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Quantum Entanglement and the Communication 
Complexity of the Inner Product Function 
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Abstract. We consider the communication complexity of the binary in- 
ner product function in a variation of the two-party scenario where the 
parties have an a priori supply of particles in an entangled quantum 
state. We prove linear lower bounds for both exact protocols, as well as 
for protocols that determine the answer with bounded-error probability. 
Our proofs employ a novel kind of “quantum” reduction from multibit 
communication problems to the problem of computing the inner prod- 
uct. The communication required for the former problem can then be 
bounded by an application of Holevo’s theorem. We also give a specific 
example of a probabilistic scenario where entanglement reduces the com- 
munication complexity of the inner product function by one bit. 

1 

The commvnicortion complezity of a function f : (0,l)” x (0, 1)” + (0,l) is 
defined as the minimum amount of communication necessary among two parties, 
conventionally referred to as Alice and Bob, in order for, say, Alice to acquire 
the value of f(x,y), where, initially, Alice is given x and Bob is given y. This 
scenario was introduced by Yao [15] and has been widely studied (see [12] for a 
survey). There are a number of technical choices in the model, such as: whether 
the communication cost is taken as the worst-case (z,y), or the average-case 
(z, y) with respect to some probability distribution; whether the protocols are 
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deterministic or probabilistic (and, for probabilistic protocols, whether the par- 
ties have independent random sources or a shared random source); and, what 
correctness probability is required. 

The communication complexity of the inner p d u c t  modulo two (IP) func- 
tion 

IP(z,y) = zly~ + z2y2 + + z,y, mod 2 (1) 

is fairly well understood in the above "classical" models. For worst-case inputs 
and deterministic errorless protocols, the communication complexity is n and, for 
randomized protocols (with either an independent or a shared random source), 
uniformly distributed or worst-case inputs, and with correctness probability +E 
required, the communication complexity is n - O(log(l/&)) [6] (see also [12]). 

In 1993, Yao [16] introduced a variation of the above classical communica- 
tion complexity scenarios, where the parties communicate with qubits, rather 
than with bits. Protocols in this model are at least as powerful as probabilistic 
protocols with independent random sources. Kremer [ll] showed that, in this 
model, the communication complexity of IP is L?(n), whenever the required cor- 
rectness probability is f + e for a constant e > 0 (Kremer attributes the proof 
methodology to Yao). 

Cleve and Buhrman [7] (see also [5 ] )  introduced another variation of the 
classical communication complexity scenario that also involves quantum infor- 
mation, but in a different way. In this model, Alice and Bob have an initial 
supply of particles in an entangled quantum state, such as Einstein-Podolsky- 
Rosen (EPR) pairs, but the communicationis still in terms of classical bits. They 
showed that the entanglement enables the communication for a specific problem 
to be reduced by one bit. Any protocol in Yao's qubit model can be simulated 
by a protocol in this entanglement model with at most a factor two increase 
in communication: each qubit can be "teleported" [3] by sending two classical 
bits in conjunction with an EPR pair of entanglement. On the other hand, we 
are aware of no similar simulation of protocols in the entanglement model by 
protocols in the qubit model, and, thus, the entanglement model is potentially 
stronger. 

In this paper, we consider the communication complexity of IP in two scenar- 
ios: with prior entanglement and qubit communication; and with prior entangle- 
ment and classical bit communication. As far as we know, the proof methodology 
of the lower bound in the qubit communication model without prior entangle- 
ment Ill] does not carry over to either of these two models. Nevertheless, we 
show O(n) lower bounds in these models. 

