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Abstract. In this paper we study how two planar embeddings of the same bicon-
nected graph can be morphed one into the other while minimizing the number of
elementary changes.

1 Introduction

A useful feature of a graph drawing editor is the possibility of selecting a certain face
of the drawing and of promoting it to be the external face (see, e.g., [9]). In order to
preserve the mental map, the user would like that the editor executed such an operation
by performing a few changes to the drawing.

The above operation is just an example of a topological feature that would be useful
to have at disposal from an editor. More generally, it would be interesting to have an
editor allowing the user to look at a drawing and to specify in some way, e.g. pointing
at vertices or edges, a new embedding. Such an embedding could be even requested
at a more abstract level, asking the editor to go to one with minimum depth, or with
minimum radius, etc. Again, the editor should transform the current embedding into
the new one smoothly, i.e. with the minimum number of changes.

A similar problem occurs when, keeping the topology unchanged, an editor has to
geometrically morph a drawing into another one, specified in some way from the user.
In this case the operations that the editor can perform are topology-preserving transla-
tions and scaling of objects. The user would like to see a geometric morphing with the
minimum number of intermediate snapshots.

The existence of a geometric morphing between two drawings was addressed sur-
prisingly long ago. Cairns proved in 1944 that between any two straight-line drawings
of a triangulated planar graph there exists a morph in which any intermediate drawing
is straight-line planar [7]. This was extended to general planar graphs by Thomassen
in 1983 [19]. The first algorithms to find such morphings were proposed by Floater
and Gotsman for triangulations [12] and by Gotsman and Surazhsky for general plane
graphs [[13]]. While the search for a geometric morph between two given drawings of a
planar graph with a polynomial number of steps and with a bounded size of the needed
grid is still open, some recent studies address the problem for the special cases of or-
thogonal drawings [15l6] and arbitrary plane drawings [11].
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Fig. 1. A sequence of flips and skips transforming an embedding

We study the morphing between two drawings from the topological perspective and
we call it topological morphing. There are many ways to state the problem, ranging
from the family of graphs, to the operations that an editor can perform, their complete-
ness, their ability to capture changes that are “natural” for the user, and to the metrics
that distinguish a good from a bad morphing. This work starts from the following ba-
sic hypotheses. (i) We consider biconnected planar graphs, since such graphs are the
building block of several graph drawing methodologies. (ii)) We consider operations
that move in one step entire blocks of the drawing, that are identified by some connec-
tivity features. Namely, using a term that is common in planarity testing literature, we
call flip the operation that allows to “flip” a component around its separation pair. Also,
borrowing the term from the common rope skipping game played by children, we call
skip the operation that allows to move the external face by “skipping” an entire com-
ponent without modifying the combinatorial embedding. (iii) The metric is the number
of performed operations. Namely, we have that a topological morphing is “good” if
the editor performs it with a few flips and skips. Intuitively, the fewer operations are
performed, the better the user preserves the mental map.

As an example, suppose that the graph is embedded as shown in Fig.[Tla and that the
user would like to obtain the embedding in Fig.[Ild. A minimum sequence of operations
that leads to Fig.[Ild consists of flipping the component separated by the starred vertices
of Fig.[Ila, then by skipping the component separated by the starred vertices of Fig.[Ilb,
and finally by skipping the edge separated by the starred vertices of Fig.[Tlc.

We present the following results. Let G be a biconnected planar graph and denote
by (I, f) one of its combinatorial embeddings I" with f as external face. Suppose
that pair (I, f1) is the current topology and that (I, f2) represents a target topology
chosen by the user. (1) In Sect. [2l we show that if both flips and skips are allowed the
general problem of morphing (I, f1) into (I3, f2) with the minimum number of flips
and skips is NP-complete. Motivated by such a result we tackle several more restricted
problems. (2) Suppose that I} = I and that only skips are allowed. In Sect. 3] we
give a linear time algorithm to move the external face from f; to fo with the minimum
number of skips. (3) In Sect. ] we show that the topological morphing problem can be
efficiently solved if G' does not have parallel triconnected components. (4) In Sect.
we show that the problem is fixed-parameter tractable. Basic definitions are in Sect.
while concluding remarks are in Sect.
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2 Basic Concepts

In this section we define the flip and skip operations and their properties. The proofs of
the lemmas and theorems can be found in [/1]].

