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This paper introduces a class of conditional inclusion dependencies (CINDs), which extends

inclusion dependencies (INDs) by enforcing patterns of semantically related data values.

We show that CINDs are useful not only in data cleaning, but also in contextual schema

matching. We give a full treatment of the static analysis of CINDs, and show that

CINDs retain most desired properties of traditional INDs: (a) CINDs are always satisfiable;

(b) CINDs are finitely axiomatizable, i.e., there exists a sound and complete inference

system for the implication analysis of CINDs; and (c) the implication problem for CINDs

has the same complexity as its traditional counterpart, namely, PSPACE-complete, in

the absence of attributes with a finite domain; but it is EXPTIME-complete in the

general setting. In addition, we investigate the interaction between CINDs and conditional

functional dependencies (CFDs), as well as two practical fragments of CINDs, namely acyclic

CINDs and unary CINDs. We show the following: (d) the satisfiability problem for the

combination of CINDs and CFDs becomes undecidable, even in the absence of finite-

domain attributes; (e) in the absence of finite-domain attributes, the implication problem

for acyclic CINDs and for unary CINDs retains the same complexity as its traditional

counterpart, namely, NP-complete and PTIME, respectively; but in the general setting,

it becomes PSPACE-complete and coNP-complete, respectively; and (f) the implication

problem for acyclic unary CINDs remains in PTIME in the absence of finite-domain

attributes and coNP-complete in the general setting.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A class of conditional functional dependencies (CFDs) has recently been proposed in [1] as an extension of functional depen-

dencies (FDs). In contrast to traditional FDs, CFDs hold conditionally on a relation, i.e., they apply only to those tuples that

satisfy certain data-value patterns, rather than to the entire relation. CFDs have proven useful in data cleaning [1–7]: incon-

sistencies and errors in the data may be captured as violations of CFDs, whereas they may not be detected by traditional

FDs.

It has been recognized (e.g., [8,9]) that to clean relational data, one should make use of not only FDs, but also inclusion

dependencies (INDs). Furthermore, INDs are commonly used in schema matching systems, e.g., Clio [10]: INDs associate

attributes in a source schema with semantically related attributes in a target schema. Nevertheless, schema matching and

data cleaning often need to use inclusion dependencies that hold on a part of data that satisfies certain constant patterns,

rather than on the entire relations. As illustrated by the examples below, dependencies with constant patterns cannot be

expressed as traditional INDs. These suggest that we extend INDs by incorporating patterns of semantically-related data

values, along the same lines as CFDs.

* Corresponding author.

0304-3975/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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asin title type price
t1: a23 Snow White CD 7.99
t2: a12 Harry Potter book 17.99

(a) Example order data

isbn title price format
t3: b32 Harry Potter 17.99 hardcover
t4: b65 Snow White 7.99 paperback

(b) Example book data

id album price genre
t5: b65 Snow White 7.99 a-book

(c) Example CD data

Fig. 1. Example instances D1 of source and target.

Example 1.1. Consider the two relational schemas, referred to as source and target:

source: order(asin: string, title: string, type: string,price: real)

target: book(isbn: string, title: string,price: real, format: string),

CD(id: string,album: string,price: real, genre: string)

The source database contains a single relation order, specifying items of various types such as books, CDs and DVDs, ordered

by customers. The target database has two relations, namely, book and CD, specifying items of books and CDs ordered by

customers, respectively. In each relation the underlined attributes indicate a key (a special case of FDs), e.g., asin is a key for

order. Example source and target instances D1 are shown in Fig. 1. Note that keys (FDs) are not the focus of this work, but

to make the schemas more rational.

To find schema mappings from the source to the target, or to detect errors across these databases, one might be tempted

to use standard INDs such as:

ind1: order(title,price) ⊆ book(title,price)

ind2: order(title,price) ⊆ CD(album,price)

These INDs, however, do not make sense: one cannot expect the title and price of each book item in the order table to

find a matching CD tuple (e.g., Harry Potter); similarly for the CD items in the order table. Nevertheless, there are indeed

inclusion dependencies from the source to the target, as well as on the target database, but only under certain conditions:

cind1: order
(
title,price, type = ‘book’

) ⊆ book(title,price)

cind2: order
(
title,price, type = ‘CD’

) ⊆ CD(album,price)

cind3: CD
(
album,price,genre = ‘a-book’

) ⊆ book
(
title,price, format = ‘audio’

)

Here constraint cind1 states that for each order tuple t , if its type is ‘book’, then there must exist a book tuple t′ such that

tuples t and t′ agree on their title and price attributes; similarly for constraint cind2. Here type = ‘book’ specifies a condition

under which the constraint can be applied. Constraint cind3 asserts that for each CD tuple t , if its genre is ‘a-book’ (audio

book), then there must be a book tuple t′ such that the title and price of t′ are identical to the album and price of t , and

moreover, the format of t′ must be ‘audio’. Here format = ‘audio’ is an additional condition on matched tuples.

Constraints cind1 and cind2 specify a form of contextual schema matching studied in [11]. As shown in [11], contextual

schema matching often allows us to derive sensible schema mapping from a source to a target, which cannot be found via

schema matching specified with traditional INDs.

Such constraints also allow us to detect errors across different relations. For instance, while D1 of Fig. 1 satisfies cind1

and cind2, it violates cind3. Indeed, tuple t5 in the CD table has an ‘a-book’ genre, but it cannot find a match in the book
table with ‘audio’ format. The violation suggests that there may exist inconsistencies in the CD and book tables in the target

database. Such inconsistencies cannot be detected by traditional INDs. Note that the book tuple t4 is not a match for t5:

although t5 and t4 agree on their album (title) and price attributes, the format of t4 is ‘paperback’ rather than ‘audio’ as

required by cind3. �
Like CFDs, dependencies cind1–cind3 are required to hold only on a subset of tuples satisfying certain patterns. In other

words, they apply only conditionally to relations order, CD, and book. These dependencies are specified with constants,

and hence, cannot be expressed as standard INDs. Although such dependencies are needed for schema matching and data

cleaning, to the best of our knowledge, the earlier conference version [12] of this paper is the first to study these constraints.

Contributions To this end we introduce an extension of INDs, and investigate the static analyses of these constraints.
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(1) Our first contribution is a notion of conditional inclusion dependencies (CINDs). A CIND is defined as a pair consisting

of an IND R1[X] ⊆ R2[Y ] and a pattern tableau, where the tableau enforces binding of semantically related data values

across relations R1 and R2. For example, ind1, ind2, and cind1–cind3 given above can all be expressed as CINDs. In particular,

traditional INDs are a special case of CINDs. This mild extension of INDs captures a fundamental part of the semantics of the

data, and suffices to express rules commonly used in data cleaning and schema matching.

(2) Our second contribution consists of complexity results for fundamental problems associated with CINDs, as well as

an inference system for reasoning about CINDs.

Given a set of CINDs, the first question one would ask is whether the CINDs are satisfiable, i.e., whether they are “dirty”

themselves. Indeed, one does not want to enforce the CINDs on a database at running time but find, after repeated failures,

that the CINDs cannot possibly be satisfied by a nonempty database. Similarly, one does not want to match schema based

on CINDs that do not make sense. The satisfiability analysis helps users identify satisfiable sets of CINDs for data cleaning

and schema matching.

Another important question concerns the implication analysis, which is to decide whether a set of CINDs entails another

CIND. The implication analysis is useful in reducing redundant CINDs, and hence improving performance when detecting

CIND violations in a database, and speeding up the derivation of schema mappings from CINDs [10].

For traditional INDs, the satisfiability analysis is not an issue: any set of INDs is satisfiable. Their implication analysis is

PSPACE-complete, and furthermore, it is finitely axiomatizable: there exists a finite, sound and complete set of axioms (see,

e.g., [13]).

We show that although CINDs are more expressive than INDs, they retain most desired properties of their IND coun-

terpart: (a) CINDs are always satisfiable; (b) the implication of CINDs is finitely axiomatizable; (c) in the absence of

finite-domain attributes, the implication problem for CINDs is PSPACE-complete.

In the real world, it is common to find finite-domain attributes, e.g., Boolean, date, etc. It is hence necessary to get the

complexity of these problems right in the general setting when finite-domain attributes may be present. The implication

problem of INDs remains intact in the general setting, as their inference does not involve any data values. However, in the

general setting, the implication problem for CINDs becomes EXPTIME-complete, due to the interaction between the data

values in finite domains and constants in pattern tableaux.

