive process.

Proof. For an LRA A = (S,Σ, A,D0, f), construct an RA A′ = (S′,Σ, A′, D′
0, f

′) and a
mapping h : S′# → S′# as follows:

S′ = S ∪Σ′ ∪ {p0, p1, c, d, f
′}, where Σ′ = {a′|a ∈ Σ},

A′ = {(h(R), h(I) ∪ f ′, h(P ) + c) | (R, I, P ) ∈ A}

∪ {(a, ∅, a′) | a ∈ Σ} ∪ {a1, a2, a3, a4}, where

a1 = (p0,Σ, p1), a2 = (c, ∅, λ), a3 = (f, cp0, f
′), a4 = (d, ∅, h(D0)),

D′
0 = dp0,

and
{

h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S′ − Σ).

Let w ∈ Σ∗ with |w| = n. Then, there exists an interactive process π = D0, . . . , Dm ∈
IP a(A, w) which converges on Dm if and only if there exists π′ = D′

0, . . . , D
′
m+3 ∈

IP a(A′, w) which converges on D′
m+3 such that























D′
1 = h(D0) + p0 + a′1,

D′
i+1 = h(Di) + p0 + cji + a′i+1 (for 1 ≤ i ≤ n− 1, and some ji ≥ 1),

D′
i+1 = h(Di) + p1 + cki (for n ≤ i ≤ m, and some ki ≥ 1),

D′
m+2 = h(Dm) + p1,

D′
m+3 = h(Dm)− f + f ′p1.

Note that (i) ji ≤ |Di−1| ≤ s(n), ki ≤ |Di−1| ≤ s(n). (ii) there may be Di in π with
f ⊆ Di, 0 ≤ i ≤ m − 1, but f ′ cannot be derived from the corresponding state D′

i+1

in π′, because the blocking symbol c exists in D′
i+2. Moreover, the workspace of A′ is

obviously s(n)-bounded.

Theorem 1. LRA is closed under union, intersection, concatenation, derivative, λ-free
morphisms, λ-free gsm-mappings and shuffle.

Proof. Let A1 = (S1,Σ, A1, D
(1)
0 , f1) and A2 = (S2,Σ, A2, D

(2)
0 , f2) be LRAs in normal

form with (S1−Σ)∩ (S2−Σ) = ∅. Moreover, let Σ1 = {a(1) | a ∈ Σ}, Σ2 = {a(2) | a ∈ Σ},
h1 : S1

# → S1
# and h2 : S2

# → S2
# are defined as follows:

{

hi(a) = a(i) (for a ∈ Σ),
hi(a) = a (for a ∈ Si − Σ),

for i ∈ {1, 2}. It is important in the proof of “union”, “intersection”, “concatenation”
and “shuffle” parts, that h1(S1) and h2(S2) are disjoint.
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[union] We construct an RA A = (S,Σ, A,D0, f) as follows:

S = S1 ∪ S2 ∪ Σ1 ∪Σ2 ∪ {d, f},

A = {(hi(R), hi(I) ∪ {f}, hi(P )) | (R, I, P ) ∈ Ai, i ∈ {1, 2}}

∪ {(a, ∅, a(1)a(2)) | a ∈ Σ}

∪ {(fi, ∅, f) | i ∈ {1, 2}}

∪ {(d, ∅, h1(D
(1)
0 ) + h2(D

(2)
0 )},

D0 = d.

Let w = a1 · · ·an and let m = min{m1,m2}, m1,m2 ≥ 0. Then, for i = 1 or i = 2, there

exists an interactive process πi = D
(i)
0 , . . . , D

(i)
mi ∈ IP a(Ai, w) which converges on D

(i)
mi

if and only if there exists π = D0, . . . , Dm+2 ∈ IP a(A, w) such that
{

Dk+1 = h1(D
(1)
k ) + h2(D

(2)
k ) + a

(1)
k+1a

(2)
k+1 (for 0 ≤ k ≤ n− 1),

Dk+1 = h1(D
(1)
k ) + h2(D

(2)
k ) (for n ≤ k ≤ m).

(Note that either D
(1)
m or D

(2)
m includes f1 and f2, respectively, if and only if Dm+2

includes f .)
Hence, it holds that L(A) = L(A1)∪L(A2) and the workspace of A is linear-bounded.
[intersection] In the LRA A constructed in the proof of “union” part, we replace (i)

{(fi, ∅, f) | i ∈ {1, 2}} by {(f1f2, ∅, f)}, and (ii)m = min{m1,m2} bym′ = max{m1,m2}.
Then, it is easily seen that that L(A) = L(A1) ∩ L(A2) holds.

[concatenation] We construct an RA A = (S,Σ, A,D0, f) as follows:

S = S1 ∪ S2 ∪ Σ1 ∪Σ2 ∪ {p1, p2, d, f},

A = {(hi(R), hi(I) ∪ {f}, hi(P )) | (R, I, P ) ∈ Ai, i ∈ {1, 2}}

∪ {(a, p2, a
(1)) | a ∈ Σ} ∪ {(d, ∅, h1(D

(1)
0 ))}

∪ {(a, p1, a
(2) | a ∈ Σ} ∪ {(p1a, ∅, p2a

(2) + h2(D
(2)
0 )) | a ∈ Σ}

∪ {(f1f2, ∅, f)},

D0 = dp1.

Let w1, w2 ∈ Σ∗ with |w1| = n1, |w2| = n2 and w1w2 = a1 · · · an. Then, for i = 1

and i = 2, there exists an interactive process πi = D
(i)
0 , . . . , D

(i)
mi ∈ IP a(Ai, wi) which

converges on D
(i)
mi if and only if there exists π = D0, . . . , Dm1+m2+2 ∈ IP a(A, w1w2)

such that










(i)Dk+1 = h1(D
(1)
k ) + p1 + a

(1)
k+1 (for 0 ≤ k ≤ n1 − 1),

(ii)Dk+1 = h1(D
(1)
k ) + h2(D

(2)
k−n1

) + p2 + a
(2)
k+1 (for n1 ≤ k ≤ n− 1),

(iii)Dk+1 = h1(D
(1)
k ) + h2(D

(2)
k−n1

) + p2 (for n ≤ k ≤ m1 +m2).