We assume familiarity with planarity and connectivity of graphs. A planar drawing
of a graph is a mapping of its vertices to distinct points of the plane and of its edges
to non-intersecting open Jordan curves between their end-points. A graph is planar if
it has a planar drawing. A planar drawing partitions the plane into faces (topologically
connected regions). The unbounded face is the external face. Two planar drawings of a
graph G are equivalent if they determine the same circular ordering of the edges around
each vertex. An equivalence class of planar drawings is a combinatorial embedding of
G. A planar embedding is a pair (I, f), where I is a combinatorial embedding and f
is the external face.

The SPOR-tree T of a biconnected graph G describes the arrangement of its tricon-
nected components. We assume familiarity with SPQR-trees. For details see [10].

Let G be a biconnected planar graph and let 7 be the SPQR-tree of G. A planar
embedding (I, f) of G can be represented by a labeling of 7. Namely, I" is described by
the combinatorial embedding of the skeleton of each node in 7', which can be succinctly
represented by labeling each R-node with a Boolean value and each P-node with a
circular ordering of its adjacent nodes, as described in [3]].

In order to account for the external face f in the SPQR-tree 7, we introduce the
following definitions. A node u of 7 is an allocation node of a face f of I" either if
w is a Q-node incident to f or if there exist no virtual edge e of skel(u) such that
pertinent(e) contains all the edges of f. Observe that if y is an allocation node of
f, then there is exactly one face f,, in skel(p) such that all the pertinent graphs of
its virtual edges contain at least one edge of f. Face f, is the representative of f in
skel(w). In the following, we will denote by f both a face of I" and its representative
face in the skeleton of one of its allocation nodes. We say that f belongs to all its
allocation nodes. The set of all the allocation nodes of f are a subtree of 7, called the
allocation tree of f. Figure[2la shows examples of allocation trees.

Property 1. The allocation tree of a face f is the subtree of 7 whose leaves are the
Q-nodes corresponding to the edges of f.

The external face of I" can be provided by specifying its allocation tree in 7 The fol-
lowing lemma shows how adjacent nodes in 7 share exactly two faces.

Lemma 1. Let j11 and po be two adjacent nodes of an SPQR-tree T. There are exactly
two faces [’ and f" of I that belong both to p; and to . In skel(u) (skel(us2)) f'
and f" share edge e(12) (e(u1)). If p1 (p2) is not an S-node, then e(uz) (e(p1)) is the
only edge shared by ' and " in skel(p1) (skel(p2)).

Now we define the flip and skip operations and we show how they change the embed-
ding of a planar graph. Let G be a planar graph, and let (I, f) be one of its embeddings.
Let (u,v) be a split pair of G and let G; be a set of topologically contiguous maximal
split components of G w.r.t. (u,v) such that G; does not contain all the edges of f.
We define the flip operation on (I, f) with respect to G1: flip((I, f),G1) = (I"", )
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Fig. 2. SPQR-tree of the graph of Fig.[Il (a) The light gray ellipse circles the allocation tree of
the external face of Fig.[Tla. The dark Gray ellipse circles the allocation tree of the external face
of Fig.[Tld. (b) The skip path and the corresponding track graph of the two faces.

where I is obtained from I" by reversing the adjacency lists of all the vertices of G,
but for u and v, and by reversing the order of the edges of (G; in the adjacency lists of
w and v. Face f’ is determined as follows. If at least one of w and v is not in f, then
f' = f. Otherwise, f’ is the unique face of I’ containing both the edges belonging to f
and not belonging to G; and some edge of G1 not belonging to f. As an example, see
the flip applied to the embedding of Fig.[Tla that yields the embedding of Fig.[Ilb.

We add the constraint that a flip operation cannot be performed if Gy contains f
because a flipping of the entire external structure of the graph around an internal com-
ponent is undesirable from a comprehension point of view.

