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Abstract. The Induced Minor problem is that of testing whether a
graph G can be modified into a graph H by a sequence of vertex deletions
and edge contractions. If only edge contractions are permitted, we ob-
tain the Contractibility problem. We prove that Induced Minor is
polynomial-time solvable when G is AT-free and H is fixed, i.e., not part
of the input. In addition, we show that Contractiblity is polynomial-
time solvable when G is AT-free and H is a fixed triangle-free graph.
We complement these two results by proving that both problems are
W[1]-hard on AT-free graphs when parameterized by |VH |.

1 Introduction

In this paper we study graph containment problems. Whether or not a graph
contains some other graph depends on the notion of containment used. In the
literature several natural definitions have been studied such as containing a graph
as a contraction, dissolution, immersion, (induced) minor, (induced) topological
minor, (induced) subgraph, or (induced) spanning subgraph. We focus on the
containment relations “induced minor” and “contraction”. A graph G contains a
graph H as an induced minor if G can be modified into a graph H by a sequence
of vertex deletions and edge contractions. Here, the operation edge contraction
removes the end-vertices u and v of an edge from G and replaces them by a
new vertex adjacent to precisely those vertices to which u or v were adjacent.
A graph G contains H as a contraction if H can be obtained from G by edge
contractions only. The decision problems that are to test whether a graph H is
an induced minor or a contraction of a graph G are called Induced Minor and
Contractibility, respectively. Both problems are known to be NP-complete
even when G and H are trees of bounded diameter or trees, the vertices of which
have degree at most 3 except for at most one vertex, as shown by Matoušek and
Thomas [20]. It is therefore natural to fix the graph H and to consider only
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the graph G to be part of the input. We denote these variants as H-Induced
Minor and H-Contractibility, respectively.

The computational complexity classifications of H-Induced Minor and H-
Contractibility are far from being settled, although both polynomial-time
and NP-complete cases are known. In contrast, the two related problems H-
Minor and H-Topological Minor, which are to test whether a graph G
contains a graph H as a minor or topological minor, respectively, can be solved
in cubic time for any fixed graph H, as shown by Robertson and Seymour [22]
and Grohe, Kawarabayashi, Marx, and Wollan [11], respectively. ForH-Induced
Minor, Fellows, Kratochv́ıl, Middendorf, and Pfeiffer [7] showed that there exists
a graph H for which the problem is NP-complete. This specific graph H has 68
vertices and is yet the smallest H for which H-Induced Minor is known to
be NP-complete. The question whether H-Induced Minor is polynomial-time
solvable for any fixed tree H was posed as an open problem at the AMS-IMS-
SIAM Joint Summer Research Conference on Graph Minors in 1991. So far this
question could only be answered for trees on at most seven vertices except for
one case [8]. Brouwer and Veldman [2] showed that H-Contractibility is NP-
complete when H is a path or a cycle on four vertices. Other polynomial-time
solvable and NP-complete cases, depending on H, can be found in [12, 18, 19].

Due to the notorious difficulty of solving H-Induced Minor and H-
Contractibility for general graphs, the input has been restricted to special
graph classes. Fellows, Kratochv́ıl, Middendorf, and Pfeiffer [7] showed that for
every fixed graph H, the H-Induced Minor problem can be solved in linear
time on planar graphs. Van ’t Hof et al. [12] extended this result by proving that
for every fixed planar graph H, the H-Induced Minor problem is linear-time
solvable on any minor-closed graph class not containing all graphs. Kamiński and
Thilikos [14] showed that H-Contractibility can be solved in cubic time for
graphs of bounded genus. Belmonte et al. [1] showed that for every fixed graph
H, the H-Induced Minor and H-Contractibility problems are polynomial-
time solvable for chordal graphs. The H-Contractibility problem has also
been studied for claw-free graphs, but only partial results are known for this
graph class [9].

We consider H-Induced Minor and H-Contractibilty restricted to the
class of asteroidal triple-free graphs, also known as AT-free graphs. An asteroidal
triple is a set of three mutually non-adjacent vertices such that each two of them
are joined by a path that avoids the neighborhood of the third, and AT-free
graphs are exactly those graphs that contain no such triple. AT-free graphs,
defined fifty years ago by Lekkerkerker and Boland [17], are well studied in the
literature and contain many well-known classes, e.g., cobipartite graphs, cocom-
parability graphs, cographs, interval graphs, permutation graphs, and trapezoid
graphs (cf. [3]). All these graph classes have geometric intersection models being
extremely useful when designing polynomial-time algorithms for hard problems.
No such model is available for AT-free graphs. Recently, Golovach, Paulusma and
Van Leeuwen [10] showed that the H-Induced Topological Minor problem
is polynomial-time solvable on AT-free graphs for every fixed H. This problem



is to test if a graph G can be modified into a graph H by a sequence of vertex
deletions and vertex dissolutions. The latter graph operation is the contraction
of an edge incident to a degree-two vertex that is not in a triangle (cycle on three
vertices). The same authors [10] also showed that this problem is W[1]-hard when
parameterized by |VH |.

Our Results. We show that H-Induced Minor can be solved in polynomial
time on AT-free graphs for any fixed graph H. Consequently, on AT-free graphs,
all four problems H-Minor, H-Induced Minor, H-Topological Minor and
H-Induced Topological Minor are polynomial-time solvable for any fixed
graph H. For H-Contractibility, we prove that the problem can be solved in
polynomial time on AT-free graphs for any fixed graph H that is triangle-free.
We complement these results by proving that that Induced Minor and Con-
tractibilty is W[1]-hard when parameterized by |VH |. This result indicates
that we cannot expect to obtain FPT algorithms for these two problems, i.e.,
that run in time f(|V (H)|)|V (G)|O(1) unless FPT=W[1], which is considered to
be unlikely [6]. Our W[1]-hardness proofs also show that Induced Minor and
Contractibility are NP-complete for AT-free graphs; these results were not
known before.

The celebrated result by Robertson and Seymour that H-Minor is FPT on
general graphs [22] is closely connected to the fact that k-Disjoint Paths is
FPT with parameter k. To solve H-Induced Topological Minor on AT-free
graphs, Golovach et al. [10] considered the variant k-Induced Disjoint Paths,
in which the paths must not only be vertex-disjoint but also mutually induced,
i.e., edges between vertices of any two distinct paths are forbidden. Here we
must consider another variant, which was introduced by Belmonte et al. [1].
A terminal pair in a graph G = (V,E) is a specified pair of vertices s and t
called terminals, and the domain of a terminal pair (s, t) is a specified subset
U ⊆ V containing both s and t. We say that two paths, each of which is between
some terminal pair, are vertex-disjoint if they have no common vertices except
possibly the vertices of the terminal pairs. This leads to the following decision
problem, which is NP-complete on general graphs even when k = 2 [1].

Set-Restricted k-Disjoint Paths
Instance: a graph G, terminal pairs (s1, t1), . . . , (sk, tk), and domains U1, . . . , Uk.
Question: does G contain k mutually vertex-disjoint paths P1, . . . , Pk such that

Pi is a path from si to ti using only vertices from Ui for i = 1, . . . , k?

Note that the domains U1, . . . , Uk are not necessarily pairwise disjoint. If we let
every domain contain all vertices of G, we obtain exactly the Disjoint Paths
problem. We give an algorithm that solves Set-Restricted k-Disjoint Paths
in polynomial time on AT-free graphs for any fixed integer k. We then use this
algorithm as a subroutine in our polynomial-time algorithms for H-Induced
Minor and H-Contractibility. We emphasize that we can not apply the
algorithm for k-Induced Disjoint Paths on AT-free graphs [10] as a subrou-
tine for solving H-Induced Minor on AT-free graphs. The techniques used in
that algorithm are quite different from the techniques we use here to solve Set-



Restricted k-Disjoint Paths on AT-free graphs. Moreover, when k is in the
input, k-Induced Disjoint Paths and Set-Restricted k-Disjoint Paths
have a different complexity for AT-free graphs. Golovach et al. [10] proved that
in that case k-Induced Disjoint Paths is polynomial-time solvable for AT-
free graphs, whereas k-Disjoint Paths, and consequently Set-Restricted k-
Disjoint Paths, are already NP-complete for interval graphs [21], which form
a subclass of AT-free graphs.

We use our algorithm for solving Set-Restricted k-Disjoint Paths to
obtain one additional results on AT-free graphs. We show that we can solve
the problem Set-Restricted k-Disjoint Connected Subgraphs, also in-
troduced by Belmonte et al. [1], in polynomial time on AT-free graphs for any
fixed integer k. A terminal set in a graph G = (V,E) is a specified subset Si ⊆ V .

Set-Restricted k-Disjoint Connected Subgraphs
Instance: a graph G, terminal sets S1, . . . , Sk, and domains U1, . . . , Uk.
Question: doesG have k pairwise vertex-disjoint connected subgraphsG1, . . . , Gk,

such that Si ⊆ VGi
⊆ Ui, for 1 ≤ i ≤ k?

If |Si| = 2 for all 1 ≤ i ≤ k, then we obtain the Set-Restricted k-Disjoint
Paths problem. If Ui = VG then we obtain the k-Disjoint Connected Sub-
graphs problem. The latter problem has been introduced by Robertson and
Seymour [22] and is NP-complete on general graphs even when k = 2 and
min{|Z1|, |Z2|} = 2 [13].