Note that for Dk in (i), a rule in {(a, p1, a(2)) | a ∈ Σ} and {(p1a, ∅, p2a(2)+h2(D
(2)
0 )) | a ∈

Σ} is nondeterministically chosen to be applied in the next step. If a rule in {(a, p1, a(2)) | a ∈
Σ} is chosen, Dk+1 is in (ii).

Hence, it holds that L(A) = L(A1) ·L(A2) and the workspace of A is linear-bounded.
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[shuffle] We construct an RA A = (S,Σ, A,D0, f) as follows:

S = S1 ∪ S2 ∪ Σ1 ∪Σ2 ∪ {d, f},

A = {(hi(R), hi(I) ∪ Σj ∪ {f}, hi(P )) | (R, I, P ) ∈ Ai, i, j ∈ {1, 2}, i 6= j}

∪ {(a, ∅, a(i)) | a ∈ Σ, i ∈ {1, 2}}

∪ {(d, ∅, h1(D
(1)
0 ) + h2(D

(2)
0 ))} ∪ {(f1f2, ∅, f)},

D0 = d.

Let w1, w2 ∈ Σ∗ with |w1| = n1, |w2| = n2 and let w = a1 · · ·an ∈ shuf(w1, w2). Then,

for i = 1 and i = 2, there exists an interactive process πi = D
(i)
0 , . . . , D

(i)
mi ∈ IP a(Ai, wi)

which converges on D
(i)
mi if and only if there exists π = D0, . . . , Dm1+m2+2 ∈ IP a(A, w)

such that
{

Dk+1 = h1(D
(1)
k′ ) + h2(D

(2)
k−k′ ) + a

(i)
k+1 (for 0 ≤ k ≤ n− 1),

Dk+1 = h1(D
(1)
k−n2

) + h2(D
(2)
(k−n1

) (for n ≤ k ≤ m),

where i = 1 or i = 2 and 0 ≤ k′ ≤ k. Note that i = 1 (i = 2) means that only π1 (resp.
π2) advances to the next step and the value of k′ (resp. k − k′) is increased by one.

Hence, it holds that L(A) = Shuf(L(A1), L(A2)) and the workspace of A is linear-
bounded.

[right derivative] For an LRA A = (S,Σ, A,D0, f) in normal form and x = a1 · · · an ∈
Σ+, construct an RA A′ = (S′,Σ, A′, D′

0, f
′) and a mapping h : S′# → S′# as follows:

S′ = S ∪Σ′ ∪Q ∪ {f ′}, where Σ′ = {a′|a ∈ Σ}, Q = {qi | 0 ≤ i ≤ n},

A′ = {(h(R), h(I) ∪ {f ′}, h(P )) | (R, I, P ) ∈ A}

∪ {(a, ∅, a′) | a ∈ Σ}

∪ {(qi,Σ, a
′
i+1qi+1) | 0 ≤ i ≤ n− 1}

∪ {(fqn,Σ, f
′)},

D′
0 = h(D0) + q0,

and
{

h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S′ − Σ).

Let wx ∈ Σ∗ with w = b1 · · · bl, l ≥ 1. Then, there exists an interactive process
π = D0, . . . , Dm ∈ IP a(A, wx) which converges on Dm if and only if there exists
π′ = D′

0, . . . , D
′
m+2 ∈ IP a(A′, w) such that







D′
k+1 = h(Dk) + q0b

′
k+1 (for 0 ≤ k ≤ l − 1),

D′
k+1 = h(Dk) + qk−l+1a

′
k−l+1 (for l ≤ k ≤ l + n− 1),

D′
k+1 = h(Dk) + qn (for l + n ≤ k ≤ m).

Hence, it holds that L(A)/x = L(A′) and the workspace of A′ is linear-bounded.
[left derivative] LetA = (S,Σ, A,D0, f) be an LRA in normal form and x = a1 · · · an ∈

Σ+ and Σi = {a(i) | a ∈ Σ} for 1 ≤ i ≤ n, Q = {qi | 0 ≤ i ≤ n}. Construct an RA
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A′ = (S′,Σ, A′, D′
0, f) and a mapping hn : S′# → S′# as follows:

S′ = S ∪ (
⋃

1≤i≤n

Σi) ∪Q ∪ {d},

A′ = {(hn(R), hn(I), hn(P )) | (R, I, P ) ∈ A}

∪ {(qi, ∅, a
(n)
i+1qi+1) | 0 ≤ i ≤ n− 1}

∪ {(a, ∅, a(1)) | a ∈ Σ},

∪ {(a(i), ∅, a(i+1)) | a ∈ Σ, 1 ≤ i ≤ n− 1, n ≥ 2},

∪ {(d, ∅, hn(D0))},

D′
0 = dq0,

and
{

hn(a) = a(n) (for a ∈ Σ),
hn(a) = a (for a ∈ S′ − Σ).

Let xw ∈ Σ∗ with w = b1 · · · bl, l ≥ 1. Then, there exists an interactive process
π = D0, . . . , Dm ∈ IP a(A, xw) which converges on Dm if and only if there exists
π′ = D′

0, . . . , D
′
m+1 ∈ IP a(A′, w) such that











D′
k+1 = hn(Dk) + qk+1a

(n)
k+1b

(k)
1 b

(k−1)
2 · · · b

(1)
k (for 1 ≤ k ≤ n− 1 and n ≥ 2),

D′
k+1 = hn(Dk) + qnb

(n)
k−n+1b

(n−1)
k−n · · · b

(1)
k (for n ≤ k ≤ l + n− 1),

D′
k+1 = hn(Dk) + qn (for l + n ≤ k ≤ m).