(3) Our third contribution consists of complexity bounds for reasoning about the combination of CINDs and CFDs. As

remarked earlier, to clean relational data, one may need both CFDs and CINDs in practice.

We show that the presence of finite-domain attributes does not complicate the satisfiability and implication analyses

when INDs and FDs (resp. CINDs and CFDs) are taken together. Nonetheless, while a set of INDs and FDs is always satis-

fiable [13], we show that the satisfiability problem for CINDs and CFDs taken together becomes undecidable, even in the

absence of finite-domain attributes, due to the presence of data values.

(4) Our fourth contribution consists of complexity bounds for reasoning about two fragments of CINDs: acyclic CINDs

and unary CINDs, which extend acyclic INDs and unary INDs (see e.g., [13] for details), respectively. Many CINDs found in

practice are either acyclic or unary. For instance, the set {cind1, cind2, cind3} of CINDs that we have seen earlier is a set of

acyclic CINDs.

We show that in the absence of attributes with a finite domain, the implication problem for acyclic CINDs is NP-complete,

and it is in PTIME for unary CINDs, the same as their counterparts for classical acyclic and unary INDs, respectively. That

is, acyclic CINDs (resp. unary CINDs) retain the same complexity as acyclic INDs [14] (resp. unary INDs [15]). Nevertheless,

we also show that in the general setting, the implication problem becomes PSPACE-complete for acyclic CINDs, and it is

coNP-complete for unary CINDs. This tells us that the increased expressive power of CINDs does not come for free. Never-

theless, these complexity bounds are still lower than their counterparts for general CINDs, namely, PSPACE and EXPTIME,

respectively. Therefore, when only acyclic or unary CINDs are needed, we do not have to pay the price of the complexity of

the full-fledged CINDs.

We show that further constraining acyclic (or unary) CINDs does not make our lives easier. Indeed, the implication

problem for acyclic unary CINDs remains coNP-complete in the general setting (while in the absence of attributes with finite

domains, it of course remains in PTIME).

These results settle several fundamental problems associated with CINDs, an extension of INDs that is useful in schema

matching and data cleaning. (1) We show that one can specify any CINDs without worrying about their satisfiability. (2) We

develop a sound and complete inference system for the implication analysis of CINDs, which provides algorithmic insight

into reasoning about CINDs. (3) We present a comprehensive picture of complexity bounds on the implication analysis of

CINDs, when finite-domain attributes are present or absent, for general CINDs and for practical fragments (acyclic CINDs

and unary CINDs). (4) We also show that there exists interaction between CFDs and CINDs.

Remark. (1) This paper is an extension of our earlier work [12] by including (a) the study of acyclic CINDs (Section 5.1),

(b) the investigation of unary CINDs (Section 5.2), (c) the complexity bounds on the implication problem for standard INDs,

AINDs and UINDs in the presence of finite-domain attributes (Sections 3, 5.1 and 5.2), and (d) the proofs for the sound and

complete inference system and for the complexity bounds for the satisfiability and implication analyses of CINDs (Section 3).

Some of the proofs are nontrivial and the techniques are interesting in their own right. The algorithm for the satisfiability

checking of CINDs and FDs and its experimental study were reported in [12]; these are left out from this paper in order to

focus on the theoretical aspects of CINDs.
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ψ1: (order[title, price; nil] ⊆ book[title, price; nil], T1)

ψ2: (order[title, price; nil] ⊆ CD[album, price; nil], T2)

ψ3: (order[title, price; type] ⊆ book[title, price; nil], T3)

ψ4: (order[title, price; type] ⊆ CD[album, price; nil], T4)

ψ5: (CD[album, price; genre] ⊆ book[title, price; format], T5)

T1 = T2 = ∅ T3:
type nil
book

T4:
type nil
CD

T5:
genre format
a-book audio

Fig. 2. Example CINDs.

(2) CINDs do not introduce a new logical formalism. Indeed, in first-order logic, they can be expressed in a form similar

to tuple-generating dependencies (TGDs), which have lately generated renewed interests in data exchange (see [16] for a

survey). However, (a) these simple CINDs suffice to capture data consistency and contextual schema matching commonly

found in practice, without incurring the complexity of full-fledged TGDs (e.g., the undecidability of their implication problem),

and (b) no prior work has studied the satisfiability, implication and finite axiomatizability of TGDs in the presence of

constants or finite-domain attributes.

Organization The remainder of the paper is organized as follows. We define CINDs in Section 2, and investigate their

satisfiability and implication problems in Section 3. The interaction between CFDs and CINDs is studied in Section 4. We

study acyclic CINDs and unary CINDs in Section 5, followed by related work in Section 6 and topics for future work in

Section 7. To improve the readability we defer the detailed proofs to Appendix A, but include their sketches in the main

paper.

2. Conditional inclusion dependencies

A relational database schema R is a finite collection of relation schemas (R1, . . . , Rn), where for each i ∈ [1,n], Ri is

defined over a finite set of attributes, denoted as attr(Ri). For each attribute A ∈ attr(Ri), its domain is specified in Ri ,

denoted as dom(A), which is either finite (e.g., bool) or infinite (e.g., string). We use finattr(R) to denote the set of all the

finite-domain attributes that appear in R. We refer to an attribute in terms of the name of the relation and the name of

the attribute, and only use the attribute name when it is clear in the context.

An instance Ii of Ri is a finite set of tuples such that for each t ∈ Ii , t[A] ∈ dom(A) for all attributes A ∈ attr(Ri).

A database instance D of R is a collection of relation instances (I1, . . . , In), where Ii is an instance of Ri for each i ∈ [1,n].
Conditional inclusion dependencies A conditional inclusion dependency (CIND) ψ is defined as a pair

(
Ra[X; Xp] ⊆ Rb[Y ; Yp], T p

)
,

where

(1) X, Xp and Y , Yp are lists of attributes in attr(Ra) and attr(Rb), respectively, such that X and Xp (resp. Y and Yp) are

disjoint;

(2) Ra[X] ⊆ Rb[Y ] is a standard IND, referred to as the IND embedded in ψ ; and

(3) T p is a tableau, called the pattern tableau of ψ , which is a set of tuples over attributes Xp ∪ Yp such that for each tuple

tp ∈ T p and each attribute A in Xp ∪ Yp , tp[A] is a constant drawn from dom(A).

We require that X and Xp (resp. Y and Yp) are disjoint to make CINDs succinct, and to help eliminate useless constraints.

One can readily verify that when X and Xp (resp. Y and Yp) are not disjoint, we can easily define an equivalent CIND that

satisfies the disjointness condition.

We adopt the following conventions and notations. (1) Let X = [A1, . . . , Am] and Y = [B1, . . . , Bm]. We require that

dom(Ai) ⊆ dom(Bi) for each i ∈ [1,m]. (2) If a list Z of attributes occurs in both Xp and Yp , we use ZL and ZR to indicate

the occurrence of Z in Xp and Yp , respectively. (3) When both Xp and Yp are empty lists, T p is an empty set ∅. (4) We

use X ∪ Y to denote the set of all attributes of X and Y , and X \ Y to denote the list obtained from list X by removing all

the elements in list Y . We denote X ∪ Xp as LHS(ψ) and Y ∪ Yp as RHS(ψ), and separate the LHS and RHS attributes in a

pattern tuple with ‘‖’. (5) We use nil to denote an empty list. (6) In addition, we adopt the common assumption that each

finite or infinite domain contains at least two elements [17], which was used when studying, e.g., FDs [13].

Example 2.1. Constraints ind1, ind2, and cind1–cind3 given in Examples 1.1 can all be expressed as CINDs, as shown in

Fig. 2: ψ1 and ψ2 for ind1 and ind2, and ψ3–ψ5 for cind1–cind3, respectively. Observe that ind1 and ind2 are standard INDs

embedded in ψ1 and ψ2, respectively. In ψ5, X is [album, price], Y is [title, price], Xp is [genre], and Yp is [format]. The
standard IND embedded in ψ5 is CD[album, price] ⊆ book[title, price]. �
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Consider CIND ψ = (Ra[X; Xp] ⊆ Rb[Y ; Yp], T p). In general, the embedded IND may not hold on the entire Ra relation:

it applies only to Ra tuples matching certain pattern tuples in T p . We say that an Ra (resp. Rb) tuple t1 (resp. t2) matches

a pattern tuple tp ∈ T p if t1[Xp] = tp[Xp] (resp. t2[Yp] = tp[Yp]).
An instance (Ia, Ib) of (Ra, Rb) satisfies the CIND ψ , denoted by (Ia, Ib) |	 ψ , if and only if for each tuple t1 in the relation

Ia , and for each pattern tuple tp in the pattern tableau T p , if t1[Xp] = tp[Xp], then there exists a tuple t2 in the relation Ib
such that t1[X] = t2[Y ], and moreover, t2[Yp] = tp[Yp].

