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Abstract

We study the problem of gathering information from the nodes of a radio network into a central node. We
model the network of possible transmissions by a graph and consider a binary model of interference in which
two transmissions interfere if the distance in the graph from the sender of one transmission to the receiver
of the other is dI or less. A round is a set of compatible (i.e., non-interfering) transmissions. In this paper,
we determine the exact number of rounds required to gather one piece of information from each node of
a square two-dimensional grid into the central node. If dI = 2k − 1 is odd, then the number of rounds is
k(N − 1)− ck where N is the number of nodes and ck is a constant that depends on k. If dI = 2k is even,
then the number of rounds is (k + 1

4 )(N − 1)− c′k where c′k is a constant that depends on k. The even case
uses a method based on linear programming duality to prove the lower bound, and sophisticated algorithms
using the symmetry of the grid and non-shortest paths to establish the matching upper bound. We then
generalize our results to hexagonal grids.

Keywords: Radio communication, interference, grids, gathering

1. Introduction

In this paper, we study a problem suggested by France Telecom concerning the design of efficient strategies
to provide Internet access using wireless devices (see [9]). Typically, several houses in a village need access
to a gateway (a satellite antenna) to transmit and receive data over the Internet. To reduce the cost of the
transceivers, multi-hop wireless relay routing is used. Information can be transmitted from a node to any
node within distance dT . In this paper, we assume that dT = 1 and we will model the network of possible
communications by a symmetric directed communication graph G = (V,E) in which the vertices represent
the nodes (wireless devices) of the network and there is a pair of arcs, one arc in each direction, between
two vertices if the corresponding nodes can communicate.

However, a transmission can interfere with reception at nodes that are close to the transmitter. If two
transmissions are mutually non-interfering, we say that they are compatible. The goal is to provide efficient
access by the users to the gateway within these interference constraints. We will use the term round to mean
a set of compatible transmissions or calls. Time is slotted and the network is assumed to be synchronous,
so a one-hop transmission of one piece of information consumes one time slot. Calls made during the same
time slot cannot interfere, so the calls made during one time slot constitute a round. We are interested in
schedules that minimize the number of rounds (completion time).

These hypotheses are strong and assume a centralized view. However, the values of the completion times
that we obtain will give lower bounds on the corresponding real life values. Stated differently, if the value
of the completion time is fixed, then our results will give upper bounds on the maximum possible number
of users in the network.
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In this paper, we will use a binary model of interference based on distances in the communication graph.
Let d(u, v) denote the distance (that is, the length of a shortest path) between u and v in G. We assume
that when a vertex u transmits, all vertices v such that d(u, v) ≤ dI are subject to interference from u’s
transmission. This model is a simplification of reality in which a node can be subject to interference from all
of the other nodes, and models based on signal-to-noise ratio are more accurate. However, our model is more
accurate than both the classical half duplex model of wired networks in which a vertex of a communication
graph cannot transmit and receive at the same time, and the basic binary model (dI = 1) in which a vertex
only experiences interference when one of its neighbours transmits. We assume that all vertices of G have
the same interference range dI ; in fact dI is only an upper bound on the possible range of interference
because obstacles can reduce the interference range.

Some authors consider models based on Euclidean distance, but these models do not take into account
obstacles. In this paper, we consider square grids as models of urban situations. The distance in a grid is
the rectilinear distance between the corresponding nodes in the Euclidean plane. If the rectilinear distance

is d, then the Euclidean distance is between d
√
2

2 and d. So, rectilinear distance is a good approximation
to Euclidean distance when dI is small, and this is usually the case in practice. Later, we will generalize
our results to hexagonal grid graphs which provide an even better approximation to Euclidean distance. (If

the distance in the hexagonal grid is d, then the Euclidean distance is between d
√
3

2 and d.) Furthermore,
hexagonal grids are a good model of cellular networks.

We study the problem of gathering one piece of information from each vertex into a central gateway
vertex for transmission over the Internet. The inverse problem of gathering, in which each vertex receives a
personalized piece of information from the central vertex, is called distribution or personalized broadcasting.
When the graph is symmetric, the two problems are equivalent; the personalized broadcasting problem can
be solved by reversing the order and directions of the transmissions in a gathering protocol. Indeed, if two
calls (s, r) and (s′, r′) are compatible, then d(s, r′) > dI and d(s′, r) > dI , so the reverse calls are also
compatible. We assume that all pieces of information are of the same size, and that pieces of information
cannot be concatenated, so each transmission involves one piece of information, which we call a message,
and takes one time unit. The gathering problem then becomes one of organizing the transmissions into
rounds of compatible calls so that the number of rounds is minimized.

A problem that is similar to ours appears in the context of sensor networks. (See [15] for an on-line
list of references.) Each device in a sensor network collects data from its immediate environment and the
information from all sensors needs to be gathered into a base station. A major goal in sensor network
protocols is to minimize energy consumption and most research assumes that data can be combined (or
aggregated) to reduce transmission costs. In contrast, our goal is to minimize time and we do not allow any
combination of data. A model that is closer to ours is considered in [12]. The model includes reachability
and interference constraints like our model, but there are a number of differences. The nodes in [12]
have directional antennae and no buffering capacity whereas we assume omni-directional transmission and
reception and allow buffering of messages. Furthermore, most of the results in [12] use an interference model
in which each node can either send or receive a message in each time slot. This can be viewed as dI = 0
in our model. Under their assumptions, the authors give optimal (polynomial-time) gathering protocols for
paths and tree networks. Their work has been extended to general graphs with unit-length messages in [13].

Gathering problems like the one that we study in this paper have received much recent attention. A
survey can be found in [10]. A protocol for general graphs with an arbitrary amount of information to
be transmitted from each vertex is presented in [3]. The protocol is an approximation algorithm with
performance ratio at most 4. It is also shown in [3] that there is no fully polynomial time approximation
scheme for gathering if dI > dT , unless P = NP , and the problem is NP-hard if dI = dT . If each vertex has
exactly one piece of information to transmit, the problem is NP-hard if dI > dT [3] and if dI = dT = 1 [17].
A modified version of the problem in which messages can be released over time is considered in [11] and a
4-approximation algorithm is presented. In [2], general lower bounds and protocols are given for dT ≥ 1 for
various networks such as trees and stars.

The one-dimensional version of the problem studied in this paper, that is, gathering into a designated
vertex of a path, is considered in [1]. The problem is solved when the gateway vertex is at one end of the
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path and is partly solved when the gateway is in the centre of the path. Optimal protocols have also been
designed for trees with dI = 1 in [8]. When no buffering is allowed, the problem has been solved for trees
for dI = 1 [5] and for general dI [4] (where a closed-form expression is given when all vertices have exactly
one piece of information to transmit). For square grids with the gateway in the centre, a multiplicative
1.5-approximation algorithm is given in [18] and an additive +1 approximation algorithm is given in [6].

A model with continuous traffic demands and a symmetric interference condition is considered in [16]
and systolic algorithms are given. In this model, the problem is to satisfy a flow demand in minimum time.
The problem is shown to be related to an optimization problem called the round weighting problem and
duality is used to find optimal solutions. The problem studied in [16] can be viewed as a relaxation of the
problem that we study and we will extend their duality method to prove our lower bounds. Note that the
interference condition in [16] is symmetric; two calls interfere if any two vertices, one from each call, are
within distance dI . The results for this continuous model have been used in [14] to obtain results for the
grid with the gateway in any position, arbitrary traffic demands, and symmetric interference with dI = 1.

In Section 3, we determine the exact number of rounds to gather one message from each vertex into the
central gateway vertex of a square grid with N = n2 vertices and odd interference distance dI = 2k − 1.
The first few values are N − 1 (the total number of messages to be gathered) when dI = 1, 2(N − 1) − 4
when dI = 3, and 3(N − 1)− 16 when dI = 5. In general, the number of rounds is k(N − 1)− ck where ck is
a constant that depends on k. We give a short direct proof of the lower bound. We establish the matching
upper bound by providing a protocol and proving that it is correct. In Section 4, we determine the exact
number of rounds to gather in a square grid with N vertices and even interference distance dI = 2k. The
first few values are 5

4 (N − 1)− 1 when dI = 2, 9
4 (N − 1)− 6 when dI = 4, and 13

4 (N − 1)− 20 when dI = 6.
The general pattern is (k+ 1

4 )(N −1)−c′k where c′k is a constant that depends on k. The bounds for even dI
are considerably more difficult to prove than the bounds for odd dI . We prove the lower bound by extending
a method based on linear programming duality from [16]. The matching upper bound is established by
giving a protocol and proving its correctness. In Section 5, we generalize our techniques to hexagonal grids.
The next section contains definitions and notation. Early versions of some of the results in this paper were
presented in [7].

2. Definitions and Notation

We assume that G = (V,E) is a square grid with N = n2 vertices. We will concentrate on the case when
n = 2p+1 is odd and the vertices are arranged symmetrically around a central vertex v0 with p columns of
vertices on either side of the vertical axis through v0 and p rows above and below the horizontal axis through
v0. The vertices of the grid are labelled (x, y) with −p ≤ x ≤ p and −p ≤ y ≤ p, and the central vertex is
v0 = (0, 0). The vertex (x, y) has four neighbours in G, namely the vertices (x, y ± 1) and (x ± 1, y). We
will use Nd to denote the number of vertices that are at distance exactly d from v0. We have that N0 = 1,
Nd = 4d for 1 ≤ d ≤ p, and Nd = 4(2p+ 1− d) for p < d ≤ 2p.