Hence, it holds that x\L(A) = L(A′) and the workspace of A′ is linear-bounded.
[λ-free gsm-mappings] For an LRA A = (S,Σ, A,D0, f) in normal form and a gsm-

mapping g = (Q,Σ,∆, δ, p0, F ), construct an RA A′ = (S′,∆, A′, D′
0, f

′) and a mapping
h : S′# → S′# as follows:

S′ = S ∪Σ′ ∪∆ ∪Q ∪ {c, d, f ′}, where Σ′ = {a′ | a ∈ Σ},

A′ = {(h(R), h(I) ∪ {c, f ′}, h(P )) | (R, I, P ) ∈ A}

∪ {(b, ∅, b2) | b ∈ ∆}

∪ {(pc+ stm(x), ∅, qda) | (q, x) ∈ δ(p, a)}

∪ {(pd+ stm(x), ∅, qda) | (q, x) ∈ δ(p, a), |x| = 1}

∪ {(f ′′f,Σ ∪ {c, d}, f ′) | f ′′ ∈ F}

∪ {(c, ∅, c)} ∪ {(d, ∅, c)} ∪ {(d,Σ, λ)},

D′
0 = h(D0) + cp0.

and
{

h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S′ − Σ).

Then, for an input w = a1 · · · an, there exists π : D0, D1, . . . , Dm ∈ IP a(A, w) which
converges on Dm, and g(w) = b1 · · · bn′ , where (p1, b1 · · · bt) ∈ δ(p0, a1), if and only if
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there exists the interactive process π′ in A′ such that

D′
0 →b1 h(D0) + cp0b

2
1 →

b2 · · ·

→bt−1 h(D0) + cp0 + stm(b1b2 · · · bt)− bt

→bt h(D0) + dp0a
′
1

→bt+1 h(D1) + cp1b
2
t+1 →bt+2 · · ·

(or →bt+1 h(D1) + dp1a
′
2 →bt+2 · · · if (q, bt+1) ∈ δ(p1, a2))

→bn′ h(Dn−1) + df ′′a′n

→ h(Dn) + f ′′

→ h(Dn)− f + f ′(= D′
q)

and D′
q is a converging state in A′. Hence, it holds that g(L(A)) = L(A′) and the

workspace of A′ is linear-bounded.
[λ-free morphisms] Since LRA is closed under λ-free gsm-mappings, it is also closed

under λ-free morphisms.

In order to prove some of the negative closure properties of LRA, the following two
lemmas are of crucially importance.

Lemma 2. (Lemma 1 in [14]) For an alphabet Σ with |Σ| ≥ 2, let h : Σ∗ → Σ∗ be an
injection such that for any w ∈ Σ∗, |h(w)| is bounded by a polynomial of |w|. Then, there
is no PRA A such that L(A) = {wh(w) |w ∈ Σ∗}.

Lemma 3. L1 = {w1w2 | w1, w2 ∈ {a, b}∗, w1 6= w2} ∈ LRA.

Proof. Let L = {u1su2v1tv2 | u1, u2, v1, v2 ∈ {a, b}∗, |u1| = |v1|, |u2| = |v2|, s, t ∈
{a, b}, s 6= t} and A = (S,Σ, A,D0, f) be an LRA defined as follows:

S = {a, b, a′, b′, c1, c2, p0, p1, p2, p3, f} with Σ = {a, b},

A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}, where

a1 = (p0a, ∅, p0c1), a2 = (p0b, ∅, p0c1), a3 = (p0a, ∅, p1a
′), a4 = (p0b, ∅, p1b

′),

a5 = (p1a, ∅, p1c2), a6 = (p1b, ∅, p1c2), a7 = (p1a, ∅, p2c2), a8 = (p1b, ∅, p2c2),

a9 = (p2ac1, ∅, p2), a10 = (p2bc1, ∅, p2), a11 = (p2a
′b, c1, p3), a12 = (p2b

′a, c1, p3),

a13 = (p3ac2, ∅, p3), a14 = (p3bc2, ∅, p3), a15 = (p3, abc2, f),

D0 = p0.

Let w = u1su2v1tv2 ∈ L be an input string. The string w is accepted by A in the
following manner:

1. Applying a1 and a2, the length of u1 is counted by the number of c1.

2. Applying a3 or a4, s is rewritten by s′.

3. Applying a5, a6, a7 and a8, the length of u2 is counted by the number of c2. If a7
or a8 is applied, then the interactive process enters the next step.

4. Applying a9 and a10, it is confirmed that u1 = v1 by consuming c1.

5. Applying a11 and a12, it is confirmed that s 6= t.
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6. Applying a13 and a14, it is confirmed that u2 = v2 by consuming c2.

Therefore, it holds that L = L(A). Note that L1 = L∪{w ∈ Σ∗ | |w| = 2n+1, n ≥ 0}.
Since LRA is closed under union and includes all regular language, L1 is in LRA.

Theorem 2. LRA is not closed under complementation, quotient by regular languages,
morphisms or gsm-mappings.

Proof. From Lemma 3, L1 = {w1w2 | w1, w2 ∈ {a, b}∗, w1 6= w2} ∈ LRA, while from
Lemma 2, L̄1 = {w1w2 | w1, w2 ∈ {a, b}∗, w1 = w2} /∈ LRA. Hence, LRA is not closed
under complementation. From Corollary 3, it obviously follows that LRA is not closed
under quotient by regular languages, morphisms or gsm-mappings.

5. The closure properties of λ-LRA

As is seen in the previous section, it remains open whether or not the class LRA is
closed under several basic operations such as Kleene closures (+, ∗) or inverse homomor-
phism.

