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Catalan structures and Catalan pairs

S. Bilotta∗ F. Disanto† R. Pinzani∗ S. Rinaldi†

Abstract

A Catalan pair is a pair of binary relations (S,R) satisfying certain axioms. These objects
are enumerated by the well-known Catalan numbers, and have been introduced in [DFPR]
with the aim of giving a common language to most of the structures counted by Catalan
numbers. Here, we give a simple method to pass from the recursive definition of a generic
Catalan structure to the recursive definition of the Catalan pair on the same structure, thus
giving an automatic way to interpret Catalan structures in terms of Catalan pairs. We apply
our method to many well-known Catalan structures, focusing on the meaning of the relations
S and R in each considered case.

1 Catalan pairs

Catalan numbers are a very popular sequence of integer numbers, arising in many combina-
torial problems coming out from different scientific areas, including computer science, compu-
tational biology, and mathematical physics [St1, St2]. Throughout all the paper, we will refer
to any combinatorial structure enumerated by Catalan numbers as to a Catalan structure.

Catalan pairs have been introduced in [DFPR] with the aim of giving a common language
to (almost) all the Catalan structures. To reach this goal the authors of [DFPR] use an ele-
mentary mathematical tool, the Catalan pair, which is substantially a pair of binary relations
satisfying certain axioms. They first prove that Catalan pairs are enumerated by Catalan num-
bers, according to their size. Their main goal is to prove that almost all Catalan structures
can be interpreted in terms of Catalan pairs, thus providing a powerful tool to determine, in
automatic way, many bijections between Catalan structures. Still in [DFPR], the authors prove
several combinatorial properties of such Catalan pairs, also showing that they are related to
some classes of pattern avoiding posets.

In this paper we carry on the original purpose of [DFPR], and attempt at developing a
general method to determine a representation of a given Catalan structure in terms of Catalan
pairs. Our method relies on the observation that most of the Catalan structures admit a re-
cursive decomposition, which can be naturally translated onto the two binary relations defining
Catalan pairs. Once we have presented our methodology, in Section 2 we apply it to furnish the
interpretation of some of the most classical Catalan structures in terms of Catalan pairs. In the
final section, we extend our method in order to include some other Catalan structures.

1.1 Basic definitions

In what follows we recall from [DFPR] some basic definitions of Catalan pairs. Given any
set X, we denote D = D(X) the diagonal of X, that is the relation D = {(x, x) | x ∈ X}.
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Moreover, if θ is any binary relation on X, we denote by θ the symmetrization of θ, i.e. the
relation θ = θ∪ θ−1. Given a set X of cardinality n, let O(X) be the set of strict order relations
on X. By definition, this means that θ ∈ O(X) when θ is an irreflexive and transitive binary
relation on X.

Now let (S,R) be an ordered pair of binary relations on X. We say that (S,R) is a Catalan
pair on X when the following axioms are satisfied:

(i) S,R ∈ O(X);

(ii) R ∪ S = X2 \ D;

(iii) R ∩ S = ∅;

(iv) S ◦R ⊆ R.

One can observe that, since S and R are both strict order relations, the two axioms (ii) and
(iii) can be explicitly described by saying that, given x, y ∈ X, with x 6= y, exactly one of the
following holds: xSy, xRy, ySx, yRx. The axiom (iv) says that if xSy and yRz, then xRz.

Two Catalan pairs (S1, R1) and (S2, R2) on the (not necessarily distinct) sets X1 and X2,
respectively, are said to be isomorphic when there exists a bijection ξ from X1 to X2 such that
xS1y if and only if ξ(x)S2ξ(y) and xR1y if and only if ξ(x)R2ξ(y). We will consider Catalan
pairs up to an isomorphism and, as a consequence of this definition, we say that a Catalan pair
has size n when it is defined on a set X of cardinality n. The set of isomorphism classes of
Catalan pairs of size n will be denoted C(n). In [DFPR] it is proved, both in an analytical and
in a bijective way, that the number of Catalan pairs of size n is indeed the nth Catalan number.

2 Combinatorial interpretations of Catalan pairs

In this section we provide a general method to represent a given Catalan structure in terms
of a Catalan pair. More precisely, we start from a given Catalan structure C, for each object of
C we determine a base set XC , and we recursively define a pair of binary relations (S,R) on XC .
We can prove that (S,R) is indeed a Catalan pair.