2 Preliminaries

We only consider finite undirected graphs without loops and multiple edges. We
refer to the textbook by Diestel [5] for any undefined graph terminology. Let G
be a graph. We denote the vertex set of G by VG and the edge set by EG. The
subgraph of G induced by a subset U ⊆ VG is denoted by G[U ]. We say that
U ⊆ VG is connected if G[U ] is a connected graph. The graph G−U is the graph
obtained from G by removing all vertices in U . If U = {u}, we also write G− u.
The open neighborhood of a vertex u ∈ VG is defined as NG(u) = {v | uv ∈ EG},
and its closed neighborhood is defined as NG[u] = NG(u) ∪ {u}. For U ⊆ VG,
NG[U ] = ∪u∈UNG[u]. The degree of a vertex u ∈ VG is denoted dG(u) = |NG(u)|.
The distance distG(u, v) between a pair of vertices u and v of G is the number of
edges of a shortest path between them. Two sets U,U ′ ⊆ VG are called adjacent
if there exist vertices u ∈ U and u′ ∈ U ′ such that uu′ ∈ EG. A set U ⊆ VG
dominates a vertex w if w ∈ NG[U ], and U dominates a set W ⊆ VG if U
dominates each vertex of W . In these two cases, we also say that G[U ] dominates
w or W , respectively. A set U ⊆ VG is a dominating set of G if U dominates VG.

The graph P = u1 · · ·uk denotes the path with vertices u1, . . . , uk and edges
uiui+1 for i = 1, . . . , k − 1. We also say that P is a (u1, uk)-path. For a path P
with some specified end-vertex s, we write x ≺s y if x ∈ VP lies in P between
s and y ∈ VP ; in this definition, we allow that x = s or x = y. A pair of
vertices {x, y} is a dominating pair if the vertex set of every (x, y)-path is a



dominating set of G. Corneil, Olariu and Stewart [3, 4] proved the following
structural theorem.

Theorem 1 ([3, 4]). Every connected AT-free graph has a dominating pair and
such a pair can be found in linear time.

Using these results, Kloks, Kratsch and Müller [15] gave the following tool for
constructing dynamic programming algorithms on AT-free graphs. For a vertex
u of a graph G, we call the sets Li(u) = {v ∈ VG | distG(u, v) = i} (i ≥ 1)
the BFS-levels of G. Note that the BFS-levels of a vertex can be determined in
linear time by the Breadth-First Search algorithm (BFS).

Theorem 2 ([15]). Every connected AT-free graph contains a dominating path
P = u0 · · ·u` that can be found in linear time such that

(i) ` is the number of BFS-levels of u0;
(ii) ui ∈ Li(u0) for i = 1, . . . , `;

(iii) each z ∈ Li(u0) is adjacent to ui−1 or to ui for all 1 ≤ i ≤ `.

3 Set-Restricted Disjoint Paths and Connected Subgraphs

In this section we show that Set-Restricted k-Disjoint Paths and its
generalization Set-Restricted k-Disjoint Connected Subgraphs can be
solved in polynomial time on AT-free graphs for any fixed integer k. For Set-
Restricted k-Disjoint Paths, we first introduce some extra terminology and
give a number of structural results. We then apply dynamic programming to solve
this problem. Afterward, we solve Set-Restricted k-Disjoint Connected
Subgraphs.

3.1 Structural Lemmas

Let G be a graph, and let W ⊆ VG. Consider an induced path P in G. Then
VP ∩W and VP \W induce a collection of subpaths of P called W -segments, or
segments if no confusion is possible. Segments induced by VP ∩W are said to
lie inside W , whereas segments induced by VP \W lie outside W . We need the
following two lemmas.

Lemma 1. Let P be an induced path in an AT-free graph G. Let U ⊆ VG be
connected. Then P has at most three segments inside NG[U ].

Proof. To obtain a contradiction, assume that P has at least four segments inside
NG[U ]. Then P has three segments P1, P2, P3 outside NG[U ] such that for each
Pi, both end-vertices of Pi are adjacent to end-vertices of the segments inside
NG[U ]. Let s be an end-vertex of P , and let xi, yi be the end-vertices of Pi for i ∈
{1, 2, 3}. Assume that P1, P2, P3 and their end vertices are ordered in such a way
that x1 ≺s y1 ≺s x2 ≺s y2 ≺s x3 ≺s y3. Let z1, z2 ∈ NG[U ], z1 ≺s x1, y3 ≺s z2



be the vertices adjacent to x1 and y3, respectively in P . Let z′1, z
′
2 ∈ U be vertices

adjacent to z1, z2, respectively. We claim that x1, x2, x3 form an asteroidal triple.
Since x1, x2, x3 are vertices of different segments outside NG[U ] and P is an
induced path, x1, x2, x3 are distinct and pairwise non-adjacent. Because P is an
induced path, the (x1, x2) and (x2, x3)-subpaths of P avoid the neighborhoods
of x3 and x1, respectively. Finally, the path obtained by the concatenation of
the (x1, z1)-subpath of P , the path z1z

′
1, a (z′1, z

′
2)-path in G[U ], z′2z2 and the

(z2, x3)-subpath of P avoids the the neighborhood of x2, as x2 is not adjacent
to z1, z2 and x2 /∈ NG[U ]. This gives us a contradiction. ut

Lemma 2. Let P be an induced path in an AT-free graph G. Let U ⊆ VG be
connected. Then every segment of P outside NG[U ] that contains no end-vertex
of P has at most two vertices.

Proof. To obtain a contradiction, assume that P has a segment P ′ with end-
vertices x, y such that P ′ has at least three vertices and x, y have neighbors
x1, y1 respectively in P , where x1, y1 /∈ VP ′ . Then x1, y1 ∈ NG[U ]. Let x2, y2 be
neighbors of x1, y1 in U . We claim that x, y, x2 is an asteroidal triple. Clearly,
x, y, x2 are distinct and pairwise non-adjacent. The (x, y)-path P ′ avoids NG[U ]
and, therefore, NG[x2]. Because P is an induced path, x1 and y1 are not adjacent,
and they are not adjacent to y and x respectively. Hence xx1x2 avoids NG[y].
It remains to observe that the path obtained by the concatenation of a (x2, y2)-
path in U and y2y1u avoids NG[x]. ut

The next lemma follows directly from the property of being induced.

Lemma 3. Let u be a vertex of an induced path P in a graph G. Then P has
one segment inside NG[u] and this segment has at most three vertices.

Let G be a graph with terminal pairs (s1, t1), . . . (sk, tk) and corresponding
domains U1, . . . , Uk. Let {P1, . . . , Pk} be a set of mutually vertex-disjoint paths,
such that Pi is a path from si to ti using only vertices from Ui for i = 1, . . . , k.
We say that {P1, . . . , Pk} is a solution. A solution {P1, . . . , Pk} is minimal if
no Pi can be replaced by a shorter (si, ti)-path P ′i that uses only vertices of Ui

in such a way that P1, . . . , Pi−1, P
′
i , Pi+1, . . . , Pk are mutually vertex-disjoint.

Clearly, every yes-instance of Set-Restricted k-Disjoint Paths has a min-
imal solution. We also observe that any path in a minimal solution is induced.
We need Lemma 4, which gives some properties of minimal solutions.

Lemma 4. Let G be a graph with terminal pairs (s1, t1), . . . (sk, tk) and cor-
responding domains U1, . . . , Uk. Let u ∈ Ui for some 1 ≤ i ≤ k, and let
{P1, . . . , Pk} be a minimal solution with u /∈

⋃k
j=1 VPj . Then Pi has at most

two segments inside NG[u]. Moreover, if Pi has one segment inside NG[u], then
Pi has at most three vertices. If Pi has two segments Q1 and Q2 inside NG[u],
then Q1 and Q2 each has precisely one vertex, and the segment Q′ outside NG[u]
that lies between Q1 and Q2 in Pi also has one vertex.



Proof. Suppose that Pi has three segments Q1, Q2, Q3 inside NG[u]. Let xj , yj
be the end vertices of Qj for j = 1, 2, 3. Assume without loss of generality that
x1 ≺si y1 ≺si x2 ≺si y2 ≺si x3 ≺si y3. Clearly, we can replace the (x1, y3)-
subpath of Pi of length at least four by x1uy3 and obtain a shorter (si, ti)-path.
Hence, Pi has at most two segments inside NG[u]. Now suppose that a (x, y)-path
Q is a segment of Pi inside NG[u]. If Q has at least four vertices, then we replace
Q by xuy and obtain a shorter (si, ti)-path. Finally, suppose that Q1, Q2 are
segments of Pi inside NG[u]. Let xj , yj be the end vertices of Qj for j = 1, 2. Let
also Q′ be the segment outside NG[u] that lies between Q1, Q2 in Pi. Assume
without loss of generality that x1 ≺si y1 ≺si x2 ≺si y2. If one of the paths
Q1, Q2, Q

′ has at least two vertices, then we can replace the (x1, y2)-subpath of
Pi of length at least three by x1uy2 and obtain a shorter (si, ti)-path. ut

3.2 Dynamic programming for Set-Restricted k-Disjoint Paths

We apply dynamic programming to prove that Set-Restricted k-Disjoint
Paths is polynomial-time solvable on AT-free graphs for every fixed integer k.
Our algorithm solves the decision problem, but can easily be modified to produce
the desired paths if they exist. It is based on the following idea. We find a shortest
dominating path u0 . . . u` in G as described in Theorem 2. For 0 ≤ i ≤ `, we
trace the segments of (sj , tj)-paths inside NG[{u0, . . . , ui}] by extending the
segments inside NG[{u0, . . . , ui−1}] in NG[ui] \NG[{u0, . . . , ui−1}]. Note that if
some path is traced from the middle, then we have to extend the corresponding
segment in two directions, i.e., we have to trace two paths. The paths inside
NG[ui] \NG[{u0, . . . , ui−1}] are constructed recursively, as by Lemmas 3 and 4
we can reduce the number of domains by distinguishing whether ui is used by
one of the paths or not. Hence, it is convenient for us to generalize as follows:

Set-Restricted r-Group Disjoint Paths
Instance: A graph H, positive integers p1, . . . , pr, terminal pairs (sji , t

j
i ) for

i ∈ {1, . . . , r} and j ∈ {1, . . . , pi}, and domains U1, . . . , Ur.
Question: Does H contain mutually vertex-disjoint paths P j

i , where i ∈
{1, . . . , r} and j ∈ {1, . . . , pi}, such that P j

i is a path from sji to tji using only
vertices from Ui for i = 1, . . . , r?