To state our lower bounds more precisely, we introduce the following notation. 
Let f : (0, l}n x (0,l)" + (0,l) be a communication problem. First, for the case 
of ezact protocols (i.e. those where no error probability is permitted), let Q * ( f )  
and C(f) denote the communication complexities in the respective settings of 
qubit communication and classical bit communication (the * superscripts are 
intended to highlight the fact that prior entanglement is available). Second, for 
the case of bounded-error protocols, in which Alice acquires the correct answer 
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with probability at least 4 + E ,  for E > 0, let QT(f) and C;(f) denote the 
communication complexities in the respective settings of qubit communication 
and classical bit communication. With this notation, our results are: 

Q”(W = m/21 (2) 
Q:(IP) 2 2 ~ ~ n  - f (3) 
C*(IP) = n (4) 
C:(IP) 2 2 ~ ~ m a x ( l , & ~ ) n -  4. ( 5 )  

Note that all the lower bounds are n(n) whenever E is held constant. Also, these 
results subsume the lower bounds in [ll], since the qubit model defined by Yao 
[16] differs from the bounded-error qubit model defined above only in that it 
does not permit a prior entanglement. 

Our lower bound proofs employ a novel kind of “quantum” reduction be- 
tween protocols, which reduces the problem of communicating, say, n bits of 
information to the IP problem. It is noteworthy that, in classical terms, there 
is no such reduction between the two problems. The appropriate cost associated 
with communicating n bits is then lower-bounded by the following nonstandard 
application of Holevo’s theorem. 

Theorem 1: Suppose that Bob possesses n bits of  information, and wants to 
convey this information to Alice. Suppose that Alice and Bob possess an arbi- 
trary prior entanglement and qubit communication in either direction is allowed. 
Then, regardless of the prior entanglement and qubit communication from Alice 
to Bob, Bob must send at least 1 4 2 1  qubits to Alice. More generally, for Alice 
to obtain m bits of mutual information with respect to Bob’s n bits, Bob must 
send at least rm/21 qubits to Alice. 

I 

A slight generalization of Theorem 1 is described and proven in the Appendix. 
Finally, with respect to the question of whether quantum entanglement can 

ever be advantageous for protocols computing IP, we present a curious proba- 
bilistic scenario with n = 2 where prior entanglement enables one bit of commu- 
nication to be saved. 

2 Bounds for Exact Qubit Protocols 

In this section, we consider exact qubit protocols computing IP, and prove 
Eq. (2) .  Note that the upper bound follows from so-called “superdense cod- 
ing” [4]: by sending [n/21 qubits in conjunction with [n/21 EPR pairs, Bob can 
transmit his n classical bits of input to Alice, enabling her to evaluate IP. For 
the lower bound, we consider an arbitrary exact qubit protocol that computes 
I P ,  and convert it (in two stages) to a protocol for which Theorem 1 applies. 

For convenience, we use the following notation. If an rn-qubit protocol con- 
sists of ml  qubits from Alice to Bob and m2 qubits from Bob to Alice then we 
refer to the protocol as an (ml, m~)-qubit protocol. 



2.1 

A clean protocol is a special kind of qubit protocol that follows the general spirit 
of the reversible programming paradigm in a quantum setting. Namely, one in 
which all qubits incur no net change, except for one, which contains the answer. 

Converting Exact Protocols into Clean Form 

In general, the initial state of a qubit protocol is of the form 

where [@AB) is the state of the entangled qubits shared by Alice and Bob, and the 
(0,. . . ,0) states can be regarded as “ancillas”. At each turn, a player performs 
some transformation (which, without loss of generality, can be assumed to be 
unitary) on all the qubits in his/her possession and then sends a subset of these 
qubits to the other player. Note that, due to the communication, the qubits 
possessed by each player varies during the execution of the protocol. 

We say that a protocol which exactly computes a function f(z, y) is clean if, 
when executed on the initial state 

I 

1 la)lzi, - ~GJIO, . ,~)~+AB)IY~,. . . ,y,)10,. -. , O ) ,  (7) 

(8) 

results in the final state 

l .+~( . ,~))I”i , . . . ,”n) lO, . . .  ,O)~+AB)~Y~ ,..., yn)P,... , O ) .  

