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Abstract. The binary perfect phylogeny model is too restrictive to model biological events
such as back mutations. In this paper we consider a natural generalization of the model that
allows a special type of back mutation. We investigate the problem of reconstructing a near
perfect phylogeny over a binary set of characters where characters are persistent: characters
can be gained and lost at most once. Based on this notion, we define the problem of the
Persistent Perfect Phylogeny (referred as P-PP). We restate the P-PP problem as a special
case of the Incomplete Directed Perfect Phylogeny, called Incomplete Perfect Phylogeny
with Persistent Completion, (refereed as IP-PP), where the instance is an incomplete binary
matrix M having some missing entries, denoted by symbol ?, that must be determined (or
completed) as 0 or 1 so that M admits a binary perfect phylogeny. We show that the IP-PP
problem can be reduced to a problem over an edge colored graph since the completion of
each column of the input matrix can be represented by a graph operation. Based on this
graph formulation, we develop an exact algorithm for solving the P-PP problem that is
exponential in the number of characters and polynomial in the number of species.

1 Introduction

The perfect phylogeny is one of the most investigated models in different areas of computational
biology. This model derives from a restriction of the parsimony methods used to reconstruct the
evolution of species (taxa). Such methods assume that each taxon is characterized by a set of
of attributes, called characters. In this paper we focus on the binary perfect phylogeny model;
characters can take only the values (or states) zero or one, usually interpreted as the presence or
absence of the attribute in the taxa. Restrictions on the type of changes from zero to one and vice
versa lead to a variety of specific models (Felsenstein, [6]). In the Dollo parsimony, a character may
change state from zero to one only once, but from one to zero multiple times [13]. In the variant of
Camin-Sokal parsimony [2], characters are directed, only changes from zero to one are admissible
on any path from the root to a leaf. This fact means that the root is assumed to be labeled by
the ancestral state with all zero values for each character, and no character change back to 0 is
allowed. This last variant is known as the binary directed perfect phylogeny, and it has a linear
time solution [8].

Such a model has been successfully applied in the context of haplotype inference, starting
from the seminal work by Gusfield on the Perfect Phylogeny Haplotyping Problem [9]. This last
problem has been widely investigated, and very efficient polynomial time solutions have been
proposed, including linear-time algorithms [4], [16], [1]. However, the real data usually do not fit
the simple model of the binary perfect phylogeny and thus in the past years generalizations of the
model have been proposed. Some models are surveyed in [7].

A central goal in this investigation of the binary perfect phylogeny model is to extend its appli-
cability by taking into account the biological complexity of data, while retaining the computational
efficiency where possible. More precisely, the binary perfect phylogeny model though allowing a
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very efficient reconstruction is quite restrictive to explain the evolution of data where homoplasy
events such as back mutations, also called reversals, are present. In order to include such events,
the problem of reconstructing the near-perfect phylogeny has been formalized and investigated.
Some work has been done to produce algorithmic solutions to the problem, mainly fixed-parameter
algorithms have been provided [15], [18]. However, the near-perfect phylogeny model appears to be
too general for some biological applications. The model does not distinguish the main two types of
homoplasy occurring in a phylogenetic tree: recurrent mutation and back mutations. Back muta-
tions are changes in the state of the character that only occur along the same path from the root of
the tree. On the contrary, recurrent mutations are changes in the state of the character that occur
along different paths of the tree, since the character is allowed to label multiple edges of the tree.
In this paper we address the problem of constructing a perfect-phylogeny under the assumption
that only a special type of back mutation may occur in the tree. A character may change state only
twice in the tree, precisely from 0 to 1 and from 1 to 0, and the changes occur along the same path
from the root of the tree T . These characters have already been considered in the literature and
called persistent by T. Przytycka [14] in a general framework of tree inference. More precisely, in
[14], the change of a character from state 0 to 1 models the gain of the character, while the change
from 1 to 0 models the loss of the character. The use of the notion of persistent character is quite
relevant when reconstructing phylogenies that describe the gain and loss of genomic characters
[19]. An example of a promising class of genomic characters (also called rare genomic changes -
RGC - ) is given by insertion and deletion of introns in protein-coding genes during the evolution
of eukaryotes. In this framework, persistent characters allow to infer phylogenies by using the gain
and loss of introns [19].

We define a generalization of the (rooted) binary directed perfect phylogeny where each charac-
ter may be persistent. Clearly our model is a restriction of the Dollo parsimony, where characters
can be lost several times, i.e. a character can be lost along different paths from a root to a leaf.
Acquisition or loss of characters (i.e. attributes) when unrestricted could make the reconstruction
of an evolutionary tree difficult, if not possible.

Assume that S = {s1, . . . , sn} is a set of species and C = {c1, . . . , cm} is a set of characters.
In the paper we consider binary matrices representing species and characters. More precisely, a
binary matrix M of size n ×m has columns associated with the set C of characters, i.e. column
j represents character cj ∈ C, while rows of M are associated with the set S of species, i.e.
row i represents species si. Then M [i, j] = 1 if and only if species si has character cj , otherwise
M [i, j] = 0.

In the rest of the paper, to simplify the notation, we identify rows with species and columns
with characters.

The gain of a character in a phylogenetic tree is usually represented by an edge labeled by the
character. In order to model the presence of persistent characters, the loss of a character c in the
tree is represented by an edge that is labeled by the negation of c, or negated character, denoted
by c̄ . Clearly, an edge labeled by a negated character follows an edge labeled by the character
along a path from the root to a leaf. The following definition is based on the general coalescent
model given in [5] to represent the evolution of haplotype sequences and assume that nodes are
labeled by vector states of characters.

Formally, we have:
Persistent Perfect Phylogeny Let M be a binary matrix of size n ×m. Then a persistent

perfect phylogeny, in short p-pp tree for M , is a rooted tree T that satisfies the following properties:

1. each node x of T is labeled by a vector lx of length m;
2. the root of T is label by a vector of all zeros, while for each node x of T the value lx[j] = 0, 1

represents the state, 0 or 1 respectively, of character cj in tree T ;
3. for each character cj there are at most two edges e = (x, y) and e′ = (u, v) such that lx[j] 6= ly[j]

and lu[j] 6= lv[j] (representing a change in the state of cj) such that e, e′ occur along the same
path from the root of T to a leaf of T ; if e is closer to the root than e′, then the edge e where
cj changes from 0 to 1 is labeled cj , while edge e′ is labeled c̄j ,

4. each row of M labels exactly one leaf of T .
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In the classical definition of a Perfect Phylogeny Tree, in short pp tree, no negated characters
are allowed in the tree (see [17]) (see definition in Section 2). Observe that by the above definition
of p-pp tree, for each leaf s of tree T , the positive characters that label edges that are along the
unique path from the root to s and do not occur as negated along the same path, specify exactly
the characters that have value 1 in the row s of M .