Recall that the domains U1, . . . , Uk are not necessarily pairwise disjoint. Also
note that for p1 = . . . = pr = 1 we have the Set-Restricted r-Disjoint
Paths problem. We say that for each 1 ≤ i ≤ r, the pairs (s1i , t

1
i ), . . . , (spi

i , t
pi

i )
(or corresponding paths) form a group. We are going to solve Set-Restricted
r-Group Disjoint Paths for induced subgraphs H of G and r ≤ k recursively
to obtain a solution that can be extended to a solution of Set-Restricted
k-Disjoint Paths in such a way that P 1

i , . . . , P
pi

i are disjoint subpaths of the
(si, ti)-path Pi in the solution of Set-Restricted k-Disjoint Paths. Hence,
we are interested only in some special solutions of Set-Restricted r-Group
Disjoint Paths.



For r = 1, Set-Restricted r-Group Disjoint Paths is the p1-Disjoint
Paths problem in H[U1]. By the celebrated result of Robertson and Sey-
mour [22], we immediately get the following lemma.

Lemma 5. For r = 1 and any fixed positive integer p1, Set-Restricted r-
Group Disjoint Paths can be solved in O(n3) time on n-vertex graphs.

Now we are ready to describe our algorithm for Set-Restricted r-Group
Disjoint Paths. First, we recursively apply the following preprocessing rules.

Rule 1. If H has a vertex u /∈ ∪ri=1Ui, then we delete it and solve the problem
on H − u.

Rule 2. If there are i ∈ {1, . . . , r} and j ∈ {1, . . . , pi} such that sji and tji are in
different components of H[Ui], then stop and return No.

Rule 3. If H has components H1, . . . ,Hq and q > 1, then solve the problem

for each component Hh for the pairs of terminals (sji , t
j
i ) such that sji , t

j
i ∈ VHh

and the corresponding domains. We return Yes if we get a solution for each
component Hh, and we return No otherwise.

Rule 4. If r = 1, then solve the problem by Lemma 5.

From now we assume that r ≥ 2 and H is connected. Let p = p1 + . . .+ pr.
By Theorem 2, we can find a vertex u0 ∈ VH and a dominating path P =

u0 . . . u` in H with the property that for i ∈ {1, . . . , `}, ui ∈ Li and for any
z ∈ Li, z is adjacent to ui−1 or ui, where L0, . . . L` are the BFS-levels of u0. For
i ∈ {0, . . . , `}, let Wi = NH [{u0, . . . , ui}], W−1 = ∅, and Si = NG[ui] \Wi−1.
To simplify notations, we assume that for i > `, Si = ∅, and S−1 = ∅. Note
that by the choice of P , there are no edges xy ∈ EH with x ∈ Sj and y ∈
NH [{u0, . . . , ui}] if j − i > 2.

Our dynamic programming algorithm keeps a table for each i ∈ {0, . . . , `},
Xi ⊆ Si+1 and Yi ⊆ Si+2, where |Xi| ≤ 4p, |Yi| ≤ 4p, and an integer nexti ∈
{0, . . . , r}. The table stores information about segments of (shj , t

h
j )-paths inside

Wi. Recall that each path can have more than one segment inside Wi, but in
this case by Lemma 1, there are at most three such segments, and by Lemma 2,
the number of vertices of the segments outside Wi, that join the segments inside,
is bounded. We keep information about these vertices in Xi, Yi. If nexti = 0,
then no path in the partial solution includes ui+1, and if nexti = j > 0, then
only (shj , t̃

h
j ), (s̃hj , t

h
j ), (s̃hj , t̃

h
j )-paths can use ui+1 (if i = `, then we assume

that nexti = 0). For each i,Xi, Yi, nexti, the table stores a collection of records
R(i,Xi, Yi, nexti) with the elements

{(Statehj , Rh
j )|1 ≤ j ≤ r, 1 ≤ h ≤ pi},

where Rh
j are ordered multisets of size at most two without common vertices

except (possibly) terminals s1, . . . , sk, t1, . . . , tk of the original instance of Set-
Restricted k-Disjoint Paths, Rh

j ⊆ Uj , and where each Statehj can have one
of the following five values:

Not initialized, Started from s, Started from t, Started from middle, Completed.



These records correspond to a partial solution of Set-Restricted r-Group
Disjoint Paths for Hi = H[Wi ∪Xi ∪ Yi] with the following properties.

– If Statehj = Not initialized, then (shj , t
h
j )-paths have no vertices in Hi in the

partial solution and Rh
j = ∅.

– If Statehj = Started from s, then shj ∈ Wi, t
h
j /∈ VHi

and Rh
j contains one

vertex. Let Rj = (t̃hj ). Then t̃hj ∈ Si−1 ∪ Si and the partial solution contains

an (shj , t̃
h
j )-path.

– If Statehj = Started from t, then shj /∈ VHi
, thj ∈ Wi and Rh

j contains one

vertex. Let Rh
j = (s̃hj ). Then s̃hj ∈ Si−1∪Si and the partial solution contains

an (s̃hj , t
h
j )-path.

– If Statehj = Started from middle, then shj , t
h
j /∈ VHi

and Rh
j contains two

vertices. Let Rh
j = (s̃hj , t̃

h
j ) (it can happen that t̃hj = s̃hj ). Then s̃hj , t̃

h
j ∈

Si−1 ∪ Si and the partial solution contains an (s̃hj , t̃
h
j )-path.

– If Statehj = Completed, then shj , t
h
j ∈Wi, R

h
j = ∅, and it is assumed that the

partial solution contains an (shj , t
h
j )-path.

We consequently construct the tables for i = 0, . . . , `. The algorithm returns
Yes if R(`,X`, Y`, next`) for X` = Y` = ∅ contains the record {(Statehj , Rh

j )|1 ≤
j ≤ r, 1 ≤ h ≤ pi}, where each Statehj =(Completed). The tables are constructed
and updated as follows.

Constructing the table for i = 0. First, we guess the collection of terminal
pairs (shj , t

h
j ), j ∈ {1, . . . , r}, h ∈ {1, . . . , pj}, such that the (shj , t

h
j )-paths have

vertices in W0 = NH [u0]. For simplicity, assume that it holds for the pairs
(shj , t

h
j ), where j ∈ {1, . . . , r′} and h ∈ {1, . . . , p′j}, r′ ≤ r and each p′j ≤ pj . For

each pair (shj , t
h
j ) of this type, we guess the first vertex s̃hj and the last vertex t̃hj

of the (shj , t
h
j )-path in W0, ŝhj ≺shj

t̂hj . Note that s̃hj = shj (t̃hj = thj respectively) if

shj ∈ W0 (thj ∈ W0 respectively). For j ∈ {1, . . . , r′}, h ∈ {1, . . . , p′j}, denote by

Ph
j the corresponding (s̃hj , t̃

h
j )-subpath of the solution.

Clearly, we can assume that these paths are induced. By Lemma 1, Ph
j has

at most two segments outside W0 and by Lemma 2, each of these segments
contains at most two vertices. Then the total number of the segments of paths
Ph
j outside W0 is at most 2p. Because the vertices of these segments are adjacent

to the vertices of W0, they are in S1 ∪ S2. We guess the set X ′0 of at most 4p
vertices of them in S1 and the set Y ′0 of at most 4p vertices of them in S2.

Now we do guesses for u0. We decide whether u0 is included in some Ph
j or is

not included in any of the paths. If u0 is a vertex of Ph
j , then by Lemma 3, Ph

j has
at most three vertices. Moreover, recall that we are interested in solutions of Set-
Restricted r-Group Disjoint Paths that could be extended to solutions of
Set-Restricted r-Disjoint Paths and conclude that by Lemma 3, h = 1 and
p′j = 1. Otherwise we discard the choice. Then we guess the set of vertices Z =

VPh
j

. Suppose now that u0 is not included in any Ph
j . Assume that u0 ∈ Uj . Since

we can assume that the final solution of Set-Restricted r-Disjoint Paths
is minimal, by Lemma 4 we can guess the paths (if any) Ph

j for h ∈ {1, . . . , p′i}



or discard the choice. Let now Z be the set of the vertices of all such paths (Z
can be empty). Observe that by Lemma 4, |Z| ≤ 3.

