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Abstract

In this article, we consider for the first time the operations of inser-
tion and deletion working in a matrix controlled manner. We show that,
similarly as in the case of context-free productions, the computational
power is strictly increased when using a matrix control: computational
completeness can be obtained by systems with insertion or deletion rules
involving at most two symbols in a contextual or in a context-free manner
and using only binary matrices.

1 Introduction

The operations of insertion and deletion were first considered with a linguistic
motivation [15, 5, 18]. Another inspiration for these operations comes from the
fact that the insertion operation and its iterated variants are generalized ver-
sions of Kleene’s operations of concatenation and closure [11], while the deletion
operation generalizes the quotient operation. A study of properties of the cor-
responding operations may be found in [7, 8, 9]. Insertion and deletion also
have interesting biological motivations, e.g., they correspond to a mismatched
annealing of DNA sequences; these operations are also present in the evolution
processes in the form of point mutations as well as in RNA editing, see the dis-
cussions in [1, 2, 22] and [20]. These biological motivations of insertion-deletion
operations led to their study in the framework of molecular computing, see, for
example, [3, 10, 20, 23].

In general, an insertion operation means adding a substring to a given string
in a specified (left and right) context, while a deletion operation means removing
a substring of a given string from a specified (left and right) context. A finite
set of insertion-deletion rules, together with a set of axioms provide a language
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generating device: starting from the set of initial strings and iterating insertion-
deletion operations as defined by the given rules, one obtains a language.

Even in their basic variants, insertion-deletion systems are able to charac-
terize the recursively enumerable languages. Moreover, as it was shown in [16],
the context dependency may be replaced by insertion and deletion of strings of
sufficient length, in a context-free manner. If the length is not sufficient (less or
equal to two) then such systems are not able to generate more than the recursive
languages and a characterization of them was shown in [24].

Similar investigations were continued in [17, 12, 13] on insertion-deletion sys-
tems with one-sided contexts, i.e., where the context dependency is present only
from the left or only from the right side of all insertion and deletion rules. The
papers cited above give several computational completeness results depending
on the size of insertion and deletion rules. We recall the interesting fact that
some combinations are not leading to computational completeness, i.e., there
are recursively enumerable languages that cannot be generated by such devices.

Like in the case of context-free rewriting, it is possible to consider a graph-
controlled variant of insertion-deletion systems. Thus the rules cannot be ap-
plied at any time, as their applicability depends on the current “state”, changed
by a rule application. Such a formalization is rather similar to the definition
of insertion-deletion P systems [19], however it is even simpler and more nat-
ural. The article [4] focuses on one-sided graph-controlled insertion-deletion
systems where at most two symbols may be present in the description of in-
sertion and deletion rules. This correspond to systems of size (1, 1, 0; 1, 1, 0),
(1, 1, 0; 1, 0, 1), (1, 1, 0; 2, 0, 0), and (2, 0, 0; 1, 1, 0), where the first three numbers
represent the maximal size of the inserted string and the maximal size of the left
and right contexts, while the last three numbers represent the same information,
but for deletion rules. It is known that such systems are not computationally
complete [14], while the corresponding P systems variants and graph-controlled
variants are computationally complete.

In this article we introduce a new type of control, similar to the one used in
matrix grammars. More precisely, insertion and deletion rules are grouped in se-
quences, called matrices, and either the whole sequence is applied consecutively,
or no rule is applied. We show that in the case of such control the computational
power of systems of size (1, 1, 0; 2, 0, 0) and (2, 0, 0; 1, 1, 0 is strictly increasing.
Moreover, we show that binary matrices suffice to achieve this result, hence we
obtain a similar characterization like in the case of the binary normal form for
matrix grammars.

2 Definitions

We do not present the usual definitions concerning standard concepts of the
theory of formal languages and we only refer to textbooks such as [21] for more
details.

The empty string is denoted by λ.
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In the following, we will use special variants of the Geffert normal form for
type-0 grammars (see [6] for more details).