That is, if t1[Xp] matches the pattern tp[Xp], then the standard IND embedded in ψ and the pattern specified by tp
must be satisfied. More specifically, there exists a tuple t2 such that (1) t2[Y ] = t1[X], and (2) t2[Yp] must match the

pattern tp[Yp]. Note that t1[Xp] = tp[Xp] if Xp = nil, and t2[Yp] = tp[Yp] if Yp = nil. Intuitively, Xp is used to identify the

Ra tuples over which ψ is applied. The pattern on Yp enforces the matching Rb tuples to have certain values in their Yp

attributes.

We say that a database D satisfies a set Σ of CINDs, denoted by D |	 Σ , if D |	 ψ for each ψ ∈ Σ . Two sets Σ1 and Σ2

of CINDs are said to be equivalent, denoted by Σ1 ≡ Σ2, if for any instance D , D |	 Σ1 iff D |	 Σ2.

Example 2.2. Database D1 given in Fig. 1 satisfies CINDs ψ3 and ψ4. However, the INDs embedded in these CINDs do not

necessarily hold. For example, while ψ4 is satisfied, ind2 in ψ4 is not, since item Harry Potter in the order table cannot find

a match in the CD table. The pattern Xp in LHS(ψ4) identifies the order tuples on which ψ4 has to be enforced, i.e., those

CD tuples; similarly for ψ3.

On the other hand, ψ5 is violated by the database. Indeed, for CD tuple t5, there exists a pattern tuple tp in T5 such

that t5[genre] = tp[genre] = ‘a-book’ but there exists no tuple t in table book such that t[format] = ‘audio’, t[title] = t5[title] =
‘Snow White’, and t[price] = t5[price] = 7.99. Here the genre pattern is to identify CD tuples on which ψ5 is applicable,

while format is a constraint on the book tuples that match those CD tuples via the IND embedded in ψ5. �
Normal form A CIND ψ = (Ra[X; Xp] ⊆ Rb[Y ; Yp], T p) is in the normal form if T p only consists of a single pattern tuple tp .

We write ψ as (Ra[X; Xp] ⊆ Rb[Y ; Yp], tp).
It is straightforward to verify that a CIND ψ = (Ra[X; Xp] ⊆ Rb[Y ; Yp], T p) can be expressed as a set Σψ = {(Ra[X; Xp] ⊆

Rb[Y ; Yp], tp) | tp ∈ T p} of CINDs in the normal form, which is equivalent to {ψ}, i.e., {ψ} ≡ Σψ . In light of this, in the sequel

we shall w.l.o.g. consider CINDs in the normal form only.

3. Reasoning about conditional inclusion dependencies

For any constraint language L, there are two fundamental problems associated with it. One is the satisfiability problem,

which is to determine whether a given set of constraints in L has conflicts. The other is the implication problem, to derive

other constraints from a given set of constraints in L. As remarked in Section 1, to effectively use a constraint language in

practice, it is often necessary to answer these two questions at compile time.

One might be tempted to use a constraint language that is more powerful than CINDs, e.g., full-fledged TGDs extended by

allowing constants (data values). The question is whether the language allows us to effectively reason about its constraints.

We need a constraint language that is powerful enough to express dependencies commonly found in schema matching and

data cleaning, while at the same time well-behaved enough so that its associated decision problems are tractable or, at the

very least, decidable [16]. For full-fledged TGDs, it was known 30 years ago that the implication problem is undecidable even

in the absence of data values [18].

As found in most database textbooks, standard INDs have several desired properties. (a) INDs are always satisfiable.

(b) For INDs, the implication problem is decidable (PSPACE-complete). (c) Better still, INDs are finitely axiomatizable, i.e.,

there exists a finite set of axioms that is sound and complete for implication of CINDs. The question is: do CINDs still have

these properties (which extend INDs by incorporating data values)?

As observed in [18], if TGDs were extended by including data values, their analysis would become more intriguing. Al-

though we are not aware of previous work on the complexity of the static analyses of TGDs with constants, the study of

CFDs [1] tells us that data values in the pattern tableaux of dependencies would make our lives much harder: (1) as opposed

to standard FDs for which the implication problem is in linear-time, the implication analysis for CFDs is coNP-complete, and

(2) while a set of FDs is always satisfiable, the satisfiability problem for CFDs is NP-complete. Moreover, for the satisfiability

and implication problems, we have to consider the impact of finite-domain attributes, as a finite domain imposes an addi-

tional constraint on how a relation can be populated such that the relation observes the constant patterns and satisfies the

dependencies. The interaction between data values in finite domains and constants in pattern tableaux makes the inference

complicated.

In this section we study the satisfiability and implication problems for CINDs. We show that despite that CINDs contain

constants and are more expressive than INDs, they retain most of the desired properties of INDs. That is, CINDs strike a

balance between the expressive power and complexity. Below we first settle the satisfiability problem for CINDs in positive,

in Section 3.1. We then study the implication analysis of CINDs in Section 3.2. More specifically, we develop a sound

and complete inference system for CINDs in Section 3.2.1, and then establish the complexity of the implication problem

in Section 3.2.2. Moreover, we also revisit the implication problem for standard INDs in the presence of finite-domain

attributes, an issue that has not been studied.
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3.1. The satisfiability analysis

One cannot expect to derive sensible schema matches or to effectively clean data from a set of constraints if the con-

straints are not satisfiable themselves. Thus before any run-time computation is conducted, we have to make sure that the

constraints are satisfiable, or in other words, make sense themselves.

The satisfiability problem for a constraint language L is to determine, given a finite set Σ of constraints in L defined on a

database schema R, whether there exists a nonempty instance D of R such that D |	 Σ .

Traditional FDs and INDs do not contain constants, and any set of FDs or INDs is always satisfiable [19]. However, adding

data values to constraints may make their satisfiability analysis much harder, e.g., CFDs [1]. To illustrate this, we first review

CFDs below, which will also be needed when we study their interaction with CINDs in Section 4.

CFDs A conditional functional dependency (CFD) φ on a relation R is a pair (R : X → Y , T p), where (1) X and Y are subsets

of attr(R); (2) R : X → Y is a standard FD, referred to as the FD embedded in φ; and (3) T p is a tableau with all attributes

in X and Y , referred to as the pattern tableau of φ, where for each A in X or Y and each tuple tp ∈ T p , tp[A] is either a

constant a ∈ dom(A), or an unnamed variable ‘_’, as defined for CINDs given earlier.

To formalize the semantics of CFDs, we define an operator � on constants and the symbol ‘_’: η1 � η2 if either η1 = η2,

or one of η1 and η2 is ‘_’. The operator � naturally extends to tuples. For example, (Mayfield, EDI) � (_, EDI) but (Mayfield,

EDI) 
� (_, NYC).

An instance I of R satisfies the CFD φ, denoted by I |	 φ, if and only if for each pair of tuples t1, t2 in the relation I , and

for each tuple tp in the pattern tableau T p , if t1[X] = t2[X] � tp[X], then t1[Y ] = t2[Y ] � tp[Y ]. That is, if t1[X] and t2[X]
are equal to each other and match the pattern tp[X], then t1[Y ] and t2[Y ] must also be equal to each other and match the

pattern tp[Y ]. Note that standard FDs are a special case of CFDs in which the pattern tableau contains a single tuple that

consists of “_” only.

Along the same lines as CINDs in normal form, we say that a CFD φ = (R : X → Y , T p) is in the normal form if T p consists

of a single tuple tp and Y contains a single attribute A, and we write φ as (R : X → A, tp). We can always rewrite a CFD

into an equivalent set of CFDs in the normal form. In the sequel, we only consider CFDs in the normal form.

A set of CFDs, which extend FDs by adding constant patterns, may be unsatisfiable, as illustrated by the following

example [1].