We rely on the fact that, using a pretty classical notation, most of the Catalan structures C
admit a recursive decomposition as

C = ε + x C × C (2.1)

meaning that, each element C ∈ C is the empty object of size zero, or it can be uniquely
decomposed as C = xAB, where x is an element of unitary size belonging to the base set XC ,
and A,B ∈ C. Figure 2.1 shows an example of decomposition (2.1) for the class of Dyck paths.

C
ε

B
A

x = +

Figure 2.1: The recursive decomposition of Catalan structures illustrated for the class of Dyck paths.

From the decomposition (2.1), we can recursively define a base set XC and a Catalan pair
(S,R) on XC for the Catalan structure C in the following way:

• If C = ε we have S = ∅ and R = ∅.
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• Otherwise, if C = xAB, let (SA, RA) and (SB , RB) be the Catalan pairs on the objects A
and B, with base sets XA, and XB , respectively. Then XC is composed by the elements
in XA, XB plus the new element x, and (S,R) is defined as

S = SA ∪ SB ∪ {(a, x) : a ∈ XA}, (2.2)

R = RA ∪RB ∪ {(a, b) : a ∈ XA, b ∈ XB} ∪ {(x, b) : b ∈ XB} (2.3)

The size of (S,R) is then given by the number of elements in XC . We can trivially prove the
following statement.

Proposition 2.1 The relations S and R defined in (2.2) and (2.3) form a Catalan pair on the
base set XC . �

In the sequel, using Proposition 2.1, we can easily determine the relations S and R for some
known Catalan structures. In particular, we will take into consideration here some examples
from [St1] and [St2], involving rather different combinatorial objects.

According to our method, the relations S and R are recursively defined, but we will be able
to present them in an explicit and meaningful way for each considered case; in particular we
will show that each relation describes a certain combinatorial/geometrical relationship among
the elements of the base set.

2.1 Perfect noncrossing matchings and Dyck paths

Our first example will be frequently recalled throughout all the paper. Given a linearly
ordered set A of even cardinality, a perfect noncrossing matching of A is a noncrossing partition
of A having all the blocks of cardinality 2. A block can be represented by means of an arch joining
each couple of points. There is an obvious bijection between perfect noncrossing matchings and
well formed strings of parentheses. It is known that, the class of perfect noncrossing matchings
is counted by the Catalan numbers according to the number of arches.

Using this representation, we can define the following relations on the set X of arches of a
given perfect noncrossing matching:

• for any x, y ∈ X, we say that xSy when x is included in y;

• for any x, y ∈ X, we say that xRy when x is on the left of y.

The reader is invited to check that the above definition yields a Catalan pair (S,R) on the
set X.

Example 2.1 Let X = {a, b, c, d, e, f, g}, and let S and R be defined as follows:

S = {(b, a), (f, e), (f, d), (e, d), (g, d)}

R = {(a, c), (a, d), (a, e), (a, f), (a, g), (b, c), (b, d), (b, e), (b, f), (b, g),
(c, d), (c, e), (c, f), (c, g), (e, g), (f, g)}.

It is easy to check that (S,R) is a Catalan pair of size 7 on X, which can be represented as
in Figure 2.2 (a).
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Figure 2.2: The graphical representation of a Catalan pair in terms of a noncrossing matching, and the
associated Dyck path.

An equivalent way to represent perfect noncrossing matchings is to use Dyck paths: just
interpret the leftmost element of an arch as an up step and the rightmost one as a down step.
For instance, the matching represented in Figure 2.2 (a) corresponds to the Dyck path depicted
in Figure 2.2 (b). Coming back to Catalan pairs, the relations S and R are suitably interpreted
using the notion of a tunnel. A tunnel in a Dyck path [E] is a horizontal segment joining the
midpoints of an up step and a down step, remaining below the path and not intersecting the path
anywhere else. Now define S and R on the set X of the tunnels of a Dyck paths by declaring,
for any x, y ∈ X:

• xSy when x lies above y;

• xRy when x is completely on the left of y.

See again Figure 2.2 for an example illustrating the above definition.