We define the rotation ρ to be the one-to-one mapping ρ((x, y)) = (−y, x), which corresponds to a
counter-clockwise rotation in the plane of π

2 around the central vertex v0. Similarly, ρ2((x, y)) = (−x,−y)
corresponds to a rotation of π, and ρ3((x, y)) = (y,−x) corresponds to a rotation of 3π

2 . For a set S of
vertices, we define ρ(S) = {ρ(v)|v ∈ S}. For an arc e = (u, v), ρ(e) is the arc (ρ(u), ρ(v)). Similarly, for a
directed path P consisting of the sequence of vertices v1, v2, . . . , vh, we define ρ(P ) to be the directed path
ρ(v1), ρ(v2), . . . , ρ(vh).

It will be useful to have names for various regions of the grid. We split the grid into four disjoint regions
RE , RN , RW , and RS . Region RE consists of the vertices (x, y) with 0 < x ≤ p and −x < y ≤ x. The
other regions are obtained by rotations, namely RN = ρ(RE), RW = ρ(RN ) = ρ2(RE), and RS = ρ(RW ) =
ρ2(RN ) = ρ3(RE).

In a radio network, a transmission is sent to all neighbours of the transmitter (at distance dT = 1 in
this paper). However, only one copy of the message needs to reach v0, so it is only necessary for one of the
neighbours to forward the message. Thus, we can consider a transmission to be a call involving a single pair
(s, r) where s is the sender and r the receiver of the message, and we can represent calls as arcs (arrows)
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in our figures. To be successful, a call should not interfere with any other calls that occur during the same
time slot. As we said in the introduction, we will use a binary model of interference based on distance in the
communication graph. When the distance d(si, rj) between the sender of one call (si, ri) and the receiver of
a second call (sj , rj) is such that 1 < d(si, rj) ≤ dI , then the transmission of si is too weak to be received
by rj , but it is strong enough to interfere with the reception of call (sj , rj) by rj .

Several examples of interference are shown in Figure 1. In the figure, the calls (s1, r1) and (s3, r3) are
compatible when dI = 3 and so are the calls (s3, r3) and (s4, r4). All other pairs of calls are incompatible.
For example, the call (s1, r1) does not interfere with reception at r2, but (s2, r2) interferes with reception at
r1, so these calls are incompatible.
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Figure 1: Examples of interference for dI = 3.

For both odd dI = 2k−1 and even dI = 2k, the interference zone consists of the vertices (x, y) at distance
at most k from v0, that is |x|+ |y| ≤ k. The interference zones are shown as shaded areas in Figure 2. For
even dI = 2k, the vertices at distance k+ 1 from v0 define the partial interference boundary which is shown
as a dashed box in Figure 2(b).
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Figure 2: Interference zones for (a) dI = 3, (b) dI = 4.

Figure 2 shows some of the possible calls around the central vertex v0, which is represented by a large
circle. In Figure 2(a), dI = 3 is odd. None of the calls shown in the shaded interference zone are compatible
with each other, so at most one of these calls can be done at any given time. The situation is more
complicated when dI is even. In Figure 2(b), dI = 4. All of the calls shown in the shaded interference zone
interfere with each other as in the odd case, but the ways in which information can enter vertices on the
boundary of the interference zone are more restricted. The largest subset of compatible calls from vertices
on the partial interference boundary to vertices on the boundary of the interference zone is the subset of
four calls shown with solid arrows. All other such calls can only be done two or three at a time.
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3. Square Grids - Odd Interference Distance

In this section we assume a square grid with N = n2 vertices, n = 2p + 1, odd interference distance
dI = 2k − 1, k ≥ 1, and p ≥ k.

Theorem 1. Suppose that n = 2p + 1 and dI = 2k − 1 are odd and p ≥ k. Then the number of rounds

needed to gather in a square grid with N = n2 vertices is at least k(N − 1)− ck, where ck = 2k(k+1)(k−1)
3 .

Proof. The message of each vertex at distance i > k from v0 must use k calls inside the interference zone,
all of them pairwise interfering, to reach v0. The message of each vertex at distance i ≤ k from v0 must use
i calls inside the interference zone. So, the total number of rounds is at least∑k

i=1 iNi + k(N −
∑k

i=0 Ni) = k(N − 1) −
∑k

i=1(k − i)Ni. Noting that Ni = 4i for 1 ≤ i ≤ k, we get

ck =
∑k

i=1(k − i)Ni = 4k
∑k

i=1 i− 4
∑k

i=1 i
2 = 2k(k+1)(k−1)

3 . �

Now we describe a protocol that achieves the bound of Theorem 1. The general idea is to organize the
calls into stages of 4k rounds. We say that a vertex is active if it has messages that need to be sent or
forwarded to v0. Otherwise it is called dormant. In each stage, we select four active vertices that are outside
the interference zone and arranged symmetrically around v0 and four directed paths (dipaths) connecting
the selected vertices to v0. Messages are forwarded along the four dipaths for 4k rounds. At the end of
the stage, the four selected vertices become dormant, all other vertices on the four dipaths have sent one
message and received another, and v0 has received four more messages. The dipaths are chosen in such a
way that the calls in each round are compatible. We iterate this procedure until the only remaining active
vertices are inside the interference zone around v0. Sequential calls inside the interference zone are then
used to move the remaining messages into v0.

��
��
��
��

��
��

��

��
��

��
��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

��

��
��

��
��
��
��

�� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

��

��

��
��

w
2

w
1

e
1

w
3

e
2

e
3

s
1

w
2
w
1

n
3

n
2

s
2

s
1

n
1

n
2

n
3

s
3

s
1

w
1

w
2

w
3

w
1

w
2

e
1

s
2

n
3

n
2

n
1

s
1
s
2
s
3

e
2
e
3

e
1

n
1

s
2

e
1

e
1

s
3

s
1

n
1

w
3

e
2

n
1

e
3

s
3

w
1

n
3
n
2
n
1
w
1

w
3

e
2

e
1

e
3

s
1

(a) v = (7, 7)
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Figure 3: Gathering stages for dI = 5.

Figure 3 shows two examples of stages. The labels indicate the rounds during which the calls are made.
The precise meaning of these labels will be explained later but the reader can verify that the round labelled
ei (resp., ni, wi, si), 1 ≤ i ≤ k, includes a call along the east (resp., north, west, south) axis from the vertex
at distance i from v0 to the vertex at distance i − 1. Note that these 4k calls are mutually incompatible.
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Stages are executed sequentially, so that at any given time, only one set of dipaths is being used. It is not
hard to verify that the calls in Figure 3(a) are compatible in each round, and similarly for Figure 3(b). In
general, dipaths in region RE go towards the positive x axis and then along the axis to v0. The dipaths in
the three other quadrants are obtained by rotations.

Theorem 2. Suppose that n = 2p+ 1 and dI = 2k− 1 are odd and p ≥ k. Then gathering in a square grid

with N = n2 vertices can be completed in k(N − 1)− ck rounds, where ck = 2k(k+1)(k−1)
3 and this is optimal.

Proof. We describe the dipaths to be used in each stage of the protocol with reference to a sequence of
directed trees called gathering trees. The initial gathering tree is a directed spanning tree that includes all
vertices and a set of arcs described below. The gathering tree for each stage is a subtree of the initial tree
that includes all vertices that are active at the beginning of that stage. The dipaths that are used in a stage
are dipaths in the gathering tree for that stage. The initial tree consists of the arcs directed towards v0
along the four axes and the arcs directed towards v0 along the perpendicular lines inside each of the four
regions. For region RE , the tree contains the horizontal arcs ((x, 0), (x+ 1, 0)), 0 ≤ x < p, the vertical arcs
((x, y), (x, y+1)), 1 ≤ x ≤ p, 0 ≤ y < x, and the vertical arcs ((x, y), (x, y+1)), 2 ≤ x ≤ p, −x+1 ≤ y ≤ −1.
The arcs in the other regions are obtained by rotations. Note that the distances in the trees are the same as
the distances in the grid, so the dipaths in the trees are shortest paths. Figure 4 shows a gathering tree for
p = 6 (and n = 2p+ 1 = 13). All arcs in the tree are directed towards v0, but the arrowheads are omitted
from Figure 4 (and some later figures) to simplify the diagram.
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Figure 4: Gathering tree for dI = 5.