Example 3.1. Consider a relation schema R(A, B), and the CFDs below defined on R , refining standard FDs A → B and

B → A:

φ1:
(
A → B, (true ‖ b1)

)
, φ2:

(
A → B, (false ‖ b2)

)
,

φ3:
(
B → A, (b1 ‖ false)

)
, φ4:

(
B → A, (b2 ‖ true)

)
,

where dom(A) is bool, and b1,b2 are two distinct constants in dom(B). The CFD φ1 (resp. φ2) asserts that for any R tuple t ,

if t[A] is true (resp. false), then t[B] must be b1 (resp. b2). On the other hand, φ3 (resp. φ4) requires that if t[B] is b1
(resp. b2), then t[A] must be false (resp. true). Observe that there exists no nonempty instance of R that satisfies all these

CFDs. Indeed, for any R tuple t , no matter what Boolean value t[A] is, these CFDs together force t[A] to take the other value

from the finite domain bool.
Note that if dom(A) and dom(B) were infinite, one could find a tuple t such that t[A] is neither true nor false, and t[B]

is not b1 or b2; then the R instance {t} satisfies these CFDs. This tells us that attributes with a finite domain complicate the

satisfiability analysis. �
It is known [1] that the satisfiability problem for CFDs is NP-complete. As opposed to CFDs, the satisfiability analysis of

CINDs is as trivial as their standard INDs counterpart, despite the increased expressive power of CINDs. Intuitively, this is

because CFDs are a subset of EGDs [13] (universally quantified formulas), while CINDs are TGDs in which the existential

quantification allows us to add tuples that match the pattern and satisfy the embedded IND of a CIND. Moreover, the

requirement that X and Xp (resp. Y and Yp) are disjoint in a CIND (Ra[X; Xp] ⊆ Rb[Y ; Yp], tp) simplify the analysis.

Theorem 1. Any set of CINDs is satisfiable.

Proof. We show that given a set Σ of CINDs over a database schema R= (R1, . . . , Rn), we can always construct a nonempty

finite instance D of R such that D |	 Σ .

We build such an instance D as follows.

(1) We start with the construction of the active domains. For each attribute A, we first collect in adom(A) all those

constants that appear in some pattern of A in the CINDs. We then propagate these constants from adom(A) to adom(B) for

each attribute B that is connected to A via a CIND of Σ .

More specifically, for each attribute A in some relation of R, we start with adom(A) = ∅. For every CIND (Ri[X; Xp] ⊆
R j[Y ; Yp], tp) in Σ , if A ∈ Xp or A ∈ Yp , we include in adom(A) the constant tp[A], i.e., we let adom(A) = adom(A)∪{tp[A]}.
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IR1: (reflexivity) If X is a list of distinct attributes of R , then (R[X;nil] ⊆ R[X;nil], tp), where tp = ∅.
IR2: (projection and permutation) If (Ra[A1, . . . , Am; Xp] ⊆ Rb[B1, . . . , Bm; Yp], tp), then (Ra[Ai1 , . . . , Aik ; X ′

p] ⊆ Rb[Bi1 , . . . , Bik ; Y ′
p ], t′p),

where (1) {i1, . . . , ik} is a list of distinct integers in {1, . . . ,m}, or A1, . . . , Am = B1, . . . , Bm = nil; (2) X ′
p and Y ′

p are permutations

of Xp and Yp , respectively; and (3) t′p = tp[X ′
p ||Y ′

p ].
IR3: (transitivity) If (Ra[X; Xp ] ⊆ Rb[Y ; Yp ], tp1 ) and (Rb[Y ; Yp ] ⊆ Rc [Z ; Zp ], tp2 ), then (Ra[X; Xp ] ⊆ Rc [Z ; Zp ], tp3 ), where tp1 [Yp ] =

tp2 [Yp ], tp3 [Xp ] = tp1 [Xp ], and tp3 [Zp ] = tp2 [Zp ].
IR4: (instantiation) If (Ra[X; Xp ] ⊆ Rb[Y ; Yp ], tp), then (Ra[X \ {A j}; A j , Xp ] ⊆ Rb[Y \ {B j}; B j , Yp], t′p), where X = {A1, . . . , Am}, Y =

{B1, . . . , Bm}, j ∈ [1,m], t′p [A j ] ∈ dom(A j), t
′
p [B j ] = t′p[A j ], and t′p[Xp ||Yp ] = tp .

IR5: (LHS expansion) If (Ra[X; Xp ] ⊆ Rb[Y ; Yp], tp), then (Ra[X; A, Xp ] ⊆ Rb[Y ; Yp ], t′p), where A ∈ attr(Ra) \ (X ∪ Xp), t
′
p[A] ∈ dom(A),

and t′p[Xp ||Yp ] = tp .

IR6: (RHS reduction) If (Ra[X; Xp] ⊆ Rb[Y ; B, Yp], tp), then (Ra[X; Xp ] ⊆ Rb[Y ; Yp ], t′p), where t′p = tp[Xp ||Yp ].
IR7: (finite-domain attribute elimination) If (Ra[X; A, Xp ] ⊆ Rb[Y ; Yp ], tpi ) (i ∈ [1,m]), then (Ra[X; Xp ] ⊆ Rb[Y ; Yp ], tp), where

tp1 [Xp ||Yp ] = · · · = tpm [Xp ||Yp ] = tp [Xp ||Yp ], A ∈ finattr(Ra), and dom(A) = {tp1 [A], . . . , tpm [A]}.
IR8: (finite-domain attribute abstraction) If (Ra[X; A, Xp ] ⊆ Rb[Y ; B, Yp], tpi ) (i ∈ [1,m]), then (Ra[A, X; Xp ] ⊆ Rb[B, Y ; Yp ], tp), where

tp1 [Xp ||Yp ] = · · · = tpm [Xp ||Yp ] = tp [Xp ||Yp ], tpi [A] = tpi [B] for each i ∈ [1,m], A ∈ finattr(Ra), and dom(A) = {tp1 [A], . . . , tpm [A]}.

Fig. 3. Inference system I for CINDs.

If dom(A) is still empty after all the CINDs in Σ have been inspected, we let adom(A) = {c} for an arbitrary constant

c ∈ dom(A).

We propagate these initial values as follows. For each CIND (Ra[A1, A2, . . . , Am; Xp] ⊆ Rb[B1, . . . , Bm; Yp], tp) in Σ , we

expand adom(Bi) by letting adom(Bi) = adom(Bi) ∪ adom(Ai) for each i ∈ [1,m]. The propagation process is recursively

applied to all attributes, and proceeds until no further changes can be made to adom(A) of any attribute A. Since it starts

with a finite set of values for each adom(A), it is easy to verify that the process always terminates.

(2) We construct D as follows. For each Ri(A1, . . . , Ak) ∈ R, we define Ii = adom(A1) × · · · × adom(Ak), where × is the

Cartesian product operation. And we define D = (I1, . . . , In).

It is easy to verify that the database instance D is nonempty, finite and that D |	 Σ . �
3.2. The implication analysis

As remarked earlier, the implication analysis allows us to remove redundancies from data quality rules to improve per-

formance, and it is also critical to deriving schema mappings from schema matchings [10,11]. Recall that (1) a schema

mapping is data transformation from instances of a source schema to instances of a target schema while preserving the ap-

propriate information of the source instances; and (2) a schema matching is a pairing of attributes (or groups of attributes)

of a source schema and attributes of a target schema such that the pairs are likely to be semantically related. In practice,

finding a schema matching is often an early step in building a schema mapping, which is a common task in a variety of data

exchange and integration scenarios [11]. It is known that contextual schema matching needs to make use of (contextual)

foreign keys, a primitive and special case of CINDs.

The implication problem for a constraint language L is to determine, given a finite set Σ of constraints in L and another

ψ of L, all defined on the same database schema R, whether Σ entails ψ , denoted by Σ |	 ψ , i.e., whether for all instances

D of R, if D |	 Σ then D |	 ψ .

Example 3.2. Consider the CINDs given in Fig. 2. Let Σ be {ψ1,ψ2,ψ5}. One can verify that Σ |	 ψ3 and Σ |	 ψ4. That is,

CINDs ψ3 and ψ4 are redundant, and we only need to focus on CINDs in Σ , and ignore ψ3 and ψ4. �
3.2.1. An inference system

As remarked earlier, for standard INDs the implication problem is not only decidable but also finitely axiomatizable.

We show that CINDs are also finitely axiomatizable, by providing an inference system for CINDs, denoted by I . Given a

finite set Σ of CINDs and another CIND ψ , we denote by Σ �I ψ if ψ is provable from Σ using rules of I . As will be seen

shortly, these rules are both sound, i.e., if Σ �I ψ then Σ |	 ψ , and complete, i.e., if Σ |	 ψ then Σ �I ψ .

Recall that for standard INDs, the inference system consists of three rules: reflexivity, projection–permutation and tran-

sitivity [13,20]. To cope with the richer semantics of CINDs, the inference system I is more complicated than the inference

system for INDs.