In this section, we shall prove that if the λ-move is allowed in the phase of input
mode in the transition process of reactions, then the obtained class of languages (λ-LRA
introduced below) accepted in that manner shows in turn positive closure properties
under those basic operations.

Definition 8. Let A = (S,Σ, A,D0, f) be an RA. An interactive process in the λ-input
mode in A with input w ∈ Σ∗ is a sequence π = D0, . . . , Di, . . ., where w = a1 · · · an with
ai ∈ Σ ∪ {λ} for 1 ≤ i ≤ n,

{

Di+1 ∈ ResA(ai+1 +Di) (for 0 ≤ i ≤ n− 1), and
Di+1 ∈ ResA(Di) (for all i ≥ n).

By IPλ(A, w) we denote the set of all interactive processes in the λ-input mode in A
with input w.

Definition 9. Let A = (S,Σ, A,D0, f) be an RA. Then, we define:

IP a
λ (A, w) = {π ∈ IPλ(A, w) | π converges on Dm at the m-th step for some m ≥ |w|

and f ⊆ Dm}.

The language accepted by A in the λ-input mode, denoted by Lλ(A), is defined as follows:

Lλ(A) = {w ∈ Σ∗ | IP a
λ (A, w) 6= ∅}.

Definition 10. The class of languages accepted by RAs (k-RAs, lin-RAs, poly-RAs and
exp-RAs) in the λ-input mode is denoted by λ-RA (resp. λ-k-RA, λ-LRA, λ-PRA and
λ-ERA).

In what follows, we focus on dealing with λ-LRA and continue investigating the
clouser properties of the class of languages. As a result, it is shown that the class forms
an AFL, i.e., an abstract family of languages.

Theorem 3. For any LRA A, there exists an LRA A′ such that L(A) = Lλ(A′).
13



Proof. Let Σ′ = {a′ | a ∈ Σ} be a new alphabet. For an LRA A = (S,Σ, A,D0, f) in
normal form, construct an RA A′ = (S′,Σ, A′, D′

0, f
′) and a mapping h : S′# → S′# as

follows:

S′ = S ∪Σ′ ∪ {p0, p1, d, f
′},

A′ = {h(R), h(I) ∪ {f ′}, h(P ) | (R, I, P ) ∈ A} ∪ {(a, p1, a
′) | a ∈ Σ}

∪ {a1, a2, a3}, where

a1 = (d,Σ, h(D0)), a2 = (p0,Σ, p1), a3 = (f,Σ, f ′),

D′
0 = dp0,

and
{

h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S′ − Σ).

Note that once λ is inputted before an element a ∈ Σ in an interactive process, a cannot
be consumed since p1 will have to be introduced by a2 in the next step, which implies
that no λ-input is allowed before an element a ∈ Σ in a successful interactive process in
A′.

Definition 11. An s(n)-bounded RA A = (S,Σ, A,D0, f) is said to be in λ-normal form
if f appears only in a converging state of an interactive process in the λ-input mode.

Lemma 4. For an s(n)-bounded RA A = (S,Σ, A,D0, f), there exists an s(n)-bounded
RA A′ = (S′,Σ, A′, D′

0, f
′) such that Lλ(A) = Lλ(A′) and f ′ appears only in a converging

state of an interactive process.

Proof. For an s(n)-bounded RAA = (S,Σ, A,D0, f), construct an RAA′ = (S′,Σ, A′, D′
0, f

′)
and a mapping h : S′# → S′# as follows:

S′ = S ∪Σ′ ∪ {p0, p1, c, d, f
′}, where Σ′ = {a′|a ∈ Σ},

A′ = {(h(R), h(I) ∪ f ′, h(P ) + c) | (R, I, P ) ∈ A}

∪ {(a, p1, a
′) | a ∈ Σ} ∪ {a1, a2, a3, a4, a5}, where

a1 = (p0,Σ, p1), a2 = (c, ∅, λ), a3 = (f, {c, p0} ∪ Σ, f ′),

a4 = (d, ∅, h(D0)), a5 = (p0, ∅, p0),

D′
0 = dp0,

and
{

h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S′ − Σ).

When λ is inputted in an interactive process, a1 exclusively or a5 has to be used in the
next step. Using a1 implies that the input of the string terminates, while using a5 implies
that the input of the string continues. The rest of the key issue is proved in a similar
manner to Lemma 1.

Theorem 4. λ-LRA is closed under union, intersection, concatenation, Kleene +,
Kleene ∗, derivative, λ-free morphisms, inverse morphisms, λ-free gsm-mappings and
shuffle.
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Proof. [union, concatenation and shuffle] Using the same construction as the proof of
Theorem 1, the claims are immediately proved.

[intersection] Let A1 = (S1,Σ, A1, D
(1)
0 , f1) and A2 = (S2,Σ, A2, D

(2)
0 , f2) be LRAs

in λ-normal form with (S1 − Σ) ∩ (S2 − Σ) = ∅. Moreover, let Σi = {a(i) | a ∈ Σ},
Σ′

i = {a(i)
′

| a(i) ∈ Σi} be alphabets and hi : Si
# → Si

# be a mapping defined as follows:
{

hi(a) = a(i) (for a ∈ Σ),
hi(a) = a (for a ∈ Si − Σ),

for i ∈ {1, 2}.
Then, we construct an RA A = (S,Σ, A,D0, f) as follows:

S = S1 ∪ S2 ∪ Σ1 ∪Σ2 ∪ Σ′
1 ∪Σ′

2 ∪ {d, f},

A = {(hi(R), hi(I) ∪ Σ ∪ Σ′
j ∪ {f}, hi(P )) | (R, I, P ) ∈ Ai, i ∈ {1, 2}}

∪ {(a,Σ′
1 ∪ Σ′

2, a
(1)′a(2)

′

) | a ∈ Σ}

∪ {(a(i)
′

,Σ, a(i)) | a(i) ∈ Σi, i ∈ {1, 2}}

∪ {(a(i)
′

,Σ, a(i)
′

) | a(i) ∈ Σi, i ∈ {1, 2}}

∪ {(d, ∅, h1(D
(1)
0 ) + h2(D

(1)
0 ))} ∪ {(f1f2,Σ ∪Σ′

1 ∪ Σ′
2, f)},

D0 = d.