The following property describes three basic features of the flip operation and is
trivial to prove.

Property 2. (a) flip(flip((I', f),G1),G1) = (I, f). (b) If G is a path, then flip({T,
[),G1) = (L, f). (¢) If G — Gy is a path, then flip(([, f),G1) = (I, f), where I is
I" with reversed adjacency lists.

Let (I, f1) be a planar embedding of G and I be a “target” combinatorial embedding
of G. Itis easy to see that there always exists a sequence of flip operations that leads from
(I, f1) to (Is, f2) for some choice of fo in I's. We denote by F((I7, f1), (I%, f2))
the minimum number of flips to obtain (I, f2) from (I, f2) for any fo.

Now we define the skip operation, which provides the ability to modify the external
face of an embedding. Let G be a planar graph, and let (I, f1) be one of its planar
embeddings. Let (u,v) be a split pair of G incident to faces f1 and f2 in I'. Skip
is defined as follows: skip((I, f1), f2) = (I, f2). It is easy to see that there exists
a sequence of skip operations that leads from (I, f1) to (I, f2) for any choice of fo
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in I". As an example, see the skip applied to the embedding of Fig.[lb that yields the
embedding of Fig.[Ilc. We denote by S((I', f1), (I, f2)) the minimum number of skips
to obtain (I, f) from (I, f1).

Given two planar embeddings (I, fi) and (I, f2) of a graph G, one could ask
which is the minimum number of flip and skip operations for obtaining (I, f2) from
(I, f1). We denote by FS((I, f1), (I'2, f2)) such a number.

Property 3. FS((I', f1), {12, f2)) < F(({I, f1), (I3, f3)) + S({I%, f3), (T2, f2)).

Lemma 2. Thevaluesof F((I', f1), {(I2, f2)), S{I1, f1), (I, f2)), and FS({I, f1),
(I'y, f2)) are O(n), where n is the number of vertices of G.

Unfortunately, given a biconnected planar graph G and two of its planar embeddings
(I't, f1) and (I, f3), the problem of transforming (I, f1) into (I'z, f2) with the min-
imum number of flip/skip operations is NP-complete.

Theorem 1. Let G be a biconnected planar graph and let (I, f1) and (Is, f2) be
two planar embeddings of G. Both computing FS({I1, f1), {I2, f2)) and computing
F({I1, f1), (I3, f2)) is NP-complete.

3 Linearity of the Case with Fixed Combinatorial Embedding

Let G be a biconnected planar graph, and let (I, f;) and (I, f2) be two planar embed-
dings of G. In this section, we show how to compute the value of S((I, f1), (I, f2)).
First, we need to introduce the following lemma whose proof is given in [[1]].

Lemma 3. Let G be a biconnected planar graph and let T be the SPQR-tree of G. Let
(I, f1) and (I, f2) be two planar embeddings of G. If there exists an R-node v of T
such that skel(p) contains both f1 and fo, then S((I, f1), (T, f2)) is the length of the
shortest path from f1 to fo on the dual of skel(u).

Let 7 be the SPQR-tree of GG and let 77 and 75 be the allocation trees of f; and fs,
respectively. The value of S = S((I, f1), (I, f2)) can be easily computed when 73 N
T3 # ). If this is true we have to tackle three cases: 7y N 73 = {u}, 71 N T2 = {u, v},
and 73 N 73 = {p1, p2, - - ., g . Conversely, the case 73 N 73 = ) is more complex.

Case 7; N7 = {p}. In this case p is the only node of 7 whose skeleton contains both
f1 and fo. If i is an S-node, then G is a cycle and so S = 1. If p is a P-node, since a
skip operation can move the external face from f; to any face of skel(u), we have that
S = 1. Finally, if i is an R-node, by Lemma[3] S is the length of the shortest path on
the dual of skel(u) from f7 to fa.

Case 7, N T = {p, v}. Observe that, in this case,  and v are adjacent in 7, and hence
they cannot be both P-nodes or both S-nodes. Also, by Lemmalll f; and f, are adjacent
in both skel(p) and skel(v). Hence, we have that S = 1. Notice that, if one of the two
nodes, say y, is an S-node, then all edges in skel(u) are real edges, but for e(v).