The inference system I is shown in Fig. 3. We briefly illustrate the inference rules (axioms) in I as follows. Intuitively,

rules IR1–IR3 correspond to the inference rules for INDs. IR1 is the reflexivity rule. IR2 shows that the patterns, i.e., Xp and

Yp , can also be permuted, in addition to permutation and projection of the embedded IND. IR3 extends the transitivity rule.

It requires not only the RHS of the first CIND to match the LHS of the second CIND, but also their pattern tuples to be

matched, i.e., tp1 [Yp] = tp2 [Yp].
Observe that rules IR1–IR3 do not consider the interaction between the pattern tuples and the embedded INDs, or the

complication introduced by finite-domain attributes. Hence, in contrast to classical INDs, these three rules are not enough

to characterize the implication analysis of CINDs. In light of these, we need rules IR4–IR8, which do not find a counterpart

in the inference system for INDs.
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IR4 allows us to instantiate attributes in X and their corresponding attributes in Y . Given a CIND (Ra[X; Xp] ⊆
Rb[Y ; Yp], tp), we can take an attribute A j from X and the corresponding B j in Y , assign a value in dom(A j) to them,

and move the attribute A j (resp. B j) to the pattern tuple Xp (resp. Yp) of the CIND.

IR5 enhances the LHS pattern of a CIND by adding an attribute to the pattern Xp . Consider a CIND (Ra[X; Xp] ⊆
Rb[Y ; Yp], tp). For any attribute A ∈ attr(Ra) that is in neither X nor Xp , we can add A to Xp with an arbitrary value

from dom(A). Intuitively, if ψ holds for all data values in dom(A), then it also holds for a specific value in dom(A).

IR6 weakens the RHS pattern of a CIND by removing an attribute from Yp . If (Ra[X; Xp] ⊆ Rb[Y ; Yp, B], tp) holds, then

for each tuple ta in Ra that satisfies the pattern tp[Xp], there exists a matching tuple tb in Rb that satisfies the pattern

tp[Yp, B]. If an attribute is removed from Yp , the CIND certainly still holds since the same tuple tb satisfies tp[Yp].
Finally, IR7 and IR8 are only needed in the presence of attributes with a finite domain. IR7 says that if we have a set of

CINDs that are pairwise identical except for the value tp[A] of a finite-domain attribute A, and the union of all those tp[A]
values covers the entire domain dom(A), then we can replace the set of CINDs by a single CIND in which attribute A is

removed from Xp . That is, the presence of A in the LHS pattern has no effect at all, and hence, we can just exclude it from

the CINDs.

IR8 is the “inverse” of IR4. If IR4 is applied to a CIND ψ to instantiate attributes A and B in the pattern tuple, when

tp[A] ranges over all the values of dom(A), then IR8 can take all those CINDs and restore ψ . In short, IR8 merges a set of m

CINDs if (1) they differ only in the value of tpi [A], (2) tpi [A] ranges over all the values in the domain dom(A), and (3) there

exists an attribute B in the RHS of each CIND such that tpi [A] = tpi [B].

Example 3.3. Recall ψ1 and ψ3 from Example 2.1. From ψ1, we can derive ψ3 by using rule IR5, i.e., {ψ1} �I ψ3.

The next example demonstrates that finite-domain attributes make the inference process more intricate. Consider a

database that consists of three relations R1(ABC), R2(EFG), and R3(GHK) such that dom(B) = {b1,b2} is finite and all the

other attributes have an infinite domain, e.g., string. Let {ψ ′
1,ψ

′
2,ψ

′
3,ψ

′} be a set of CINDs, where

ψ ′
1 = (

R1[A; B] ⊆ R2[E;G], (b1 ‖ g)
)
,

ψ ′
2 = (

R1[A; B] ⊆ R3[H;G], (b2 ‖ g)
)
,

ψ ′
3 = (

R2[E;nil] ⊆ R3[H;G], (nil ‖ g)
)
, and

ψ ′ = (
R1[A;nil] ⊆ R3[H;nil],∅)

.

Then ψ ′ can be derived from {ψ ′
1, ψ ′

2, ψ ′
3}:

(1)
(
R2[E;G] ⊆ R3[H;G], (g ‖ g)

)
, ψ ′

3, IR5

(2)
(
R1[A; B] ⊆ R3[H;G], (b1 ‖ g)

)
, (1), ψ ′

1, IR3

(3)
(
R1[A;nil] ⊆ R3[H;G], (nil ‖ g)

)
, (2), ψ ′

2, IR7

(4) ψ ′ = (
R1[A;nil] ⊆ R3[H;nil],∅)

, (3), IR6

That is, {ψ ′
1,ψ

′
2,ψ

′
3} �I ψ ′ . �

The soundness and completeness of I We next show that I is sound and complete for the implication analysis of CINDs. That

is, for any set Σ of CINDs and another CIND ϕ defined over the same schema R, Σ |	 ψ iff Σ �I ψ .

As we have seen from Example 3.1, the presence of finite-domain attributes complicates the implication analysis of

CFDs. This is also the case for CINDs: when some attributes in Σ or ϕ have a finite domain, the implication analysis is

more intricate, as indicated by Example 3.3 and the rules IR7 and IR8 in I . In light of this, we distinguish two settings:

(1) in the absence of finite-domain attributes, i.e., when none of the attributes in Σ or ϕ has a finite domain, and (2) the

general setting, when some attributes in Σ or ϕ may have a finite domain. We next show that a set of the rules of I is

sound and complete in both settings.

In the absence of finite-domain attributes This is the setting under which the inference system for standard INDs was devel-

oped [20] (see Section 6 for a detailed discussion). In this context, our main result about CIND inference is that the inference

rules IR1–IR6 of I make a sound and complete inference system for CINDs. For a set Σ of CINDs and another CIND ϕ , we

use Σ �I(1−6) ϕ to denote that ϕ can be proved from Σ using rules IR1–IR6 of I .

Theorem 2. In the absence of finite-domain attributes, the inference rules IR1–IR6 of I are sound and complete for the implication

analysis of CINDs.

Proof sketch. For the soundness, we show that given a set Σ ∪{ψ} of CINDs, if Σ �I(1−6) ψ by using IR1–IR6, then Σ |	 ψ .

This can be readily verified by induction on the length of proofs with IR1–IR6, by showing that the application of each of

IR1–IR6 is sound, by the definition of CINDs.
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For the completeness, we show that given a set of CINDs Σ ∪ {ψ} defined over a relational schema R, if Σ |	 ψ then

Σ �I(1−6) ψ , i.e., ψ is provable from Σ by using rules IR1–IR6. The proof consists of three parts. (1) We first develop a

chase procedure to characterize Σ |	 ψ . The chase process starts with a single-tuple instance of R, and repeatedly adds

tuples (one at a time) to the instance by applying CINDs in Σ until no more CINDs can be applied. (2) We then show that

the chase process always terminates, and moreover, that if Σ |	 ψ , then the resulting instance satisfies ψ . (3) Based on

(1) and (2), we finally show that if Σ |	 ψ then Σ �I(1−6) ψ , by showing that the chase process can be simulated by the

applications of rules IR1–IR6. The detailed proof can be found in Appendix A. �
Remark. The proof of Theorem 2 is inspired by the proof of their IND counterpart given in [20]. Nonetheless, our proof has

to deal with six rules with constant patterns, whereas the inference system for INDs consists of three rules and does not

need to consider constant patterns [20].

In the general setting As indicated by Example 3.3, the presence of finite-domain attributes complicates the inference process

for the implication analysis of CINDs, for which rules IR7 and IR8 are used to deal with finite-domain attributes. Indeed,

while one can verify that the inference system of [20] is also complete for standard INDs in the presence of finite-domain

attributes, whereas the rules IR1–IR6 are no longer complete for CIND implication here, as shown below.

Example 3.4. Consider a database schema R with relations R1(ABCD), R2(E FGH), and R3(I J K L) such that dom(A) =
{a,b, c}, dom(D) = {d, e}, dom(G) = {d, e, f }, dom(L) = {g,h} and all the other attributes have an infinite domain, e.g., string.
Consider a set Σ = {ψ1,ψ2,ψ3,ψ4,ψ5} of CINDs and another CIND ψ , all defined on R, where

ψ1 = (
R1[BC; AD] ⊆ R2[E F ;GH], (a,d ‖ d, f )

)
,

ψ2 = (
R1[BC; AD] ⊆ R3[I J ; K ], (b,d ‖ k)

)
,

ψ3 = (
R3[I J ; K ] ⊆ R2[E F ;GH], (k ‖ d, g)

)
,

ψ4 = (
R1[BC; A] ⊆ R2[E F ;GH], (c ‖ d,h)

)
,

ψ5 = (
R1[BC; D] ⊆ R2[E F ;GH], (e ‖ e,k)

)
, and

ψ = (
R1[BCD;nil] ⊆ R2[E FG;nil],∅)

.