2.2 Plane trees

Let Tn be the set of plane trees having n edges. It is known that, the number of the elements
of the set Tn is the nth Catalan number. We say that a node b is a descendant of a node a
when b belongs to the subtree of root a. In this situation, we also say that a is an ancestor of
b. For any two nodes b and c, we define their minimum common ancestor to be the root of the
minimum subtree containing both b and c. Finally, we will say that b lies on the left of c when,
called a the minimum common ancestor of b and c, a /∈ {b, c} and b is on the left of c.

Given t ∈ Tn, let X denote the set of nodes of t other than the root. Define two relations S
and R on X as follows:

• xSy when x is a descendant of y;

• xRy when x lies on the left of y.

Then the pair (S,R) is indeed a Catalan pair on X, and it induces the well known (see [St1])
bijection between plane trees and Dyck paths. Figure 2.3 depicts the plane tree corresponding
to the Catalan pair (S,R) considered in Example 2.1.

g

a

b

c d

e

f

Figure 2.3: The plane tree corresponding to the Catalan pair represented in Figure 2.2.
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2.3 Pattern avoiding permutations

Let n,m be two positive integers with m ≤ n, and let π = π(1) · · · π(n) ∈ Sn and ν =
ν(1) · · · ν(m) ∈ Sm. We say that π contains the pattern ν if there exist indices i1 < i2 < . . . < im
such that (π(i1), π(i2), . . . , π(im)) is in the same relative order as (ν(1), . . . , ν(m)). If π does not
contain ν, we say that π is ν-avoiding. See [B] for plenty of information on pattern avoiding
permutations. For instance, if ν = 123, then π = 524316 contains ν, while π = 632541 is
ν-avoiding.

We denote by Sn(ν) the set of ν-avoiding permutations of Sn. It is known that, for each
pattern ν ∈ S3, |Sn(ν)| = Cn (see, for instance, [B]).

It is possible to give a description of the classes of 312-avoiding permutations and 321-
avoiding permutations in terms of Catalan pairs. In this way, we are able to determine a
description of the class Sn(ν) in terms of Catalan pair, for any ν ∈ S3. From the interpretation
of Sn(312) follows the interpretation of Sn(231) by inverse and the interpretation of Sn(213) by
symmetry. From the interpretation of Sn(321) follows the interpretation of Sn(123) by symmetry
and from the interpretation of Sn(231) follows the interpretation of Sn(132) by symmetry.

2.3.1 312-avoiding permutations

Let X = {1, 2, . . . , n}, for every permutation π ∈ Sn we define the following relations S and
R on X:

• iSj when i < j and (i, j) is an inversion in π (i.e. π(i) > π(j));

• iRj when i < j and (i, j) is a noninversion in π (i.e π(i) < π(j)).

Proposition 2.2 The permutation π ∈ Sn is 312-avoiding if and only if (S,R) is a Catalan
pair of size n.

Proof. The axioms (i) to (iii) in the definition of a Catalan pair are satisfied by (S,R) for
any permutation π, as the reader can easily check. Moreover, π is 312-avoiding if and only if,
given any three positive integers i < j < k, it can never happen that both (i, j) and (i, k) are
inversions and (j, k) is a noninversion. This happens if and only if S ◦R and S are disjoint. But,
from the above definitions of S and R, it must be S ◦R ⊆ R ∪ S, hence S ◦R ⊆ R. The axiom
(iv) in the definition of a Catalan pair is satisfied by (S,R). �

Example. We consider the following 312-avoiding permutation π:

π =

(

1 2 3 4 5 6

2 1 3 5 6 4

)

This configuration defines the following Catalan pair (S,R):

S = {(1, 2), (4, 6), (5, 6)} ;

R = {(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 4), (3, 5), (3, 6), (4, 5)}. ✷

The present interpretation of 312-avoiding permutations can be connected with the previous
ones using Dyck paths and perfect noncrossing matchings, giving rise to a very well-known
bijection, whose origin is very hard to be traced back (see, for instance, [P]). We leave all the
details to the interested reader.
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2.3.2 321-avoiding permutations

Each permutation π = (π(1)...π(n)) ∈ Sn can be naturally represented on the Cartesian
plane. In particular, each element π(i) of the permutation is the point (i, π(i)) on the Cartesian
plane, for any 1 ≤ i ≤ n.
For example, we represent the permutations of S3(321) on the Cartesian plane as in Figure 2.4:

123 312231213132

Figure 2.4: A Graphical representation of S3(321) on the Cartesian plane.