A grammar G = (N, T, P, S) is said to be in Geffert normal form [6] if N =
{S,A,B,C,D} and P only contains context-free rules of the forms S → uSv

with u ∈ {A,C}∗ and v ∈ {B,D}∗ as well as S → x with x ∈ (T∪{A,B,C,D})∗

and two (non-context-free) erasing rules AB → λ and CD → λ.
We remark that we can easily transform the linear rules from the Geffert nor-

mal form into a set of left-linear and right-linear rules (by increasing the number
of non-terminal symbols, e.g., see [19]). More precisely, we say that a grammar
G = (N, T, P, S) with N = N ′ ∪N ′′, S, S′ ∈ N ′, and N ′′ = {A,B,C,D}, is in
the special Geffert normal form if, besides the two erasing rules AB → λ and
CD → λ, it only has context-free rules of the following forms:

X → bY, X, Y ∈ N ′, b ∈ T ∪N ′′,

X → Y b, X, Y ∈ N ′, b ∈ T ∪N ′′,

S′ → λ.

Moreover, we may even assume that, except for the rules of the forms X →
Sb and X → S′b, for the first two types of rules it holds that the right-hand
side is unique, i.e., for any two rules X → w and U → w in P we have U = X .

The computation in a grammar in the special Geffert normal form is done in
two stages. During the first stage, only context-free rules are applied. During
the second stage, only the erasing rules AB → λ and CD → λ are applied.
These two erasing rules are not applicable during the first stage as long as the
left and the right part of the current string are still separated by S (or S′) as
all the symbols A and C are generated on the left side of these middle symbols
and the corresponding symbols B and D are generated on the right side. The
transition between stages is done by the rule S′ → λ. We remark that all
these features of a grammar in the special Geffert normal form are immediate
consequences of the proofs given in [6].

2.1 Insertion-deletion systems

An insertion-deletion system is a construct ID = (V, T,A, I,D), where V is an
alphabet; T ⊆ V is the set of terminal symbols (in contrast, those of V − T

are called non-terminal symbols); A is a finite language over V , the strings in
A are the axioms ; I,D are finite sets of triples of the form (u, α, v), where u,
α (α 6= λ), and v are strings over V . The triples in I are insertion rules, and
those in D are deletion rules. An insertion rule (u, α, v) ∈ I indicates that the
string α can be inserted between u and v, while a deletion rule (u, α, v) ∈ D

indicates that α can be removed from between the context u and v. Stated
in another way, (u, α, v) ∈ I corresponds to the rewriting rule uv → uαv, and
(u, α, v) ∈ D corresponds to the rewriting rule uαv → uv. By ⇒ins we denote
the relation defined by the insertion rules (formally, x ⇒ins y if and only if
x = x1uvx2, y = x1uαvx2, for some (u, α, v) ∈ I and x1, x2 ∈ V ∗), and by
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⇒del the relation defined by the deletion rules (formally, x ⇒del y if and only
if x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D and x1, x2 ∈ V ∗). By ⇒ we
refer to any of the relations ⇒ins,⇒del, and by ⇒∗ we denote the reflexive and
transitive closure of ⇒.

The language generated by ID is defined by

L(ID) = {w ∈ T ∗ | x⇒∗ w for some x ∈ A}.

The complexity of an insertion-deletion system ID = (V, T,A, I,D) is de-
scribed by the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},

m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},

m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.

By INSm,m′

n DELq,q′

p we denote the families of insertion-deletion systems
having the size (n,m,m′; p, q, q′).

If one of the parameters n,m,m′, p, q, q′ is not specified, then instead we
write the symbol ∗. In particular, INS

0,0
∗ DEL

0,0
∗ denotes the family of lan-

guages generated by context-free insertion-deletion systems. If one of numbers
from the pairs m, m′ and/or q, q′ is equal to zero (while the other one is not),
then we say that the corresponding families have a one-sided context. Finally
we remark that the rules from I and D can be put together into one set of rules
R by writing (u, α, v)ins for (u, α, v) ∈ I and (u, α, v)del for (u, α, v) ∈ D.