Thus, let us state the main problem investigated in the paper.
The Persistent Perfect Phylogeny problem (P-PP): Given a binary matrix M , returns

a p-pp tree for M if such a tree exists.

In the paper we investigate the solution of the P-PP problem. Our main contribution is a
graph-based restatement of the problem that allows us to provide an exact algorithm for the
problem having a worst time complexity that is polynomial in the number n of rows of the matrix
and exponential in the number m of characters. Since in real data the number of characters is
usually small, while the number of species may be very large, the algorithm could be efficient even
on large instances as shown by an experimental analysis illustrated in Section 6.

The graph-based solution of the P-PP problem is obtained by restating the problem as a variant
of the Incomplete Directed Perfect Phylogeny [12], called Incomplete Perfect Phylogeny with
Persistent Completion (IP-PP), where the input data of this last problem is a specific incomplete
matrix M over values 0, 1, ? and the goal is to complete values ? into 0 or 1 so that M admits a
classical perfect phylogenetic tree. Then we show that the IP-PP problem reduces to the problem
of reducing a colored graph by a graph operation that represents a completion of a column of the
input matrix. Based on these ideas we discuss our exact algorithm for the P-PP problem.

We believe that the graph-based formulation of the problem could help in investigating poly-
nomial time solutions to the problem.

2 The Perfect Phylogeny model: preliminaries

Let us give the definition of a perfect phylogeny for a binary matrix and some relevant basic results
that will be used in the paper.
Perfect Phylogeny

Let M be a binary matrix of size n×m. Then a directed perfect phylogeny, in short pp tree for
M , is a rooted tree T that satisfies the following properties:

1. each node x of T is labeled by a vector lx of length m;
2. the root is labeled by a vector of zeros, while for each node x, the value lx[j] = 0, 1 represents

the state, 0 or 1 respectively, of character cj in tree T ;
3. for each character cj there is at most one edge e = (u, v), labeled cj , such that lu[j] 6= lv[j]

(notice that lu[j] = 0, while lv[j] = 1); edge e represents a changing of state of cj ;
4. each row of matrix M labels exactly one leaf of T .

The algorithmic solution of the Perfect Phylogeny model has been investigated in [8], where a
linear time algorithm is provided. In particular, the paper [8] provides a well known characteri-
zation of matrices admitting a perfect phylogeny. A binary matrix M admits a perfect phylogeny
if and only if it does not contain a pair of columns and three rows inducing the configurations
(0, 1), (1, 0) and (1, 1), also known as forbidden matrix (see Figure 1 (b)). We will use this charac-
terization in the paper.

In particular, the forbidden matrix has a representation by means of a graph consisting of a
path of length four containing three species and two characters; this graph is called Σ-graph. Such
a graph is obtained by drawing an edge between every pair of species and characters having value
1 in the matrix (see Figure 1 (c)).

Notice that the forbidden matrix is the smallest matrix that does not admit a pp tree. However,
by allowing a character to be persistent, the matrix admits a persistent perfect phylogeny, as shown
in Figure 1 (a).
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s1

s2

s3 s1 s3 s2

a b

(a) (b) (c)

a b
s1 1 0
s2 0 1
s3 1 1

(1,0)

(1,1)

(0,1)

a

b

ā

Fig. 1. The Figure (a) illustrates the perfect persistent phylogeny for the forbidden matrix reported in
Figure (b) and the Σ-graph for the forbidden matrix in Figure (c).

A well known concept that has been used several times in the framework of the perfect phy-
logeny is a graph representation of the four configurations (0, 1), (1, 1), (1, 0) and (0, 0) (called four
gametes): the conflict graph. We say that two positive characters c, c′ of matrix M are in conflict
in matrix M , if and only if the pair of columns u, v of M induces the four gametes.

Definition 1 (conflict graph). Let M be a binary matrix. The conflict graph associated with
matrix M is the undirected graph Gc = (C,E ⊆ C ×C) where a pair (u, v) ∈ E if and only if u, v
are in conflict in matrix M .

Notice that when M has a conflict graph with no edges, M does not necessarily admit a rooted
perfect phylogeny, since M could contain an occurrence of the forbidden matrix. For example, the
forbidden matrix has a conflict-graph with no edges.

In this paper we define a variant of the the Incomplete Directed Perfect Phylogeny (in short
IDP) [12]. The input data of the IPP problem is a matrix over symbols 0, 1, ? where symbol ? is
used to denote an entry of the matrix that is not determined. Then the IPP problem is finding
a completion of the matrix, i.e. assigning values 0, 1 to ? symbols so that the matrix admits a
perfect phylogeny.

For basic notions of graph theory used in the paper see [3].

3 The Incomplete Perfect Phylogeny with Persistent Completion

Let M be a binary n×m matrix which is an instance of the P-PP problem. The extended matrix
associated with M is a matrix Me of size n× 2m over alphabet {0, 1, ?} which is obtained by
replacing each column c of M by a pair of columns (c, c̄), where c is the positive character, while
c̄ is the negated character, moreover for each row s of M , it holds:

1. if M [s, c] = 1, then Me[s, c] = 1 and Me[s, c̄] = 0,
2. if M [s, c] = 0, then Me[s, c] =? and Me[s, c̄] =?.

Informally, the assignment of the pair (?, ?) in a species row s for the pair of entries in columns
c and c̄ means that character c could be persistent in species s, i.e. it is gained and then lost. On
the contrary, by definition of a persistent perfect phylogeny, the pair (1, 0) assigned in a species
row s for the pair of entries in columns c and c̄, means that character c is only gained by the
species s.

In the paper, we will use the term extended matrix to denote an extended matrix associated
with a binary matrix and defined as above. A completion of a character c of matrix Me is obtained
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by solving the pair (?, ?) given in the pair of columns c, c̄ by the value (0, 0) or (1, 1). If a character
c is completed, then it is called active.

A completion of matrix Me is a completion of all characters of Me, while a partial completion
of Me is a completion of zero or more characters of Me.