Now we are ready to construct R(0, X0, Y0, next0) for each of these choices.
We include a record {(Statehj , Rh

j )|1 ≤ j ≤ r, 1 ≤ h ≤ pi} in R(0, X0, Y0, next0)
if the following holds.

– X ′0 ⊆ X0 and Y ′0 ⊆ Y0.
– For Statehj and Rh

j ,

• if shj , t
h
j ∈W0, then Statehj =Completed, Rh

j = ∅;
• if shj ∈W0, t

h
j /∈W0, then Statehj =Started from s, Rh

j = (t̃hj );

• if shj /∈W0, t
h
j ∈W0, then Statehj =Started from t, Rh

j = (s̃hj );

• if shj /∈ W0, t
h
j /∈ W0 and j ≤ r′, h ≤ p′i, then Statehj =Started from mid-

dle, Rh
j = (s̃hj , t̃

h
j ); and

• Statehj =Not initialized, Rh
j = ∅ otherwise.

– If next0 = 0, then we exclude u1 from all domains Uj , else we exclude u1
from domains Uj such that next0 6= j. Note that the value of next0 should
be consistent with our guesses, i.e., if u1 is already chosen to be included in
Ph
j , then next0 = j. Then we solve Set-Restricted r′-Group Disjoint

Paths for the pairs (s̃hj , t̃
h
j ), where j ∈ {1, . . . , r′} and h ∈ {1, . . . , p′j} for

H[W0 ∪ X ′0 ∪ Y ′0 ]. Observe that by the choice of Z, we already guessed
the paths from one group. Hence, it remains to find the paths Ph

j from at
most r − 1 groups, and we do it by calling our algorithm recursively for
H[W0 ∪X ′0 ∪ y′0]− Z and the corresponding terminal pairs. We include the
record in R(0, X0, Y0, next0) if we get a Yes-answer.

Constructing the table for i > 0. We assume thatR(i−1, Xi−1, Yi−1, nexti−1)
is already constructed. We consider each element {(S̃tatehj , R̃h

j )|1 ≤ j ≤ r, 1 ≤
h ≤ pi} of R(i − 1, Xi−1, Yi−1, nexti−1) and we then construct their successors
in R(i,Xi, Yi, nexti).

First, we guess the collection of terminal pairs (shj , t
h
j ), j ∈ {1, . . . , r}, h ∈

{1, . . . , pj}, such that the (shj , t
h
j )-paths have vertices in Si. For simplicity, assume

that it holds for the pairs (shj , t
h
j ), where j ∈ {1, . . . , r′} and h ∈ {1, . . . , p′j}, r′ ≤

r and each p′j ≤ pj . Suppose also that for j ∈ {1, . . . , r′′} and h ∈ {1, . . . , p′′j },
where r′′ ≤ r′ and each p′′j ≤ p′j , the (shj , t

h
j )-paths have no vertices in Wi−1, i.e.,

S̃tatehj = Not initialized.

For j ∈ {1, . . . , r′′} and h ∈ {1, . . . , p′′j }, we guess the first vertex ŝhj and

the last vertex t̂hj of the (shj , t
h
j )-path in Si \ (Xi−1 ∪ Yi−2), ŝhj ≺shj

t̂hj , (it is

assumed that Y−1 = ∅). Recall here that the vertices of Xi−1 ∪ Yi−2 are already
assumed to be included in paths that have vertices in Wi−1. Note that ŝhj = shj
(t̂hj = thj respectively) if shj ∈ Si (thj ∈ Si respectively). For j ∈ {1, . . . , r′′},
h ∈ {1, . . . , p′′j }, denote by Ph

j the corresponding (ŝhj , t̂
h
j )-subpath of the solution.

Clearly, we can assume that these paths are induced. By Lemma 1, Ph
j has at

most two segments outside Si and by Lemma 2, each of these segments contains
at most two vertices. Then by Lemma 1, the total number of the segments of



paths Ph
j outside Si is at most 2p′′, where p′′ = p′′1+. . .+p′′r′′ . Because the vertices

of these segments are adjacent to the vertices of Si, they are in Si+1 ∪ Si+2. We
guess the set X ′i with at most 4p′′ vertices of them in Si+1 \ Yi−1 and the set Y ′i
with at most 4p′′ vertices of them in Si+2.

Consider now j ∈ {r′′ + 1, . . . , r′} and h ∈ {p′′j + 1, . . . , p′j}. We have the
following cases.

Case 1. Statehj = Started from s. Then shj ∈ Wi−1 and the partial solution in

R(i− 1, Xi−1, Yi−1, nexti−1) contains a (shj , t̃
h
j )-path. Recall that R̃h

j = (t̃hj ). We

guess the first vertex ŝhj and the last vertex t̂hj of the (shj , t
h
j )-path in Si \ (Xi−1∪

Yi−2), ŝhj ≺shj
t̂hj , where ŝhj is adjacent to t̃hj . Note that t̂hj = thj if thj ∈ Si. Denote

by Ph
j the corresponding (ŝhj , t̂

h
j )-subpath of the solution. We say that Ph

j is

obtained by the extension from (t̃hj ).

Case 2. Statehj = Started from t. Then thj ∈ Wi−1 and the partial solution in

R(i−1, Xi−1, Yi−1, nexti−1) contains a (s̃hj , t
h
j )-path. Recall that R̃h

j = (s̃hj ). We

guess the first vertex ŝhj and the last vertex t̂hj of the (shj , t
h
j )-path in Si \ (Xi−1∪

Yi−2), ŝhj ≺shj
t̂hj , where t̂hj is adjacent to s̃hj . Note that ŝhj = shj if shj ∈ Si.

Denote by Ph
j the corresponding (ŝhj , t̂

h
j )-subpath of the solution. We say that

Ph
j is obtained by the extension from (s̃hj ).

Case 3. Statehj = Started from middle. Then shj , t
h
j /∈ Wi−1 and the partial

solution in R(i − 1, Xi−1, Yi−1, nexti−1) contains a (s̃hj , t̃
h
j )-path. Recall that

R̃h
j = (s̃hj , t̃

h
j ) in this case. We have three possibilities to extend this path.

Case 3.1. We guess the first vertex ŝhj and the last vertex t̂hj of the (shj , t
h
j )-path

in Si \ (Xi−1 ∪ Yi−2), ŝhj ≺shj
t̂hj , where t̃hj ≺shj

ŝhj and t̃hj is adjacent to ŝhj .

Denote by Ph
j the corresponding (ŝhj , t̂

h
j )-subpath of the solution. We say that

Ph
j is obtained by the extension from (t̃hj ). Note that t̂hj = thj if thj ∈ Si.

Case 3.2. We guess the first vertex ŝhj and the last vertex t̂hj of the (shj , t
h
j )-path

in Si \ (Xi−1 ∪ Yi−2), ŝhj ≺shj
t̂hj , where t̂hj ≺shj

s̃hj and t̂hj is adjacent to s̃hj .

Denote by Ph
j the corresponding (ŝhj , t̂

h
j )-subpath of the solution. We say that

Ph
j is obtained by the extension from (s̃hj ). Note that ŝhj = shj if shj ∈ Si.

Case 3.3. We guess the first vertex ŝ
h(1)
j and the last vertex t̂

h(1)
j of the (shj , t

h
j )-

path in Si \ (Xi−1 ∪ Yi−2), ŝ
h(1)
j ≺shj

t̂
h(1)
j , where t̂

h(1)
j is adjacent to s̃hj . Then

we guess the first vertex ŝ
h(2)
j and the last vertex t̂

h(2)
j of the (shj , t

h
j )-path in

Si\(Xi−1∪Yi−2), ŝ
h(2)
j ≺shj

t̂
h(2)
j , where ŝ

h(2)
j is adjacent to t̃hj . Note that ŝ

h(1)
j =

shj if shj ∈ Si and t̂
h(2)
j = thj if thj ∈ Si. Denote by P

h(1)
j , P

h(2)
j the corresponding

(ŝ
h(1)
j , t̂

h(1)
j ) and (ŝ

h(2)
j , t̂

h(2)
j )-subpath of the solution respectively. We say that

P
h(1)
j , P

h(2)
j are obtained by the extension from (s̃hj ) and (t̃hj ) respectively.



Clearly, we can assume that all the paths Ph
j , P

h(1)
j , P

h(2)
j are induced. By

Lemma 1, each path has at most two segments outside Si and by Lemma 2,
each of these segments contains at most two vertices. Then the total number of

segments of the paths Ph
j , P

h(1)
j , P

h(2)
j outside Si is at most 2(p′ − p′′), where

p′ = P ′1 + . . . + p′r′ . Because the vertices of these segments are adjacent to the
vertices of Si, they are in Si+1 ∪Si+2. We guess the set X ′′i of at most 4(p′− p′′)
vertices of them in Si+1 \ (Yi−1 ∪X ′i) and the set Y ′′i of at most 2(p′ − p′′) their
vertices in Si+2 \ Y ′i .

Observe additionally that again by Lemma 1, it should hold that |Yi−1∪X ′i∪
X ′′i | ≤ 4p; otherwise we discard our current choice.

Now we consider ui. We have two cases.