2.2 Matrix insertion-deletion systems

Like context-free grammars, insertion-deletion systems may be extended by
adding some additional controls. We discuss here the adaptation of the idea
of matrix grammars for insertion-deletion systems.

A matrix insertion-deletion system is a construct

γ = (V, T,A,M) where

• V is a finite alphabet,

• T ⊆ V is the terminal alphabet,

• A ⊆ V ∗ is a finite set of axioms,

• M = r1, . . . , rn is a finite set of sequences of rules, called matrices, of the
form ri : [ri1, . . . rik] where rij , 1 ≤ i ≤ n, 1 ≤ j ≤ k is an insertion or
deletion rule over V .

The sentential form (also called configuration) of γ is a string w ∈ V ∗. A
transition w =⇒ri w

′, for 1 ≤ i ≤ n, is performed if there exist w1, . . . , wk ∈ V ∗

such that w ⇒ri1 w1 ⇒ri2 . . . ⇒rik wk and wk = w′.
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The language generated by γ is defined by

L(γ) = {w ∈ T ∗ | x =⇒∗ w for some x ∈ A}.

ByMatkINSm,m′

n DELq,q′

p , k > 1, we denote the families of matrix insertion-
deletion systems having matrices with at most k rules and insertion and deletion
rules of size (n,m,m′; p, q, q′).

3 Computational completeness

For all the variants of insertion and deletion rules considered in this section,
we know that the basic variants without using matrix control cannot achieve
computational completeness (see [14], [17]). The computational completeness
results from this section are based on simulations of derivations of a grammar in
the special Geffert normal form. These simulations associate a group of insertion
and deletion rules to each of the right- or left-linear rules X → bY and X → Y b.
The same holds for (non-context-free) erasing rules AB → λ and CD → λ. We
remark that during the derivation of a grammar in the special Geffert normal
form, any sentential form contains at most one non-terminal symbol from N ′.

We start with the following affirmation: if the size of the matrices is suffi-
ciently large, then corresponding systems are computationally complete. This
is quite obvious for matrices of size 3.

Theorem 1. Mat3INS
1,0
1

DEL
0,0
2

= RE.

Proof. The proof is based on a simulation of a type-0 grammar in the Gef-
fert normal form (as presented in Section 2). Let G = (V, T, S, P ) be such a
grammar. We construct the system γ = (V, T, {S},M) as follows.

For every rule r : A→ xy ∈ P , x, y ∈ V we add to M the matrix
r : [(A, y, λ)ins, (A, x, λ)ins, (λ,A, λ)del].

For rules AB → λ ∈ P , CD → λ ∈ P and S′ → λ we add to M following
matrices:
AB : [(λ,AB, λ)del , (λ, λ, λ)ins, (λ, λ, λ)ins],
CD : [(λ,CD, λ)del, (λ, λ, λ)ins, (λ, λ, λ)ins] and
S′ : [(λ, S′, λ)del, (λ, λ, λ)ins, (λ, λ, λ)ins].

It is clear that L(γ) = L(G). Indeed, rules of type A → xy are simulated
by consecutively inserting y and x after A and finally deleting A. The rules
AB → λ and CD → λ are simulated by directly erasing 2 symbols and the rule
S′ → λ by directly erasing S′.

A similar result can be obtained in the case of systems having rules of size
(1, 1, 0; 1, 1, 0).

Theorem 2. Mat3INS
1,0
1

DEL
1,0
1

= RE.

Proof. The proof is done like in the previous theorem. Right- and left-linear
rules are simulated exactly in the same manner. The rule AB → λ can be

5



simulated by three matrices (providing that the axiom is {$S}):
AB.1 : [(λ,KAB, λ)ins, (λ, $, λ)del, (λ, λ, λ)ins],
AB.2 : [(KAB, A, λ)del, (KAB, B, λ)del, (λ, λ, λ)ins] and
AB.3 : [(λ,KAB, λ)del, (λ, $, λ)ins, (λ, λ, λ)ins].