Let X = {a1, a2, .., an} be the set of the points on the Cartesian plane representing a
permutation π ∈ Sn(321). If x, y ∈ X, where x = (x1, x2) and y = (y1, y2), we set x ≺ y when
x1 < y1 and x✁ y when x2 < y2.

Using this representation, we can define the following relations on the set X. Given x, y ∈ X,
a cover of {x, y} is any point c of X having the following properties (see Figure 2.5):

• x✁ c and y ✁ c ;

• c ≺ x and c ≺ y.

 y

 c

 x

Figure 2.5: A graphical representation of the cover of (x, y).

For any x, y ∈ X, we say that:

• xRy when there is no cover of {x, y}, x✁ y and x ≺ y ;

• xSy when (x, y) /∈ R and x ≺ y.

We can observe that the definition of the relation S consists in two distinct cases which are
depicted in Figure 2.6.

  (a)

x
y

c

y

x

(b)

Figure 2.6: A graphical representation of distinct cases of the relation S.

Proposition 2.3 (S,R) is Catalan pair on the set X.
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Proof. The axioms (i) to (iii) in the definition of a Catalan pair are satisfied by (S,R), as
the reader can easily check.

Let x, y, z ∈ X such that xSy and yRz. From the above definition of the relation S it
follows that the configuration xSyRz can be represented by two distinct cases, as in Figure 2.7.

  (a)

x
y

c

z

y

z

x

(b)

Figure 2.7: A graphical representations of the configuration xSyRz.

Both configurations (a) and (b) satisfy the relation xRz, hence S ◦R ⊆ R. The axiom (iv)
in the definition of a Catalan pair is satisfied by (S,R). �

Example. We consider the following 321-avoiding permutation π:

π =

(

1 2 3 4 5

2 3 1 4 5

)

The Figure 2.8 shows the graphical representation of π.

e

a

b

c

d

Figure 2.8: A graphical representation of π.

This configuration defines the following Catalan pair (S,R) on the X = {a, b, c, d, e}:

S = {(a, c), (b, c)} ;

R = {(a, b), (a, d), (a, e), (b, d), (b, e), (c, d), (c, e), (d, e)}. ✷

2.4 Sequences of integers counted by Catalan numbers

There are many classes of integers sequences satisfying special constraints which are enu-
merated by Catalan numbers. In [St1] we can find some examples, among which we focus on
the following ones:

(1) the set of sequences a1 a2 .. an of integers with i ≤ ai ≤ n and such that if i ≤ j ≤ ai,
then aj ≤ ai.

(2) the set of sequences 1 ≤ a1 ≤ a2 ≤ .. ≤ an ≤ n of integers with exactly one fixed point,
i.e., exactly one index 1 ≤ f ≤ n for which af = f .
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Let us study these two classes separately:

(1) Let X = {a1, a2, .., an} be the set of integers which form the sequence. For instance, for
n = 3 we have the following five sequences on X = {1, 2, 3}:

123      133      223      323      333

We can define the relations S and R on the set X, as follows.
For any ai, aj ∈ X, with 1 ≤ i, j ≤ n:

• aiRaj when i < j and ai < aj ;

• aiSaj when j < i and ai ≤ aj .

Proposition 2.4 (S,R) is Catalan pair on the set X.

Proof. The axioms (i) to (iii) in the definition of a Catalan pair are satisfied by (S,R),
as the reader can easily check.