Case 1. nexti−1 = 0. Then ui is not included in any path in the partial solution.
Assume that u0 ∈ Uj . Since we can assume that the final solution of Set-
Restricted r-Disjoint Paths is minimal, by Lemma 4 we can guess the

paths (if any) Ph
j , P

h(1)
j , P

h(2)
j for h ∈ {1, . . . , p′i} or discard the choice. Let now

Z be the set of the vertices of all such paths (Z can be empty). Observe that by
Lemma 4, |Z| ≤ 3.

Case 2. nexti−1 = j > 0. By Lemma 3, Ph
j (or P

h(1)
j or P

h(2)
j ) has at most three

vertices. Moreover, we again recall that we are interested in solutions of Set-
Restricted r-Group Disjoint Paths that could be extended to solutions of
Set-Restricted r-Disjoint Paths and conclude by Lemma 3, that we should
have at most one path for j; otherwise we discard the choice. Then we guess the
set of vertices Z of this path.

Now we are ready to construct R(i,Xi, Yi, nexti) for each of these choices.
Recall that the pairs (S̃tatehj , R̃

h
j ) are elements of R(i− 1, Xi−1, Yi−1, nexti−1).

We include a record {(Statehj , Rh
j )|1 ≤ j ≤ r, 1 ≤ h ≤ pi} in R(i,Xi, Yi, nexti)

if the following holds.

– If S̃tatehj =Completed, then Statehj =Completed, Rh
j = ∅.

– If S̃tatehj =Not initialized and j > r′, then Statehj =Not initialized, Rh
j = ∅.

– If S̃tatehj =Started from s or Started from t or Started from middle and

z ∈ R̃h
j ∩ Si−2, then r′′ + 1 ≤ j ≤ r′ and the path obtained by extension

from z is added.
– If S̃tatehj =Started from s and R̃h

j = (t̃hj ), then

• if j > r′, then Statehj =Started from s, Rh
j = (t̃hj );

• if r′′+ 1 ≤ j ≤ r′, then if thj ∈ Si, then Statehj =Completed, Rh
j = ∅; else

if thj /∈ Si, then Statehj =Started from s, Rh
j = (t̂hj ).

– If S̃tatehj =Started from t and R̃h
j = (s̃hj ), then

• if j > r′, then Statehj =Started from t, Rh
j = (s̃hj );

• if r′′+ 1 ≤ j ≤ r′, then if shj ∈ Si, then Statehj =Completed, Rh
j = ∅; else

if shj /∈ Si, then Statehj =Started from s, Rh
j = (ŝhj ).

– If S̃tatehj =Started from middle and R̃h
j = (s̃hj , t̃

h
j ), then



• if j > r′, then Statehj =Started from middle, Rh
j = (s̃hj , t̃

h
j );

• if r′′ + 1 ≤ j ≤ r′ and only the path obtained by the extension from t̃hj
is included in the partial solution by our guesses, then if thj ∈ Si, then

Statehj =Started from s, Rh
j = (s̃hj ); else if thj /∈ Si, then Statehj =Started

from middle, Rh
j = (s̃hj , t̂

h
j );

• if r′′ + 1 ≤ j ≤ r′ and only the path obtained by the extension from s̃hj
is included in the partial solution by our guesses, then if shj ∈ Si, then

Statehj =Started from t, Rh
j = (t̃hj ); else if shj /∈ Si, then Statehj =Started

from middle, Rh
j = (ŝhj , t̃

h
j );

• if r′′ + 1 ≤ j ≤ r′ and two path obtained by the extension from s̃hj and

t̃hj are included in the partial solution by our guesses, then if shj , t
h
j ∈

Si, then Statehj =Completed, Rh
j = ∅; else if shj ∈ Si, t

h
j /∈ Si, then

Statehj =Started from s, Rh
j = (t̂

h(2)
j ); else if shj /∈ Si, t

h
j ∈ Si, then

Statehj =Started from t, Rh
j = (ŝ

h(1)
j ); else if shj , t

h
j /∈ Si, then Statehj =

Started from middle, Rh
j = (ŝ

h(1)
j , ŝ

h(2)
j ).

– For j ≤ r′′,
• if shj , t

h
j ∈ Si, then Statehj =Completed, Rh

j = ∅;
• if shj ∈ Si, t

h
j /∈ Si, then Statehj =Started from s, Rh

j = (t̂hj );

• if shj /∈ Si, t
h
j ∈ Si, then Statehj =Started from t, Rh

j = (ŝhj );

• if shj /∈ Si, t
h
j /∈ Si and j ≤ r′, h ≤ p′i, then Statehj =Started from middle,

Rh
j = (ŝhj , t̂

h
j ); and

• Statehj =Not initialized, Rh
j = ∅ otherwise.

– X ′i ∪X ′′i ∪ Yi ⊆ Xi and Y ′i ∪ Y ′′i ⊆ Yi.
– If nexti = 0, then we exclude ui+1 from all domains Uj , else we exclude ui+1

from domains Uj such that nexti 6= j. Note that the value of nexti should be
consistent with our guesses, i.e., if ui+1 is already chosen to be included in
Ph
j , then next0 = j. Then we solve Set-Restricted r′-Group Disjoint

Paths for the pairs (ŝhj , t̂
h
j ), (ŝ

h(1)
j , t̂

h(1)
j ) and (ŝ

h(2)
j , t̂

h(2)
j ) obtained by our

guesses, where j ∈ {1, . . . , r′} and h ∈ {1, . . . , p′j} for H ′ = H[Si \ (Xi−1 ∪
Yi−2) ∪ X ′i ∪ X ′′i ∪ Y ′i ∪ Y ′′i ]. Observe that by the choice of Z, we already
guessed the paths from one group. Hence, it remains to find the paths from
at most r − 1 groups, and we do it by calling our algorithm recursively
for H ′ − Z and the corresponding terminal pairs. We include the record in
R(i,Xi, Yi, nexti) if we get a Yes-answer.

Now we are ready to prove our main theorem.

Theorem 3. Set-Restricted k-Disjoint Paths can be solved in O(nf(k))
time for n-vertex AT-free graphs for some function f(k) that only depends on k.

Proof. We apply the algorithm for Set-Restricted k-Group Disjoint Paths
described above for G, p1 = . . . = pk = 1, terminal pairs (s1j , t

1
j ) = (sj , tj), and

domains U1, . . . , Uk.



Correctness of the algorithm follows from its construction. It is sufficient
to observe that if the Yes-answer was given by the algorithm then we have
our disjoint paths. From another side, if a given instance of Set-Restricted
k-Disjoint Paths has a solution, then we can assume that this solution is
minimal, and in each step of the algorithm we can always make guesses that
correspond to these paths. Clearly, these choices would lead us to a Yes-answer.

It remains to prove that the algorithm runs in polynomial time for any fixed k.
To produce each R(i,Xi, Yi, nexti), we guess some vertices. The total number of
guesses is at mostO(p1+. . .+pr). Note that initially r = k and p1 = . . . = pk = 1.
We call our algorithm recursively and for each recursive call, we reduce the
number of groups and we can multiply the number of pairs in a group by at
most two. Hence, p1 + . . . + pr ≤ k2k−1. If r = 1, then we solve the problem
using Lemma 5 in time g(k2k−1)n3 for some function g(k) not depending on n.
Then the running time of our algorithm is O(nf(k)) for some function f(k) not
depending on n. ut

3.3 Set-restricted k-Disjoint Connected Subgraphs

We show that our algorithm for Set-Restricted k-Disjoint Paths can be
applied to solve the more general problem Set-restricted k-Disjoint Con-
nected Subgraphs on AT-free graphs.

Theorem 4. Set-Restricted k-Disjoint Connected Subgraphs can be
solved in polynomial time on AT-free graphs for any fixed integer k.

Proof. Clearly, we can assume that for i ∈ {1, . . . , k}, Si ⊆ Ui, and for any
j ∈ {1, . . . , k}, j 6= i, Si ∩ Uj = ∅.

Observe that if G contain k pairwise vertex-disjoint connected subgraphs
G1, . . . , Gk such that Si ⊆ VGi ⊆ Ui, for 1 ≤ i ≤ k, then each Gi is AT-free and,
therefore, has a dominating pair (ui, vi) by Theorem 1. For each i ∈ {1, . . . , k},
we guess this pair (ui, vi) (it can happen that ui = vi), and guess at most six
vertices of a shortest (ui, vi)-path Pi in Gi as follows: if Pi has at most five
vertices, then we guess all vertices of Pi, and if Pi has at least six vertices,
then we guess the first three vertices xi1, x

i
2, x

i
s ∈ Ui and the last three vertices

yi1, y
i
2, y

i
3 ∈ Ui, ui = xi1, vi = yi3 and xi1 ≺ui x

i
2 ≺ui x

i
3 ≺ui y

i
1 ≺ui y

i
2 ≺ui y

i
3 in

Pi. Observe that Pi is an induced path.
If we guess all vertices of Pi, then we check whether Pi dominates Si, and if

it is so, then we solve Set-Restricted Disjoint Connected Subgraphs for
the graph G − (VPi

∪ Si) and the sets Sj , j 6= i with their domains. Otherwise
we discard our choice.