Case 71 N T = {u1, pa, - - ., pir }» with k > 3. As this case is more involved, we treat
it separately in the following lemma, the proof of which is left out of this extended
abstract.
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Lemma 4. Let 77 and T3 be the allocation tree of two faces f1 and fo of a graph G.
IfTiNTy = T3 T3 = {p1, 2y .-, piic} , with k > 3, then T3 is a star graph whose
central node is an S-node.

By Lemmald] and since f1 and f belong to the same S-node, it follows that S = 1.

If 7; N73 = (b, the computation of S is not trivial; however, we provide a linear time
algorithm, called SKIPONLY, to solve this problem. The algorithm is described below.
We define skip path sp(fi, f2) in 7 the (unique) shortest path in 7 between a node of
71 and a node of 75 (see Fig. Plb). Since a skip operation can only move the external
face from skel () to skel(v), with u adjacent to v, the following Property holds.

Property 4. Any sequence of skip operations that moves the external face from f; to fo
must traverse all the nodes of the skip path between 77 and 7.

In order to compute the sequence of skip operations to move the external face from f;
to fo with S steps, we define a weighted track graph [3] Track(f1, f2) (see Fig.2lb).
The nodes of Track(f1, f2) are faces of the skeletons of the nodes in sp(f1, f2). In
particular, let {1, ... i} be the nodes in sp(f1, f2), where f; is the external face of
skel(p1), while fo is a face of skel(u). Faces f1 and fy are nodes of T'rack(f1, f2).
For each node ;, ¢ = 2,...,k, Track(f1, f2) contains two nodes, called f;tand f;",
corresponding to the two faces of skel(u;) adjacent to the virtual edge representing
wi—1 in skel(p;). Notice that such faces also correspond to the two faces of skel(;—1)
adjacent to the virtual edge representing p; in skel(u;—1). Node f; belongs to level 1,
nodes fil and f;", fori = 2,..., k, belong to level 4, and node f5 belongs to level k& + 1.

We insert in T'rack(f1, f2) two types of edges, called horizontal edges, connecting
nodes of the same level, and vertical edges, connecting nodes of adjacent levels. More
precisely, horizontal edges are (f;", fil), fori =2,...,k, with weight 1, while vertical
edgesare, fori =2,....k— 1, (fi', fixa'), (fi", fisr)s (fi7 fira®), (Fi", fis1"). and
edges (f1, f2'). (fu. f2"). (fi', f2). (fi", fo).

Consider a vertical edge (f;", fﬂﬁl), with s;, ;41 € {l,r}, spanning levels 4 and
1+ 1. If i, is a P-node, then the weight is either O or 1, depending on the fact that virtual
edges corresponding to p; and ;41 are consecutive or not in the circular ordering of
the nodes. If p; is an S-node, then the weight is either 0 or 1, depending on whether
S$1 = S92 or not. Finally, if x; is an R-node the weight is the length of the shortest path
on the dual of skel(u;) from f;" to ff, ;.

The weight of an edge (f’, f”) in Track(f1, f2) represents the number of skip op-
erations needed to move the external face from [ to f”. Weight 1 assigned to an hori-
zontal edge (f;", f;') represents the possibility to skip the virtual edge representing /i,
in skel(p;—1).

Theorem 2. Let G be a biconnected planar graph, and let (I, f1) and (T, f3) be two
planar embeddings of G. If only skip operations are allowed, then there exists an algo-
rithm to compute S((I', f1), (I, f2)) in linear time.