Let ai, aj , ak ∈ X with i < j < k such that ajSai and aiRak. From the above definitions
of the relations S and R it follows that the relation ajSai is satisfied when i < j and
aj ≤ ai, while the relation aiRak is satisfied when i < k and ai < ak. Then aj < ak and
since j < k it follows that the relation ajRak is satisfied, hence S ◦ R ⊆ R. The axiom
(iv) in the definition of a Catalan pair is satisfied by (S,R). �

Example. We consider the following sequence:

(

a1 a2 a3 a4 a5 a6
5 2 4 4 5 6

)

This configuration defines the following Catalan pair (S,R) on the set X = {a1, a2, .., a6}:

S = {(a2, a1), (a3, a1), (a4, a1), (a5, a1), (a4, a3)} ;

R = {(a1, a6), (a2, a3), (a2, a4), (a2, a5), (a2, a6), (a3, a5), (a3, a6), (a4, a5),
(a4, a6), (a5, a6)}. ✷

(2) As above, let X = {a1, a2, .., an} be the set of integers which form the sequence. For
instance, for n = 3 we have the following five sequences on X = {1, 2, 3}:

111      112      222      223      333

Let f be the fixed point of X, i.e. the index such that af = f ; for any index y ≤ f we
consider the integer a′y = ay − y and for any index z with f < z ≤ n we consider the
integer a′z = z − az. In this way, for any sequence a1 a2 .. an we have the corresponding
sequence a′1 a′2 .. a′n.
Using this representation, we can define the following relations on the set X. Let i, j be
the indexes of the integers ai, aj ∈ X, we can describe the following cases:

• If i, j ≤ f then:

aiSaj when i < j , a′i > a′j and j = min{k : i < k ≤ f, a′k = a′j} ;
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aiRaj when























i < j , a′i > a′j and

∃w with i < w < j such that a′w = a′j ; (1)

i < j and a′i ≤ a′j . (2)

Roughly speaking, we say that aiSaj if i < j and a′i > a′j where a
′
j is the first integer

in the sequence a′i+1a
′
i+2 . . . a

′
f having that value and we say that aiRaj for (1) if i < j

and a′i > a′j where a′j is not the first integer in the sequence a′i+1a
′
i+2 . . . a

′
f having

that value, but exists an integer a′w with i < w < j such that a′w = a′j .

• If i ≤ f < j then aiRaj .

• If i, j > f then:

aiS
−1aj (ajSai) when i < j , a′i < a′j and i = max{k : f < k < j , a′k = a′i} ;

aiRaj when























i < j , a′i < a′j and

∃w with i < w < j such that a′w = a′i ; (1)

i < j and a′i ≥ a′j. (2)

Roughly speaking, we say that aiS
−1aj (or equivalently ajSai) if i < j and a′i < a′j

where a′i is the last integer in the sequence a′f+1
a′f+2

. . . a′j−1
having that value and

we say that aiRaj for (1) if i < j and a′i < a′j where a′i is not the last integer in the
sequence a′f+1

a′f+2
. . . a′j−1

having that value, but exists an integer a′w with i < w < j
such that a′w = a′i.

Proposition 2.5 Let a′1 a′2 .. a′n be the corresponding sequence of a1 a2 .. an of integers
with exactly one fixed point f = af . If there are indexes x < y < z < f with a′x, a

′
z > a′y

and a′x > a′z then there is an index w with x < w < y such that a′w = a′z. �

Proposition 2.6 (S,R) is Catalan pair on the set X.

Proof. The axioms (i) to (iii) in the definition of a Catalan pair are satisfied by (S,R),
as the reader can easily check.

Let a1 a2 .. an be the sequence of integers with exactly one fixed point f = af and let
a′1 a′2 .. a′n be the corresponding sequence of a1 a2 .. an.
Let ai, aj , az ∈ X such that aiSaj and ajRaz.

Consider the case i < j < z < f . From the above definitions of the relations S and R it
follows that the relation aiSaj is satisfied when i < j ,a′i > a′j and j = min{k : i < k ≤
f, a′k = a′j}, while the relation ajRaz can be satisfied by two distinct cases: the case (1)
or the case (2). Suppose that ajRaz is satisfied by the case (1), when j < z , a′j > a′z and
there is an index w with j < w < z such that a′w = a′z. Then a′i > a′z and since i < j
it follows that there is an index w with i < w < z such that a′w = a′z, hence the relation
aiRaz is satisfied by the case (1) of R.