They simulate AB → λ by introducing in the string a symbol KAB in a
context-free manner and after that by deleting one copy of adjacent A and B.
The validity follows from the observation that there can be at most only one
copy of KAB in the string (because it’s insertion and deletion is synchronized
with the deletion and insertion of a special symbol $ initially present in only
one copy). In order to delete this symbol at the end of the computation the
matrix [(λ, $, λ)del, (λ, λ, λ)ins, (λ, λ, λ)ins] shall be used.

The rule CD → λ is simulated similarly and the rule S′ → λ by directly
erasing S′.

By taking deletion rules with a right context in the previous theorem we
obtain.

Theorem 3. Mat3INS
1,0
1

DEL
0,1
1

= RE.

We give below the proof for the case of systems of size (2, 0, 0; 1, 1, 0).

Theorem 4. Mat3INS
0,0
2

DEL
1,0
1

= RE.

Proof. The proof is based on a simulation of a type-0 grammar in the Gef-
fert normal form (as presented in Section 2). Let G = (V, T, S, P ) be such
a grammar. We construct the system γ = (V ∪ V ′, T, {S},M) as follows
(V ′ = {XA, YA | A ∈ V } ∪ {KAB,KCD}).

For every rule r : A→ bC ∈ P we add to M the matrix
r : [(λ, bC, λ)ins, (C,A, λ)del].

For every rule r : A→ Cb ∈ P we add to M the matrices
r.1 : [(λ,XAYA, λ)ins, (YA, A, λ)del],
r.2 : [(λ,Cb, λ)ins, (b, YA, λ)del, (λ, λ, λ)del] and
r.3 : [(λ, $, λ)del, (λ,XA, λ)del, (λ, $, λ)ins].

For rules AB → λ ∈ P and CD → λ ∈ P we add to M following six
matrices:

AB.1 : [(λ,KAB , λ)ins, (λ, $, λ)del, (λ, λ, λ)ins], CD.1 : [(λ,KCD, λ)ins, (λ, $, λ)del, (λ, λ, λ)ins],

AB.2 : [(KAB , A, λ)del, (KAB , B, λ)del, (λ, λ, λ)ins], CD.2 : [(KCD, C, λ)del, (KCD, D, λ)del, (λ, λ, λ)ins],

AB.3 : [(λ,KAB , λ)del, (λ, $, λ)ins, (λ, λ, λ)ins], CD.3 : [(λ,KCD, λ)del, (λ, $, λ)ins, (λ, λ, λ)ins].

The rule S′ → λ is simulated by the matrix that introduces symbol $ S′ :
[(λ, S′, λ)del, (λ, $, λ)ins, (λ, λ, λ)ins].

It is clear that L(γ) = L(G). Indeed, any rule A→ bC is simulated directly
by inserting bC and deleting A in the context of C. The right position for the
insertion is insured by the uniqueness of A. Rules r : A → Cb are simulated
in a different way. First A is replaced by XAYA and after that YA is rewritten
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by Cb as in the previous case. We remark that by inserting XAYA we insure
that there is no symbol b before YA. This permits to correctly place Cb. The
additional symbol XA remaining in the string is deleted during the second stage
(when symbol $ is introduced). As before, in order to delete $ at the end of the
computation the matrix [(λ, $, λ)del, (λ, λ, λ)ins, (λ, λ, λ)ins] shall be used.

Since the matrix control is a particular case of the graph control we obtain

Theorem 5. [14] For any k > 0, REG \MatkINS
0,0
2

DEL
2,0
2
6= ∅.

4 Computational completeness for binary ma-

trices

In this section we show that binary matrices suffice for computational complete-
ness.

Theorem 6. Mat2INS
0,0
2

DEL
1,0
1

= RE.

Proof. The proof is based on a simulation if type-0 grammar in the Geffert nor-
mal form (as presented in Section 2). Let G = (V, T, S, P ) be such a grammar.
We construct the system γ = (V ∪ V ′, T, w,M) as follows.

V ′ = {#r
k,K

r | r ∈ P, 1 ≤ k ≤ 5} ∪ {KAB,KCD, $}, and w = {$S}.
For every rule r : A→ bC ∈ P we add to M the matrix

r.1 : [(λ, bC, λ)ins, (C,A, λ)del ] .