The “input”, the ancilla, and initial entangled qubits will typically change states 
during the execution of the protocol, but they are reset to their initial values at 
the end of the protocol. 

It is straightforward to transform an exact (ml,mz)-qubit protocol into a 
clean (ml + m2, ml + mz)-qubit protocol that computes the same function. To 
reset the bits of the input, the ancilla, and the initial entanglement after the 
protocol is run once, the answer is recorded and then the protocol is run in 
the backwad direction to “undo the effects of the computation”. The answer is 
recorded on a new qubit of Alice (with initial state 1.)) which is control-negated 
(with the qubit of Alice that is in the state If(z,y)) as the control qubit). Note 
that, for each qubit that Alice sends to Bob when the protocol is run forwards, 
Bob sends the qubit to Alice when run in the backwards direction. Running 
the protocol backwards resets all the qubits-except Alice’s new one-to their 
original states. The result is an (ml + m2, ml + mz)-qubit protocol that maps 
state (7) to state (8). 

2.2 Reduction from Communication Problems 

We will now show how to transform a clean (mi+ m2, ml + m2)-qubit protocol 
that computes IP for inputs of size n, to an (ml + m ~ ,  rnl + mz)-qubit protocol 
that transmits n bits of information from Bob to Alice. This is accomplished in 
four stages: 



1. Alice initializes her qubits indicated in Eq. (7) with z = 1 and z1 = e . .  = 

2. Alice performs a Hadamard transformation on each of her first n + 1 qubits. 
3. Alice and Bob execute the clean protocol for the inner product function. 
4. Alice again performs a Hadamard transformation on each of her first n + 1 

2, = 0. 

qubits. 

Let IAi) denote the state of Alice's first n + 1 qubits after the ith stage. Then 

[Ai) = Il)lO,. . . , O )  
IAz) = ( - ~ ) a l ~ ) ~ ~ l . - . . , ~ n )  

I&)= 1 (-l)"la+blyi +...+b,y,)lbi,...,b,) 

(9) 

(10) 1 

%bl Y.., bm€{o,l} 

d 1 t . . . A € { O ~ I }  

where, in Eq. ( l l ) ,  the substitution c = a+blyl +..-+b,y, has been made (and 
arithmetic over bits is taken mod 2). The above transformation was inspired by 
the reading of [13] on superfast quantum searching. 

Since the above protocol conveys n bits of information (namely, y1,. . . , y,) 
from Bob to Alice, by Theorem 1, we have ml + m2 2 n/2. Since this protocol 
can be constructed from an arbitrary exact (ml, mz)-qubit protocol for IP, this 
establishes the lower bound of Eq. (2). 

3 

In this section we consider bounded-error qubit protocols for IP, and prove 
Eq. (3). Assume that some qubit protocol P computes IP correctly with prob- 
ability f + E, where E > 0. Since P is not exact, the constructions from the 
previous section do not work exactly. We analyze the extent by which they err. 

First, the construction of Section 2.1 will not produce a protocol in clean 
form; however, it will result in a protocol which approzimates an exact clean 
protocol (this type of construction was previously carried out in a different con- 
text by Bennett et aI. [2]). 

Lower Bounds for Bounded-Error Qubit Protocols 

Denote the initial state as 

Also, assume that, in protocol P, Alice never changes the state of her input 
qubits 121,. . . , zn) (so the first n qubits never change). This is always possible, 
since she can copy z1,. . . ,z, into her ancilla qubits at the beginning. After 
executing P until just before the measurement occurs, the state of the qubits 
must be of the form 



where laI2 2 fr + E  and lP12 5 $ - E .  In the above, the n+ lSt qubit is the unszueT 
qubit, x + y denotes the inner product of x and y, and denotes the negation 
of this inner product. In general, a, P, IJ), and IK) may depend on x and y. 