Although Σ |	 ψ , one can verify that Σ �I(1−6) ψ , by showing that the existence of a tuple t1 of schema R1 does not

guarantee the existence of a tuple t2 of schema R2 such that t2[E FG] = t1[BCD], using the chase process for rules IR1–IR6

developed in the detailed proof of Theorem 2. In other words, IR1–IR6 are no longer complete for proving ψ from Σ . In

contrast, ψ can be proved from Σ by using IR1–IR8, as follows:

(1)
(
R1[BC; AD] ⊆ R2[E F ;GH], (b,d ‖ d, g)

)
, ψ2, ψ3, IR3

(2)
(
R1[BC; AD] ⊆ R2[E F ;GH], (c,d ‖ d,h)

)
, ψ4, IR5

(3)
(
R1[BC; AD] ⊆ R2[E F ;G], (a,d ‖ d)

)
, ψ1, IR6

(4)
(
R1[BC; AD] ⊆ R2[E F ;G], (b,d ‖ d)

)
, (1), IR6

(5)
(
R1[BC; AD] ⊆ R2[E F ;G], (c,d ‖ d)

)
, (2), IR6

(6)
(
R1[BC; D] ⊆ R2[E F ;G], (d ‖ d)

)
, (3), (4), (5), IR7

(7)
(
R1[BC; D] ⊆ R2[E F ;G], (e ‖ e)

)
, ψ5, IR6

(8) ψ = (
R1[BCD;nil] ⊆ R2[E FG;nil],∅)

, (6), (7), IR8

That is, Σ �I ψ . �
In the general setting, we show that IR1–IR8 are sound and complete.

Theorem 3. The inference system I is sound and complete for the implication of CINDs in the general case, where finite-domain

attributes may be present.

Proof sketch. The soundness of I can be verified by induction on the length of I-proofs.
For the completeness of I , consider a set Σ ∪ {ψ} of CINDs defined on a database schema R. We show that if Σ |	 ψ ,

then Σ �I ψ . The proof consists of five parts. (1) We first show that it suffices to consider a special form of CINDs. (2) We

then develop a chase procedure for the special form of CINDs, which extends the one given in the proof of Theorem 2 to

further deal with finite-domain attributes, and (3) we show that the chase process always terminates. (4) In addition, we

establish a certain property of the chase procedure, by characterizing conditions under which Σ ∪ {ψ} holds and showing

that the chase ensures the satisfaction of the condition. Finally, (5) we show that if Σ |	 ψ then Σ �I ψ by using rules

IR1–IR8 and the property. We refer the interested reader to Appendix A for a detailed proof. �
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Unrestricted implication We have so far only considered finite implication, when finite databases are considered, i.e., for

database instances in which each relation is a finite set of tuples. A CIND ψ is finitely implied by Σ if for every finite

database D , if D |	 Σ , then D |	 ψ . For theoretical interest one may also want to consider unrestricted implication, where

ψ is implied by Σ if for every database D , either finite or infinite, if D |	 Σ , then D |	 ψ . To distinguish these, we denote

finite implication and unrestricted implication by Σ |	fin ψ and Σ |	unr ψ , respectively.

The result below tells us that, however, for CINDs these notions are equivalent. As a result, we can focus on finite

implication for CINDs, and use Σ |	 ψ to denote both Σ |	fin ψ and Σ |	unr ψ .

Proposition 4. Finite implication and unrestricted implication coincide for CINDs.

Proof. By definition, unrestricted implication entails finite implication. That is, if Σ |	unr ψ , then Σ |	fin ψ . Conversely, it is

easy to verify that the inference system I is sound for unrestricted implication, i.e., if Σ �I ψ , then Σ |	unr ψ . Moreover,

by Theorem 3, if Σ |	fin ψ , then Σ �I ψ . From these it follows that finite implication entails unrestricted implication, i.e., if

Σ |	fin ψ , then Σ |	unr ψ . �
3.2.2. The complexity of the implication analysis

We next establish the computational complexity bounds for the implication analysis of CINDs. We investigate the prob-

lem again in two settings, namely, in the absence of finite-domain attributes and in the general setting when finite-domain

attributes may be present.

In the absence of finite-domain attributes It is known that for standard INDs in this setting, the implication problem is

PSPACE-complete [20]. Below we show that the implication problem for CINDs retains the same complexity as their standard

counterpart for INDs in this setting.

Theorem 5. The implication problem for CINDs is PSPACE-complete in the absence of attributes with finite domains.

Proof sketch. It is known that the implication problem for INDs is PSPACE-complete in the absence of finite-domain at-

tributes [20]. Since CINDs subsume INDs, the implication problem for CINDs is also PSPACE-hard.

To show that the implication problem for CINDs is in PSPACE in the absence of finite-domain attributes, it suffices to give

a linear space non-deterministic algorithm for deciding whether Σ |	 ψ , along the same lines as its counterpart for INDs

(see [13,20]). For if it holds, then by Savitch’s theorem [21], there is a deterministic quadratic-space algorithm for checking

whether Σ |	 ψ , and hence, the implication problem is in PSPACE. We give such an algorithm based on the chase procedure

developed in the proof of Theorem 2, in which only a single tuple is kept at all time, and old tuples are replaced by new

tuples derived by no-deterministically picking CINDs in Σ (see Appendix A for the details of the algorithm). �
In the general setting When finite-domain attributes are present, the implication analysis of CINDs becomes more involved.

Nevertheless, the increased complexity is not incurred only by the presence of finite-domain attributes. Indeed, a close

examination of the proofs of [13,20] reveals that while the PSPACE-completeness for the implication analysis of standard

INDs was established for relations with infinite domains only, the proofs remain intact when finite-domain attributes are

present. That is, the following result holds.

Proposition 6. In the presence of finite-domain attributes, the implication problem for INDs remains PSPACE-complete.

Theorem 5 and Proposition 6 together tell us that neither finite-domain attributes nor constant patterns alone complicate

the implication problem. However, below we show that when they are taken together, the implication analysis becomes

more intriguing. That is, their interaction makes the implication problem for CINDs harder.

Theorem 7. In the general setting, the implication problem for CINDs is EXPTIME-complete.

Proof sketch. To show that the problem is in EXPTIME, we develop an algorithm that, given a set Σ ∪ {ψ} of CINDs defined

on instances of a relational schema R, returns ‘yes’ if and only if Σ |	 ψ . The algorithm is in O (2n
k
) time, where k is a

constant and n is the size of R, Σ and ψ . For the lower bound, we show that the problem is EXPTIME-hard by reduction

from the two-player game of corridor tiling problem (TPG-CT), which is EXPTIME-complete [22,23]. We refer the interested

reader to Appendix A for a detailed proof. �
4. Interaction between CINDs and CFDs

We have seen that CINDs do not make their satisfiability and implication problems much harder than their traditional

counterpart INDs. At the very least, these problems remain decidable for CINDs. In contrast, we show in this section that
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when CINDs and CFDs are taken together, the static analyses become far more intriguing. As remarked earlier, in schema

matching and data cleaning it is often necessary to use both CINDs and CFDs.

Recall the definition of CFDs given in [1] and presented in Section 3.1. For CFDs the following have been established

in [1]. (a) The satisfiability problem for CFDs is NP-complete. (b) The implication problem of CFDs is finitely axiomatizable.

(c) The implication problem for CFDs is coNP-complete. (d) The satisfiability and implication problems are in O (n2) time,

where n is the size of the given CFDs, when the CFDs do not involve attributes with a finite domain.

While CFDs alone already complicate the static analyses, we next show that CFDs and CINDs together make our lives

much harder.

Implication analysis It is not surprising that the implication problem for CINDs and CFDs is undecidable and is not finitely

axiomatizable, since the problem is already undecidable for standard INDs and FDs (see, e.g., [13]), and CINDs and CFDs

subsume INDs and FDs, respectively. The result remains intact even in the absence of attributes with a finite domain, since

the undecidability proof of the implication problem for FDs and INDs use attributes with infinite domains only (see [13]).

Proposition 8. The implication problem for CINDs and CFDs is undecidable, and is not finitely axiomatizable, even in the absence of

finite-domain attributes.