For every rule r : A→ Cb ∈ P we add to M following matrices:

r.1 : [(λ,#r
1
#r

2
, λ)ins, (#r

2
, A, λ)del]

r.2 : [(λ,C, λ)ins, (C,#r
1, λ)del]

r.3 : [(λ,#r
3
#r

4
, λ)ins, (#r

4
,#r

2
, λ)del]

r.4 : [(λ,#r
5b, λ)ins, (b,#r

4, λ)del]

r.5 : [(λ, $, λ)del, (λ,Kr, λ)ins]

r.6 : [(λ,Kr, λ)del, (λ, $, λ)ins]

r.7 : [(Kr,#r
3
, λ)del, (Kr,#r

5
, λ)del]

For rules AB → λ ∈ P and CD → λ ∈ P we add to M following matrices:

AB.1 : [(λ, $, λ)del, (λ,KAB, λ)ins] AB.1 : [(λ, $, λ)del, (λ,KCD, λ)ins]

AB.2 : [(λ,KAB, λ)del, (λ, $, λ)ins] AB.2 : [(λ,KCD, λ)del, (λ, $, λ)ins]

AB.3 : [(KAB, A, λ)del, (KAB, B, λ)del] AB.3 : [(KCD, C, λ)del, (KCD, D, λ)del]
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The rule S′ → λ can be simulated by the following matrix:

S′ : [(λ, S′, λ)del, (λ, λ, λ)ins] .

We claim that L(γ) = L(G). First we show that L(γ) ⊇ L(G). Let w1Aw2 be
a sequential form in G (initially S) and let w1Aw2 ⇒r w1bCw2 be a derivation
in G. We show that in γ we obtain the same result:

w1Aw2 =⇒r.1 w1bCw2.

We remark that if the sequence bC is not inserted before A, then the second
rule from the matrix will not be applicable (we recall that w1w2 does not contain
non-terminals from V \ T and that b 6= λ.

Consider now the following derivation in G: w1Aw2 ⇒r w1Cbw2. This
derivation is simulated in γ as follows.

$w1Aw2 =⇒r.1 $w1#
r
1#

r
2w2 =⇒r.2 $w1C#r

2w2 =⇒r.3

=⇒r.3 $w1C#r
3
#r

4
w2 =⇒r.4 $w1C#r

3
#r

5
bw2 =⇒r.5

=⇒r.5 w1CKr#r
3#

r
5bw2 =⇒r.6 w1CKrbw2 =⇒r.7 $w1Cbw2.

So the grammar G is simulated as follows. Firstly the first stage of the
generation is simulated by simulating left-linear and after that right-linear pro-
ductions. After changing to the second stage, rules AB.i and CD.i (1 ≤ i ≤ 3)
can be applied, removing symbols A,B,C,D.

Now in order to prove the converse inclusion L(γ) ⊆ L(G) we show that no
other words can be obtained in γ.

We start by observing that matrices r.1− r.4 for a rule r : A→ Cb as well as
r.1 for a rule r : A→ bC have the form [(λ, x, λ)ins, (x, y, λ)del], x ∈ V ∪V 2, y ∈
V . It is not difficult to see that if x was not already present in the string then
such a matrix correspond to the rewriting rule y → x. Indeed, since x is not
present in the string, it should have been inserted before the symbol y, which is
deleted afterwards.

The matrices r.5 − r.7 insure that a sequence of symbols #r
3
#r

5
is deleted.

This is performed by introducing into the string a new special symbol Kr. If
it is not introduced before #r

3
, then nothing happens and Kr can be replaced

by $. Otherwise, it can delete the two symbols in the sequence. The validity of
the simulation is ensured by the fact that the symbol $ is always present in at
most one copy.

In a similar way rules AB.1 −AB.3 and CD.1− CD.3 act.
In order to conclude that the simulation of the rule A → Cb does not yield

other words we give the following remarks:

• Symbol A is replaced by a pair of symbols #r
1
#r

2
, where #r

1
evolves to C

and #r
2 evolves to b.
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• Symbol b is inserted if and only if #r
3
(and #r

4
) is present in the string.