Let w = a1 · · · an ∈ Lλ(A1) ∩ Lλ(A2). Moreover, let D
(1)
i →λ · · · →λ D

(1)
j →am D

(1)
j+1

be a part of π1 ∈ IPλ(A1, w) and D
(2)
k →λ · · · →λ D

(2)
l →am D

(2)
l+1 be a part of π2 ∈

IPλ(A2, w) for 1 ≤ m ≤ n. We assume that j − i ≤ l − k. Then, they are imitated in
π ∈ IPλ(A, w) as follows:

h1(D
(1)
i ) + h2(D

(2)
k ) →λ · · · →λ h1(D

(1)
j ) + h2(D

(2)
k−i+j)

→amh1(D
(1)
j ) + h2(D

(2)
k−i+j) + a(1)

′

m a(2)m

→λ h1(D
(1)
j ) + h2(D

(2)
k−i+j) + a(1)m a(2)

′

m

→λ h1(D
(1)
j ) + h2(D

(2)
k−i+j+1) + a(1)m a(2)

′

m →λ · · ·

→λ h1(D
(1)
j ) + h2(D

(2)
k ) + a(1)m a(2)m

→λ h1(D
(1)
j+1) + h2(D

(2)
k+1).

The other direction of the proof is shown in the similar manner. Hence, it holds that
Lλ(A) = Lλ(A1) ∩ Lλ(A2) and the workspace of A is linear-bounded.

[Kleene ∗] LetA = (S,Σ, A,D0, f) be an LRA in λ-normal form and Σ′ = {a′ | a ∈ Σ}.
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Construct an RA A′ = (S′,Σ, A′, D′
0, f

′) and a mapping h : S′# → S′# as follows:

S′ = S ∪Σ′ ∪ {p0, p1, d, e, f
′′, f ′},

A′ = {(h(R), h(I) ∪ {f ′, f ′′}, h(P )) | (R, I, P ) ∈ A}

∪ {(h(R), h(I) ∪ Σ ∪ {f ′, f ′′}, h(P )) | (R, I, P ) ∈ A, f ⊆ P}

∪ {(a, p1, a
′) | a ∈ Σ}

∪ {(a, e, λ) | a ∈ (S ∪Σ′)− Σ}

∪ {(d, ∅, h(D0) + e)} ∪ {(p0,Σ, p1)} ∪ {(p0, ∅, p0)}

∪ {(ef,Σ, f ′′)} ∪ {(f ′′, {p1}, h(D0) + e)} ∪ {(f ′′,Σ ∪ {p0}, f
′)},

D′
0 = dp0,

and
{

h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S′ − Σ).

Let w1, w2 ∈ Σ∗ with w1 = a
(1)
1 · · · a

(1)
n , w2 = a

(2)
1 · · · a

(2)
m . Then, we can easily see that

there exist the interactive processesD0, D
(1)
1 , . . .D

(1)
i ∈ IP a

λ (A, w1) andD0, D
(2)
1 . . . D

(2)
j ∈

IP a
λ (A, w2) which converge on D

(1)
i and D

(2)
j , respectively, if and only if there exists the

interactive process D′
0, D

′
1, . . . D

′
i+j+4 ∈ IP a

λ (A
′, w1w2) such that



































D′
k+1 = h(D

(1)
k ) + ep0 (for 0 ≤ k ≤ i),

D′
i+2 = h(D

(1)
i )− f + f ′′p0,

D′
i+3 = h(D0) + ep0,

D′
k+i+4 = h(D

(2)
k ) + ep0 (for 0 ≤ k ≤ j),

D′
i+j+5 = h(D

(2)
j )− f + f ′′p1,

D′
i+j+6 = fp1

Hence, it holds that w1w2 ∈ Lλ(A′). In a similar manner, we can prove that w1 · · ·wl ∈
Lλ(A′) for w1, . . . , wl ∈ Lλ(A) and l ≥ 0. Then, it holds that Lλ(A)∗ = Lλ(A′) and the
workspace of A′ is linear-bounded.

[Kleene +] For LRAsA andA′ in the proof of “Kleene ∗” part, it holds that Lλ(A)+ =
Lλ(A′)∩Σ+. Since λ-LRA is closed under intersection with regular languages, it is also
closed under Kleene +.

[right derivative] For an LRAA = (S,Σ, A,D0, f) in λ-normal form and x = a1 · · ·an ∈
Σ+, construct an RA A′ = (S′,Σ, A′, D′

0, f
′) and a mapping h : S′# → S′# as follows:

S′ = S ∪Σ′ ∪Q ∪ {f ′}, where Σ′ = {a′|a ∈ Σ}, Q = {qi | 0 ≤ i ≤ n},

A′ = {(h(R), h(I) ∪ {f ′}, h(P )) | (R, I, P ) ∈ A}

∪ {(a,Q− {q0}, a
′) | a ∈ Σ}

∪ {(qi,Σ, a
′
i+1qi+1) | 0 ≤ i ≤ n− 1}

∪ {(qi,Σ, qi) | 0 ≤ i ≤ n}

∪ {(fqn,Σ, f
′)},

D′
0 = h(D0) + q0,
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and
{

h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S′ − Σ).