Now, suppose that the procedure described in Section 2.1 for producing a 
clean protocol in the exact case is carried out for P. Since. in general, the answer 
qubit is not in the state 1x.y)-or even in a pure basis state-this does not 
produce the final state 

1. + 5 * y ) b I ,  - 7 %)lo, 9 7 o>I@AB)IYl, * * * 1 '?/n)10, * * 7 0). (15) 
However, let us consider the state that is produced instead. After introducing 
the new qubit, initialized in basis state I.), and applying P, the state is 

I.) ( a l~ l , . . . ,~n) l . .Y) lJ )  + P l s l , . . . , ~ n > l 5 ) l ~ ) ) .  (16) 
After applying the controlled-NOT gate, the state is 

al.+s.y)lxl,...,xn)la:.y)lJ) +PI-Z+a:)y)l~l,... ,xn)l2)Y)IK) 
= alz + 2 * Y ) l S l , .  . . ,%)I%. ? / ) I J )  +PI. + z  y)lx1,. . . ,Zn)12)Y)IK) 

= I .+Z.Y) ((.I.l,...,xn)IZ.y)lJ) +PI%.'. , 2 n ) 1 2 ) 1 ~ ) )  

-PI. + 3: * Y)lZl,. , GJ12)Y)IK) +PI. + a:-)lZl,. . . , 2n>12)IK) 

+JzP (5 I. + q) - 512 + 2 . Y)) 1x1,. . . , xn) I.)y)jK). 

lA4z,y,z) = (&l .+2)-  ~ l . + x * y ) )  P+l%...,%)I2.)IIq. 

(17) 

Finally, after applying P in reverse to this state, the final state is 

Iz + x ' y)lzl, * Zn)10, * ? O)(@AB)Iyl, - * * 3 yn)Io, * - * 7 0) + f i P I M z , y , z ) ,  (18) 
where 

(19) 

Note that the vector &$IMz,Y,z) is the difference between what an exact 
protocol would produce (state (15)) and what is obtained by using the inexact 
(probabilistic) protocol P (state (18)). There are some useful properties of the 
IMz,y,z) states. First, as x E (0,l)" varies, the states IMz,y,z) are orthonormal, 
since 1x1,. . . , zn) is a factor in each such state (this is where the fact that Alice 
does not change her input qubits is used). Also, IMz,y.~) = -lMz,y,~), since only 
the (51% + 3;.y) - -.?LIZ + x - y)) factor in each such state depends on z. 

Call the above protocol P. Now, apply the four stage reduction in Section 
2.2, with P in place of an exact clean protocol. The diflerence between the state 
produced by using P and using an exact clean protocol first occurs after the 
third stage and is 

fi 



which has magnitude bounded above by 2 6  = d-, since, for each 
x E {0 ,  l}n, Ij3a12 5 - E, and the IM,,,o) states are orthonormal. Also, the 
magnitude of this difference does not change when the Hadamard transform in 
the fourth stage is applied. Thus, the final state is within Euclidean distance 
J Z Z  from 

11) Iy1, * - ~n)10, * , O)I@AB) lyll- * Yn)lO, . 0). (21) 

Consider the angle 0 between this final state and (21). It satisfies sin2 0 + (1 - 
C O S O ) ~  2 2 - 4 ~ ,  from which it follows that cos0 2 2 ~ .  Therefore, if Alice 
measures her first n + 1 qubits in the standard basis, the probability of obtaining 
11, y1,. . . , yn) is at least cos2 6 = 4 ~ ~ .  

Now, suppose that y1,. . . , yn are uniformly distributed. Then Fano's inequal- 
ity (see, for example, [8]) implies that Alice's measurement causes her uncertainty 
about 91,. . . , gn to drop from n bits to less than (1 - 4tz2)n + h( 4e2) bits, where 
h(x) -x log x - (1 - z) log(1 - x) is the binary entropy function. Thus, the 
mutual information between the result of Alice's measurement and (31,. . . , yn) 
is at least 4 ~ ~ n  - h(4e2) 2 4 ~ ~ n  - 1 bits. By Theorem 1, the communication 
from Bob to Alice is at least ( 4 ~ ~ 7 1 -  1)/2 qubits, which establishes Eq. (3). 
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In this section, we consider exact and bounded-error bit protocols for IP, and 
prove Eqs. (4) and (5). 