Proof sketch. Consider the shortest path sp(f1, f2) on Track(f1, f2) from f1 to fo
computed by Algorithm SKIPONLY. The proof is based on the fact that any sequence
of skip operations leading from f; to fo, by Property [ must traverse all the levels of
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Track(f1, f2), and hence can not be shorter than the sequence identified by sp(f1, f2).
Regarding the computational complexity, since the needed operations on the SPQR-tree
7T and the sizes of involved structures are linear, it is possible to show that Algorithm
SKIPONLY can be implemented to run in linear time [[1]]. O

4 Linearity of the Case without P-Nodes

In this section we show that if 7 does not contain P-nodes, the problem of computing
FS({I1, f1), Iy, f2)) can be solved in linear time. For simplicity, the algorithm de-
scribed in this section only considers a subset of the possible flip operations. Namely,
given an S-node p, although a legitimate flip operation may concern the split compo-
nents of any split pair of ©, we only consider flip operations that concern split com-
ponents of maximal split pairs of p. Intuitively, this corresponds to flipping a single
neighbor v of p or all the neighbors of p with the exception of v. At the end of the
section we handle the general case.

In order to compute FS({I1, f1), (I2, f2)) when 7 does not contain P-nodes, we
first assign a label in {turned,unturned} to each node p of 7. Intuitively, the
label of node p indicates whether some transformation is needed on the skeleton of
1 in order to obtain I from I'y. If i is a Q-node, then p is labeled unturned. If
w is an R-node, p is labeled unturned if it has the same Boolean value in both the
labellings representing I} and I, and turned otherwise. Finally, if 1 is an S-node, it
is labeled unturned (turned) if the majority of its adjacent R-nodes is unturned
(turned). In case of a tie, we give p an arbitrary label, unless u is an internal S-node of
the skip path sp. In this case, we give p a label that is different from one of its adjacent
R-nodes in sp.

Second, we suitably extend the labeling from the nodes to the edges. An edge e inci-
dent to a Q-node is labeled unturned. Otherwise, e is labeled unturned (turned)
if its incident nodes have the same label (a different label). The number of turned
edges of 7 corresponds to the minimum number of flips to be performed on I'; in order
to obtain Iy, that is F ({171, f1), (I2, f2)). In particular, each turned edge e identifies
a split pair, which, since 7 has not P-nodes, identifies in its turn two split components
(1 and G2. Any minimum sequence of flips that transforms 77 into I contains either
flip({I"’, f"), G1) or flip({I"", f"), G2), for some suitable I, I"'", f’, and f”'.

A trivial case is when the intersection of the two allocation trees 77 and 75 of f; and
f2 is non-empty. In such a case, since f; and f; belong to the same skeleton, there is
no flip that can help to reduce the number of skips, and the trivial algorithm that first
performs all flips and then all skips uses FS({I1, f1), (I'», f2)) operations. Since, in
general, a flip operation may modify the distance between two faces (and hence modify
the number of needed skips), in order to compute FS((I1, f1), (I3, f2)) we have to
consider the case in which flip and skip operations are allowed to be alternated.

We propose an algorithm, called NOPARALLEL, to compute FS({I1, f1), (I, f2))
when 73 N 73 = () and 7 does not contain P-nodes. Such an algorithm is similar to
Algorithm SKIPONLY. The weights of the edges of graph T'rack( f1, f2) are modified in
order to take into account the possibility of performing some flip operations in advance
in order to reduce the number of skip operations. Namely, consider two nodes p; and
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i+ of the skip path sp, which are adjacent through the turned edge e, and consider a
skip operation on ;1. Such a skip operation has the effect of transferring the external
face from f! 1 to fI', or vice versa. The same effect is obtained by flipping ;41 with
respect to j;. Therefore, we set to 0 the weight of the horizontal edge linking f} L to
fiy1 in graph Track(f1, f2) and call shortcut such an edge. Using a shortcut in the
shortest path from f; to fs corresponds to performing a flip in advance and saving a
skip operation.

The sequence of skip and flip operations that transform (I}, f1) into (I, f2) is given
by the edges of a suitably selected weighted shortest path p from f; to fo in graph
Track(f1, f2) as follows. First, perform the flip operations corresponding to the short-
cuts that are traversed by p, while the external face is still f;. Second, perform the
skip operations corresponding to the non-shortcuts edges of p. Finally, perform the flip
operations corresponding to all the other turned edges, while the external face is fs.