This insures that this symbol is separated from any non-terminal that can
be derived from C and hence the insertion of this symbol cannot interfere
with some other insertion that could be operated.

Since no other words can be generated we can reconstruct a derivation in G

starting from a derivation in γ. For this it is enough to follow configurations
where there is a non-terminal from V \ {A,B,C,D} in order to reconstruct the
first stage of the derivation from G. The deletion of AB and CD has a direct
correspondence to the second stage of G. So, L(γ) = L(G).

Theorem 7. Mat2INS
1,0
1

DEL
0,0
2

= RE.

Proof. The proof is based on a simulation if type-0 grammar in the Geffert nor-
mal form (as presented in Section 2). Let G = (V, T, S, P ) be such a grammar.
We construct the system γ = (V ∪ V ′, T, w,M) as follows.

V ′ = {p, p′ | p : A → Cb ∈ P} ∪ {p, p2, p3,#p,#
′

p, C
p
1
, C

p
2
| p : A → bC ∈

P} ∪ {X,Y }, and w = {XSY }.
For every rule p : A→ Cb ∈ P we add to M following matrices:

p.1 : [(λ,A, λ)del, (Y, p, λ)ins]

p.2 : [(X, b, λ)ins, (Y, p′, λ)ins]

p.3 : [(X,C, λ)ins, (λ, p′p, λ)del]

For every rule p : A→ bC ∈ P we add to M following matrices:

p.1 : [(λ,A, λ)del, (Y, p, λ)ins]

p.2 : [(X,C
p
1
, λ)ins, (Y,#p, λ)ins]

p.3 :
[

(Y,#′

p, λ)ins, (Y, p2, λ)ins
]

p.4 :
[

(Y, p3, λ)ins, (λ,#′

p#p, λ)del
]

p.5 : [(X, b, λ)ins, (λ, p2, λ)del]

p.6 : [(λ,X, λ)del, (Cp
1
, C

p
2
, λ)ins]

p.7 : [(Cp
2
, X, λ)ins, (λ, p3p, λ)del]

p.8 : [(X,C, λ)ins, (λ,Cp
1
C

p
2
, λ)del]

For rules AB → λ ∈ P and CD → λ ∈ P we add to M following matrices:

AB : [(λ,AB, λ)del , (λ, λ, λ)ins] CD : [(λ,CD, λ)del, (λ, λ, λ)ins]

We also add to M the matrices XY : [(λ,X, λ)del, (λ, Y, λ)del] and S′ :
[(λ, S′, λ)del, (λ, λ, λ)ins].

We claim that L(γ) = L(G). First we show that L(γ) ⊇ L(G). The simula-
tion uses the following idea. Symbol X marks the site where the non-terminal is
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situated, while symbol Y marks a position in the string (for commodity we mark
the end of the string). The sequence of insertions and deletions is synchronized
between these two positions: inserting something at position X also inserts or
deletes symbols at position Y . Finally, symbols at position Y are checked to
form some particular order. So in some sense Y corresponds to a “stack” where
some information is stored and after that the “stack” is checked to be in some
specific form.

More precisely, let w1Aw2 be a sequential form in G (initially S) and let
w1Aw2 ⇒r w1Cbw2 be a derivation in G. We show that in γ we obtain the
same result:

w1XAw2Y =⇒p.1 w1Xw2Y p =⇒p.2 w1Xbw2Y p′p =⇒k−1

p.2

=⇒k−1

p.2 w1Xbkw2Y p′pk =⇒p.3 w1XCbkw2Y p′k−1.

Since there are no rules eliminating p′ by itself (it can be eliminated only if p
is following it, which is no more possible), the above string can become terminal
if and only if one insertion is done at the second step (i.e. k = 1). Hence we
obtain the string w1XCbw2Y , i.e. we correctly simulated the corresponding
production of the grammar.

We remark that the rule p.2 can be used at any time, but this yields again
a symbol p′ after Y which cannot be removed.