In each stage, we select a leaf v = (x, y) of the current gathering tree in the region RE and outside
the interference zone and its three rotated images ρ(v), ρ2(v), and ρ3(v). The calls are done for 4k rounds
along the four dipaths P (v), ρ(P (v)), ρ2(P (v)), and ρ3(P (v))) where P (v) is the dipath in the gathering
tree from v to v0. Each arc of the dipaths is involved in exactly one call. We claim that at the end of
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each stage the four selected leaves become dormant and all of the other active vertices have exactly one
message. The proof is by induction. The claim is true at the beginning as all of the vertices are active
and have exactly one message. After a given stage, the four selected leaves have sent one message but
received none so they become dormant and are deleted from the gathering tree. The other vertices on the
dipaths (except v0) will have sent one message and received one message. So, all vertices remaining in the

gathering tree will be active and will have exactly one message. After 1
4 (N −

∑k

i=0 Ni) stages of 4k rounds,

all of the vertices outside of the interference zone will be dormant. It then takes
∑k

i=1 iNi sequential calls
inside the interference zone to move the remaining messages into v0. This establishes the upper bound∑k

i=1 iNi + k(N −
∑k

i=0 Ni) on the number of rounds which matches the lower bound of Theorem 1.
Now we specify the 4k rounds precisely for the stage when the selected leaves are v = (x, y) in RE

and its rotated images. First, suppose that y ≥ 0. (The case y < 0 is similar and is discussed later.)
The dipath P ((x, y)) consists of the y vertical arcs ((x, z), (x, z − 1)) for y ≥ z > 0, followed by the x

horizontal arcs ((t, 0), (t − 1, 0)) for x ≥ t > 0. Each arc will be used by exactly one call during the stage
and the call will be made during a round that depends on the distance of the arc from v0. We label the
4k rounds of each stage with the labels ei, ni, wi, si, 1 ≤ i ≤ k. We specify the labels for P ((x, y)) in the
opposite direction to the dipath, that is, starting at v0 and working towards (x, y). The first 2k+1 labels are
e1, e2, . . . , ek, wk, wk−1, . . . , w1, s1. If the dipath has more than 2k+1 arcs, then the pattern is repeated until
all arcs from v0 to (x, y) are labelled. According to this labelling, a call (s, r) on P that satisfies d(s, v0) = d

is labelled ei if d ≡ i (mod 2k + 1) and 1 ≤ i ≤ k, w2k+1−i if d ≡ i (mod 2k + 1) and k + 1 ≤ i ≤ 2k, and
s1 if d ≡ 0 (mod 2k + 1).

To specify the labels for the three rotated dipaths, we associate a one-to-one mapping ω with the rotation
ρ. The mapping ω acts on the labels of the arcs as follows: ω(ei) = ni, ω(ni) = wi, ω(wi) = si, and ω(si) =
ei. So, if arc e in P (v) is labelled l, then arc ρ(e) in the rotated dipath ρ(P (v)) is labelled ω(l). For example,
the arcs of ρ(P (x, y)) starting at v0 are labelled with the repeating pattern n1, n2, . . . , nk, sk, sk−1, . . . , s1, e1.
Figure 3(a) shows the dipaths and labels for v = (x, y) = (7, 7), k = 3, and dI = 2k − 1 = 5.

To finish the proof, we have to show that there is no interference among the 4(x+ y) calls in the stage.
Two calls can only interfere if they have the same label (i.e., they are made in the same round). Suppose
that two calls (s, r) and (s′, r′) have the same label. To prove that they are compatible, we have to show
that our labelling scheme ensures that d(s, r′) ≥ 2k > dI and d(s′, r) ≥ 2k > dI . Since d(s, r) = d(s′, r′) = 1,
showing that d(s, s′) ≥ 2k + 1 will ensure that the two calls are compatible.

Case 1: the two calls are on the same dipath. Recall that the dipath in the tree is a shortest path;
therefore, as the repeated sequence of labels has length 2k + 1, the distance between s and s′ is 2k + 1.

Case 2: (s, r) is on the dipath P and (s′, r′) is on ρ2(P ). If d(s, v0) ≥ 2k + 1 or d(s′, v0) ≥ 2k + 1, then
d(s, s′) ≥ 2k + 1 and the calls are compatible, so the only possibility for conflicts is when d(s, v0) ≤ 2k and
d(s′, v0) ≤ 2k. If both calls are labelled ei, then, by definition of round ei, d(s, v0) = i, d(s′, v0) = 2k+1− i,
and d(s, s′) = 2k + 1. If both calls are labelled wi, then, by definition of round wi, d(s, v0) = 2k + 1 − i,
d(s′, v0) = i, and d(s, s′) = 2k + 1. The proof for the pair of dipaths ρ(P ) and ρ3(P ) is similar.

Case 3: (s, r) is on P and (s′, r′) is on ρ(P ). (The proofs for other pairs of dipaths that differ by a
rotation of π

2 are similar.) If x ≤ k, then d(s, v0) ≤ 2k (because −x < y ≤ x in region RE), and there are
no common labels on the two dipaths. Otherwise the only possible common labels are s1 and e1.

Subcase 3(a): k+1 ≤ x ≤ 2k. The dipaths are of length at most 4k and there is at most one call labelled
s1 on P and at most one call labelled ω(s1) = e1 on ρ(P ). If there is a call (s, r) labelled s1 on P , then
the coordinates of s are xs = x and ys = 2k + 1 − x, while the only call (s′, r′) labelled s1 on ρ(P ) has
xs′ = −(2k − x) and ys′ = x. Therefore, d(s, s′) = x + (2k − x) + x − (2k + 1 − x) = 2x − 1 ≥ 2k + 1,
as x ≥ k + 1. If there is a call (s′, r′) labelled e1 on ρ(P ), then the coordinates of s′ are ys′ = x and
xs′ = −(2k+1− x), and d(s′, v0) = 2k+1, so the call (s, r) labelled e1 with s = (1, 0) has d(s′, s) = 2k+2.
If there is a second call (s′′, r′′) labelled e1 on P , then its coordinates are xs′′ = x and ys′′ = 2k+2−x, and
d(s′′, s′) = x+ (2k + 1− x) + x− (2k + 2− x) = 2x− 1 ≥ 2k + 1.

Subcase 3(b): x ≥ 2k+1. The sending vertices of all arcs labelled s1 on P are at distance at least 2k+1
from all vertices of ρ(P ), so there are no conflicts. Similarly, the senders of all arcs labelled e1 on ρ(P ) are
at distance at least 2k + 1 from P .
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Figure 5: Gathering tree for dI = 6.

The proof for the case y < 0 is similar to the case y ≥ 0. The only difference is that the label s1 is
replaced by n1 in the pattern of 2k+1 labels for dipath P , and corresponding changes are made in the rotated
dipaths. Figure 3(b) shows the dipaths and labels for v = (x, y) = (5,−4), k = 3, and dI = 2k − 1 = 5. �

4. Square Grids - Even Interference Distance

In this section, we assume a square grid with N = n2 vertices, n = 2p + 1, even interference distance
dI = 2k, k ≥ 1, and p ≥ k + 1. Both the protocol and the proof of the lower bound for even dI are more
complicated than for odd dI because the interference pattern is more complicated. Some of the differences
can be seen by comparing Figures 4 and 5. When dI = 2k − 1 is odd, as it is in Figure 4, we only have to
distinguish between calls inside the shaded interference zone bounded by vertices (x, y) at distance k from
v0 and calls outside the interference zone. When dI = 2k is even, there are four zones as shown in Figure 5.
(Note that the dipaths in the gathering tree in Figure 5 are directed towards v0 but the arrowheads are
omitted to simplify the diagram.) The behaviour inside the darkly-shaded interference zone and in the area
outside of the square bounded by vertices with |x| ≥ k+1 and |y| ≥ k+1 is the same as when dI is odd. The
interference patterns for calls originating on the partial interference boundary defined by vertices at distance
k + 1 from v0 (shown as a dashed box in Figure 5) are different and affect both the lower bound and the
protocol. Calls originating outside the partial interference boundary but inside the square with |x| ≥ k + 1
and |y| ≥ k + 1 (the lightly shaded area of Figure 5) do not affect the lower bound, but the gathering tree
must be modified to avoid interference. Note that for these vertices the distances in the trees are greater
than the distances in the grid and the dipaths to be used will not be shortest dipaths. The labels X,Y , and
Z in Figure 5 will be explained later.

In the previous section, we gave a short direct proof of a lower bound when dI is odd. We have not
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found a convincing direct proof of a lower bound when dI is even because of the large number of cases
that must be argued. We will use a different method based on linear programming duality which can be
used to prove lower bounds for both even and odd dI . Our method is based on a proof technique that was
introduced in [16] to solve bandwidth allocation problems in radio networks with continuous traffic demands.
The continuous gathering problem in [16] is a special case that can be formulated as a linear programming
problem. The solution of the linear programming problem gives an upper bound on the gathering time.
The solution of the dual linear programming problem gives a lower bound on the time to gather information
into the central vertex v0. Our problem is different in that each vertex only sends one piece of information
to v0 and we seek an integral solution that minimizes the number of rounds. However, we can extend the
technique of [16] to provide tight lower bounds for our problem.

A feasible solution for our gathering problem in a grid G = (V,E) consists of a set of dipaths to v0,
one dipath P (v) from each v ∈ V , v 6= v0, and an ordered sequence of rounds that specifies the calls. For
each dipath P (v), the sequence of rounds must contain a subsequence that includes the arcs of P (v) in the
order that they occur on P (v). This is necessary to allow the message of v to reach v0. We want to find an
optimal feasible solution that minimizes the total number of rounds.