Observe that graph T'rack(f1, f2) may admit more than one weighted shortest path
from f7 to fo. Suppose that the last node of the skip path sp is a turned (unturned)
R-node . Also suppose that a weighted shortest path p; from f; to fo uses an even
(odd) number of shortcuts. By performing the corresponding flip operations in advance,
while f; is the external face, the embedding of node  will be reversed an even (odd)
number of times, i.e., i will end up turned. Hence, in order to obtain [, according
to Property 2] we would need to perform a final flip operation with respect to an edge
belonging to f5. In this case, by using an equal cost weighted shortest path p, from f;
to fo that traverses an odd (even) number of horizontal edges whose weight is 0 we
would save the last flip. Hence, we need to compute, for any intermediate node f of
Track(f1, f2), the two weighted shortest path from f; to f, if both exist, using an odd
and even number of shortcuts. This computation can be performed in linear time and,
since all other operations can be performed in linear time, the following theorem holds.

Theorem 3. Let G be a biconnected planar graph, and let (I, f1) and (I, f2) be two
planar embeddings of G. Let T be the SPQR-tree of G. If T does not contain P-nodes
then FS((I'1, f1), (I2, f2)) can be efficiently computed in linear time.

Now we show how to modify Algorithm NOPARALLEL in order to handle the gen-
eral case in which a flip operation may concern the split component of any split pair
of an S-node p. Intuitively, this corresponds to allow flipping with a single operation
an arbitrary number of consecutive neighbors of ;. The general idea is to modify the
SPQR-tree 7 of G, relaxing the constraint that S-nodes can not be adjacent. Namely,
for any maximal sequence o; = v1,vs, ...,V of consecutive R-nodes with the same
label adjacent to 1, we add an S-node p; adjacent to i and move o; from the adjacency
list of p to that of u;. The label of p; is the same as the one of ;. The label of y is
computed as for Algorithm NOPARALLEL.

5 Fixed Parameter Tractability of the General Case

Since transforming (I, f1) into (I3, f2) is NP-complete when G is an arbitrary bi-
connected planar graph, in this section we study the fixed parameter tractability of the
problem when the structure of G is of limited complexity.
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Let 7 be the SPQR-tree of a biconnected planar graph G and let (I, f1) and (I, f2)
be two planar embeddings of G. We present an algorithm that computes
FS({I1, f1), (I, f2)) in O(n? x 2kTh) time, where k and h are two parameters that
describe the arrangement of P-nodes in 7 and their relationships with S-nodes.

We first describe how to handle P-nodes, which are responsible for the NP-hardness
of the general problem, with a fixed parameter tractability approach. Recall that the
embedding of the skeleton of each P-node pp is described in the labeled SPQR-trees
representing I and I by two circular sequences of virtual edges o; and o2, respec-
tively. As shown in [1]], the problem of morphing with the minimum number of flips o
into o is equivalent to the sorting by reversal problem (SBR), which has been proved
to be NP-hard in both cases of linear and circular sequences [8I17]. In fact, sorting vir-
tual edges is equivalent to sorting integer numbers, where a flip of [ contiguous edges
corresponds to a reversal of [ contiguous elements of the sequence.

The fixed parameter approach is based on the fact that SBR problem can be solved
in polynomial time, both in its linear and in its circular formulation, when each number
has a sign and the reversal of [ contiguous elements also changes their signs [14/18l16].
Indeed, when the virtual edges of a P-node correspond to components that have to be
reordered and suitably “flipped”, then the problem of morphing o into o2 can be mod-
eled as an instance of signed SBR problem, hence admitting a polynomial time solution.
For example, if all nodes adjacent to the P-node are R-nodes, then the problem of find-
ing the minimum number of flips that sort them is polynomial. Unfortunately, some
virtual edges, as for example those corresponding to paths, do not need to be flipped
in a specific way. If k£ such virtual edges are present, we conventionally assign to them
all combinations of signs, and apply 2% times the signed SBR polynomial algorithm.
In fact, there exists an assignment of signs that make it possible to find the minimum
number of flips that order a mixed signed/unsigned sequence [2].