Now we can assume that for each i ∈ {1, . . . , k}, Pi has at least six ver-
tices. We modify domains Ui and sets Si: U

′
i = (Ui \ NG[{x1i , x2i , y2i , y3i }]) ∪

{x1i , x2i , x3i , y11 , y2i , y3i } and S′i = Ui \ NG[{x1i , x2i , y2i , y3i }] for i ∈ {1, . . . , k}. The
vertices of S′i should be in the same component of G[U ′i ]; otherwise we discard
our guess, since Pi should dominate Si. Denote by U ′′i the set of vertices of the
component of G[U ′i ] with Si ⊆ U ′′i .



We claim that (xi1, y
i
3) is a dominating pair in G[U ′′i ] for i ∈ {1, . . . , k}. To

show it, consider a dominating pair (x, y) in G[U ′′i ]. Any (x, y)-path P dominates
xi1 and yi3. It follows that one vertex of the pair is in {xi1, xi2} and another is in
{yi2, yi3}. It remains to observe that if xi2 (yi2 respectively) is in the pair, then it
can be replaced by xi1 (yi3 respectively).

It follows that any (xi1, y
i
3)-path in dominates G[U ′′i ]. We can find disjoint

(xi1, y
i
3)-paths (if exist), by solving Set-Restricted k-Disjoint Paths for

the pairs of terminals (xi1, y
i
3) with domains U ′′i for i ∈ {1, . . . , k}. Since by

Theorem 3, it can be done in polynomial time, and we guess at most 6k vertices,
the claim of the theorem follows. ut

4 Induced Minors

In this section we consider the H-Induced Minor problem. It is convenient for
us to represent this problem in the following way. An H-witness structure of G
is a collection of |VH | non-empty mutually disjoint sets W (x) ⊆ VG, one set for
each x ∈ VH , called H-witness sets, such that

(i) each W (x) is a connected set; and
(ii) for all x, y ∈ VH with x 6= y, sets W (x) and W (y) are adjacent in G if and

only if x and y are adjacent in H.

Observe that H is an induced minor of G if and only if G has an H-witness
structure.

Theorem 5. H-Induced Minor can be solved in polynomial time on AT-free
graphs for any fixed graph H.

Proof. Suppose that H is an induced minor of G. Then G has an H-witness
structure, i.e., sets W (x) ⊆ VG for x ∈ VH . For each x ∈ VH , G[W (x)] is a
connected AT-free graph. Hence, by Theorem 1, G[W (x)] has a dominating pair
(ux, vx).

For each x ∈ VH , we guess the pair (ux, vx) (it can happen that ux = vx), and
guess at most six vertices of a shortest (ux, vx)-path Px in G[W (x)] as follows:
if Px has at most five vertices, then we guess all vertices of Px, and if Px has
at least six vertices, then we guess the first three vertices ux1 , u

x
2 , u

x
3 and the last

three vertices vx1 , v
x
2 , v

x
3 such that ux = ux1 , vx = vx3 and ux1 ≺ux u

x
2 ≺ux u

x
3 ≺ux

vx1 ≺ux
vx2 ≺ux

vx3 in Px. Observe that Px is an induced path. We denote by
X1, X2 the partition of VH (one of the sets can be empty), where for x ∈ X1,
all at most five vertices of Px were chosen, and for x ∈ X2, we have the vertices
ux1 , u

x
2 , u

x
3 , v

x
1 , v

x
2 , v

x
3 . Further, for each edge xy ∈ EH , we guess adjacent vertices

sxy, syx ∈ VG, where sxy ∈W (x) and syx ∈W (y). Note that the vertices sxy are
not necessarily distinct, and some of them can coincide with the vertices chosen
to represent Px. Let S(x) = {sxy|xy ∈ EH}. All the guesses should be consistent
with the witness structure, i.e., vertices included in distinct W (x) should be
distinct, and if xy /∈ EH , then the vertices included in W (x) and W (y) should
be non-adjacent in G.



For x ∈ X1, we check whether the guessed path Px dominates S(x), and if
it is so, then we let W ′(x) = VPx

∪ S(x). Otherwise we discard our choice.

Recall that we already selected some vertices, and that we cannot use these
vertices and also not their neighbors in case non-adjacencies in H forbid this.
Hence, for each x ∈ X2, we obtain the set

Ux = VG \
(
(∪y∈X1,xy∈EH

W ′(y)) ∪ (∪y∈X1,xy/∈EH
NG[W ′(y)])∪

∪ (∪y∈X2,xy∈EH
(S(y) ∪ {uy1, u

y
2, u

y
3, v

y
1 , v

y
2 , v

y
3})∪

∪ (∪y∈X2\{x},xy/∈EH
NG[S(y) ∪ {uy1, u

y
2, u

y
3, v

y
1 , v

y
2 , v

y
3}]∪

∪NG[{ux1 , ux2 , vx2 , vx3}]
)
∪ {ux1 , ux2 , ux3 , vx1 , vx2 , vx3}.

Then for each x ∈ X2, we check whether S′(x) = S(x) \ NG[{ux1 , ux2 , vx2 , vx3}] is
included in one component of G[Ux]. If it is not so, then we discard our choice,
since we cannot have a path with the first vertices ux1 , u

x
2 , u

x
3 and the last vertices

vx1 , v
x
2 , v

x
3 that dominates S(x). Otherwise we denote by U ′x the set of vertices of

the component of G[Ux] that contains S′(x). Note that (ux1 , v
x
3 ) is a dominating

pair in G[U ′x] for x ∈ X2. To show it, consider a dominating pair (u, v) in G[U ′x].
Any (u, v)-path P dominates ux1 and vx3 . It follows that one vertex of the pair
is in {ux1 , ux2} and another is in {vx2 , vx3}. It remains to observe that if ux2 (vx2
respectively) is in the pair, then it can be replaced by ux1 (vx3 respectively). We
solve Set-Restricted |X2|-Disjoint Paths for the pairs of terminals (ux1 , v

x
3 )

with domains U ′x for x ∈ X2. If we get a No-answer, then we discard our guess
since there are no Px that satisfy our choices. Otherwise, let P ′x be the (ux1 , v

x
3 )-

path in the obtained solution for x ∈ X2. We let W ′(x) = P ′x ∪ S(x).

We claim that the sets W ′(x) compose an H-witness structure. To show
it, observe first that by the construction of these sets, W ′(x) are disjoint. If
xy ∈ EH , then as sxy ∈ W ′(x) and syx ∈ W ′(y), W ′(x) and W ′(y) are ad-
jacent. It remains to prove that if xy /∈ EG, then W ′(x) and W ′(y) are not
adjacent. To obtain a contradiction, assume that W ′(x) and W ′(y) are adjacent
for some x, y ∈ VH , i.e., there is uv ∈ EG with u ∈ W ′(x) and v ∈ W ′(y),
where xy /∈ EH . By the construction of W ′(x),W ′(y), x, y ∈ X2. Moreover,
u /∈ NG[{ux1 , ux2 , vx2 , vx3}] or v /∈ NG[{uy1, u

y
2, v

y
2 , v

y
3}]. If u /∈ NG[{ux1 , ux2 , vx2 , vx3}],

then we consider ux1 , v
x
3 , u

y
1 and observe that these vertices compose an asteroidal

triple. Clearly, the (ux1 , v
x
3 )-path P ′x avoids NG[uy1], because NG[uy1] ∩ Ux = ∅.

Because u /∈ NG[{ux1 , ux2 , vx2 , vx3}], u is either in P ′x or adjacent to a vertex in P ′x
and v is either in P ′y or adjacent to a vertex in P ′y, G[W ′(x)∪W ′[y]]−NG[ux1 ] and
G[W ′(x)∪W ′[y]]−NG[vx3 ] are connected. Hence, there are (ux1 , u

y
1) and (vx3 , u

y
1)-

paths that avoid NG[vx3 ] and NG[ux1 ] respectively. By symmetry, we conclude
that if v /∈ NG[{uy1, u

y
2, v

y
2 , v

y
3}], then uy1, v

y
3 , u

x
1 is an asteroidal triple. This con-

tradiction proves our claim.

To complete the proof, note that we guess at most 6|VH |+2|EH | vertices of G,
and we can consider all possible choices in time nO(|VH |+|EH |), where n = |VG|. If
for one of the choices we get an H-witness structure, then H is an induced minor
of G, otherwise we return No. As we can solve Set-Restricted |X2|-Disjoint
Paths in time nf(|VH |) by Theorem 3, the claim follows. ut



We complement Theorem 5 as follows. A graph is cobipartite (and conse-
quently AT-free) if its vertex set can be partitioned into two cliques. Clearly,
any cobipartite graph is AT-free.

Theorem 6. The H-Induced Minor problem is NP-complete for cobipartite
graphs, and W[1]-hard for cobipartite graphs when parameterized by |VH |.

Proof. We first give a W[1]-hardness proof that also serves as an NP-hardness
proof. We reduce from the well-known W[1]-complete Clique problem [6]. For
a graph G and a parameter k, this problem asks whether G has a clique of size
k. Let (G, k) be an instance of Clique. Without loss of generality we assume
that k ≥ 4. We construct the cobipartite graph G′ as follows:

• create a copy of VG and construct a clique U on these vertices;
• for each edge uv ∈ EG, create a vertex euv adjacent to all vertices of U\{u, v};
• construct the clique W = {euv | uv ∈ EG}.

Now we construct the graph H:

• create a clique X of size k with vertices x1, . . . , xk;
• create a clique Y with 1

2k(k − 1) vertices yij , 1 ≤ i < j ≤ k;
• for each pair i, j with 1 ≤ i < j ≤ k, make xh adjacent to yij for h ∈
{1, . . . , k}, h 6= i, j.