Figure 2 (a) shows an example of input matrix M for the P-PP problem. Then Figure 2 (b)
shows the incomplete matrix Me associated with M . A possible completion of Me is given in
Figure 2 (c).

a b c d e a ā b b̄ c c̄ d d̄ e ē a ā b b̄ c c̄ d d̄ e ē

0 0 1 1 0 ? ? ? ? 1 0 1 0 ? ? 1 1 1 1 1 0 1 0 0 0
0 1 0 0 0 ? ? 1 0 ? ? ? ? ? ? 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 ? ? ? ? ? ? ? ? 1 0 1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 ? ? ? ? ? ? 1 0 1 0 1 1 1 1 0 0 1 0
1 1 1 0 0 1 0 1 0 1 0 ? ? ? ? 1 0 1 0 1 0 0 0 0 0

(a) (b) (c)

Fig. 2. The figure illustrates a binary matrix M(a) and its extended matrix Me (b) and a completion of
Me (c).

We introduce below a problem to which we reduce P-PP, as shown in Theorem 1.
Incomplete Perfect Phylogeny with Persistent Completion Problem (IP-PP)

Instance: An extended matrix Me over {0, 1, ?}.
Question: give a completion M ′ of the extended matrix Me such that M ′ admits a perfect

phylogeny, if it exists.

Thus we state the first result of the paper. In order to prove the result we assume that the
input matrix M does not have columns consisting of zeros, that is for each character c, there must
exist a species having the character. As a consequence of this assumption, given the extended
matrix Me of M , it must be that for each positive character c there is a species having the positive
character c and not the negated character c̄.

Theorem 1. Let M be a binary matrix and Me the extended matrix associated with M . Then M

admits a p-pp tree if and only if there exists a completion of Me admitting a pp tree.

Proof. (If ) Let M ′ be a completion of matrix Me such that M ′ admits a perfect phylogeny T .
In the following we show that apart from the labeling of internal nodes of tree T , the tree T

is a p-pp tree for matrix M . More precisely, we obtain a p-pp tree T ′ for matrix M by changing
the labeling of tree T as follows. In order to distinguish the labeling of node x in tree T from the
new labeling of the same node x in tree T ′, we denote the new labeling of x in T ′ by the vector
l′x. Given a node x of tree T labeled by a 2m vector lx, then the label l′x of node x in tree T ′ is
defined as follows:

for each j, with 1 ≤ j ≤ m, l′x[j] = 1 if and only if lx[2j − 1] = 1 and lx[2j] = 0, otherwise
l′x[j] = 0. Informally, a character cj has value 1 in vector l′x if and only if cj occurs as 1 in vector
lx and it is does not occur as negated in lx, that is character c̄j has value 0 in lx.

We first show that property (4) of the definition of a persistent perfect phylogeny holds for
tree T ′ for matrix M , i.e. each row s of M labels a leaf in tree T ′. Now, row s of the completion
M ′ labels a leaf ls of tree T . We can easily show that l′s is equal to row s in matrix M . This fact
follows from the observation that characters that have value 1 in row s of M still have value 1
in row s of the completion M ′. By definition of a completion, only a character having value 0 in
M may be persistent along a path of tree T , i.e. it labels an edge of the path and its negated
character labels another edge of the same path. Consequently, the characters associated with the
edges along the unique path of T from the root to s and which are not negated are exactly those
having value 1 in row s of M , that is l′s is equal to row s of M , as required.
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Now, properties (1) to (3) given by definition of a persistent perfect phylogeny T ′ for matrix
M follow from the fact that T is a perfect phylogeny for matrix M ′, and thus each character is
associated with exactly one edge of the tree, which implies the same property for each negated
character c̄. Observe that by definition of extended matrix a negated character occurs in a row
if and only if its positive character occurs in the same row. Moreover, since we assume that for
each character c matrix M must have a a species that contains the positive character c, but not
the negated character c̄, it is immediate to verify that every negated character c̄ follows character
c along a path from the root to a leaf, thus proving that change of state of c̄ from 0 to 1 (that
is from 1 to 0 in tree T ′) occurs after the change of state from 0 to 1 of character c. In fact, by
definition of a completion the set of species having character c includes the set of species having
character c̄, since columns c and c̄ both have values 1 or c has value 1 and c̄ has value 0.

(Only if ) Vice versa, let us now show that if there exists a persistent perfect phylogeny T for
matrix M , then there exists a completion M ′ of Me such that M ′ admits a perfect phylogeny. We
can associate to tree T a matrix MT of size n × 2m as follows. For each character c of M add a
new column c̄. Then consider each row s of matrix MT such that a negated character c̄ occurs
along the path from the root to s. Then set value 1 for row s in columns c and c̄ of matrix MT .
Notice that MT is a completion of Me and clearly T is a perfect phylogeny for MT . ⊓⊔

4 The red-black graph

In this section we give a graph representation of an extended matrix, and we define a graph oper-
ation that represents a special type of completion of the pair of columns of the matrix associated
with a character.

Let Me be an extended matrix Me, then the red-black graph GRB for matrix Me consists of
the edge colored graph (V,E) where V = C ∪S, given C = {c1, · · · , cm} and S = {s1, · · · , sn} the
set of positive characters and species of matrix Me, while E is defined as follows: (s, c) ∈ E is a
black edge if and only if Me[s, c] = 1 and Me[s, c̄] = 0.

Then we define a graph operation on nodes (characters) of the graph GRB that represents a
canonical completion of characters and consists of adding red edges, removing black or red edges.
This graph operation over characters (nodes) of the red-black graph may be iterated till the graph
has only active characters, as defined below.
Realization of a character c and its canonical completion

Let C(c) be the connected component of graph GRB containing node c. The realization of
character c in graph GRB consists of:

– (a) adding red edges connecting character c to all species nodes s that are in C(c) and such
that (c, s) is not an edge of GRB ,

– (b) removing all black edges (c, s) in graph GRB, Then c is labeled active.
– (c) if a character c′ is connected by red edges to all species of C(c), then c′ is called free. Then

its outgoing edges are deleted from the graph.

The realization of a character c is associated with a special completion in matrix Me of the
given character, called canonical. The canonical completion of character c in matrix Me is defined
by completing each pair (?, ?) occurring in the pair of columns c and c̄ as follows: the pair (?, ?)
is completed by (1, 1) in every species s that is in the component C(c) of graph GRB , while value
(0, 0) is assigned in the remaining rows.