Let 7 be the SPQR-tree of GG and let 7; and 75 be the allocation trees of f; and fo,
respectively. We concentrate on the case when 7; N 73 = () that is the most complex.

In order to compute FS((I71, f1), (I2, f2)) each node of T is labeled as turned,
unturned, or neutral. We order them based on their distance from sp. First, start-
ing from the farthest ones, we label nodes that are not in sp with the strategy described
below. Second, we label nodes of sp with a different strategy. Consider the current unla-
beled node p not in sp. Observe that 1 has all labeled adjacent nodes with the exception
of the node that links y to sp. If 11 is an R-node, then we label . based on its embedding
as described in Algorithm NOPARALLEL. If x4 is a Q-node, we label y neutral. If u
is an S-node, we assign p the label of the majority of its non-neutral labeled adjacent
nodes. In case of a tie, we label u neutral. If u is a P-node, denote by ¢ and o the
two circular sequences representing the embedding of w in I} and I'5. While labeling
1, we also compute the flips that are needed to transform ¢ into o2. Observe that, since
the external face can not be internal to a subgraph that is flipped, o; and o2 are actually
linear sequences as far as flip operations are concerned. In particular, we denote by o7}
and o), the two linear sequences obtained from oy and o9, respectively, by removing
the virtual edge e corresponding to the node that links x to sp and starting from the
virtual edge following e in the sequence. Let k£ be the number of neutral elements
of o{ and of. We assign all possible combinations of turned and unturned values
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to them, and compute 2" times the linear signed SBR distance d from o} to 0%, and
the analogous distance d from o} to o5, where o) is obtained from o, by reversing the
order and changing the signs. If d < d (d > d, d = d, respectively) we assign p the
label unturned (turned, neutral, respectively).

Now we describe how to assign labels to the elements of the skip path sp = p1, o,

.y i, from 77 to 75. Nodes in sp are never labeled neutral. If we have h P-nodes
in sp, we consider for them all the combinations of the two possible values turned and
unturned, and we repeat 2" times the computation that follows. R-nodes and S-nodes
of sp are labeled as described in Sect.[dl Analogously to Algorithm NOPARALLEL, we
extend the labeling to the edges of 7. In particular, an edge is labeled turned if it
links a turned node to an unturned one and such nodes are not P-nodes, other-
wise is labeled unturned. We construct a weighted track graph Track(f1, f2) as in
Algorithm NOPARALLEL where P-nodes were not present, and we describe how to set
the weights of the edges exiting nodes fil and f] corresponding to a P-node p; of sp.
All other weights are set as described in Sect.[dl Denote by o1 and o5 the two circu-
lar sequences representing the embedding of y; in I and I'». From o; we obtain the
linear sequence ¢} (¢7) ending with (starting with, respectively) the virtual edge corre-
sponding to z1;_1. Intuitively, sequence o (o7) corresponds to the configuration of the
parallel component when the external face is f! (f7'). Analogously, from o5 we obtain
the linear sequence o, (%) ending with (starting with, respectively) the virtual edge
corresponding to f;41. Our aim is to set the weight of each vertical edge (f7, ff,,).
for s, t € {l,}, as the minimum number of operations needed to transform o5 into o.
Observe that, when the external face is moved from f7 to another face f; of skel(p;) in
I}, we obtain a new linear sequence o with the same circular order as o7. Namely, o]
is obtained from ¢ by opening it between the two virtual edges adjacent to f. Hence,
when computing the minimum number of operations needed to transform o¢ into o,
we have to consider the possibility to first transforming o7 into another linear sequence
o} with the same circular order, that can be done by performing one skip operation, and
then transforming o7 into ¢ with the minimum number of flips, that can be done by
applying the signed SBR algorithm. In order to do this, observe that all nodes adjacent
to p; in 7 are labeled as turned, unturned, or neutral. Let k£ be the number of
nodes adjacent to p; and labeled neutral. As described above, we consider all pos-
sible assignments of turned and unturned values to such nodes, and we compute
2% times the linear signed SBR distance from o7 to ob. The weight of vertical edge
(f5, 1t +1) is the minimum of such n; x 2k values, where n; is the number of nodes
adjacent to u; in 7. The weight of an horizontal edge for a P-node is 1.