Recall that any m-qubit protocol can be simulated by a 2m-bit protocol using 
teleportation [3] (employing EPR pairs of entanglement). Also, if the commu- 
nication pattern in an m-bit protocol is such that an even number of bits is 
always sent during each party's turn then it can be simulated by an ml2-qubit 
protocol by superdense coding [4] (which also employs EPR pairs). However. this 
latter simulation technique cannot, in general, be applied directly, especially for 
protocols where the parties take turns sending single bits. 

We can nevertheless obtain a slightly weaker simulation of bit protocols by 
qubit protocols for IP that is sufficient for our purposes. The result is that, given 
any rn-bit protocol for IP, (that is, IP instances of size n), one can construct an 
mqubit protocol for IP2,. This is accomplished by interleaving two executions of 
the bit protocol for IP, to compute two independent instances of inner products 
of size n. We make two observations. First, by taking the sum (mod 2) of the two 
results, one obtains an inner product of size 2n. Second, due to the interleaving, 
an even number of bits is sent at each turn, so that the above superdense coding 
technique can be applied, yielding a (2m)/2 = m-qubit protocol for IPzn. Now, 
Eq. (2) implies m 2 n, which establishes the lower bound of Eq. (4) (and the 
upper bound is trivial). 

If the same technique is applied to any m-bit protocol computing IP, with 
probability f + E, one obtains an m-qubit protocol that computes IPzn with 
probability (a + E ) ~  + (f - E ) ~  = 3 + 2 ~ ~ .  By Eq. (3), m 2 2 ( 2 ~ ~ ) ~ ( 2 n )  - 1 - 

Lower Bounds for Bit Protocols 

2 -  



16e4n- f. For E < 2, a better bound is obtained by simply noting that Cl 2 A Q; 
(since qubits can always be used in place of bits), so, by Eq. (3), m 2 2z2n - i. 
This establishes Eq. ( 5 ) .  

5 An Instance where Prior Entanglement is Beneficial 

Here we will show that in spite of the preceding results, it is still possible that a 
protocol which uses prior entanglement outperforms all possible classical proto- 
cols. This improvement is done in the probabilistic sense where we look at the 
number of communication bits required to reach a certain reliability threshold 
for the IP function. This is done in the following setting. 

Both Alice and Bob have a 2 bit vector 2 1 2 2  and y1y2, for which they want 
to calculate the inner product modulo 2: 

f (z ,y)  = 2 1 ~ 1  + ~ 2 ~ 2  mod 2 (22) 

with a correctness-probability of at least Q. It will be shown that with entangle- 
ment Alice and Bob can reach this ratio with 2 bits of communication, whereas 
without entanglement 3 bits are necessary to obtain this success-ratio. 

5.1 

Initially Alice and Bob share a joint random coin and an EPR-like pair of qubits 
QA and QB: 

A Two-Bit Protocol with Prior Entanglement 

s t a t e ( Q ~ Q ~ )  = %(loo) + 111)) (23) 

With these attributes the protocol goes as follows. 
First Alice and Bob determine by a joint random coin flip’ who is going to be 

the :sender’ and the ’receiver’ in the protocol. (We continue the description of the 
protocol by assuming that Alice is the sender and that Bob is the receiver.) After 
this, Alice (the sender) applies the rotation A,,,, on her part of the entangled 
pair and measures this qubit QA in the standard basis. The result mA of this 
measurement is then sent to Bob (the receiver) who continues the protocol. 