Example 1. Figure 3 (a) illustrates the red-black graph of the extended matrix associated with
matrix M consisting of rows 1000, 1100, 0101, 0011, numbered 1, 2, 3 and 4, respectively. Charac-
ters of M are denoted by letters a, b, c and d. Then Figure 3 (b) illustrates the red-black graph
obtained after the realization of character a, while Figure 3 (c) reports the corresponding canonical
completion in Me of character a.

Informally, the red edges of graphGRB incident to a character c that has been realized represent
the pairs (?, ?) in columns (c, c̄) that are completed as (1, 1) in matrix Me.

In the following we call e-empty a red-black graph without edges.
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a b c d

(a) (b) (c)

a ā b b̄ c c̄ d d̄

1 0 ? ? ? ? ? ?

1 0 1 0 ? ? ? ?

1 1 1 0 ? ? 1 0

1 1 ? ? 1 0 1 01 2 3 4

a b c d

1 2 3 4

Fig. 3. The Figure (a) illustrates the graph GRB of the extended matrix associated with the matrix of
Example 1. Then (b) illustrates the graph GRB after the realization of character a. Then (c) illustrates
Me after the completion of a.

c1 c2 c3 c4

(a) (b) (c)

c1 c̄1 c2 c̄2 c3 c̄3 c4 c̄4

1 0 1 0 0 0 0 0

1 1 1 0 1 0 1 1

1 1 1 1 1 0 1 0

1 0 1 1 1 1 1 01 2 3 4

c1 c2 c3 c4

1 2 3 4

Fig. 4. The Figure (a) illustrates the red-black graph of the Example 2 . Then (b) illustrates graph GR

of the example, while (c) illustrates the completion of Me induced by the realization of sequence r.

Remark 1. Let r be a sequence of all characters of a red-black graph for an extended matrix Me,
and let Gr be the graph produced after the realization of the characters in r one after another.
Clearly, the realization of characters in r produces a completion of the matrix Me. Then, either
Gr is e-empty or Gr contains two nodes inducing a Σ-graph. Observe that if Gr is not e-empty, it
must have only red edges that are incident to at least two characters of the graph. In fact, assume
on the contrary that Gr has a single character c that is incident to red edges. Then c must be
connected to all species nodes in the same connected component of the graph. But, this fact leads
to a contradiction since c is free and all red edges incident to c are deleted from the graph. By
inspection of the possible cases, it is easy to verify that the minimum size connected component
of Gr induces a Σ-graph consisting of two characters and three species. Such a graph represents
the presence of a forbidden matrix in the completion M ′ of matrix Me, and hence M ′ does not
admit a perfect phylogeny (see Section 2).

The following example illustrates an application of the previous Remark 1.

Example 2. Let M be a matrix having the four characters c1, c2, c3 and c4 and rows (1, 1, 0, 0),
(0, 1, 1, 0), (0, 0, 1, 1) and (1, 0, 0, 1), numbered 1, 2, 3 and 4, respectively. Let GR be the graph
obtained after the realization of the sequence r =< c1, c2, c3, c4 > of characters. Then GR consists
of the path < c4, 2, c1, 3, c2, 4, c3 > with red edges. Then graph GR induces the Σ-graph consisting
of path < 2, c1, 3, c2, 4 >. Observe that the completionM ′ of the extended matrixMe ofM consists
of rows (1, 0, 1, 0, 0, 0, 0, 0), (1, 1, 1, 0, 1, 0, 1, 1), (1, 1, 1, 1, 1, 0, 1, 0) and (1, 0, 1, 1, 1, 1, 1, 0) and such
a matrix does not admit a perfect phylogeny as characters c1 and c2 and species 2, 3, 4 induce the
forbidden matrix in the completion M ′. Figure 4 illustrates the example.

Since we are interested in computing canonical completions of the matrix that admit a pp
tree by the previous Remark 1 only canonical completions that are obtained by the realization of
special sequences of characters of the red-black graph are considered, as defined below.
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Definition 2. Given a graph GRB for an extended matrix Me, a successful reduction of GRB is
an ordering r =< ci1 , · · · , cim > of the set of positive characters {c1, · · · , cm} of the matrix such
that the consecutive realization of each character in r (which removes black edges from graph GRB)
leaves an e-empty red-black graph.

In Section 4.1, we show that finding a solution to an instance of the IP-PP problem is equivalent
to computing the existence of a successful reduction for the red-black graph for the input matrix.
More precisely, let Me be an instance of the IP-PP problem. In the following Theorem 2, we prove
that if Me admits a pp tree T , then there exists a successful reduction of graph GRB . Vice-versa,
we show that a successful reduction of the red-black graph for Me provides a completion M ′ of
the matrix Me that admits a pp tree, thus giving a solution to the IP-PP instance..

Theorem 2. Let Me be an extended matrix. Then Me admits a perfect phylogeny, if and only
if there exists a successful reduction of the graph GRB for Me.

4.1 Building a successful reduction from a pp tree

This section is devoted to the proof of one direction of Theorem 2, that is showing how to get
a successful reduction from a pp tree. We will use the following remark that holds for extended
matrices.

In this section, given a node v of tree T , by T (v) we denote the subtree of T having root v.
Moreover, we assume that edges of a tree T are oriented. The orientation of edges is from the root
to a leaf node.

Remark 2. Let T be a pp tree for a completion of an extended matrix Me. Then by definition of
a perfect phylogeny is immediate to verify that the root of tree T is a 02m binary vector of size
2m, moreover each internal node x is labeled by a 2m-vector lx defined as follows: each entry i

has value 1 if and only if the corresponding ith character (positive or negated) occurs along the
path from the root of the tree T to node x.

Example 3. Figure 5 (a) illustrates the pp tree for matrix M ′ of Figure 2 (c). Notice that rows of
matrix M ′ are numbers 1, 2, 3, 4, 5, while the positive characters are a, b, c, d, e. Then Figure 5 (b)
illustrates the vectors labeling each internal node of tree T .

Then we need to state some technical lemmas and introduce a normal form for a pp tree, called
standard. A tree T is in standard form when it is in simple form as defined below and satisfies the
properties stated in Definition 3.

A pp tree T is in simple form if and only if each edge of the tree is exactly labeled by one
character and T does not contain two edges e, e′ incident to the same node, one labeled by character
c and the other labeled by c̄, respectively.

Given T a pp tree for a completion M , we can show that tree T can be reduced to one in
simple form. This fact implies that we can obtain from M a completion M ′ that admits a tree in
simple form. Then the completion M ′ is called simple completion.