Let R = {R1, R2, . . . , Rr} be the set of all possible different rounds, where a round is any set of compatible
calls in G = (V,E). Note that R can be exponential in size. A gathering protocol uses a sequence of rounds
from R. Typically, a protocol will use only a small subset of R and may use some Ri more than once. Let
P = {P (v)|v ∈ V, v 6= v0} be a set of dipaths and let TP be the minimum number of rounds to complete
gathering using P. We want to determine the minimum time T over all possible sets of dipaths P, that is
T = min

P

TP .

To obtain a lower bound, it suffices to consider a relaxed version of the problem in which we concentrate
on the structure of the rounds and ignore their order in the sequence. In particular, the number of rounds
containing each arc e must be at least as large as the number of dipaths containing e. This condition is
necessary so that all messages that need to traverse arc e can do so.

Let π
P
(e) denote the number of dipaths of a set P that contain arc e ∈ E. A feasible solution of the

relaxed problem for a given set P is a set of integers WP = {wi|1 ≤ i ≤ r}, where wi is the number of
times that round Ri is used in the solution. Let Re = {i|e ∈ Ri}. Then the number of times that an arc
e ∈ E is used in the solution is η

W
(e) =

∑
i∈Re

wi. We want to find a solution with the minimum total

number of rounds such that the number of rounds containing each arc e is at least as large as the number
of dipaths containing e. In order to use linear programming duality, we need to further relax our problem
to allow non-integer solutions WP . With this further relaxation, we can now state the relaxed problem for
a given set of dipaths P as:

Minimize SP =

r∑

i=1

wi subject to (∀e ∈ E) η
W
(e) ≥ π

P
(e).

We can express this problem in terms of matrices as:

Minimize SP = 1 ·WT subject to R ·WT ≥ ΠT
P ,

where WT is the column vector [w1, w2, . . . , wr]
T , ΠT

P
is the column vector [π

P
(e1), πP(e2), . . . , πP(e|E|)]

T ,

1 is the vector [1, 1, . . . , 1] of length r, and R is the binary matrix with |E| rows corresponding to the arcs
of G, r columns corresponding to the rounds of R, and a 1 in row j and column i if arc ej is used in Ri.

The dual problem has the form:

Maximize SD
P = ΠP · ΛT subject to RT · ΛT ≤ 1T ,

where RT is the transpose of matrix R, 1T is the column vector [1, 1, . . . , 1]T of length r, and the solution
Λ = [λ(e1), . . . , λ(e|E|)] is a vector of weights on the arcs of E with 0 ≤ λ(e) ≤ 1, ∀e ∈ E. The weight λ(e)
can be viewed as the cost (fraction of a round) to move a message across the arc e in a dipath. The dual
problem can also be expressed as:

Maximize SD
P =

∑

e

π
P
(e)λ(e) subject to
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(∀Ri ∈ R)
∑

e∈Ri

λ(e) ≤ 1. (∗)

By linear programming duality, we have SD
P

= SP . Furthermore, SP ≤ TP because SP is an upper
bound for a relaxed version of our gathering problem. Therefore, a lower bound on SD

P
for all feasible sets

P is a lower bound on the time T = min
P

TP for our gathering problem.

Let τ
P
(v) =

∑
e∈P (v) λ(e). Then SD

P
=

∑
e πP(e)λ(e) =

∑
v τP(v). Intuitively, τ

P
(v) is the cost (in

rounds) to move a message from v to v0 along the dipath P (v) ∈ P and τmin(v) = min
P

τ
P
(v) is the minimum

cost to move a message from v to v0 along any dipath. For any set of values {λ(e1), λ(e2), . . . , λ(e|E|)}
satisfying constraint (∗), we have

T ≥
∑

v

τmin(v). (∗∗)

The lower bound method works for both even and odd dI . The application of the method is considerably
simpler for odd dI than for even dI , and is also easier to explain because we can appeal to the direct proof
of Theorem 1 for intuition. So, we will give a second proof of Theorem 1 to illustrate the application of the
method. Then we will use it to prove a lower bound for the more complicated even case.

Let us apply this method for odd dI = 2k − 1. Choose λ(e) = 1 for each arc e = (s, r) inside the
interference zone with 1 ≤ d(s, v0) ≤ k and d(r, v0) = d(s, v0) − 1, and choose λ(e) = 0 for all other arcs.
Since all calls inside the interference zone interfere with each other, at most one arc with λ(e) = 1 can
be used in a round, and constraint (∗) is satisfied. Now, for a vertex v inside the interference zone with
d(v, v0) = i ≤ k, any dipath from v to v0 uses at least i arcs with λ(e) = 1 and so τmin(v) ≥ i. For a
vertex v with d(v, v0) ≥ k, any dipath from v to v0 uses at least k arcs with λ(e) = 1 and so τmin(v) ≥ k.

Therefore, using (∗∗), we have T ≥
∑

v τmin(v) ≥
∑k

i=1 iNi + k(N −
∑k

i=0 Ni) which matches the lower
bound of Theorem 1.

Before we apply the method for even dI , we need to distinguish among three types of vertices on the
partial interference boundary (i.e., at distance k + 1 from v0). These three types of vertices are labelled X,

Y, and Z in Figures 5 and 6. There are four vertices of type X: v = (k + 1, 0), and ρ(v), ρ2(v), and ρ3(v).
For k ≥ 2, there are eight vertices of type Y : v = (k, 1), v′ = (k,−1), and their rotated images. If k = 1,
there are only four vertices of type Y : (1, 1) and its three rotated images. If k > 2, then all of the 4k − 8
other vertices on the partial interference boundary are of type Z. Now, for even dI = 2k ≥ 2, we get the
following lower bound:
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Figure 6: Weights for even interference distance lower bound.
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Theorem 3. Suppose that n = 2p + 1 is odd, dI = 2k ≥ 2 is even, and p ≥ k + 1. Then the number
of rounds needed to gather in a square grid with N = n2 vertices is at least (k + 1

4 )(N − 1) − c′k, where

c′k = k(k+1)(4k−1)
6 −max{1, k − 1}.

Proof. The lower bound follows with the following choices for λ(e) (see Figures 5 and 6). Choose λ(e) = 1
for each arc e inside the interference zone that is directed towards v0 (i.e., e = (s, r) with 1 ≤ d(s, v0) ≤ k

and d(r, v0) = d(s, v0)− 1). For each of the four arcs (s, r) directed towards v0 with sender s of type X (and
d(r, v0) = k), choose λ(e) = 1

4 . For the arcs with sender of type Y , choose λ(e) = 3
8 if the arc is directed

towards v0 (i.e., d(r, v0) = k), and λ(e) = 1
8 if the arc is directed away from v0 (d(r, v0) = k+ 2). Finally, if

an arc has a sender of type Z, choose λ(e) = 1
2 if the arc is directed towards v0 (d(r, v0) = k), and λ(e) = 1

4
if the arc is directed away from v0 (d(r, v0) = k + 2). All other arcs have λ(e) = 0.

These values of λ were found by examining possible rounds in a protocol. Our intuition about choosing
these particular values is based on the properties of calls from senders on the partial interference boundary
(i.e., calls with senders of types X, Y , and Z). At most four such calls are possible in a round and the only
set of four calls that does not create interference is the four calls along the axes with originators of type
X, so we assign λ(e) = 1

4 to the corresponding arcs. We will prove below that there can be two senders of
type Z in a round, but not three, and so the value λ(e) = 1

2 is assigned to the arcs with a sender of type
Z that are directed towards v0. If we leave a vertex of type Z by an arc directed away from v0, then the
dipath can reach the interference zone using an arc with λ(e) = 1

4 , so we assign the value λ(e) = 1
4 to these

outgoing arcs to ensure that the total weight is at least 1
2 . We will show that two calls from senders of type

Y towards v0 can be combined with a call with weight 1
4 from a sender of type X towards v0, so we assign

the value λ(e) = 3
8 to the corresponding arcs. We use λ(e) = 1

8 for arcs from senders of type Y directed
away from v0 to ensure that the total weight is at least 3

8 .

Claim 4. Constraint (∗) is satisfied for these values of λ(e).

Proof of Claim 4. Every arc (s, r) inside the interference zone with λ(e) = 1 is directed towards v0 and
any call that uses such an arc conflicts with any call from a sender on or inside the partial interference
boundary; indeed d(r, v0) ≤ k − 1 and d(s′, v0) ≤ k + 1 imply d(′s′, r) ≤ 2k = dI . So, a round can use at
most one arc with λ(e) = 1 and if it uses one such arc, then it uses no other arc e′ with λ(e′) > 0. Thus,
constraint (∗) is satisfied for such a round.

The only arcs outside the interference zone with λ(e) > 0 are those with senders on the partial interference
boundary. All such arcs have λ(e) ≤ 1

2 , so any round using at most two such arcs satisfies constraint (∗).
It remains to consider the case of a round that uses three or more such arcs. Recall that the vertices

(x, y) on the partial interference boundary satisfy |x|+ |y| = k+1. We classify the senders according to the
regions in which they lie. For example a sender s = (x, y) in region RE satisfies:

• if y ≥ 0, then ⌊k+1
2 ⌋ ≤ x ≤ k + 1 and y = k + 1− x;

• if y < 0, then ⌊k+1
2 ⌋ < x ≤ k + 1 and y = −(k + 1− x).