If Bob has the input string ‘OO’, he knows with certainty that the outcome 
of the function f(z ,y)  is zero and hence he concludes the protocol by sending 
the bit 0 to Alice. Otherwise, Bob performs the rotation By,y2 on his part of the 
entangled pair QB and measure it in the standard basis yielding the value mg. 
Now Bob finishes the protocol by sending to Alice the bit mA + m g  mod 2. 

Using the rotations shown below and bearing in mind the randomization pro- 
cess in the beginning of the protocol with the joint coin flip, this will be a protocol 
that uses only 2 bits of classical communication and that gives the correct value 

Because a joint random coin flip can be simulated with an EPR-pair, we can also 
assume that Alice and Bob start the protocol with two shared EPR-pairs and no 
random coins. 



of f(z, y) with a probability of at least 2 for every possible combination of 21x2 
and YlY2. 

The unitary transformations used by the sender in the protocol are: 

whereas the receiver uses one of the three rotations: 

The matrices were found by using an optimization program that suggested cer- 
tain numerical values. A closer examination of these values revealed the above 
analytical expressions. 

5.2 

Take the probability distribution T on the input strings x and y, defined by: 

No Two-Bit Classical Probabilistic Protocol Exists 

0 iffx=OOory=OO 
b iff x # 00 and y # 00 

It is easily verified that for this distribution, every deterministic protocol with 
only two bits of communication will have a correctness ratio of at most f .  Using 
Theorem 3.20 of [12], this shows that every possible randomized protocol with 
the same amount of communication will have a success ratio of at most f .  (It 
can also be shown that this f bound is tight but we will omit that proof here.) 
This implies that in order to reach the requested ration of $ ?  at least three bits of 
communication are required if we axe not allowed to use any prior entanglement. 

5.3 

A similar result also holds for qubit protocols without prior entanglement [16]. 
This can be seen by the fact that after Alice applied the rotation A,,,, and 

Two Qubits Suf3ce Without Prior Entanglement 
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measured her qubit QA with the result m A  = 0, she knows the state of Bob‘s 
qubit QB exactly. It is therefore also possible to envision a protocol where the 
parties assume the measurement outcome mA = 0 (this can be done without 
loss of generality), and for which Alice simply sends this qubit QB to Bob, after 
which Bob finishes the protocol in the same way as prescribed by the ‘prior 
entanglement’-protocol. The protocol has thus become as follows. 

First Alice and Bob decide by a random joint coin flip who is going to be 
the sender and the receiver in protocol. (Again we assume here that Alice is the 
sender.) Next, Alice (the sender) sends a qubit lQzlZ,)  (according to the input 
string 2 1 2 2  of Alice and the table 27) to the receiver Bob who continues the 
protocol. 

IQoo)  = fila) - i f i l l )  

~QIo)  = &lo) + (-G+ i&$ 11) lQ11) = &IO) - i&) 
(27) 

If Bob has the input string y1y2 = 00, he concludes the protocol by sending a zero 
bit to Alice. In the other case, Bob applies the rotation BYIY3 to the received 
qubit, measures the qubit in the standard basis, and sends this measurement 
outcome to Alice as the answer of the protocol. By doing so, the same correctness- 
probability of $ is reached for the IP function with two qubits of communication, 
whereas the classical setting requires 3 bits of communication as shown above. 
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Appendix: Capacity Results for Communication Using 
Qubits 

In this appendix we present results about the quantum resources required to 
transmit n classical bits between two parties, Alice and Bob. These results are 
used in the main text in the proof of the lower bound on the communication 
complexity of the inner product function. The results may also be of some inde- 
pendent interest. 

Theorem 2: Suppose that Alice possesses n bits of information, and wants to 
convey this information to Bob. Suppose that Alice and Bob possess no prior 
entanglement but qubit communication in either direction is allowed. Let nAB 
be the number of qubits Alice sends to Bob, and nBA the number of qubits Bob 

http://xxx.lanl.gov/archive/quant-ph


sends to Alice (nAB and nB.4 are natural numbers). Then, Bob can acquire the 
n bits if and only if the foJlowhg inequalities are satisfied. 

n A B  1 rn/21 (28)  
(29 )  n A B  + n B A  1 12- 

More generally, Bob can acquire m bits of mutual information with respect to 
AJice’s n bits if and only if the above equations hold with m substituted for n. 