Now, suppose that ajRaz is satisfied by the case (2) of the relation R, when j < z and
a′j ≤ a′z. If a′j = a′z then a′i > a′z and since i < j < z it follows that the relation aiRaz
is satisfied by the case (1) of R. If a′j < a′z , it must be either a′i ≤ a′z or a′i > a′z. If
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a′i ≤ a′z , since i < z it follows that the relation aiRaz is satisfied by the case (2) of R. If
a′i > a′z , from the Proposition 2.5 it follows that there is an index w with i < w < j such
that a′w = a′z , since i < j < z , the relation aiRaz is satisfied by the case (1) of R. Thus,
we can conclude that, in every case, aiRaz, hence S ◦R ⊆ R for i < j < z < f .

The case i, j, z > f can be treated analogously and the case i, j < f < z is obvious, hence
the axiom (iv) in the definition of a Catalan pair is satisfied by (S,R). �

Example. We consider the following sequence:

(

a1 a2 a3 a4 a5 a6 a7 a8
2 4 4 5 5 5 6 6

)

The corresponding sequence of a1 a2 .. an is the sequence a′1 a′2 .. a′n defined as follows:

(

a′1 a′2 a′3 a′4 a′5 a′6 a′7 a′8
1 2 1 1 0 1 1 2

)

This configuration defines the following Catalan pair (S,R) on the set X = {a1, a2, .., a8}:

S = {(a1, a5), (a2, a3), (a2, a5), (a3, a5), (a4, a5), (a8, a7)} ;

R = {(a1, a2), (a1, a3), (a1, a4), (a1, a6), (a1, a7), (a1, a8), (a2, a4), (a2, a6),
(a2, a7), (a2, a8), (a3, a4), (a3, a6), (a3, a7), (a3, a8), (a4, a6), (a4, a7),
(a4, a8), (a5, a6), (a5, a7), (a5, a8), (a6, a7), (a6, a8)}. ✷

2.5 Staircase shape

A staircase shape (see [St2]) A is depicted in Figure 2.9. In particular |b| = |l| = n which
is the size of the staircase shape having n steps of the form y. Two staircase shapes of size
n are said to be different one the other when they are divided into exactly n rectangles in two
different ways. The following Figure 2.10 shows the case n = 3.

A

v

 l

b

  

Figure 2.9: A graphical representation of staircase shape A.

Figure 2.10: A graphical representation of all staircase shapes of size 3.

Proposition 2.7 Each staircase shape of size n, with n rectangles, has n steps and each step
belong to one and only one rectangle. �
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b (x)

l (x)

b (x)

l (x)

2

1 2

1

Figure 2.11: A graphical representation of the labelled sides of x.

Let X(A) be the set of the rectangles which tiles the staircase shape A. For any x ∈ X(A),
the sides of the rectangle x are labelled as in Figure 2.11.

Proposition 2.8 Each staircase shape A of size n admits the unique decomposition in Fig-
ure 2.12, where:

• ε is the empty staircase shape;

• ϕ ∈ X(A) is the junction rectangle containing the angle v ;

• L and U are staircase shapes of size m and m′ respectively , with m,m′ < n.

ε
ϕ

 A
=

U

L

Figure 2.12: A graphical representation of the unique decomposition of staircase shape A.

Proof. Let A be a staircase shape of size n, with n ≥ 1. Just locate the junction rectangle
ϕ ∈ X(A) to determine the decomposition of A. The junction rectangle of the configuration A
is the rectangle of the set X(A) which contains the angle v.

From Proposition 2.7, it follows that |l1(ϕ)| = k+1 and |b1(ϕ)| = n− k with 0 ≤ k ≤ n− 1.
By the way, the staircase shape L of size k, lies completely on the right of l1(ϕ), while the
staircase shape U of size n− (k + 1), lies under b1(ϕ).

The uniqueness of the decomposition of A is related to the existence of only one junction
rectangle ϕ ∈ X(A). �

At this point, we can define the following relations on the set X of rectangles which tile a
staircase shape. For any x, y ∈ X, we set:

• xSy when l2(x) (or the extension of l2(x)) intersects b1(y) ;

• xRy when x is completely on the left of l1(y) (or the extension of l1(y)).

Proposition 2.9 (S,R) is Catalan pair on the set X.

Proof. The axiom (i) in the definition of a Catalan pair is satisfied by (S,R), as the reader
can easily check.