We will make extensive use of the fact that if d(s, s′) < 2k then d(s, r′) ≤ 2k = dI , and any call from
sender s′ interferes with every call from sender s. We claim that we cannot have two senders s = (x, y) and
s′ = (x′, y′) in the same region by proving that d(s, s′) < 2k. Let us prove this claim for RE . If y and y′

are both positive or both negative then d(s, s′) = 2|x − x′| ≤ k + 1. If y and y′ have opposite signs, then
d(s, s′) = |x−x′|+2k+2−x−x′ ≤ k+1 because |x−x′| −x−x′ = −2x or −2x′ and both 2x ≥ k+1 and
2x′ > k + 1. So in all cases d(s, s′) ≤ k + 1. If k ≥ 2, then k + 1 < 2k and we are done. If k = 1 (dI = 2),
then the only possible senders in RE are s = (2, 0) and s′ = (1, 1), but the only arc leaving s with λ(e) > 0
is (s, r) with r = (1, 0) and d(s′, r) ≤ 1 < dI .

The proof is similar (by rotation) for the other regions. Now we examine two cases.

Case 1: One sender s = (x, y) is of type Z (so k ≥ 2). We can assume, without loss of generality, that s
is in RE and that y ≥ 0. Since s is of type Z, this implies that y ≥ 2 and x ≤ k − 1, so s = (x, k + 1 − x)
with ⌊k+1

2 ⌋ ≤ x ≤ k − 1. The other cases are obtained by rotations or symmetry with respect to the axes.
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Consider a sender s′ = (x′, y′) of a call (s′, r′) that is compatible with (s, r).

• We have shown that s′ cannot be in RE .

• If s′ ∈ RN , then either x′ ≥ 0 and y′ = k + 1 − x′ and d(s, s′) = 2(x − x′) ≤ 2x ≤ 2k − 2, or x′ < 0
and y′ = k + 1 + x′ and d(s, s′) = x− x′ + x′ − x = 2x ≤ 2k − 2. So, s′ cannot be in RN .

• If s′ ∈ RW , then x′ < −⌊k+1
2 ⌋. If y′ > 0, then y′ = k + 1 + x′ and d(s, s′) = x − x′ + |x + x′|. If

x ≥ −x′, then d(s, s′) = 2x < 2k. If x ≤ −x′, then d(s, s′) = −2x′. However, −2x′ < 2k, except when
x′ = −k and s′ = (−k, 1).

If y′ ≤ 0, then y′ = −(k + 1)− x′ and d(s, s′) = x− x′ + k + 1− x+ k + 1 + x′ = 2k + 2.

• If s′ ∈ RS , then either x′ ≤ 0 and d(s, s′) = 2k + 2, or x′ > 0 and y′ = x′ − (k + 1) and d(s, s′) =
x− x′ + 2k + 2− x− x′ = 2k + 2− 2x′ < 2k except s′ = (1,−k) when x′ = 1.

In summary, if s ∈ RE with y > 0, other possible senders s′ can only be those with both x′ ≤ 0 and
y′ ≤ 0 or (−k, 1) or (1,−k). Note that if s′ = (−k, 1) or s′ = (1,−k), then (s, r) must be directed away from
v0 to avoid interference with (s′, r′) (otherwise d(s′, r) = 2k), so λ(s, r) = 1

4 . If there is more than one other
possible sender, then there are at most two - one in RW of type X or Y namely (−k, 1) or (−(k + 1), 0) or
(−k,−1), and one in RS of type X or Y , namely (−1,−k) or (0,−(k + 1)) or (1,−k). Indeed if a possible
second sender is of type Z, its distance to all other possible senders is < 2k (using the proof above for the
senders with x′ ≤ 0 and y′ ≤ 0). We now examine three cases according to the second sender.

• s′ = (−k, 1) (so λ(s, r) = 1
4 ) and then s′′ = (−1,−k) or s′′ = (1,−k) or s′′ = (0,−(k + 1)). In this

case,
∑

λ(e) ≤ λ(s, r) + λ(s′, r′) + λ(s′′, r′′) = 1
4 + 3

8 + 3
8 = 1.

• s′ = (1,−k) (so λ(s, r) = 1
4 ) and then s′′ = (−k, 1) or s′′ = (−(k + 1), 0) or s′′ = (−k,−1). In this

case,
∑

λ(e) ≤ 1
4 + 3

8 + 3
8 = 1.

• Otherwise, the only two possible senders are s′ = (−(k + 1), 0) and s′′ = (0,−(k + 1)). In this case,∑
λ(e) ≤ 1

2 + 1
4 + 1

4 = 1.

In summary, if s is of type Z, constraint (∗) is always satisfied.

Case 2: All the arcs in the round have senders of types X and Y .
As we have seen, we can have at most one such arc per region, so there are at most four such arcs in a

round. If all arcs satisfy λ(e) ≤ 1
4 , we are done. So, it remains to deal with the case where at least one arc

has λ(s, r) = 3
8 which implies that s is of type Y and (s, r) is directed towards v0. Without loss of generality,

suppose that s = (k, 1). If s′ = (1,−k), then d(s′, r) = 2k; if s′ = (1, k), then d(s′, r) ≤ 2k; if s′ = (0, k+1),
then r′ = (0, k) (because λ(e) > 0) and d(s, r′) = 2k. So these three vertices cannot be senders because the
calls sent from them would interfere with (s, r).

Suppose that there is a sender s′ in region RN . Then necessarily, s′ = (−1, k), and (s′, r′) is directed
away from v0 (otherwise d(s, r′) = 2k = dI), so λ(s′, r′) = 1

8 . Furthermore, the only other possible senders
are s′′ = (−k,−1), s′′ = (−1,−k), and s′′ = (0,−(k+1)), and at most one such arc can be included without
causing interference, so

∑
λ(e) ≤ 3

8 + 1
8 + 3

8 < 1.
It remains to consider the case of two senders of type X or Y , one in region RS and one in region RW .

If the sender in region RS is s′ = (0,−(k + 1)), then λ(s′, r′) = 1
4 and

∑
λ(e) ≤ 3

8 + 1
4 + 3

8 = 1. If it is
s′ = (−1,−k), then s′′ = (−k, 1) and one of the arcs (s′, r′) and (s′′, r′′) must be directed away from v0 to
avoid interference between them, so

∑
λ(e) ≤ 3

8 + 3
8 + 1

8 < 1.
So, constraint (∗) is satisfied in all cases and the claim is proved.

To finish the proof of Theorem 3, it suffices to compute a lower bound on∑

v

τmin(v) where τmin(v) is the minimum cost
∑

e∈P (v) λ(e) to move a message from v to v0 along any
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dipath P (v). If a vertex v is inside the interference zone, then d(v, v0) = i ≤ k, and any dipath from v to v0
uses at least i arcs with λ(e) = 1, so τmin(v) ≥ i. For a vertex v that is on or outside the partial interference
boundary, d(v, v0) ≥ k + 1, and any dipath from v to v0 uses at least k arcs inside the interference zone
with λ(e) = 1 plus at least one additional arc from the partial interference boundary to the boundary of the
interference zone (i.e., to a vertex at distance k from v0). If v is outside the partial interference boundary or
is of type X, then the additional arc e has λ(e) ≥ 1

4 , and τmin(v) ≥ k+ 1
4 . If v is a type Y vertex, then either

it uses an arc e towards v0 with λ(e) = 3
8 or it uses an arc away from v0 with λ(e) = 1

8 plus another arc e′

with λ(e′) ≥ 1
4 to get to the boundary of the interference zone. In both cases, τmin(v) ≥ k+ 3

8 for a vertex of
type Y . If v is a type Z vertex, then either it uses an arc e towards v0 with λ(e) = 1

2 or it uses an arc away
from v0 with λ(e) = 1

4 plus another arc e′ with λ(e′) ≥ 1
4 to get to the boundary of the interference zone. In

both cases, τmin(v) ≥ k+ 1
2 for a vertex of type Z. Summing over all vertices and using (∗∗), we get the lower

bound T ≥
∑

v τmin(v) ≥
∑k

i=1 iNi+(k+ 1
4 )(N−

∑k

i=0 Ni)+
1
8 |Y |+ 1

4 |Z|, where |Y | and |Z| are the numbers
of vertices of types Y and Z, respectively. If k ≥ 2, then 1

8 |Y |+ 1
4 |Z| = 1

8 ×8+ 1
4 × (4k−8) = k−1. If k = 1,

then there are only four vertices of type Y and no vertices of type Z, so 1
8 |Y |+ 1

4 |Z| = 1
8 × 4+ 0 = 1

2 . Since

the number of rounds is an integer, the lower bound when k = 1 is
∑k

i=1 iNi + (k + 1
4 )(N −

∑k

i=0 Ni) + 1.

Putting the two bounds together gives a lower bound of
∑k

i=1 iNi + (k+ 1
4 )(N −

∑k

i=0 Ni) +max{1, k− 1}.