Note that Theorem 1 follows from Theorem 2 because, if the communication 
from Bob to Alice is not counted then this can be used to set up an arbitrary 
entanglement at no cost. 

Graphically, the capacity region for the above communication problem looks 
as shown in Figure 1. Note the difference with the classical result for communi- 
cation with bits, where the capacity region is given by the equations n A B  2 n 
and n B A  2 0 - that is, classically, communication from Bob to Alice doesn’t 
help. 

4 
n A B  

Capacity region 

c 

Fig. 1. Capacity region to send n bits from Alice to Bob. n.4~ is the number of qubits 
Alice sends to Bob, and n B A  is the number of qubits Bob sends to Alice. The dashed 
line indicates the bottom of the classical capacity region. 

Proof of Theorem 2: Suppose n A B  and n B A  satisfy the constraints. We 
assume that n A B  < n, since otherwise Alice encodes the n bits into n qubits in 
the obvious way. Bob prepares n - 72.48 > 0 EPR pairs and sends half of each 
pair to Alice. Note that n B A  2 n - n A B ,  so this is possible with Bob’s resources. 
Alice does superdense coding [4] on the n - n A B  qubits, and sends them back to 
Bob, who can extract 2(n -  AB) bits of information. Alice uses her remaining 
allotment of n - (n  - n A B )  = 2nAB - n 2 0 qubits to transmit 2nAB - n bits 
of information in the obvious way. The total information transmitted is thus 
2(n - n A B )  + 2nAB - n = n bits, as required. 

The proof that these bounds are the best possible is the more interesting 
part. The key idea is a simple application of Holevo’s theorem [lo], which we 



I 

now review. Suppose a classical information source produces a random variable 
X. Depending on the value, 2, of the random variable, a state p ,  of a quantum 
system is prepared. Suppose a measurement is made on the quantum system in 
an effort to determine the value of X. This measurement results in an outcome 
Y. Holevo’s theorem states that the mutual information I(X : Y) between X 
and Y is bounded by the Holevo bound [lo], 

I(X : Y) I S(P) - C P , S ( P Z ) ,  (30) 
2 

wherep, are the probabilities the different values X may take, p 3 E, p , p , ,  and 
S(- )  is the von Neumann entropy function. The quantity on the right hand side of 
the Holevo bound is known as the Holevo chi quantity, x 3 S(p)  - C,p+S(p,) .  
The Holevo bound tells us that the amount of information about X that may be 
deduced by observing px is bounded above by x ,  and it is this fact that we use to 
prove our lower bounds. A key fact about the Holevo x quantity concerns the case 
of a quantum system with two component, A and B. Schumacher, Westmoreland 
and Wootters [14] have shown that if we consider the x quantity associated with 
A, X A  trB(p2) are the 
states which result when system B is traced out, then X A  5 x. In the light of the 
Holevo bound this result is intuitively plausible, since if we make a measurement 
on system A alone, then we would expect to get no more information about X 
than we would if we could measure the entire quantum system, AB. 

Without loss of generality we may suppose that the quantum protocol for 
the problem under consideration consists of unitary operations performed alter- 
nately by Alice and Bob, interspersed with the communication of qubits from 
Alice to Bob or Bob to Alice. One might imagine that measurements could be 
performed in addition to unitary operations, however the effect of any measure- 
ments may be simulated using standard techniques by adding ancilla qubits to 
the description of Alice or Bob’s system. The final step of the protocol consists 
of a measurement performed by Bob, which has outcome Y. We aim to bound 
the mutual information I(X : Y), where X is Alice’s classical data, consisting 
of n bits. In order that the protocol be reliable, it must be possible to have 
I(X : Y) = n, in the case when Alice’s classical data is uniformly distributed. 
One final convenience is to assume that initially Alice and Bob both start with a 
system in a standard pure state. It is possible that the protocol starts with either 
Alice or Bob having a mixed state, however any such protocol can be simulated 
without extra cost using a purification of the mixed state. 