Lemma 1. If Me has a completion that admits a pp tree, then there exists a simple completion
M ′ of Me.

Proof. Let T be the pp tree for a completion of Me and assume that T is not in simple form.
We first transform the tree T into a tree T ′ such that each edge has only one label. Tree T ′ is
obtained by replacing each edge with k > 1 labels with a path of k edges each one labeled with a
distinct label of the replaced edge e. On the contrary, an edge without labels is contracted, in the
sense that the two end nodes of the edge are collapsed to a unique node. Clearly, the above two
operations do not change the completion M .

Assume now that there exists two edges e, e′ in tree T ′ that are incident to the same node and
are labeled by characters c and c̄, respectively. Assume that e = (x, v) and e′ = (v, u).
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Fig. 5. The Figure (a) illustrates a perfect persistent phylogeny T for the matrix of Example 3. Figure
(b) reports the vector lx for each node x of the tree T .

Then we can move tree T (u) as a subtree of node x by removing edge (v, u) and making the
root u adjacent with node x. Then change the completion M by replacing all pairs (1, 1) induced
by the columns c and c̄ and species row in subtree T (u), by the pair (0, 0), obtaining the completion
M ′. It is easy to verify that T ′ is the tree representation of the completion M ′. We can iterate the
above operation and obtain a tree in standard form, as required by the lemma. ⊓⊔

Let GRB be the red-black graph for an extended matrix Me and let T be the pp tree of a
completion of Me.

We require that a tree T that is in simple form satisfies an additional property that relates the
tree T to the red-black graph GRB . Observe that we associate to each node u of T the red-black
graph that is obtained by the realization of the positive characters that have value 1 in vector lu
where if a negated character c is free, then its incident red edges are removed from the graph if
and only if c has value 1 in vector lu. We define such a graph, denoted as Gu, the red-black graph
for node u of T .

Definition 3 (standard property). Let T be a pp tree in simple form for a completion Me.
Then T is in standard form if and only if the following property holds: for each node u of T such
that (u, x) is an edge of the tree T labeled c or c̄, all species of tree T (x) are the same species that
are in the connected component of graph Gu containing node c.

Lemma 2. Let Me be an extended matrix admitting a pp tree. Then, matrix Me admits a com-
pletion that is represented by a tree T in standard form.

Proof. By Lemma 1 we can assume that the matrix Me has a simple completion Mc that is
represented by a tree T in simple form. To prove the existence of a tree in standard form, we
iterate the application of the following procedure to T till it is in standard form. Each iteration
of the procedure corresponds to changes to the completion Mc, such that the final computed
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completion M ′ is represented by the new tree in standard form. Let u be the node that is closest
to the root r of T , such that u does not satisfy the property stated in Definition 3. Eventually,
u may be the root of T . Let C(c) be the connected component of the red-black graph Gu having
node c. Since property of Definition 3 is violated then the following two cases are possible. Case
1: there exists a species s′ in component C(c) and s′ is not in subtree T (x). Case 2: there exists a
set S′ of species in the subtree T (x) that are not in C(c).

In the following we show that Case 1 leads to a contradiction, while in Case 2 we built from
tree T a new pp tree T ′ for a completion of matrix Me where node u does not verify Case 2 and
thus u must satisfy Definition 3.

Case 1.
Assume that there exists a species in component C(c) that is not in subtree T (x). In the

following we show that we obtain a contradiction. If Case 1 holds, then there must exist a species
s′ that is not in tree T (x) and is connected in component C(c) (by red or black edges) to a species
s of tree T (x) by means of character c1. More precisely, in component C(c) s is connected to
characters c and c1, while s′ is connected to character c1. Since s′ is not in tree T (x), species
s and s′ must have a common ancestor that is a node v along the path πru from the root r to
node u. Then character c1 labels an edge that occur on path πru and thus v occurs before node u.
Consequently, c1 is realized in graph Gu, thus implying that c1 is connected only by red edges to
species s and s′. This fact implies that both s, s′ do not have character c1 and thus it holds that
c̄1 labels an edge that occurs along the path from the root of T to the common ancestor node v

of s and s′. Since Definition 3 holds for each node that precedes u, it follows that all species in
T (u) are in a connected component C(c′) that contains c1, where c1 is connected to all species
in T (u) by red edges. Consequently, c1 is free in Gu and thus all red edges connecting s to s′

are removed from the red-black graph Gu, by definition of red-black graph associated to a node,
a contradiction with the previous assumption. It follows that species s′ cannot be in component
C(c), thus implying that no other species different from the ones in T (x) can be in component
C(c).

Case 2.
Assume that S′ is the largest set of species that are in T (x) and are not in the component

C(c). By definition of pp tree, it must be that the set of species S′ is in the subtree T (v) for a
node v of degree at least 2 that is along the path from node x to a leaf and is the end node of the
edge (z, v) labeled c̄. In fact, since S′ contains species that are not in C(c), by definition of graph
GRB it means that such species do not have character c and consequently they must occur in the
subtree induced by the end node of the edge labeled c̄.

Now, consider the path πxv from node x to the node v. Let y be the node on path πxv such
that given the unique path πyv from node y to v, it consists of only degree 2 nodes. If such y does
not exist, then pose y = z.

Let Ty be the subtree of T consisting of path πyv and subtree T (v). Clearly, all species s′ of
Ty are the ones of subtree T (v), by construction of Ty.

Consider subtree T ′

y which is obtained from subtree Ty after removing the edge labeled c̄ (see
Figure 6). In the following we show that subtree T ′

y can be moved as a subtree of node u thus
obtaining a new tree T ′ such that is a pp tree for a completion of matrix Me. By construction,
in tree T ′ subtree T (x) does not contain the set S′ of species that are not in component C(c)
and thus Case 2 does not hold for node u in tree T ′. Moreover, by application of the constructive
procedure given in the proof of Lemma 1, tree T ′ can be reduced to a simple form, thus proving
what required.