Noting that Ni = 4i for 1 ≤ i ≤ k, we get a lower bound of (k + 1
4 )(N − 1)− c′k where c′k =

∑k

i=1(k + 1
4 −

i)Ni −max{1, k − 1} = (4k + 1)
∑k

i=1 i− 4
∑k

i=1 i
2 −max{1, k − 1} = k(k+1)(4k−1)

6 −max{1, k − 1}. �

Theorem 5. Suppose that n = 2p + 1 is odd, dI = 2k ≥ 2 is even, and p ≥ k + 1. Then gathering in a

square grid with N = n2 vertices can be completed in (k+ 1
4 )(N − 1)− c′k rounds, where c′k = k(k+1)(4k−1)

6 −
max{1, k − 1} and this is optimal.

Proof. The protocol for dI even is similar to the odd case but there are several differences. Firstly, an
extra round labelled α is needed in each stage for the four arcs directed towards v0 from senders of type
X. This is the only set of four compatible calls that can be used to transmit simultaneously to vertices on
the boundary of the interference zone (see the examples in Figure 7). Secondly, we have to use dipaths that
contain arcs that are directed away from the central vertex in some areas of the grid. We also have to deal
with the 4k + 4 vertices on the partial interference boundary (dashed box) as special cases.

(a) For all of the vertices outside the partial interference boundary, each stage consists of 4k + 1 rounds
labelled ei, ni, wi, si with 1 ≤ i ≤ k, and α. Similarly to the odd case, four leaves of the gathering tree
will become dormant at the end of each stage. Except for the addition of the rounds labelled α, the
gathering tree, the dipaths, and the labellings are the same as in the odd case for the vertices that
satisfy |x| ≥ k + 1 and |y| ≥ k + 1 (i.e., vertices no closer to v0 than the boundary of the light grey
square). The labels for the dipath P (x, y), starting from v0 and working in the opposite direction to the
dipath towards (x, y), use the repeating pattern of 2k+2 labels: e1, e2, . . . , ek, α, wk, wk−1, . . . , w1, s1.
Figure 7(a) shows the dipaths and labels for v = (7, 7), k = 3, and dI = 2k = 6. When y < 0, the label
s1 is replaced by n1 as it is in the odd case. For example, Figure 7(b) shows the dipaths and labels for
v = (5,−4), k = 3, and dI = 2k = 6. The proof that any pair of calls (s, r) and (s′, r′) having the same
label are compatible is very similar to the odd case for calls labelled ei, ni, wi, si with 1 ≤ i ≤ k. We can
prove that d(s, s′) ≥ 2k+2 implying that d(s, r′) ≥ 2k+1 > 2k = dI and d(s′, r) ≥ 2k+1 > 2k = dI .
We can also prove that any pair of calls labelled α has d(s, s′) ≥ 2k + 2. If the calls are on the same
dipath, then the repeated sequence of labels has length 2k + 2, so d(s, s′) ≥ 2k + 2. Calls that are
on different dipaths also satisfy d(s, s′) ≥ 2k + 2; the only non-immediate case is when both of the
senders are type X vertices (shown in Figure 4).

(b) For the vertices strictly inside the light grey square, but outside the partial interference boundary, (i.e.,
|x| ≤ k, |y| ≤ k, and |x|+|y| > k+1), each stage consists of 4k+1 rounds, but the gathering tree differs
from the odd case. For region RE , the tree contains horizontal arcs directed towards the vertical line
x = k+1. More precisely, for a vertex (x, y) in region RE with y > 1, P (x, y) consists of the k+1−x

horizontal arcs ((i, y), (i+ 1, y)) for x ≤ i ≤ k followed by the y vertical arcs ((k + 1, j), (k + 1, j − 1))

13



��
��
��
��

��
��

��

��
��
��
��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

��

��
��

��
��
��
��

�� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��
�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

��

��

��

n
3

n
2

w
1

w
2

w
3

s
2

s
1

n
1

s
3

e
2

e
1

e
3

n
1

n
2

s
1

e
1

s
3

e
1

e
2

e
3

w
1

w
3

s
1

n
3

n
1

s
1
s
2
s
3

w
1

w
2

w
3

e
3

e
1

n
1

n
3

e
2

e
3

n
3
n
2

w
2

w
3

s
3

s
2

e
2

s
2

w
2

n
2

α

α

α

αw
1

α

α

α

α

(a) v = (7, 7)
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(b) v = (5,−4)

Figure 7: Gathering stage for vertices outside the light grey square and dI = 6.

for y ≥ j > 0, and finally the k + 1 horizontal arcs ((i, 0), (i − 1, 0)), 1 ≤ i ≤ k + 1. The length of
P (x, y) is (k + 1− x) + y + (k + 1) ≤ 2k + 2. The dipaths for vertices (x, y) with y < −1 are similar
except the middle set of y vertical arcs is ((k+1, j), (k+1, j+1)), y ≤ j < 0. Note that the first calls
move information away from v0, which is necessary to avoid interference.

The labels for the dipath P (x, y), starting from v0 and working in the opposite direction to the dipath
towards (x, y), use the repeating pattern of labels: e1, e2, . . . , ek, α, sk, sk−1, . . . , sk+1−y, wk+2−y, . . . ,

w2k+2−y−x. According to this labelling, a call of the form ((i, 0), (i− 1, 0)) is labelled ei, a call of the
form ((k + 1, j), (k + 1, j − 1)) is labelled sk+1−j , and a call of the form ((i, y), (i + 1, y)) is labelled
w2k+2−y−i. The pattern is similar for vertices (x, y) with y < 0 except the labels sk, sk−1, . . . , sk+1−y

are replaced by nk, nk−1, . . . , nk+1−y.

The labels for the three rotated dipaths, ρ(P ), ρ2(P ), ρ3(P ), are obtained using the same mapping ω

that was used for dI odd: if arc e in P (x, y) is labelled l, then arc ρ(e) in the rotated dipath ρ(P ) is
labelled ω(l). Figure 8 shows the dipaths and labels for v = (x, y) = (3, 3), k = 4, and dI = 2k = 8.

It remains to prove that any pair of calls that have the same label (so they are made in the same round)
are compatible. If the label is α, there is no interference as the four calls labelled α are compatible. Now
consider a call labelled ei (the proofs for ni, wi, and si follow by applying ρ and ω). Three such calls
are possible: (s, r) on P with s = (i, 0) and r = (i−1, 0), (s′, r′) on ρ(P ) with s′ = (i−k−1, k+1) and
r′ = (i−k, k+1), and (s′′, r′′) on ρ2(P ) with s′′ = (y+ i−2k−2,−y) and r′′ = (y+ i−2k−3,−y). We
have d(s, r′) = d(s′, r) = i+k−i+k+1 = 2k+1, d(s′′, r) = d(s, r′′)−2 = 2k+2−y−i+i−1+y = 2k+1,
and d(s′, r′′) = d(s′′, r′) = 2k + 2 − y − i + i − k + k + 1 + y = 2k + 3. In all of these cases the calls
are compatible.

(c) Finally, we have to deal with calls sent from vertices on the partial interference boundary. First,
assume that k ≥ 2. We use four special rounds for the twelve vertices of types X and Y . The first
round consists of the three calls ((k + 1, 0), (k, 0)), ((−1, k), (0, k)), and ((−1,−k), (0,−k)), and the
other three special rounds consist of calls obtained by rotations. After each special round, the messages
of three vertices have arrived at the boundary of the interference zone and we use 3k rounds to move
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Figure 8: Gathering stage close to the interference zone for dI = 8.

them to v0. This gives a total of 12(k + 1
4 ) + 1 rounds for these twelve vertices. Note that the special

rounds exactly satisfy the lower bound constraint:
∑

λ(e) = 3
8 + 3

8 + 1
4 = 1.

If k > 2, then there are 4k−8 vertices of type Z on the partial interference boundary, and their messages
are sent two at a time to the boundary of the interference zone during special rounds. Any vertex
(x, y) of type Z in region RE or region RN sends its message to its neighbour in the gathering tree and
ρ2(x, y) = (−x,−y) sends its message in the same round. For example, (x, y) with x > 1 in region RE

uses the call ((x, y), (x, y−1)) and (−x,−y) uses the call ρ2((x, y), (x, y−1)) = ((−x,−y), (−x,−y+1)).
Then 2k rounds are needed to move the two messages to v0. (See Figure 5.) The total number of
rounds for the 4k− 8 vertices of type Z is (k+ 1

2 )(4k− 8) = (k+ 1
4 )(4k− 8)+ k− 2 rounds. Note that

the special rounds exactly satisfy the lower bound constraint:
∑

λ(e) = 1
2 + 1

2 = 1.

Altogether we need
∑k

i=1 iNi rounds to move the messages of the vertices inside the interference zone to

v0, (k+
1
4 )Nk+1+k−1 rounds for the vertices on the partial interference boundary, and (k+ 1

4 )(N−
∑k+1

i=0 Ni)

rounds for the vertices outside of the partial interference boundary for a total of
∑k

i=1 iNi + (k + 1
4 )(N −∑k

i=0 Ni) + k − 1.
If k = 1, then there are only four vertices of type Y (and none of type Z), so the special rounds for

vertices of types X and Y are different. Three special rounds are needed for these eight vertices because∑
τmin(v) ≥ 4× 3

8 + 4× 1
4 = 2.5. For example, the four messages of the type X vertices can be sent to the

boundary of the interference zone in one round, the messages of the type Y vertices can be sent two at a time
in two rounds, and then 8k = 8 rounds are needed to move the messages to v0. The total number of rounds
for vertices on the partial interference boundary is therefore (k+ 1

4 )Nk+1+1 instead of (k+ 1
4 )Nk+1+k−1.