Satisfiability analysis Given a set of CFDs and a set of CINDs that are separately satisfiable, when they are put together,

there may be conflicts among them, which make the set of CFDs and CINDs unsatisfiable, as illustrated by the following

example.

Example 4.1. Consider a relation R with attr(R) = {A, B}, on which we define a CFD φ = (R : A → B, (_ ‖ a)) and a CIND

ψ = (R[nil; B] ⊆ R[nil; B], (nil ‖ b)), where a and b are distinct constants. Obviously, there exists a nonempty instance of R

that satisfies φ and there is an instance satisfying ψ . However, there exists no nonempty instance of R that satisfies both ψ

and φ. To see this, assume that such an instance D exists. Then ψ tells us that as long as D is nonempty, there is a tuple t

in D such that t[B] = b. In contrast, φ requires that t[B] = a, violating ψ . �
While the undecidability of the implication problem for CINDs and CFDs is expected, the following result is a little

surprising. The undecidability can be verified by reduction from the implication problem for standard FDs and INDs. The

undecidability remains intact in the absence of attributes with a finite domain.

Theorem 9. The satisfiability problem for CFDs and CINDs is undecidable, even in the absence of finite-domain attributes.

Proof. We show that the satisfiability problem for CINDs and CFDs is undecidable by reduction from the implication prob-

lem for standard FDs and INDs, which is undecidable even in the absence of attributes with finite domains (see, e.g., [13]).

More specifically, given an instance of the implication problem, namely, a set Σ of FDs and INDs and a single FD

ϕ = (Rg : X → A) over a database R(R1, . . . , Rg, . . . , Rn), we define another set Σ ′ of CINDs and CFDs over R such that Σ ′
is satisfiable if and only if Σ 
|	 ϕ .

Let Σ ′ contain every φ ∈ Σ as well as the following CINDs:

• (Ri[nil;nil] ⊆ Rg[nil; A], (nil ‖ c1)) for i = 1, . . . ,n; that is, if any Ri is nonempty, then there exists an Rg tuple t such

that t[A] = c1;

• (Rg[X; A] ⊆ Rg[X; A], (c1 ‖ c2)) with c1 
= c2 and c1, c2 ∈ dom(A); that is, if there exists an Rg tuple t1 with t1[A] = c1,

then there exists an Rg tuple t2 with t2[A] = c2 whereas t1[X] = t2[X].

We next show that Σ ′ is satisfiable if and only if Σ 
|	 ϕ .

Assume first that Σ ′ is satisfiable, then obviously there exists a nonempty instance D of R such that D |	 Σ ′ . From this

it follows that D |	 Σ and moreover, that D 
|	 ϕ , since two tuples t1, t2 described above must appear in D .

Conversely, assume that Σ 
|	 ϕ . Then there exists a database D such that D |	 Σ but D 
|	 ϕ . Since D 
|	 ϕ , there must

exist two Rg tuples t1, t2 such that t1[X] = t2[X], t1[A] = a, t2[A] = a′ , but a 
= a′ . Assume w.l.o.g. that c1, c2 are two

constants that do not appear in D , which always exist since dom(A) is infinite. Define a mapping ρ such that ρ(a) = c1,

ρ(a′) = c2 and ρ(d) = d for all other constants d in D . Denote the database obtained this way as D ′ . Then it is easy to verify

that D ′ is a witness that satisfies Σ ′ , i.e., Σ ′ is satisfiable.

Putting these together, we have shown that Σ ′ is satisfiable if and only if Σ 
|	 ϕ . �
5. Two special classes of CINDs

Proposition 6 and Theorem 7 tell us that it is rather expensive to reason about INDs or CINDs. Indeed, the implication

analyses of INDs and CINDs are beyond reach in practice.
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However, not all is lost: in practice one often needs only a fragment of INDs or CINDs with a lower complexity. That is,

we do not have to pay the price of the complexity of full-fledged INDs or CINDs when we only need certain special cases

of the dependencies.

We next investigate two special cases of INDs and CINDs, namely, acyclic and unary inclusion dependencies.

5.1. Acyclic CINDs

One of the well-studied fragments of INDs is identified as sets of acyclic INDs [24] (see e.g., [13]). A set Σ of INDs over a

relational schema R is acyclic if there exists no sequence Ri[Xi] ⊆ Si[Yi] (i ∈ [1,n]) of INDs in Σ , where Ri+1 = Si for each

i ∈ [1,n − 1], and R1 = Sn . We refer to such a set of INDs as a set of AINDs.

Acyclic CINDs Along the same lines as AINDs, we define acyclic CINDs.

A set Σ of CINDs is acyclic if there exists no sequence (Ri[Xi; Xpi] ⊆ Si[Yi; Ypi], tpi) (i ∈ [1,n]) of CINDs in Σ such that

Ri+1 = Si for i ∈ [1,n − 1], and R1 = Sn . We refer to such a set of CINDs as a set of ACINDs.

It is common to find a set of CINDs acyclic in practice. For example, the CINDs in a Web database [25] and a drug

database [26] are both acyclic. Moreover, the set of CINDs given in Example 2.1 and the set of CINDs in Example 3.3 are

both acyclic as well.

We next show that ACINDs indeed make our lives easier, i.e., they allow more efficient static analysis. From Theorem 1,

it follows that any set of ACINDs is satisfiable. Hence we shall focus on the implication analysis of ACINDs, i.e., the problem

for determining, given a set Σ of ACINDs and a CIND ϕ , whether Σ |	 ϕ . We study the implication problem for ACINDs in

the absence of finite-domain attributes and in the general setting when finite-domain attributes may be present. Note that

while Σ is acyclic, Σ ∪ {ϕ} may be cyclic.

In the absence of finite-domain attributes It has been shown that in this setting, the implication problem for AINDs is

NP-complete [14]. We next show that the implication problem for ACINDs retains the same complexity as its standard

counterpart, i.e., ACINDs do not complicate the implication analysis in the absence of finite-domain attributes.

Corollary 10. The implication problem for ACINDs is NP-complete in the absence of attributes with a finite domain.

Proof. For the lower bounds, note that the implication problem for acyclic INDs is already NP-hard [14]. Since acyclic INDs

are a special case of acyclic CINDs, the implication problem for ACINDs is also NP-hard.

We next show that the problem is in NP. Consider the non-deterministic algorithm given in the proof of Theorem 5 for

determining whether a set Σ of CINDs implies another CIND ψ (see Appendix A). When Σ is a set of ACINDs without

finite-domain attributes, the initial tuple t0 can be replaced by other tuples for at most n times, where n is the number of

relations in the database schema R. That is, the linear space non-deterministic algorithm runs in polynomial time. Hence,

it is indeed an NP algorithm for deciding whether Σ |	 ψ . As a result, the implication problem for ACIND is in NP without

finite-domain attributes. �
In the general setting The presence of finite-domain attributes does not make the implication analysis of AINDs harder.

Indeed, the NP algorithm given in [14] for checking the implication of traditional AINDs still works for AINDs in the presence

of finite-domain attributes. Moreover, it is known [14] that the implication analysis of AINDs is NP-hard in the absence of

finite-domain attributes; this lower bound obviously carries over to the more general setting when finite-domain attributes

may be present. Hence we have the following.

Corollary 11. The implication problem for AINDs remains NP-complete when finite-domain attributes may be present.

In contrast, the presence of finite-domain does complicate the implication analysis of ACINDs: the implication problem

for ACINDs in this setting becomes PSPACE-complete, up from NP-complete for ACINDs in the absence of finite-domain

attributes.

Theorem 12. In the general setting, the implication problem for ACINDs is PSPACE-complete.

Proof sketch. We show that the implication problem for ACINDs is in PSPACE in the general setting, by giving a linear

space non-deterministic algorithm for determining whether Σ 
|	 ψ , i.e., the complement of Σ |	 ψ . This suffices. For if it

holds, then (a) by the Immerman–Szelepcsényi theorem [27,28], there exists a linear space non-deterministic algorithm for

deciding whether Σ |	 ψ ; and (b) by Savitch’s theorem [21], there is a deterministic quadratic-space algorithm for checking

whether Σ |	 ψ . Therefore, the problem is in PSPACE. For the lower bound, we show that the problem is PSPACE-hard

by reduction from the Q3SAT problem, which is known to be PSPACE-complete (cf. [29]). A detailed proof is given in

Appendix A. �
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5.2. Unary CINDs

Another well-studied fragment of INDs is the class of unary inclusion dependencies, defined as follows [13,15]. A unary

IND (UIND) is an IND of the form Ra[A] ⊆ Rb[B], where A ∈ attr(Ra) and B ∈ attr(Rb). That is, a UIND is an IND in which

exactly one attribute appears on each side.