Assume to the contrary that tree T ′

y cannot be moved as subtree of node u to obtain a pp
tree for a completion of matrix Me. Observe that a species s in subtree Ty of T has all positive
characters of the path from the root r to node x that are not negated along the path πxy. Moreover
s has positive characters that occur in πxy. Thus, tree T ′

y cannot be moved as subtree of node u

in T ′, if two cases hold: (i) tree T ′

y has a species s containing a positive character e that belongs
to path πxy or (ii) s does not have a character e that occurs as negated in path πxy and occurs as
positive in the path from the root r to node x. Let us consider case (i). Thus assume first that tree
Ty has a species s having character e that is on the path πxy. Since y has degree bigger than 2,
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Fig. 6. The figure illustrates Case 2 of Lemma 2, more precisely it represents the operation of moving tree
T ′

y as subtree of node u. Observe that tree T ′

y consists of subtree T (v) and the path πyv where edge (z, v)
labeled c̄ has been removed.

there exists a species s′ such that e is a character of s′ and s′ occurs at the end of a path leaving
node y that is distinct from the path πyv from node y to node v. Moreover, c must be a character
in s′, since the character c̄ occurs after node y along path πyv. Consequently, in the red-black
graph GRB species s′ is connected to characters c and e, where e is connected to character s. It
follows that s is connected to c by means of character e. This situation of the red-black graph
GRB is also present in the graph Gu, as both e, c are not realized in graph Gu, being c, e labels of
edges that occur after node u. Consequently, s is in the connected component C(c), thus obtaining
a contradiction with the fact that s ∈ S′. Let us consider case (ii). Thus assume now that tree Ty

has a species s that does not have character e, where e occurs as positive on the path from the root
r to node x, while character ē occurs on the path πxy. Similarly as above, since y has degree bigger
than 2, there exists a species s′ occurring at the end of a path leaving node y that is distinct from
path πyv and s′ contains characters ē and character c. Clearly, e labels an edge (l1, v) that occurs
before node u and since the standard property holds for each node above u, it follows that s′ and
s are in the same connected component of graph Gl1 having character e and character c. Thus,
when character e is realized in graph Gl1 , both species s, s′ are connected to e by red-edges, thus
implying that s is in the same connected component of node c. Observe that this property holds
also for graph Gu. In fact, ē occurs after node u, and thus red-edges incident to node e cannot be
removed from graph Gu. Consequently, s is in the connected component C(c), thus contradicting
the assumption that s ∈ S′. Since case (i) and (ii) are not possible, it follows that all species in
subtree T ′

y do not have (positive or negated) characters of path πxy in the completion of matrix
Me. It follows that tree T

′

y can be moved as a subtree of node u to obtain tree T ′ where T ′ is a pp
tree for the completion M ′ of matrix Me obtained by replacing in all rows S′ of the completion
Mc the entry (1, 1) in columns c and c̄ by the pair (0, 0). In fact, species in S′ will not have the
character c and its negated character in the new tree T ′ and thus T ′ is the pp tree for the new
completion M ′. This observation completes the proof of Case 2. ⊓⊔

We show the first preliminary lemma that allows us to prove the main Theorem of the paper.

Lemma 3. Let T be a tree in standard form representing the completion M ′ of an extended matrix
Me. Let Gx be the red-black graph for a node x of T . Then, given C′ the set of positive characters
having value 1 in vector lx, the completion of C′ in M ′ is canonical, i.e. it is given by the realization
of characters C′ in graph GRB . Moreover, a negated character c changes value from 0 to 1 in lx
if and only if it is free in graph Gx. Then edges incident to c are removed from Gx.
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Proof. Let GRB the red-black graph for the extended matrix Me. We show the lemma by induction
on the number k of ones occurring in a node lx of tree T . Assume first that k = 1 and c is the
character that has value 1 in vector lx. Clearly, c is the label of the edge (r, x) where r is the root
of tree T and c is a positive character. Observe that the completion of columns c and c̄ in M ′ is a
canonical completion, i.e. it is obtained by the realization of node c in graph GRB. In fact, since
by Definition 3 of a standard tree the species of tree T (x) are the same ones of the connected
component of graph GRB having character c, it holds that they must have value (1, 1) or (1, 0) in
the pair of columns (c, c̄) of matrix M ′.

Now, assume that the number of entries with value 1 in vector lx is k > 1 and the edge (u, x)
is incident to node x (assuming that edges are oriented following every path from the root r) .
Given vector lu, since the number of entries that are 1 in lu is less than the number of entries
that are 1 in lx, by induction, the completion of all characters C′ that are in lu is given by the
realization of the set C′ in graph GRB, thus obtaining the red-black graph Gu for node u. Since
T is in a standard form, two cases are possible: (1) edge (u, x) is labeled by a positive character c
or (2) a negated character c̄.

Let us consider case (1) first. Clearly, character c is non active in Gu as it has 0 value in
vector lu. By Definition 3 of a standard tree all species in T (x) are the same ones that are in the
connected component of graph Gu having character c. Notice that species in T (x) specify the rows
where column c and c̄ must have the value (1, 1) or (1, 0) in the completion M ′. Consequently, the
completion of c in matrix M ′ corresponds to the realization of c in the red-black graph Gu. Thus
the completion in matrix M ′ of the set C′ ∪ {c} of characters in lx is given by the realization of
such characters in graph GRB , thus proving that the lemma holds in this case.

Let us consider case (2). Assume that edge (u, x) is labeled by the negated character c̄. Then
by induction the completion of all columns for positive characters in lu is given by their realization
in graph GRB. Since edge (u, x) is labeled by a negated character, it follows that the red-black
graph Gx is obtained by the realization of positive characters in lu. Consequently, Gu and Gx

are the same graph, thus showing that the completion of positive characters in lx is given by the
realization of positive characters in Gx. Since c̄ has value 1 in node lx and value 0 in node u, we
must show that c is free in graph Gu. In fact, all species in T (x) do not have character c, and by
Lemma 2 these species are exactly the species that are in the connected component of node c in
graph Gu. This fact implies that character c is free in graph Gu.

Now, let us show that character c cannot be free in graph Gv, for v a node that is an ancestor
of u. In fact, since tree T is in standard form, it must be that all species in subtree T (v) are in the
same connected component of a character c1 where c1 labels an edge (v, z). But, since c̄ occurs
after node z, it follows that there exists a species s in subtree T (v) that has the positive character
c and therefore no red edge incident to s a node c is given in graph Gv. This fact implies that c
is not free in graph Gv.

This fact completes the proof of the lemma. ⊓⊔

By Lemma 3, the completion of characters in an extended matrix Me that admits a tree in
standard form is a canonical one.

Corollary 1. Let T be a tree in standard form representing the completion M ′ of an extended
matrix Me. Then M ′ is a canonical completion.