Putting the two bounds together gives an upper bound of
∑k

i=1 iNi+(k+ 1
4 )(N −

∑k

i=0 Ni)+max{1, k−1}
which matches the lower bound of Theorem 3. �

Remark. Our results and proofs for square grids are also valid for grids with different shapes with the
condition that when a vertex v has a message to send, then the vertices ρ(v), ρ2(v), and ρ3(v) must also
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have messages to send. For example, the bounds and protocols are the same for the diamond-shaped grid
consisting of the N = 2d2 + 2d+ 1 vertices at distance at most d from v0.

5. Hexagonal Grids

The hexagonal grid is similar to the square grid except each vertex has degree six and it contains six
axes denoted A,B,C,D,E, and F . In this section, we use ρ to denote a counter-clockwise rotation of π

3 , so
B = ρ(A), C = ρ(B) = ρ2(A), and so on. Analogously to the grid, we define regions RA, RB , RC , RD, RE ,
and RF . RA is the region centred around the A axis and between the dotted lines in Figures 9 and 10. Its
positive part is above the A axis and its negative part is below. RB is the region obtained by rotating region
RA: RB = ρ(RA). Similarly, RC = ρ(RB), and so on.

D A

B

F

C

E

Figure 9: Hexagonal gathering tree for dI = 3.

We define the interference zone to be the set of vertices at distance at most k from the central vertex
v0. For even dI = 2k, the vertices at distance k+1 from v0 define the partial interference boundary and are
of two types. The six type X vertices (XA, XB , XC , XD, XE , XF in Figure 10) are the vertices at distance
k+1 from v0 on the axes. All other vertices at distance k+1 from v0 are of type Z. The number of vertices
at distance exactly d from v0 is Nd = 6d for 1 ≤ d ≤ k, and N0 = 1.

Similarly to the square grids, the results and proofs for hexagonal grids in this section are valid with the
condition that when a vertex v has a message to send, then the five vertices obtained by rotations must also
have messages to send. For example, the bounds and protocols apply to the hexagon-shaped grid consisting
of the N = 3d2 + 3d+ 1 vertices at distance at most d from v0.

Theorem 6. Suppose that dI = 2k− 1 is odd and N ≥ 3k2 +3k+1. Then the number of rounds needed to
gather in a hexagonal grid with N vertices is k(N − 1)− hk, where hk = k(k + 1)(k − 1).
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Proof. The proof is similar to the proof for the grid. We use the dual method to prove the lower bound.
We choose λ(e) = 1 for each arc e that is inside the interference zone and directed towards v0 and λ(e) = 0
otherwise. Constraint (∗) is satisfied as a round contains at most one arc in the interference zone. For any
vertex v at distance i, τmin(v) = min{i, k} because a shortest path uses min{i, k} arcs in the interference

zone. The total number of rounds is at least
∑k

i=1 iNi + k(N −
∑k

i=0 Ni) and using Nd = 6d, 1 ≤ d ≤ k

gives the bound in the statement of the theorem.

X
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X
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X
A
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BZ

Z
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Z

Z

Z

Z

Z Z

ZZ

Z

A

BC

D

E F

Figure 10: Hexagonal gathering tree for dI = 4.

For the upper bound, we use the gathering tree shown in Figure 9. Let v be a vertex in the posi-
tive part of region RA outside of the interference zone. We send the message of v along the dipath P

containing arcs parallel to the B axis and then arcs on the A axis. We label the 6k rounds of each
stage with labels ai, bi, ci, di, ei, fi, 1 ≤ i ≤ k. The labels for the dipath P between v and v0, starting
at v0 (i.e., in reverse order of their occurrence on P ), are a repetition of the sequence of 2k + 1 labels:
a1, a2, . . . , ak, ek, ek−1, . . . , e1, c1. We define the dipaths for the regions RB , RC , RD, RE , RF by rotations
to be ρ(P ), ρ2(P ), ρ3(P ), ρ4(P ), ρ5(P ), respectively. If arc e is labelled ℓ, we label arc ρ(e) with label ω(ℓ),
where ω is the one-to-one mapping of labels such that ω(ai) = bi, ω

2(ai) = ci, ω
3(ai) = di, ω

4(ai) = ei,
ω5(ai) = fi. One can check that two arcs with the same label are non-interfering. The proof is easier than
for the grid as P and ρ(P ) use different labels, so an arc labelled ai in P , i ≥ 2 only appears in ρ2(P ), and
the distance between senders is at least 2k+1. An arc labelled a1 in P can appear in both ρ2(P ) and ρ4(P ),
but all of the senders are at distance at least 2k + 1 from each other.

The proof for the negative part of region RA is similar except that the dipath uses arcs parallel to the F
axis and then on the A axis, and the labels are repetitions of the sequence a1, a2, . . . , ak, ck, ck−1, . . . , c1, e1.

�

Theorem 7. Suppose that dI = 2k is even and N ≥ 3(2k+2)2+3(2k+2)k+1. Then the number of rounds
needed to gather in a hexagonal grid with N vertices is (k + 1

3 )(N − 1)− h′
k, where h′

k = k2(k + 1)− k.
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Proof. The lower bound is proved using the following choices for λ(e). Let λ(e) = 1 for each arc e inside
the interference zone that is directed towards v0. For each of the six arcs (s, r) directed towards v0 with
sender s of type X (and d(r, v0) = k), choose λ(e) = 1

3 . Finally, if an arc has a sender of type Z, choose
λ(e) = 1

2 if the arc is directed towards v0 (d(r, v0) = k) and λ(e) = 1
6 if the arc is directed away from v0

(d(r, v0) = k + 2). All other arcs have λ(e) = 0.
A proof similar to the proof for the grid can be used to verify that constraint (∗) is satisfied for these

values of λ(e). The non-trivial cases are when a sender is on the partial interference boundary. If the sender
is of type Z and between the A and B axes, then a compatible receiver in the interference zone can only
be on the boundary of the interference zone between the D and E axes. So, a round can contain at most
two arcs with λ(e) = 1

2 . If a round contains one arc e with λ(e) = 1
2 , then at most two arcs directed away

from v0 with λ(e) = 1
6 are compatible with it. Finally, if a sender of type X transmits to a vertex closer to

v0 (so the arc has weight 1
3 ), then there can be at most one more arc with weight 1

2 or two more arcs with
weight 1

3 . As an example of the latter case, if XA, XB , and XC all transmit towards v0 simultaneously, then∑
λ(e) = 1.
To finish the proof of the lower bound, it suffices to compute

∑
v τmin(v). If a vertex v is inside the

interference zone, then d(v, v0) = i ≤ k, and so τmin(v) ≥ i. If v is outside the partial interference boundary
or is of type X, then any dipath from v to v0 uses at least k arcs inside the interference zone with λ(e) = 1
plus at least one additional arc with λ(e) ≥ 1

3 , so τmin(v) ≥ k + 1
3 . If v is of type Z, then any dipath from

v to v0 uses at least k arcs inside the interference zone with λ(e) = 1 and either it uses an arc e towards v0
with λ(e) = 1

2 or it uses an arc away from v0 with λ(e) = 1
6 plus another arc e′ with λ(e′) ≥ 1

3 to get to the
boundary of the interference zone. In both cases, τmin(v) ≥ k + 1

2 for a vertex of type Z. Summing up, we

get
∑k

i=1 iNi + (k+ 1
3 )(N −

∑k

i=0 Ni) +
1
6 |Z| rounds. Since |Z| = 6k, and Ni = 6i, 1 ≤ i ≤ k, we obtain the

lower bound in the statement of the theorem.
The proof of the upper bound is also similar to the proof for the grid. We will use the gathering tree

shown in Figure 10 with 6k + 2 labels: ai, bi, ci, di, ei, fi, 1 ≤ i ≤ k as in the case of odd dI , and two extra
labels α and β. The mapping ω associated with ρ extends the mapping for odd dI with the addition of
ω(α) = β and ω(β) = α. The messages of vertices inside the interference zone are sent along shortest paths.
A vertex at distance i ≤ k from v0 uses i rounds matching the lower bound. The vertices of type X send
their messages three at a time towards the interference zone during a round labelled α (for XA, XC , and
XE) or β (for XB , XD, and XF ), and then each message needs k more rounds inside the interference zone
to reach v0. The vertices of type Z transmit their messages two at a time towards the interference zone
during a round labelled α. More precisely, a vertex v of type Z in region RA uses a shortest path with labels
(in reverse order of their occurrence on the dipath starting at v0) a1, a2, . . . , ak, α, and simultaneously the
symmetric vertex ρ3(v) in region RD uses a shortest path with labels (starting at v0) d1, d2, . . . , dk, α. The
dipaths for type Z vertices in other regions are obtained by rotations and most of the labels are obtained
using the mapping ω. The exception is that the first arc of each dipath is labelled α (i.e., label β is not
used). So, the cost for vertices of type Z matches the lower bound of k + 1

2 .
We need to match the lower bound of k + 1

3 for all other vertices. The protocol is straightforward for
most of the vertices outside the partial interference boundary, but it is quite complicated for the vertices in
the light grey triangles of Figure 10. Our discussion will focus on vertices inside the triangle bounded by the
line segment joining XA and XB , the line segment parallel to the B axis starting from XA in the direction
away from v0, and the line segment parallel to the A axis starting from XB . The dipaths for vertices in the
other light grey triangles are obtained by rotations and the labels are obtained using ω. Figure 11 shows a
detailed view.