The remaining part of the algorithm strictly follows the lines of Algorithm NOPAR-
ALLEL. Namely, we compute the minimum weight path from f; to f2 in Track(f1, f2)
and, based on such a path, we decide the sequence of skip and flip operations to be
performed. Again, if Track(f1, f2) admits more than one minimum weight path, we
choose among such paths taking into account the number of shortcuts traversed, corre-
sponding to flip operations that are convenient to be performed in advance.

Here we analyze the computational complexity of the algorithm. All the operations,
except those involving P-nodes, can be performed in linear time. For each P-node p;
not belonging to the skip path, the computation of the minimum number of flips that are
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needed to transform o4 into o9 can be performed in O(n; x 2’“), where n; is the number
of neighbors of p; in 7. Observe that computing the minimum SBR distance can be
done in linear time [4]], while actually finding the sequence of operations that yield that
minimum can be done in time O(n 2 \/log(n)) time [T8]. Hence, when considering the
2 assignments, we only compute the distance and then, when the optimal assignment
has been found, we perform the algorithm for finding the actual sequence of flips. For
each P-node p belonging to sp, the computation of the minimum number of flips that
are needed to transform o5 into o can be performed in O(n? x 2¥). Namely, we have
to consider the 2* assignments of signs to the & neutral neighbors of y; and the
possibility to transform o¢ into ¢ by first moving the external face to each of the n;
faces of skel(y;) in I'1 and then performing the computation of the signed linear SBR
distance in linear time. Since such a computation has to be performed for each of the
2" assignments of labels to the h P-nodes of sp, the global computational complexity
of the algorithm is O(2" x Y7, (n? x 2¥+1)), which is equal to O(n? x 25+"), since
the total number of neighbors of all the P-nodes is less or equal than the total number
of edges of 7, that is O(n). Based on the above discussion we have:

Theorem 4. Let G be a biconnected planar graph, let (I, f1) and (I, f2) be two
planar embeddings of G. Let T be the SPQR-tree of G, let k be the maximum num-
ber of neutral S-nodes adjacent to a P-node in T, and let h be the number of P-
nodes in the skip path sp(f1, f2). If both flip and skip operations are allowed, then
FSUI, f1), (I, f2)) can be computed in O(n? x 2F+") time.

6 Conclusions

Preserving the user mental map while coping with ever-changing information is a com-
mon goal of the Graph Drawing and the Information Visualization areas. The informa-
tion represented, in fact, may change with respect to three different levels of abstraction:
(1) structural changes may modify the graph that the user is inspecting; (ii) topological
changes may affect the way the same graph is embedded on the plane; and (iii) drawing
changes may map the same embedded graph to differently positioned graphic objects.
A large body of literature has been devoted to structural changes, addressing the rep-
resentation models and techniques in the so-called dynamic and on-line settings. Also,
much research effort has been devoted to manage drawing changes, where the target is
to preserve the mental map by morphing the picture while avoiding intersections and
overlappings. On the contrary, to our knowledge, no attention at all has been devoted to
topological changes, that is, changes of the embedding of a graph in the plane.

In this paper we addressed the topological morphing problem. Namely, the problem
of morphing a topology into another one with a limited number of changes. This paper
leaves many open problems. (1) Primitives. We considered two topological primitives,
called flip and skip. It would be important to enrich such a set with other operations
that can be considered “natural” for the user perception. (2) Connectivity. It is easy to
extend the results presented in Sect. 3] to simply connected graphs. However, the other
presented results are deeply related to biconnectivity. There is a lot of space here for
further investigation. (3) We gave the same weight to the operations performed by the
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morphing. However, other metrics are possible. One could weight an operation as a non-
decreasing function of the moved edges or of the thickness of the moved component.

As a final remark we underline how usually the Computational Biology field looks
at Graph Drawing as a tool. In this paper it happened the opposite. In fact, Theorems/[Il
and @l exploit Computational Biology results.
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