We prove that G has a clique of size k if and only if H is an induced minor of G′.
First suppose that G has a clique {u1, . . . , uk}. Then the subgraph of G′ induced
by this clique and the set of vertices {euiuj | 1 ≤ i < j ≤ k} is isomorphic to H,
i.e, H is an induced subgraph of G′, and therefore an induced minor of G′.

Now suppose that H is an induced minor of G′. Let W (z) ⊆ VG′ for z ∈ VH
be an H-witness structure. Note that because k ≥ 4, each vertex xi ∈ U is
not adjacent to at least three vertices of H. Since for each vertex euv ∈ W
dG(euv) = |VG| − 3, we find that W ∩ (∪ki=1W (xi)) = ∅ and ∪ki=1W (xi) ⊆ U .
Suppose that U ∩W (yij) 6= ∅ for some 1 ≤ i < j ≤ k. Then W (yij) is adjacent
to each set W (xh) for h ∈ {1, . . . , k}, but yij is not adjacent to two vertices of
{x1, . . . , xk}. This gives us a contradiction, and, therefore, ∪1≤i<j≤kW (yij) ⊆
W . Now we prove that |W (z)| = 1 for z ∈ VH . To obtain a contradiction, assume
that |W (z)| ≥ 2 for some z ∈ VH . We have two cases.

Case 1. eu1u2
, ev1v2 ∈W (yij) for some 1 ≤ i < j ≤ k. Observe that dG(eu1u2

) =
dG(ev1v2) = |VG| − 3. Also for u1u2 6= v1v2, NG[eu1u2

] 6= NG[ev1v2 ]. Hence,
dH(yij) ≥ |VH | − 2, but H has no such vertices; a contradiction.

Case 2. u, v ∈W (xi) for some i ∈ {1, . . . , k}. Let j ∈ {1, . . . , k}, j 6= i. Assume
without loss of generality that i < j (otherwise consider further the vertex yji
instead of yij). The vertex yij is not adjacent to xi, yj . Hence, W (yij) is not
adjacent to W (xi) and W (xj), i.e., the single vertex from W in W (yij) is not
adjacent to at least three vertices of U . It remains to observe that any vertex in
W is not adjacent to at most two vertices in U ; a contradiction.



We conclude that H is an induced subgraph of G′, and, moreover, the vertices
of X are in U , and the vertices of Y are in W for the copy of H in G′. Hence,
X is a clique in G. This completes the W[1]-hardness proof.

To complete the proof of Theorem 6, it remains to observe that our W[1]-
hardness proof immediately implies NP-hardness, as Clique is NP-complete and
our reduction is polynomial. ut

5 Contractibility

In this concluding section we give another applications the algorithm for Set-
Restricted k-Disjoint Paths. We show that it can be used to obtain an
algorithm for H-Contractibility for the case when H has no triangles.

As with Induced Minor, we represent H-Contractibility as a parti-
tion problem. An H-contraction witness structure of G is a partition of VG into
|VH | non-empty disjoint sets W (x) ⊆ VG, one set for each x ∈ VH , called H-
contraction witness sets, such that

(i) each W (x) is a connected set; and
(ii) for all x, y ∈ VH with x 6= y, sets W (x) and W (y) are adjacent in G if and

only if x and y are adjacent in H.

Clearly, H is a contraction of G if and only if G has an H-contraction wit-
ness structure: H can be obtained from G by contracting the edges in each
H-contraction witness set until a single vertex remains in each of them.

Let H be an induced minor of G with the witness structure W (x) for x ∈ VH
such that ∪x∈VH

W (x) is a dominating set of G. We say that the witness structure
W can be extended to an H-contraction witness structure if there is an H-
contraction witness structure W ′(x), where W (x) ⊆ W ′(x) ⊆ NG[W (x)] for
x ∈ VH . We need the following lemma.

Lemma 6. Let a triangle-free graph H be an induced minor of G with the cor-
responding witness structure W (x) for x ∈ VH such that ∪x∈VH

W (x) is a dom-
inating set of G. Then it can be decided in polynomial time whether W can be
extended to an H-contraction witness structure.

Proof. Let U = VG \ ∪x∈VH
W (x). For a vertex u ∈ U , we say that we assign u

to W (x) if we put u in W ′(x). We assign vertices to the sets W ′(x) recursively
using the following rules.

Rule 1. If for a non-assigned vertex u ∈ U there is a unique x ∈ VH such that
u ∈ NG[W (x)], then u is assigned to W ′(x).

Let X(u) = {x ∈ VH |u ∈ NG[W (x)] for u ∈ U . Now we can assume that
|X(u)| ≥ 2 for non-assigned vertices of U .

Rule 2. If for a non-assigned u ∈ U , |X(u)| ≥ 3, then if H[X(u)] is a star
with the central vertex x, then we assign x to W ′(x). Otherwise, we stop and
return a No-answer. To see the correctness of this rule, note that if u ∈ W ′(x),



then x should be adjacent to all other vertices of X(u). Then because H has no
triangles, H[X(u)] is a star with the central vertex x.

Now we can assume that X(u) = {x1(u), x2(u)} for non-assigned vertices of
U .

Rule 3. If for a non-assigned u ∈ U , x1(u), x2(u) are not adjacent in H, then
we stop and return a No-answer.

Rule 4. If for u, v ∈ U such that uv ∈ EG, u is not assigned and v is assigned
to W ′(y), then if y /∈ NH [x1(u)] (y /∈ NH [x2(u)] respectively), then u is assigned
to W ′(x2(u)) (to W ′(x1(u)) respectively).

After this rule, it is safe to use the next one.

Rule 5. If for a non-assigned u ∈ U , each v ∈ U adjacent to u is assigned, then
assign u arbitrary to either W ′(x1(u)) or W ′(x2(u)).

Rule 6. If for u, v ∈ U such that uv ∈ EG, u is assigned to W ′(x) and v is
assigned to W ′(y), then if either x 6= y or xy /∈ EH , then we stop and return a
No-answer.

The remaining assignments are done as follows. Note that any non-assigned
u ∈ U is adjacent to non-assigned vertices of U , and for any assigned neighbor
v ∈ U , any assignment of u is safe. For each non-assigned u ∈ U with X(u) =
{x1(u), x2(u)}, we introduce a Boolean variable zu and assume that zu = true if
u is assigned to W ′(x1(u)), and zu = false otherwise. For adjacent non-assigned
u, v ∈ U , we define a Boolean function fuv(zu, zv) such that fuv(zu, zv) = true
if and only if for the assignments of u, v to W ′(xi(u)),W ′(xj(v)) respectively
that correspond to the values of zu, zv, either xi(u) = xj(v) or xi(u)xj(v) ∈ EH .
Clearly, fuv(zu, zv) can be written in the conjunctive normal form where each
clause contains at most two literals. Consider the formula φ = ∧uv∈Afuv(zu, zv),
where A = {uv ∈ EG|u, v ∈ U and u, v are non-assigned}. Note that φ gives an
instance of 2-Satisfiability that can be solved in linear time [16]. If we get a
solution, then we assign u according to the value of zu. Otherwise, we return a
No-answer. ut

Now we are ready to prove the main theorem of this section.

Theorem 7. H-Contractibility can be solved in polynomial time on AT-free
graphs for any fixed triangle-free graph H.

Proof. We check whether H is a minor of G with an H-witness structure that
can be extended to an H-contraction witness structure. To do it we use the same
approach as in the proof of Theorem 5.

Suppose that H is a contraction of G. Then G has an H-contraction witness
structure, i.e., a partition W (x) for x ∈ VH of the set VG. For each x ∈ VH ,
G[W (x)] is a connected AT-free graph. Hence, by Theorem 1, G[W (x)] has a
dominating pair (ux, vx).

For each x ∈ VH , we guess the pair (ux, vx) (it can happen that ux = vx), and
guess at most six vertices of a shortest (ux, vx)-path Px in G[W (x)] as follows:



if Px has at most five vertices, then we guess all vertices of Px, and if Px has
at least six vertices, then we guess the first three vertices ux1 , u

x
2 , u

x
3 and the last

three vertices vx1 , v
x
2 , v

x
3 , ux = ux1 , vx = vx3 such that ux1 ≺ux

ux2 ≺ux
ux3 ≺ux

vx1 ≺ux vx2 ≺ux vx3 in Px. Observe that Px is an induced path. We denote by
X1, X2 the partition of VH (one of the sets can be empty), where for x ∈ X1,
all at most five vertices of Px were chosen, and for x ∈ X2, we have the vertices
ux1 , u

x
2 , u

x
3 , v

x
1 , v

x
2 , v

x
3 . Further, for each edge xy ∈ EH , we guess adjacent vertices

sxy, syx ∈ VG, where sxy ∈W (x) and syx ∈W (y). Note that the vertices sxy are
not necessary distinct, and some of them can coincide with the vertices chosen
to represent Px. Let S(x) = {sxy|xy ∈ EH}. All the guesses should be consistent
with the witness structure, i.e., vertices included in distinct W (x) should be
distinct, and if xy /∈ EH , then the vertices included in W (x) and W (y) should
be nonadjacent in G.

For x ∈ X1, we check whether the guessed path Px dominates S(x), and if
it is so, then we let W ′(x) = VPx ∪ S(x). Otherwise we discard our choice.