Note that because of the inhibitor of a reaction in {(a,Q− {q0}, a′) | a ∈ Σ}, a reaction
in {(qi,Σ, a

′
i+1qi+1) | 0 ≤ i ≤ n − 1} must be used after feeding the input. Hence, the

rest of the proof is similar to the case for the ordinary input mode.
[left derivative] For an LRA A = (S,Σ, A,D0, f) in λ-normal form and x = a1 · · · an ∈

Σ+, construct an RA A′ = (S′,Σ, A′, D′
0, f

′) and a mapping h : S′# → S′# as follows:

S′ = S ∪Σ′ ∪Q ∪ {f ′}, where Σ′ = {a′|a ∈ Σ}, Q = {qi | 0 ≤ i ≤ n},

A′ = {(h(R), h(I) ∪ {f ′}, h(P )) | (R, I, P ) ∈ A}

∪ {(a,Q− {qn}, a
′) | a ∈ Σ}

∪ {(qi,Σ, a
′
i+1qi+1) | 0 ≤ i ≤ n− 1}

∪ {(qi,Σ, qi) | 0 ≤ i ≤ n}

∪ {(fqn,Σ, f
′)},

D′
0 = h(D0) + q0,

and
{

h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S′ − Σ).

Note that because of the inhibitor of a reaction in {(a,Q−{qn}, a′) | a ∈ Σ}, each reaction
in {(qi,Σ, a′i+1qi+1) | 0 ≤ i ≤ n− 1} must be used before starting the input except λ.

Let xw ∈ Σ∗ with w = b1 · · · bl. Then, there exists an interactive process π =
D0, . . . , Dm ∈ IP a

λ (A, xw) which converges on Dm if and only if there exists π′ =
D′

0, . . . , D
′
m+2 ∈ IP a

λ (A
′, w) such that







D′
i+1 = h(Di) + qk+1a

′
k+1 (for 0 ≤ k ≤ n− 1),

D′
i+1 = h(Di) + qnb

′
k−n+1 (for n ≤ k ≤ l + n− 1),

D′
i+1 = h(Di) + qn,

for some 0 ≤ i ≤ m. Hence, it holds that x\Lλ(A) = Lλ(A′) and the workspace of A′ is
linear-bounded.

[inverse morphisms] Let A = (S,∆, A,D0, f) be an LRA in normal form and h :
Σ∗ → ∆∗ be a morphism defined as h(a) = b(a,1) · · · b(a,l) ∈ ∆∗ or h(a) = λ, for a ∈ Σ
and |h(a)| = l. Moreover, let ∆′ = {b′ | b ∈ ∆} and Q = {q(a,i) | a ∈ Σ, |h(a)| ≥ 2, 1 ≤

i ≤ |h(a)| − 1}. Construct an RA A′ = (S′,Σ, A′, D′
0, f

′) and a mapping g : S′# → S′#
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as follows:

S′ = S ∪Σ ∪∆′ ∪Q ∪ {d, f ′},

A′ = {(g(R), g(I) ∪ {a ∈ Σ | |h(a)| = 0} ∪ {f ′}, g(P )) | (R, I, P ) ∈ A}

∪ {(a, ∅, λ) | |h(a)| = 0, a ∈ Σ}

∪ {(a, ∅, b′(a,1)) | |h(a)| = 1, a ∈ Σ}

∪ {(a, ∅, q(a,1)b
′
(a,1)), (q(a,1),Σ, b

′
(a,2)) | |h(a)| = 2, a ∈ Σ}

∪ {(a, ∅, q(a,1)b
′
(a,1)), (q(a,i),Σ, q(a,i+1)b

′
(a,i+1)), (q(a,|h(a)|−1),Σ, b

′
(a,|h(a)|))

| |h(a)| ≥ 3, 1 ≤ i ≤ |h(a)| − 2, a ∈ Σ}

∪ {(q, ∅, q) | q ∈ Q}

∪ {(d, ∅, g(D0))} ∪ {(f,Q ∪ Σ, f ′)},

D′
0 = d,

and
{

g(a) = a′ (for a ∈ ∆),
g(a) = a (for a ∈ S′ −∆).

Let w = b(a1,1) · · · b(a1,|h(a1)|) · · · b(an,1) · · · b(an,|h(an)|) ∈ Lλ(A). Hence, a1 · · · an is in-

cluded in h−1(w). Moreover, let Di →b(am,1) · · · →b(am,|h(am)|) Dj be a part of π ∈
IPλ(A, w). For |h(am)| ≥ 3, it is imitated in π′ ∈ IPλ(A′, w) as follows:

g(Di−1)

→amg(Di)b
′
(am,1)q(am,1)

→λ g(Di+1)b
′
(am,2)q(am,2) →

λ · · ·

(or →λ g(Di+1)q(am,1) →
λ · · · , for a λ-input in A)

→λ g(Di−1)b
′
(am,h(am))

→λ g(Di).

The other direction of the proof is shown in the similar manner. Hence, it holds that
h−1(Lλ(A)) = Lλ(A′) and the workspace of A′ is linear-bounded.

[λ-free morprhisms] We first show that λ-LRA is closed under codings. For an LRA
A = (S,Σ, A,D0, f) in λ-normal form and a coding h : Σ∗ → ∆∗, construct an RA
A′ = (S′,∆, A′, D′

0, f
′) and a mapping h : S′# → S′# as follows:

S′ = S ∪Σ′ ∪∆ ∪ {d}, where Σ′ = {a′ | a ∈ Σ},

A′ = {(h(R), h(I), h(P )) | (R, I, P ) ∈ A}

∪ {(h(a), ∅, a′) | a ∈ Σ}

∪ {(d, ∅, h(D0))},

D′
0 = d,

and
{

h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S′ − Σ).
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Then, it holds that h(Lλ(A)) = Lλ(A′) and the workspace of A′ is linear-bounded.
In Theorem 3.7.1 of [9], it is shown that each family closed under inverse morphisms,

intersection with regular languages and codings is also closed under λ-free morprhisms.
Hence, λ-LRA is closed under λ-free morprhisms.