Proof. The result is a direct consequence of the previous Lemma 3. In fact, given a node x of tree
T , by induction on the number of 0 that are in vector lx, it is easy to show by direct application
of Lemma 3 that the completion of all characters in tree T (x) is given by their realization in the
red-black graph Gx for node x. This fact implies that the completion of all characters in tree T is
canonical. ⊓⊔

In the following we can show that a pp tree T represents a successful reduction of the red-black
graph.

Lemma 4. Let GRB be the red-black graph for an extended matrix Me. If Me admits a pp tree,
then there exists a successful reduction of graph GRB.
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Proof. By Lemma 2, there is a completion M for Me that admits a tree T in standard form. Let
Gx be the red-black graph for node x of T . Then we prove that there exists a successful reduction
of Gx, by induction on the number k ≥ 0 of 0 entries that are left in the root vector of tree
T (x). Assume first that k = 0, i.e. all entries of the root have value 1. This fact implies that all
characters have been realized in the red-black graph. By construction, the red-black graph can
only have red edges. By Remark 1, if it is not e-empty it means that it has a Σ-graph. But, this
fact implies a contradiction with the existence of the tree T . In fact, the Σ-graph represents the
existence in M of the induced forbidden matrix. Assume that a and b are the two characters of the
forbidden matrix. Since by Corollary 1, the completion of columns for a and b in M is canonical,
i.e. is associated with the realization of a and b in graph GRB , we obtain a contradiction. Thus
Gx must reduce to the e-empty graph, i.e. a successful reduction of Gx must exist.

Assume now that the number of entries 0 in vector lx is equal to k, with k = m and m > 0.
Then the root x of tree T (x) has an outgoing edge (x, u) that is labeled by a character c which
means that the entry of c in vector lu is 1, while it is 0 in lx. Two distinct cases must be considered
(1) either c is positive or (2) c is negated.

Case 1. Assume c is positive. Since vector lu has one zero less than the root of tree T , that is
k = m− 1. By induction it holds that the red-black graph Gu reduces to the e-empty graph. Since
graph Gx differs from graph Gu by the realization of c, it follows that Gx reduces to the e-empty
graph by the realization of c and non active characters in Gu.

Case 2. If c is negated, by Lemma 3 the red-black graph Gx for node x is equal to the red-black
graph Gu and c is free in Gu. Since vector lu has a 0 entry less than the number of 0 entries in lx,
by induction Gu reduces to the e-empty graph and consequently also Gx reduces to the e-empty
graph. Thus, both cases prove that there exists a successful reduction of graph Gx. ⊓⊔

The previous Lemma 4 provides the proof of the Only if direction of Theorem 2.

4.2 Building a pp tree from a successful reduction

In this section we complete the proof of Theorem 2 by showing that a successful reduction provides
a completion for a matrix Me admitting a pp tree.

Theorem 3. Let Me an extended matrix. If there exists a successful reduction of the graph GRB ,
then Me admits a perfect phylogeny.

Proof. Let M be the completion of matrix Me obtained from a successful reduction of the red-
black graph for Me. In the following we show that M has no forbidden matrix. This fact will prove
that M admits a pp tree. Let GR be the red-black obtained after the realization of the characters
of the successful reduction. Assume to the contrary that M has two characters c, c1 that induce
a forbidden matrix F , and let s1, s2, s3 be the species of M having the configuration (1, 1), (1, 0)
and (0, 1) in F , respectively.

We must consider the following cases.
Case 1. Assume that the forbidden matrix is induced by two negated characters. This fact

implies that GR will have an induced Σ-graph, thus contradicting the fact that GR is e-empty.
Case 2. Assume that the forbidden matrix is induced by two positive characters.
Then c, c1 must be in the same connected component of the red-black graph before their

realization, as species s1 is connected to both characters (we do not know if s1 is connected by
a black or red edge). Now, the realization of c produces the red edge (c, s3), since Me[s3, c] =?.
Then M [s3, c] = 1 in the completion M , a contradiction with the assumption.

Case 3. Assume that the forbidden matrix is induced by a positive and negated character.
Assume that c is the negated character. Since c and c1 share a species in the forbidden matrix

F , it means that c and c1 are in the same connected component of the red-black graph when c1
and c are realized in the graph. Since (0, 1) is given in the matrix F in row s2, by definition of
realization of c1, it must be that M [s2, c1] = 1 and M [s2, c̄1] = 1 as Me[s2, c1] = 0. But this is a
contradiction.

⊓⊔
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Fig. 7. The main steps of the successful realization of graph GRB described in Example 4.

Example 4. Let us consider the 5 × 5 input matrix Me shown in Figure 2 (b). In the following
we detail the realization of characters of a successful reduction r =< b, a, c, d, e > of graph GRB .
First of all, observe that Figure 7 (a) illustrates the initial red-black graph GRB . In the following
we say that a species is realized when it is a singleton in the red-black graph.

First character b is realized (Figure 7(b)) and then the species 2 is realized. Then character a
is realized (Figure 7(c)). Note that we do not add any edge incident to species 2, since it has been
already realized. Then character c is realized (Figure 7(d)). and species 5 is realized. Moreover,
character b is free since it is connected by red edges to all species of the same connected component
of b (Figure 7(e)). Since character a is connected to all species of its connected component with
red edges, a is free. The same fact holds for character c. At this point, species 3 is a singleton,
so it is realized (Figure 7(f)). Then character d is realized (Figure 7(g)) and species 1 is realized.
Finally, character e is realized and so species 4 is realized. At this point (Figure 7(h)), GRB does
not contain any edge.

Notice that the successful reduction provides the completion that is given in Figure 2 (c).

Observe that a successful reduction of the red-black graph provides the main steps of the
process of building a pp tree. More precisely, the realization of a single character leads to an
operation in the pp tree, which is either adding an edge labeled by a character or adding a leaf
node corresponding to a species node.

5 An exact algorithm for the P-PP problem

In this section we propose an algorithm for the P-PP problem that is based on Theorems 1 and
2. The algorithm reduces an instance M of P-PP to an instance Me of the IP-PP problem. By
the proof of Theorem 1 Me admits a pp tree T if and only if T is a solution of matrix M . Then
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by the characterization given by Theorem 2, Me admits a pp tree T if and only if there exists a
successful reduction of the red-black graph for Me. We design an algorithm, called Decide-pp
that builds a decision tree that explores all permutations of the set C of characters of Me in order
to find one that is a successful reduction, if it exists. More precisely, each edge of the decision tree
represents a character and each path of the tree from the root to a leaf is a distinct permutation of
the set C. The algorithm works in a branch and bound like manner, in the sense that if a branch
of the decision tree ending in node x does not lead to a solution, then the decision tree below
x is discarded. More precisely, each branch ending in node x gives a partial permutation π that
consists of all characters labeling the path from root r to node x. A partial completion Mπ is
computed by realizing characters provided by the partial permutation π. Whenever Mπ contains
the forbidden matrix, then the branch ending in x does not lead to a solution, and x is labeled as
a fail node.