Now consider the following derivation in G: w1Aw2 ⇒r w1bCw2. This
derivation is simulated in γ as follows.

w1XAw2Y =⇒p.1 w1Xw2Y p =⇒p.2 w1XC
p
1
w2Y#pp =⇒p.3

=⇒p.3 w1XC
p
1
w2Y p2#

′

p#pp =⇒p.4 w1XC
p
1
w2Y p3p2p =⇒p.5

=⇒p.5 w1XbC
p
1
w2Y p3p =⇒p.6 w1bC

p
1
C

p
2
w2Y p3p =⇒p.7

=⇒p.7 w1bC
p
1
C

p
2
Xw2Y =⇒p.8 w1b

sXCw2Y

The deletion rules AB → λ, CD → λ and S′ → λ are simulated directly by
rules AB and CD and symbols X and Y are eliminated by the rule XY . Hence
L(G) ⊆ L(γ).

Now in order to prove the inclusion L(γ) ⊆ L(G) we we show that only
specific sequences of rule application can lead to a terminal string. The case of
the simulation of rules of type A→ Cb is discussed above. We shall concentrate
now on the simulation of rules of type A → bC. We give below the rules’
dependency graph, where by x ← y we indicate that in order to apply y, we
should apply at least one time x.
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Indeed, if rule p.1 is not applied first, then additional symbols are added after
Y and it is clear that they cannot be eliminated. If p.3 is applied before p2,
then the introduced symbol #′

p can never be deleted (as there is no symbol #p

afterwards). Rule p.4 involves symbols introduced by p.2 and p.3, so it cannot
be used before. Rule p.5 cannot be applied before p.3, however its application
can be interchanged with the application of p.4. Rule p.6 can be applied once
after p.2, while in order to apply p.7 we need to apply before rules p.6, p.5 and
p.4. The rule p.8 is applicable only after rule r.7.

It is still possible to apply some rules several times. Now we show that each
rule must be applied exactly once. Since there is only one copy of A, only one
copy of p will be available. Hence rule p.7 will be applied only one time. We can
also deduce that only one copy of p3 shall be produced, hence rule p.4 should
be applied only one time. But this implies the uniqueness of symbols #p and
#′

p, hence a single application of rules p.2 and p.3. The last affirmation implies
that p2 is generated only once, hence p.5 can be applied only once. From p.6
we can deduce that C

p
2
is inserted once, hence p.8 is executed only one time.

Finally, from the p.2 we can deduce that Cr
1
is inserted only once, so after its

deletion in p.8 no more copies will remain.
So, we obtain that any terminal derivation in γ needs an application of a

specific sequence of rules. Hence, it is enough to look at strings from γ containing
a non-terminal from V \ {A,B,C,D} in order to reconstruct the first stage of
the derivation from G. The deletion of AB and CD has a direct correspondence
to the second stage of G. This implies that L(γ) ⊆ L(G).

5 Conclusions

In this article we have introduced the mechanism of a matrix control to the
operations of insertion and deletion. We investigated the case of systems with
insertion and deletion rules of size (1, 1, 0; 1, 1, 0), (1, 1, 0; 1, 0, 1), (1, 1, 0; 2, 0, 0)
and (2, 0, 0; 1, 1, 0) and we have shown that the corresponding matrix insertion-
deletion systems are computationally complete. In the case of first two systems
matrices of size 3 are used, while in the case of the last two systems binary ma-
trices are sufficient. Since a matrix control is a particular case of a graph control
(having an input/output node and series of linear paths starting and ending in
this node), we obtain [14] that matrix insertion-deletion systems having rules of
size (2, 0, 0; 2, 0, 0) are not computationally complete.
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We remark that our results for matrix insertion-deletion systems are differ-
ent from the results on graph-controlled systems obtained in [4] and previous
works. In the graph-controlled case, the total number of nodes in the graph is
minimized, while in the matrix case the depth of the graph (corresponding to
the size of matrices) is minimized.

We did not succeed to show the computational completeness of systems of
size (1, 1, 0; 1, 1, 0) and (1, 1, 0; 1, 0, 1) having binary matrices. This gives an
interesting topic for the further research.
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