[λ-free gsm-mappings] Since every trio is closed under λ-free gsm-mappings ([17]),
λ-LRA is closed under λ-free gsm-mappings.

We shall show that λ-LRA shares common negative closure properties with LRA.
The manner of proving those results is almost parallel to that of proofs for LRA presented
in the previous section. In order to make this paper self-contained, below we give the
proof of the following lemma that is a λ-version of Lemma 2 (i.e., of Lemma 1 in [14]).

Lemma 5. For an alphabet Σ with |Σ| ≥ 2, let h : Σ∗ → Σ∗ be an injection such that for
any w ∈ Σ∗, |h(w)| is bounded by a polynomial of |w|. Then, there is no PRA A such
that Lλ(A) = {wh(w) |w ∈ Σ∗}.

Proof. Assume that there is a poly-RAA = (S,Σ, A,D0, f) such that Lλ(A) = {wh(w) |w ∈
Σ∗}. Let |S| = m1, |Σ| = m2 ≥ 2 and the input string be wh(w) with |w| = n.

Since |h(w)| is bounded by a polynomial of |w|, |wh(w)| is also bounded by a poly-
nomial of n. Hence, for each Di in an interactive process π ∈ IPλ(A, wh(w)), it holds
that |Di| ≤ p(n) for some polynomial p(n) from the definition of a poly-RA.

Let Dp(n) = {D ∈ S# | |D| ≤ p(n)}. Then, it holds that

|Dp(n)| =

p(n)
∑

k=0

m1Hk =

p(n)
∑

k=0

(k +m1 − 1)!

k! · (m1 − 1)!
=

(p(n) +m1)!

p(n)! ·m1!

=
(p(n) +m1)(p(n) +m1 − 1) · · · (p(n) + 1)

m1!
(∗)

where m1Hk denotes the number of repeated combinations of m1 things taken k at a
time. Therefore, there is a polynomial p′(n) such that |Dp(n)| = p′(n). Since it holds
that |Σn| = (m2)

n, if n is sufficiently large, we obtain the inequality |Dp(n)| < |Σn|.
For w = a1 · · ·an ∈ Σ∗, let I(w) = {D ∈ Dp(n) |π = D0 →a1 · · · →an D → · · · ∈

IPλ(A, w)} ⊆ Dp(n), i.e., I(w) is the set of multisets in Dp(n) which appear immediately
after inputing w in IPλ(A, w). From the fact that L(A) = {wh(w) |w ∈ Σ∗} and h is an
injection, we can show that for any two distinct strings w1, w2 ∈ Σn, I(w1) and I(w2)
are incomparable. This is because if I(w1) ⊆ I(w2), then the string w2h(w1) is in Lλ(A),
which means that h(w1) = h(w2) and contradicts that h is an injection.

Since for any two distinct strings w1, w2 ∈ Σn, I(w1) and I(w2) are incomparable
and I(w1), I(w2) ⊆ Dp(n), it holds that

|{I(w) |w ∈ Σn}| ≤ |Dp(n)| < |Σn|.

However, from the pigeonhole principle, the inequality |{I(w) |w ∈ Σn}| < |Σn| contra-
dicts that for any two distinct strings w1, w2 ∈ Σn, I(w1) 6= I(w2). Hence, there is no
LRA A such that Lλ(A) = {wh(w) |w ∈ Σ∗}.

Theorem 5. λ-LRA is not closed under complementation, quotient by regular languages,
morphisms or gsm-mappings.
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Corollary 1. λ-LRA is an AFL, but not a full AFL.

Remark: We note the class λ-PRA could be proved to be an AFL in the same manner
as λ-LRA.

6. Further characterizations of LRA and ERA

In this section, we develop further characterizations concerning LRA and ERA in
relation to the Chomsky hierarchy, and show two interesting results. One is concerned
with a representation theorem for the class RE in terms of LRA, and the other is a new
characterization of CS with ERA.

Theorem 6. For any context-sensitive language L ⊆ Σ∗, there exists an LRA A such
that w ∈ L if and only if c2

n

w ∈ L(A) (or wc2
n

∈ L(A)) with |w| = n and c /∈ Σ.

Proof. From Proposition 1, let A = (S,Σ, A,D0, f) be an ERA which accepts L. Then,
construct an RA A′ = (S′,Σ ∪ c, A′, D′

0, f
′) as follows:

S′ = S ∪ {p0, p1, p2, p3, p4, n1, n2, c, c1, c2, d, e, f
′, f ′′},

A′ = {R, I ∪ {c, f ′}, P ) | (R, I, P ) ∈ A}

∪ {a′1, a
′
2, a3, a4, a5, a6, a7, a

′
8, a9, a10, a11, a12}, where

a′1 = (p0, c, p1p2p3n2), a′2 = (p1, eff
′f ′′, p1n1), a3 = (c, p1, c1), a4 = (c21, p0c2e, c2),

a5 = (c22, p0c1e, c1), a6 = (c1d, p0c2, e), a7 = (c2d, p0c1, e), a′8 = (e, p0cc1c2, f
′′),

a9 = (p2, cp4, p2n2), a10 = (p3,Σ, p4), a11 = (n1n2, ∅, λ), a12 = (ff ′′, p3n1n2, f
′),

D′
0 = D0 + dp0.

Note that the reactions a′1-a
′
8 are almost the same as the ones of Example 1. There-

fore, the total number of n1 appearing in a interactive process of IP (A′, c2
n

w) is n + 1
(see Example 1 and Figure 2). On the other hand, the total number of n2 appearing in a
interactive process of IP (A′, c2

n

w) is |w|+1, which is derived by the reactions a′1, a9, a10.
Using the reaction a11, it is confirmed that if c2

n

w is accepted by A′, then n+1 = |w|+1.
Hence, it holds that w ∈ L(A) if and only if c2

n

w ∈ L(A′) with |w| = n.
Since the workspace of A for w is bounded by an exponential function with respect

to the length |w| = n, the workspace of A′ for c2
n

w is bounded by a linear function with
respect to the length |c2

n

w| = 2n + n.
For the case wc2

n

, we can prove in a similar manner.