Below we give a general procedure for the realization of a single character in the red-black
graph built during the realization of characters.

Procedure Realize(c,M ′,GRB )
Input: a character c, a partial completion M ′ and a red-black graph GRB

Output: character c is realized in graph GRB and c is completed in M ′

– Step 1. Mark character c as active.
– Step 2. Compute the connected component C of graph GRB containing character c
– Step 3. Realize character c:

- add red edges connecting character c to all species nodes s′ in C such that c is not connected
to s′,
- remove all black edges (c, s) in C,
- update the graph GRB by removing all red-edges outgoing from a character c′ of GRB that
is free.

– Step 4. Complete the columns of characters c and c̄ in M ′ as follows: in every row s such that
(c, s) is a red edge in GRB , , replace the pairs (?, ?) by (1, 1), otherwise by (0, 0).

Let us now describe the main algorithm that consists of Decide-pp(Me, r, {r}) call, where r

is the root of the decision tree, and initially the visited tree consists of set {r}.
Algorithm Decide-pp(M ′, x, T )
Input: a partial depth-first visit tree T of the decision tree T and a leaf node x of T , a partial

completion M ′ obtained by the realization of the characters labeling a path π from r to node x

Output: the tree T extended with the depth-first visit of T from node x. The procedure even-
tually outputs a successful reduction or a complete visit of T that fails to find such a successful
reduction.

– Step 1. if the edge incident to node x is labeled c, then Realize(c,M ′, GRB ).
If the matrix M ′ has a forbidden matrix, then label x as a fail node. Otherwise, if x is a leaf
node, then mark x as a successful node and output the permutation labeling the path from
the root r of tree T and leaf node x.

– Step 2. For each node xi that is a child of node x in tree T and is labeled by a non active
character, apply Decide-pp(M ′, xi, T ∪ {xi}).

5.1 Complexity

The worst case time of the algorithm is achieved when the whole permutation tree T is visited.
Generating all permutations requires m! time. Each time a character c is realized all species of the
matrix are examined in the worst scenario. Moreover, the connected components of the red-black
graph must be updated each time. Thus, the realization of m characters has a time complexity
that is O(n ·m)× O(g(n,m)), where g(n,m) is the cost of maintaining connected components of
a graph whose size is O(n2 × m). Since red edges are added to the graph, in the worst scenario
each species will have O(n) incident red-edges.
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A trivial implementation of the connected component update would require α(n2 · m) each
time a character is realized, α being the inverse of the Ackerman function. More efficient imple-
mentations can be obtained by using dynamic algorithms [10]. Thus totally, the time is O(m! · n ·
m ·α(n2 ·m)). This time improves over the complexity of a trivial algorithm that tries all possible
substitutions for the pairs (?, ?), and would require a worst time that is exponential in both the
number of species and columns of the input matrix.

6 An experimental analysis

In this section we discuss an implementation of the Decide-pp algorithm. In order to optimize
the time complexity, an ad hoc iterative version of the algorithm has been implemented.

We have implemented and tested the Decide-pp algorithm over simulated data produced by
the tool ms by Hudson [11]. The test set consisted in a random data set of matrices generated
with a recombination rate of 1 over 15. The main goal of the experimental analysis has been to
test the applicability of the algorithm to matrices with different complexities in terms of size and
number of conflicts (i.e. edges) in the conflict graph.

We have implemented the algorithm in C++ and the experiments have been run on a standard
windows workstation with 4 GB of main memory.

A preliminary experiment has been done to evaluate the performance of the algorithm with
respect to specific parameters related to the complexity of the input matrix under mutation events.
Table 1 reports the time computation to solve sets of 50 matrices for each dimension (50, 15),
(100, 15), (200, 15), and (500, 15) with a recombination rate 1 over 15. The table has additional
entries to specify the average time to solve a single matrix (calculated as the ratio between the
total time and the number of considered matrices), the number of matrices that do not admit a
p-pp tree, the total number of conflicts in the conflict graphs of the matrices of each set, and the
average number of conflicts for each matrix of the set. Notice that conflicts are measured as the
number of edges in graph Gc. Each considered matrix has a conflict graph Gc that consists of a
single non trivial component. The sets contain only matrices that are solved within 5 minutes.
Clearly, the number of unsolved matrices increases with the size of the input matrices.

Table 1. Summary table

nxm total time in sec. average time in sec. no p-pp total conflicts average conflicts

50x15 32.323 0.646 6 236 4.72

100x15 194.625 3.893 4 175 3.5

200x15 43.212 0.864 3 147 2.94

500x15 889.433 17.789 7 219 4.38

Observe that in general the average running time of the algorithm increases with the size of
the input matrix but also with the number of conflicts that are present in the conflict graph. This
last behavior is suggested by the results reported in Table 2 .

Table 2. Average execution time in seconds to solve 10 matrices with a single conflict.

50x15 100x15 200x15 500x15

0.015 0.031 0.047 0.093

Another experiment has been done with 10 matrices of the same size 50 × 15 and different
number of edges in the conflict graph. The average time was 0.015, 0.031 and 0.051, respectively
for the case of 1, 5 and 10 conflicts.

In order to test the performance of the algorithm for large matrices in terms of number of
species we have processed a matrix of size 1000 × 15 with a conflict graph having 9 conflicts
(edges). It took 35.5 seconds to find the solution to the matrix.
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7 Conclusions

In this paper, we formalize the problem of reconstructing a Persistent Perfect Phylogeny over
binary values (P-PP problem); the problem generalizes the classical directed perfect phylogeny by
allowing each character to change from 1 to 0 at most once in the tree. Then, we show that solving
the problem P-PP reduces to a graph-reduction problem. Based on this combinatorial interpreta-
tion of the problem of the persistent perfect phylogeny problem, we give an exact algorithm for the
P-PP problem that has a worst time complexity that is exponential in the number of characters,
but polynomial in the number of species. An experimental analysis of the implemented algorithm
for the P-PP problem shows the applicability of the model to incorporate biological complexity
due to back mutation events in the data.
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