Consider a vertex v in the light grey triangle in the positive part of region RA. Figure 11 shows an
example. Using the same idea as for the grid with even dI , the first arcs of P (v) move information away
from v0 to avoid interference. The natural approach would be to use P (v) and the five dipaths obtained
from it by rotations during a stage of 6k + 2 rounds to deliver six messages to v0. Unfortunately, this will
not avoid all interference. Instead, we consider two consecutive stages with a total of 12k + 4 rounds to
deliver twelve messages to v0 along twelve dipaths: P (v) and P (f(v)) for a vertex f(v) to be defined below,
and the ten dipaths obtained from P (v) and P (f(v)) by rotations.
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Figure 11: Gathering stage for hexagonal grid with dI = 14.

The dipath P (v) for a vertex v in the light grey triangle in the positive part of region RA consists of
three parts:

• ℓ1 > 0 arcs from v to the boundary of the light grey triangle in the direction parallel to the A axis
and away from v0. The arcs are labelled dk, dk−1, . . . , dk+1−ℓ1 .

• ℓ2 ≥ 2 arcs to XA along the boundary of the triangle in the direction parallel to the B axis. The arcs
are labelled ek+1−ℓ2 , . . . , ek−1, ek. Note that ℓ1 + ℓ2 ≤ k + 1 by the definition of the grey triangle.

• k + 1 arcs along the A axis from XA to v0 with labels α, ak, ak−1, . . . , a1.

The values of ℓ1 and ℓ2 are determined by the location of v. Figure 11 shows an example with k = 7,
dI = 2k = 14, ℓ1 = 3, and ℓ2 = 5.

The vertex f(v) is defined by specifying the dipath P (f(v)) starting fromXA and working in the direction
away from v0 towards f(v). The dipath consists of two parts:

• ℓ2 arcs from XA along the A axis in the direction away from v0 labelled ck, ck−1, . . . , ck+1−ℓ2 .

• ℓ1 − 1 arcs in the direction away from v0 and parallel to the F axis labelled ck−ℓ2 , . . . , ck−ℓ2−ℓ1+2. For
the last label, k − ℓ2 − ℓ1 + 2 ≥ 1 because ℓ1 + ℓ2 ≤ k + 1.

Note that f(v) is in the negative part of region RA and not in a light grey triangle. Furthermore, for any
two vertices v and v′, v 6= v′ implies that f(v) 6= f(v′). Also note that our definition of f(v) requires that v
is a leaf when f(v) is a leaf. (See Figure 11.)
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Finally, let P (XB) be the dipath going from XB along the B axis to v0 with labels β, bk, bk−1, . . . , b1.
We divide the 12k + 4 rounds into two stages of 6k + 2 rounds. During the first stage, we use the

nine dipaths P (v), P (f(v)), P (XB) and their rotated images ρ2(P (v)), ρ2(P (f(v))), ρ2(P (XB)), ρ
4(P (v)),

ρ4(P (f(v))), ρ4(P (XB)) labelled using the mapping ω. One can check that no two arcs with the same label
interfere. Furthermore, at the end of this stage, six messages have been received by v0, and all of the vertices
have one message except the six leaves v, ρ2(v), ρ4(v), f(v), ρ2(f(v)), ρ4(f(v)) which have no messages, the
three vertices XB , XD = ρ2(XB), XF = ρ4(XB) which also have no messages, and the three vertices XA,
XC = ρ2(XA), XE = ρ4(XA) which now have two messages. In the second stage, we use the nine dipaths
obtained by rotations from the nine dipaths of the first stage. At the end of the second stage, v0 will have
received six new messages (so twelve messages at the end of the two stages), and all of the vertices will
have exactly one message except the twelve leaves v, f(v), and the ten vertices obtained from v and f(v)
by rotations, which will have no messages and will become dormant. Indeed, XA, XC , and XE send one
message and receive none during the second stage, and XB , XD, and XF send two messages and receive
one. The rounds labelled α and β are done last to ensure that XB , XD, and XF receive a message before
they have to send it.

Finally, let v be in the positive part of region RA and not inside a light grey triangle. When v becomes a
leaf in the gathering tree and we decide to send its message, we first check whether v is a vertex of type f(u)
for some u inside the light grey triangle in the negative part of region RA. If it is, then we send its message
and the message of the corresponding u as described above. Otherwise, we use a stage of 6k + 2 rounds to
send the messages of the six leaves v and ρj(v), 1 ≤ j ≤ 5. The dipath P (v) consists of the arcs parallel to
the B axis from v to the A axis followed by the arcs along the A axis to v0. The labels for P (v) starting
from v0 and working towards v use the repeating pattern of 2k+2 labels a1, a2, . . . , ak, α, ek, . . . , e1, c1. The
labels for the five rotated dipaths ρj(P (v)), 1 ≤ j ≤ 5, are obtained using the mapping ω(l).

The dipaths for vertices in the negative part of region RA and their rotated images are similar to the
dipaths for vertices in the positive part. �

6. Conclusions

In this paper, we determined the exact number of rounds to gather one message from each vertex into a
central gateway vertex of a square grid with N = n2 vertices in a wireless radio network with interference
constraints. The proof of the lower bound for the case of odd interference distance is straightforward. The
matching upper bound is established by specifying an algorithm and proving its correctness. The proofs
for the case of even interference distance are considerably more difficult. To prove the lower bound, we
developed a new technique based on a relaxation of the problem and linear programming duality. The
matching upper bound is proved with a sophisticated algorithm that uses the symmetry of the grid and
non-shortest paths.

In a square grid with N = n2, v0 will be slightly off-centre if n is even. Minor modifications of the
techniques described in this paper will work for n even, but it might not be possible to obtain matching
upper and lower bounds due to the asymmetry. Similarly, if the grid is not square, then the techniques
described in this paper will work as long as the grid is large enough to completely contain the interference
zone and other regions that required special attention.

We generalized our results to hexagonal grids and again obtained matching lower and upper bounds.
Hexagonal tilings of the plane are commonly used to assign frequencies in cell phone networks because
hexagons are good approximations to circles, and graph distance in hexagonal grids is a good approximation
to Euclidean distance in the plane.

There are several possible generalizations of our work including the following:

• We have assumed that the gateway vertex is in the centre of a symmetrical square grid or hexagonal
grid. Experience with the one-dimensional version of the problem [1] suggests that moving the gateway
to a different location will make the problem more difficult.

• In practice, the communication graph is unlikely to be a perfect grid graph. It is more likely to be
missing some vertices and edges. The techniques in this paper can provide bounds for such graphs,
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but the algorithms will require a different approach. An interesting problem for general communi-
cation graphs would be to identify the best location for the gateway vertex. Another generalization
would be to allow multiple gateway vertices. In practice, this would likely involve the use of multiple
communication frequencies. (We only used one frequency in this paper.)

• We have assumed that each vertex has one message to send. Our proofs can be easily extended if
the number of messages outside the interference zone is balanced so that each vertex and its rotated
images have exactly the same number of messages to transmit (which could be zero). In the bounds, N
will be the total number of messages instead of the number of vertices, and the constant ck (c′k, hk, h

′
k)

will be different.

• An interesting variant would be to accommodate different levels of service; different customers could
have different contracts with the service provider and would send and receive information at different
rates.

• We have assumed that dT = 1. This is a realistic assumption when the cost of the devices sold to
consumers is to be minimized because inexpensive devices will have less sophisticated capabilities to
handle interference. However, dT > 1 merits further study. Some work in this direction appears in [2].

We believe that our new technique for proving lower bounds based on the relaxation of problem con-
straints and linear programming duality has significant potential for application to other problems.
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[4] J.C. Bermond, L. Gargano, S. Pérennes, A. Rescigno, U. Vaccaro, Optimal time data gathering in wireless networks with
omni-directional antennas, in: SIROCCO 2011, volume 6796 of Lecture Notes in Computer Science, Springer-Verlag,
Gdansk, Poland, 2011, pp. 306–317.

[5] J.C. Bermond, L. Gargano, A.A. Rescigno, Gathering with minimum completion time in sensor tree networks, JOIN 11
(2010) 1–33.

[6] J.C. Bermond, N. Nisse, P. Reyes, H. Rivano, Minimum delay data gathering in radio networks, in: Proceedings of the
8th international conference on Ad Hoc Networks and Wireless (AdHoc-Now), volume 5793 of Lecture Notes in Computer
Science, Springer, 2009, pp. 69–82.

[7] J.C. Bermond, J. Peters, Efficient gathering in radio grids with interference, in: AlgoTel’05, Presqu’̂ıle de Giens, pp.
103–106.

[8] J.C. Bermond, M.L. Yu, Optimal gathering algorithms in multi-hop radio tree networks with interferences, Ad Hoc and
Sensor Wireless Networks 9 (2010) 109–128.
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