Theorem 7 (Theorem 3.12 in [16]). For any recursively enumerable language L ⊆ Σ∗,
context-sensitive language L′ such that w ∈ L if and only if c2

ic1w ∈ L′ (or wc1c2
i ∈ L′)

for some i ≥ 0 and c1, c2 /∈ Σ.

Corollary 2. For any recursively enumerable language L ⊆ Σ∗, there exists an LRA A
such that w ∈ L if and only if c3

jc2
ic1w ∈ L(A) (or wc1c2

ic3
j ∈ L(A)) for some i, j ≥ 0

and c1, c2, c3 /∈ Σ.

Corollary 3. (i) For any recursively enumerable language L, there exists an LRA A
such that L = R\L(A) (or L(A)/R) for some regular language R.
(ii) For any recursively enumerable language L, there exists an LRA A such that L =
h(L(A)) for some projection h.
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Theorem 8. For a language L, L is a context-sensitive language if and only if L is
accepted by an ERA.

Proof. The claim of “only if” part holds by Proposition 1.
Let S = {s1, . . . , sk} be an ordered alphabet and A = (S,Σ, A,D0, f) be an ERA.

Assume that for an input w = a1 · · · an ∈ Σ∗, the workspace of A is bounded by the ex-
ponential function s(n) = c1c

n
2 , where c1, c2 ≥ 0 are constants. Then, we shall construct

the nondeterministic (k + 2)-tape linear-bounded automaton MA in which the length of
each tape is bounded by ckn for some constant c. MA imitates an interactive process
π : D0, . . . , Dn, . . . ∈ IP (A, w) in the following manner:

1. At first, Tape-1 has the input w ∈ Σ∗ and Tape-(i+1) has the number of si in D0

(for 1 ≤ i ≤ k) represented by c2-ary number. Tape-(k + 2) is used to count the
number of computation step of MA.

2. Let D be the current multiset in π. When MA reads the symbol si in the input,
add one to the Tape-(i + 1). Then, by checking all tapes except Tape-1, compute
an element of ResA(si +D) in the nondeterministic way and rewrite the contents
in the tapes. After reading through the input w, MA computes an element of
ResA(D) in the nondeterministic way and rewrite the contents in the tapes.

3. After reading through the input w, if ResA(D) = {D} and f ⊆ D, thenMA accepts
w. In the case where (i) ResA(D) = {D} and f * D, (ii) |D| exceeds c1cn2 or (iii)
the number of computation step exceeds c3c

kn
2 for k(= |S|) and some constant c3,

MA rejects w.

Since we use c2-ary number for counting the number of symbols, the length logc2(c1)+n
of each tape is enough to memorize D with |D| ≤ c1c

n
2 . In the case where MA never

stops with the input w, there exists a cycle of configurations in the computation of MA.
Since the number of all possible Ds during the computation is bounded by c3c

kn
2 for

k and some constant c3 (see the equation (∗) in the proof of Lemma 5), the length of
Tape-(k+2) to count the number of steps of computation is bounded by logc2(c3) + kn.
Therefore, it holds that L(MA) = L(A).

Table 1 summarizes the results of closure properties of both LRA and λ-LRA, while
Figure 3 illustrates the relationship between language classes defined by a various types
of bounded reaction automata and the Chomsky hierarchy.

7. Conclusion

We have continued the investigation of reaction automata (RAs) with a focus on
the formal language theoretic properties of subclasses of RAs, called linear-bounded
RAs (LRAs) and exponentially-bounded RAs (ERAs). Besides LRAs, we have newly
introduced an extended model (denoted by λ-LRAs) by allowing λ-moves in the accepting
process of reaction, and investigated the closure properties of language classes LRA and
λ-LRA. We have shown the following :
( i ) the class λ-LRA forms an AFL with additional closure properties,
(ii) any recursively enumerable language can be expressed as a homomorphic image of a
language in LRA,
(iii) the class ERA coincides with the class of context-sensitive languages.
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Table 1: Closure properties of LRA and λ-LRA.

language operations LRA λ-LRA

union Y Y
intersection Y Y
complementation N N
concatenation Y Y
Kleene + ? Y
Kleene ∗ ? Y
(right & left) derivative Y Y
(right & left) quotient by regular languages N N
λ-free morphisms Y Y
morphisms N N
inverse morphisms ? Y
λ-free gsm-mappings Y Y
gsm-mappings N N
shuffle Y Y

Considering the definitions of the existing acceptors in the classical automata theory,
the result ( i ) suggests that it may be reasonably justifiable to allow each subclass of
bounded RAs to have λ-transitions in its definition. From the result (ii) and the closure
properties (shown in Table 1), it is interesting to see that the class LRA (or λ-LRA)
is closer to the class CS rather than the class CF in its language theoretic property.
Further, an intriguing result (iii) together with the result that RE = RA (in [14]) may
provide a new insight into the theory of computational complexity.

Many subjects remain to be investigated. First, it is open whether or not LRA is
equal to λ-LRA, whose positive answer immediately settles open problems of the closure
properties on LRA (see Table 1). Also, we do not know the proper inclusion relation
between LRA and PRA. Secondly, it is interesting to explore the relationship between
RAs and other computing devices that are based on the multiset rewriting, such as a
variety of P-systems and their variants ([15]), Petri net models ([10]). Also, it would
be useful to develop a method for simulating a variety of chemical reactions in the real
world by the use of the framework based on reaction automata.

References

[1] A. Alhazov, S. Verlan, Minimization strategies for maximally parallel multiset rewriting systems,
Theoretical Computer Science vol.412, pp.1587-1591, 2011.
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