Generically, at any stage of the protocol we will use the notation p ,  to denote 
the state of Bob’s system, given that Alice’s input data was x. We will also use 
the generic notation p C , p , p ,  and x E S(p) - E , p , p , .  We will study the 
behavior of Bob’s x quantity under the different actions which Alice and Bob 
may perform. We denote by xo Bob’s initial x quantity, and by X F ,  Bob’s final 
x quantity. p~ denotes p upon conclusion of the protocol, immediately before 
the final measurement. 

Note first that Bob’s state p2 after zero rounds of communication cannot 
depend on 2, and thus xo = 0. Consider the following observations about how 

 PA) - ~ , p , S ( p Z ~ ) ,  where P A  z t d p )  and P + A  



Bob’s x changes. To reduce notational clutter, we will use the notation pz to 
denote the state of Bob’s system before each of the following processes, and p‘, 
to denote the state of Bob’s system after each of the following processes. Similar 
conventions are used for p, p‘, x and x‘. 
1. Suppose Alice performs a unitary operation on her system. Then A x  = 

AS(p)  = 0 for this process, since the states pz of Bob’s system do not 
change during the process. 

2.  Suppose Bob performs a unitary operation on his system. It is easy to verify 
that Ax = AS(p)  = 0 for this process, from the unitary invariance of the 
entropy. 

3. Suppose Alice sends a qubit to Bob. Let Q denote the qubit, and B Bob’s 
quantum system before the qubit was sent, so QB is Bob’s system after the 
qubit has arrived. For an arbitrary state of QB we have the subadditivity 
inequality S(Q,B)  5 S(Q) + S ( B )  5 1 + S(B) ,  as S(Q) 5 1. Thus S(p’) 5 
S(p)  + 1. Also for an arbitrary state of QB we have the Araki-Lieb inequality 
[l] S(Q, B) 2 S ( B )  - S(Q) 2 S(B)  - 1, from which we deduce that S(p‘,) 2 
S(pz) - 1. Thus 

XI = S(P’) - C P Z S ( P 3  5 S(P) - C P Z S ( P 2 )  + 2.  (31) 
Z 2 

That is, Ax 5 2 for this process. Note also that AS(p)  5 1 for this process. 
4. Suppose Bob sends a qubit to Alice. Then p’, = trg(pz), where Q is the 

qubit sent to Alice. As we noted above, x’ 5 x ,  so Ax 5 0 for this process. 
Note also that AS(p)  5 1 for this process, by the Araki-Lieb inequality [l]. 

Combining the observations about Ax for these processes, we find that Ax for 
the entire communication protocol must satisfy Ax 5 n A B  x 2 + n B A  x 0 = 
But x(0 )  = 0, so X F  5 2nAB.  Suppose Bob makes a measurement on his system, 
with outcome Y ,  and tries to infer the value of X from that measurement. Then 
Holevo’s theorem tells us that I(x : Y) 5 X F  5 2 n A B .  But in order that Alice 
be able to reliably transmit her n bits of information to Bob, we must have 
I(x : Y )  = n. Thus n 5 2 7 2 ~ ~ 3 ,  and since n A B  is an integer, we must have 
?%AB 5 [n/21, as we set out to prove. 

Furthermore, noting that x 2 S(p) and S(p) = 0 initially, we can combine 
the above observations about A s ( p )  to see that X F  5 s ( p ~ )  5 n A B  + n B A .  
Holevo’s theorem therefore implies that n 5 n A B  + n B A  if Alice is to reliably 
transmit n bits of classical information to Bob. QED 