Recall that we already selected some vertices, and that we cannot use these
vertices and also not their neighbors in case non-adjacencies in H forbid this.
For each x ∈ X2, we then define the set

Ux = VG \
(
(∪y∈X1,xy∈EH

W ′(y)) ∪ (∪y∈X1,xy/∈EH
NG[W ′(y)])∪

∪ (∪y∈X2,xy∈EH
(S(y) ∪ {uy1, u

y
2, u

y
3, v

y
1 , v

y
2 , v

y
3})∪

∪ (∪y∈X2\{x},xy/∈EH
NG[S(y) ∪ {uy1, u

y
2, u

y
3, v

y
1 , v

y
2 , v

y
3}]∪

∪NG[{ux1 , ux2 , vx2 , vx3}]
)
∪ {ux1 , ux2 , ux3 , vx1 , vx2 , vx3}.

Then for each x ∈ X2, we check whether S′(x) = S(x) \ NG[{ux1 , ux2 , vx2 , vx3}] is
included in one component of G[Ux]. If it is not so, then we discard our choice,
since we cannot have a path with the first vertices ux1 , u

x
2 , u

x
3 and the last vertices

vx1 , v
x
2 , v

x
3 that dominates S(x). Otherwise we denote by U ′x the set of vertices of

the component of G[Ux] that contains S′(x). Note that (ux1 , v
x
3 ) is a dominating

pair in G[U ′x] for x ∈ X2. To show it, consider a dominating pair (u, v) in G[U ′x].
Any (u, v)-path P dominates ux1 and vx3 . It follows that one vertex of the pair
is in {ux1 , ux2} and another is in {vx2 , vx3}. It remains to observe that if ux2 (vx2
respectively) is in the pair, then it can be replaced by ux1 (vx3 respectively). We
solve Set-Restricted |X2|-Disjoint Paths for the pairs of terminals (ux1 , v

x
3 )

with domains U ′x for x ∈ X2. If we get the No-answer, then we discard our
guess since there are no Px that satisfy our choices. Otherwise, let P ′x be the
(ux1 , v

x
3 )-path in the obtained solution for x ∈ X2. We let W ′(x) = P ′x ∪ S(x).

We claim that the sets W ′(x) compose an H-witness structure. To show
it we use exactly the same arguments as in the proof of Theorem 5. Observe
first that by the construction of these sets, W ′(x) are disjoint. If xy ∈ EG,
then as sxy ∈ W ′(x) and syx ∈ W ′(y), W ′(x) and W ′(y) are adjacent. It re-
mains to prove that if xy /∈ EH , then W ′(x) and W ′(y) are not adjacent.
To obtain a contradiction, assume that W ′(x) and W ′(y) are adjacent for
some x, y ∈ VH , i.e., there is uv ∈ EG with u ∈ W ′(x) and v ∈ W ′(y),
where xy /∈ EH . By the construction of W ′(x),W ′(y), x, y ∈ X2. Moreover,
u /∈ NG[{ux1 , ux2 , vx2 , vx3}] or v /∈ NG[{uy1, u

y
2, v

y
2 , v

y
3}]. If u /∈ NG[{ux1 , ux2 , vx2 , vx3}],



then we consider ux1 , v
x
3 , u

y
1 and observe that these vertices compose an asteroidal

triple. Clearly, the (ux1 , v
x
3 )-path P ′x avoids NG[uy1], because NG[uy1] ∩ Ux = ∅.

Because u /∈ NG[{ux1 , ux2 , vx2 , vx3}], u is either in P ′x or adjacent to a vertex in P ′x
and v is either in P ′y or adjacent to a vertex in P ′y, G[W ′(x)∪W ′[y]]−NG[ux1 ] and
G[W ′(x)∪W ′[y]]−NG[vx3 ] are connected. Hence, there are (ux1 , u

y
1) and (vx3 , u

y
1)-

paths that avoid NG[vx3 ] and NG[ux1 ] respectively. By symmetry, we conclude
that If v /∈ NG[{uy1, u

y
2, v

y
2 , v

y
3}], then uy1, v

y
3 , u

x
1 is an asteroidal triple. This con-

tradiction proves our claim.

Suppose now that all our guesses were correct, i.e., the chosen vertices belong
to the paths Px and the sets W (x) as it was described.

Now we claim that ∪x∈VH
W ′(x) dominates G. Clearly, for x ∈ X1, Px dom-

inates W (x). For x ∈ X2, by the construction of U ′x, we have that W (x) ⊆
U ′x ∪ NG[{ux1 , ux2 , vx2 , vx3}]. Hence, W ′(x) dominates W (x). Since the sets W (x)
form a partition of VG, the claim follows. Hence, the next step of our algorithm
is to check whether ∪x∈VH

W ′(x) is a dominating set. If it is not so, then we
discard our guesses.

Our next claim is that if the guesses were correct, then the H-witness
structure W ′(x) can be extended to an H-contraction witness structure. Let
W ′′(x) = W ′(x) ∪ ((VG \ ∪x∈VH

W ′(x)) ∩W (x)). Since W ′(x) dominates W (x),
W ′(x) ⊆W ′′(x) ⊆ NG[W ′(x)].

We show that W ′′(x) is an H-contraction witness structure. Observe that
the sets W ′′(x) form a partition of VG, and each W ′′(x) is connected by the
definition. To obtain a contradiction, assume that there is uv ∈ EG such that
u ∈ W ′′(x), v ∈ W ′′(y), x 6= y and xy /∈ EH . Note that u /∈ W (x) or v /∈ W (y).
If u /∈ W (x) or v /∈ W (y), then u ∈ W ′(x) and v ∈ W ′(y), but this leads to
a contradiction, since W ′ is an H-witness structure. Therefore, we can assume
that u ∈W ′(x) \W (x) and v ∈W (y). Then v ∈W (y) \W ′(y). If x ∈ X1, then
W ′(x) ⊆ W (x) and W ′(x) \W (x) = ∅. Hence, x ∈ X2. Since {ux1 , ux2 , vx2 , vx3} ⊆
W (x), v /∈ NG[{ux1 , ux2 , vx2 , vx3}∪S(x)], and, moreover,G[W (y)] contains a (uy1, v)-
path P that avoids NG[{ux1 , ux2 , vx2 , vx3} ∪ S(x)]. Now we prove that ux1 , v

x
3 , u

y
1 is

am asteroidal triple. The (ux1 , v
x
3 )-path Px avoids NG(uy1). If u ∈ VPx

, then
u 6= ux1 , u

x
2 , v

x
2 , v

x
3 because v is adjacent to u. Then the concatenation of P , vu

and (u, ux1)-subpath of P ′x ((u, vx3 )-subpath of P ′x respectively) gives a (uy1, u
x
1)-

path that avoids NG[vx3 ] (NG[vx3 ] respectively). If u /∈ VPx , then u ∈ S(x). But
then v /∈ NG[S(x)], a contradiction.

Using this claim, we check whether the H-witness structure W ′(x) can be
extended to an H-contraction witness structure using Lemma 6. If we get an
H-contraction witness structure, then we conclude that H is a contraction of G.

To complete the proof of the theorem, note that we guess at most
6|VH | + 2|EH | vertices of G, and we can consider all possible choices in time
nO(|VH |+|EH |), where n = |VG|. If for one of the choices we get an H-witness
structure that can be extended to an H-contraction witness structure, then H is
a contraction of G, otherwise we return No. Since, we can solve Set-Restricted
|X2|-Disjoint Paths in time nf(|VH |) by Theorem 3 and we can decide in



polynomial time whether an H-witness structure can be extended to an H-
contraction witness structure by Lemma 6, the claim follows. ut

The join of two vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2) is
the graph G1 on G2 = (V1∪V2, E1∪E2∪{uv | u ∈ V1, v ∈ V2}). Van ’t Hof et al.
in [12] showed that a graph G contains a graph H as an induced minor if and
only if K1 on G contains K1 on H as a contraction [12]. This fact together with
Theorem 6 yields Corollary 1.

Corollary 1. H-Contractibility is NP-complete for cobipartite graphs, and
W[1]-hard for cobipartite graphs when parameterized by |VH |.

Determining the complexity classification of H-Contractibility on AT-
free graphs when H is a fixed graph that is not triangle-free is an open problem.
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14. M. Kamiński and D. M. Thilikos. Contraction checking in graphs on surfaces. In:
Proceedings of STACS 2012, 182–193.

15. T. Kloks, D. Kratsch, and H. Müller. Approximating the bandwidth for AT-free
graphs. Journal of Algorithms, 32: 41–57, 1999.



16. M.R. Krom. The decision problem for a class of first-order formulas in which all
disjunctions are binary. Zeitschrift für Mathematische Logik und Grundlagen der
Mathematik, 13 (1967), 15–20.

17. C.G. Lekkerkerker and J.Ch. Boland. Representation of a finite graph by a set of
intervals on the real line. Fundamenta Mathematicae, 51: 45–64, 1962.

18. A. Levin, D. Paulusma, and G. J. Woeginger. The computational complexity of
graph contractions I: polynomially solvable and NP-complete cases. Networks, 51:
178–189, 2008.

19. A. Levin, D. Paulusma, and G. J. Woeginger. The computational complexity of
graph contractions II: two tough polynomially solvable cases. Networks 52: 32–56,
2008.
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