Let x, y ∈ X be two distinct rectangles of a staircase shape A. From Proposition 2.8, it
follows that the staircase shape A admits a unique decomposition, then we can consider the
following cases:

a) x = ϕ,
it must be either y ∈ L or y ∈ U . If y ∈ L then xRy, otherwise if y ∈ U then ySx;
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b) y = ϕ,
it must either x ∈ L or x ∈ U . If x ∈ L then yRx, otherwise if x ∈ U then xSy.

Only one relation between x and y can hold in A, hence the axioms (ii) and (iii) in the definition
of a Catalan pair are satisfied by (S,R).

Let x, y, z ∈ X be two distinct rectangles of a staircase shape A, such that xSy and yRz.
From Proposition 2.8, it follows that the staircase shape A admits a unique decomposition. The
most interesting case is when y = ϕ. Since xSy and yRz, it follows that x ∈ U and z ∈ L, hence
xRz. The axiom (iv) in the definition of a Catalan pair is satisfied by (S,R). �

Example. Let X = {a, b, c, d, e, f, g} be the set of the rectangles which tile the staircase
shape of size 7 represented in Figure 2.13.

 a

 f
 e

g

 d

 c

b

Figure 2.13: An example of staircase shape of size 7.

This configuration defines the following Catalan pair (S,R) on the set X = {a, b, c, d, e, f, g}:

S = {(c, d), (c, g), (d, g), (e, g), (f, g)} ;

R = {(a, b), (a, c), (a, d), (a, e), (a, f), (a, g), (b, c), (b, d), (b, g), (b, e), (b, f),
(c, e), (c, f), (d, e), (d, f), (e, f)}. ✷

3 Further work

At the end of the paper, we would like to take into considerations the Catalan structures
which do not admit a recursive decomposition as (2.1). Among these ones, the most popular
are perhaps the parallelogram polyominoes, the 2-colored Motzkin paths, the binary trees [St1].

By means of the following example, concerning the class of parallelogram polyominoes, we
show that it is possible to adapt our method to include also these ”more complex” combinatorial
structures.

A parallelogram polyomino with semi-perimeter n + 1 is defined by two distinct non inter-
secting lattice paths of length n + 1 beginning in (0, 0) and using only horizontal and vertical
unit steps. These paths, called the upper and the lower path, respectively, meet in only two
points, the beginning point and the ending point of both, see Figure 3.14.

(0,0)

point
ending

PATH

LOWER

PATH

UPPER 

Figure 3.14: A parallelogram polyomino with semi-perimeter 9.
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The class P of the parallelogram polyominoes is counted by the Catalan numbers according
to the semi-perimeter, but P does not admit a decomposition as (2.1). For this class, a simpler
decomposition is given by that depicted in Figure 3.15, where x is a single element of unitary
size belonging to the base set X and A,B,C,D are parallelogram polyominoes of lower size.

3

D

CB

P    = +
A

+ +x x x x

1 2

Figure 3.15: Recursive decomposition of the parallelogram polyominoes.

Figure 3.15 shows that we have three distinct operations, denoted 1,2 and 3 respectively,
which can be applied on the class of parallelogram polyominoes. As we did for decomposition
(2.1), also in this case we can recursively define Catalan pairs (S,R) on the class of parallelogram
polyominoes.

In particular, if P is a parallelogram polyomino, and it is not the single cell, then it can be
uniquely decomposed according to 1, 2 or 3:

1. if the last operation applied on P is operation 1, let (SA, RA) be the Catalan pair on the
base set for A, then S and R are defined as follows:

S = SA, R = RA ∪ {(x, a) : a ∈ A} .

2. if the last operation applied on P is operation 2, let (SB, RB) be the Catalan pair on the
base set for B, then S and R are defined as follows:

S = SB ∪ {(b, x) : b ∈ B}, R = RB .

3. if the last operation applied on P is operation 3, let (SC , RC), (SD, RD) be the Catalan
pairs on C, D, respectively, then S and R are defined as follows:

S = SC ∪SD ∪{(c, x) : c ∈ C}, R = RC ∪RD ∪{(c, d) : c ∈ C, d ∈ D}∪ {(x, d) : d ∈ D}

The construction of the base set X follows the method previously described and is straight-
forward.

Applying the previous technique it is then possible to automatically determine the Catalan
pairs associated with all the structures which satisfy a decomposition like that in Figure 3.15.
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