Unary CINDs We next define and investigate unary CINDs along the same lines as UINDs.

A unary CIND (UCIND) is a CIND of the form (Ra[A; Xp] ⊆ Rb[B; Yp], tp), where A and B are attributes in Ra and Rb ,

respectively.

UCINDs are an extension of UINDs by incorporating patterns of data values. Observe that patterns Xp and Yp in a UCIND

may have more than one attribute. It is common to find UCINDs in practice, just like our familiar unary primary keys and

their corresponding foreign keys [13]. Below we give another example.

Example 5.1. Consider a database consisting of three relations: student(SSN, name, dept), course(cno, title, dept), and

enroll(SSN, cno, grade). The student relation collects all the student records in a university, and course consists of all the

courses offered by the university. In contrast, the enroll relation aims to maintain a complete record of the cs courses

registered by students in the cs department.

One would naturally want to design the following CINDs:

(
student[SSN; dept] ⊆ enroll[SSN; nil], (‘cs’ ‖ nil)

)
,

(
course[cno; dept] ⊆ enroll[cno; nil], (‘cs’ ‖ nil)

)
,

(
enroll[SSN; nil] ⊆ student[SSN; nil],∅)

, and
(
enroll[cno; nil] ⊆ course[cno; nil],∅)

.

All these CINDs are UCINDs. �
We next investigate the static analysis of UCINDs. By Theorem 1 we do not have to worry about the satisfiability problem

for UCINDs. Hence below we focus on the implication problem for UCINDs, i.e., the problem for determining, given a set Σ

of UCINDs and another UCIND ϕ , whether Σ |	 ϕ . We study the problem in the absence of finite-domain attributes and in

the general setting.

In the absence of finite-domain attributes It has been shown that the implication problem for UINDs is in polynomial time

(PTIME) in this setting [15]. We next show that the implication analysis of UCINDs can also be conducted efficiently when

finite-domain attributes are not present.

Theorem 13. The implication problem for UCINDs is in polynomial time in the absence of finite-domain attributes.

Proof sketch. We give a PTIME algorithm for checking whether Σ |	 ψ when ψ and the CINDs in Σ are unary. The

algorithm can be found in Appendix A. �
In the general setting For UINDs, the presence of finite-domain attributes does not complicate the implication analysis.

Indeed, a close examination of the PTIME algorithm of [15] for checking traditional UIND implication reveals that it still

works in the general setting. Hence we have the following.

Corollary 14. The implication problem for UINDs remains in polynomial time in the general setting.

This is, however, no longer the case for UCINDs in this setting.

Theorem 15. The implication problem for UCINDs is coNP-complete in the general setting.

Proof sketch. We show that the problem is in coNP, by developing an NP algorithm that, given a set Σ ∪ {ψ} of UCINDs,

checks whether Σ 
|	 ψ . We verify that the problem is coNP-hard by reduction from the 3SAT problem to the complement

of the problem (i.e., to decide whether Σ 
|	 ψ ). It is known that 3SAT is NP-complete (cf. [30]). We defer a detailed proof

to Appendix A. �
Acyclic UCINDs One might be tempted to think that it would simplify the implication analysis if we further restrict UCINDs

to be acyclic. Unfortunately, this is not the case. Indeed, in the lower bound proof of Theorem 15, the UCINDs used are

acyclic. From this it follows that the implication problem for acyclic UCINDs remains coNP-complete.

Corollary 16. The implication problem for acyclic UCINDs is coNP-complete in the general setting.
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6. Related work

Data dependencies have been studied for relational databases since the introduction of FDs by Codd [31] in 1972

(see, e.g., [13,32] for details). Recently, data dependencies have generated renewed interests for improving data quality

[1–7,33–37] and for schema mapping [10,11,16].

The theory of INDs was established in [20], which developed a sound and complete inference system and the PSPACE-

completeness for the implication analysis of INDs. Acyclic INDs were introduced in [24], and their implication problem was

shown to be NP-complete in [14]. Unary INDs were studied in [15], which provided a sound and complete inference system

for UINDs and FDs, and proved the PTIME bound of the implication problem for UINDs and FDs put together (see [13] for

a survey on INDs, AINDs and UINDs). While not explicitly stated, the proofs of these results indicate that the implication

analysis was conducted in the absence of finite-domain attributes. In this paper we verify that the complexity bounds for

INDs, AINDs and UINDs remain intact in the presence of finite-domain attributes.

CINDs, ACINDs and UCINDs extend INDs, AINDs and UINDs, respectively, by incorporating patterns of data values. For the

implication problem in the absence of finite-domain attributes, the lower bounds for CINDs, AINDs and UINDs are inherited

from their traditional counterparts, but not the upper bounds. When finite-domain attributes may be present, however, none

of the results of [14,15,18,20,24] holds on CINDs. Indeed, the implication problems for CINDs, ACINDs and UCINDs in the

general setting have a higher complexity bound than their traditional counterparts.

INDs are a special case of TGDs, which can be expressed as first-order logic sentences of the form:

∀x1 . . .∀xn
[
ϕ(x1, . . . , xn) → ∃z1 . . .∃zkφ(y1, . . . , ym)

]
,

where (a) {z1, . . . , zk} = {y1, . . . , ym} \ {x1, . . . , xn}, (b) ϕ and φ are conjunctions of relation atoms of the form R(w1, . . . , wl)

in which w1, . . . , wl are variables (see, e.g., [13] for details). In contrast to CINDs, TGDs do not allow constants, and their

implication problem is undecidable [18]. There have been extensions of TGDs [38] developed for constraint databases, notably

constrained tuple-generating dependencies (ctgds) of the form:

∀x̄ (
R1(x̄) ∧ · · · ∧ Rk(x̄) ∧ ξ → ∃ ȳ (R ′

1(x̄, ȳ) ∧ · · · ∧ R ′
s(x̄, ȳ) ∧ ξ ′(x̄, ȳ)

)
,

where Ri, R
′
j are relation atoms, and ξ, ξ ′ are arbitrary constraints. While ctgds support constants and can express CINDs,

the increased expressive power comes at a price for static analysis. Indeed, the satisfiability and implication problems are

both undecidable for ctgds.
Closer to our work is the study of CFDs [1]. CFDs extend FDs with pattern tableaux, along the same lines as CINDs. It was

shown in [1] that the satisfiability and implication problems for CFDs are NP-complete and coNP-complete, respectively, in

the general setting, and they are in PTIME in the absence of finite-domain attributes. Extensions of CFDs have been proposed

to support disjunction and negation [39], cardinality constraints and synonym rules [40], built-in predicates ( 
=,<,�,>,

�) [41], and to specify patterns in terms of value ranges [4]. However, CFDs and their extensions are defined on a single

relation and are universally quantified. They cannot express CINDs, and neither CINDs nor their static analyses were studied

in [1,4,39–41]. In addition, as we have seen earlier, the satisfiability and implication analysis of CINDs are far more intriguing

than their CFD counterparts. An extension of CINDs was recently proposed to support built-in predicates [41], which was

based on the results of this work. Discovering CINDs has been studied in [25].

Research on constraint-based data cleaning has mostly focused on two topics, both proposed by [33]: repairing is to

find another database that is consistent and minimally differs from the original database (e.g., [8,9,42]); and consistent

query answering is to find an answer to a given query in every repair of the original database (e.g., [33,43]). A variety of

constraint formalisms have been used in data cleaning, ranging from standard FDs and INDs [8,9,33], denial constraints (full

dependencies) [44], to logic programs (see [34–36] for surveys). To our knowledge, no prior work has considered CINDs

for data cleaning albeit our work [12,41], and the recent work [26] that makes use of CINDs and CFDs to clean drug data.

Moreover, previous work on data cleaning did not study inference, satisfiability and implication analyses of constraints,

which are the focus of this paper.

Constraints used in schema matching in practice are typically standard INDs and keys (see, e.g., [10]). Contextual schema

matching [11] investigated the applications of contextual foreign keys, a primitive and special case of CINDs, in deriving

schema mapping from schema matches. While [11] partly motivated this work, it neither formalized the notion of CINDs

nor considered the static analysis of CINDs. There has also been recent work on data exchange (schema mapping) and data

integration based on TGDs (see [16,45,46] for surveys). However, inference systems and static analyses of constraints are not

the focus of the prior work on data exchange and data integration, and none of the results of this work has been established

in those lines of research.

The chase technique is widely used in implication analysis and query optimization, and has been studied for a variety

of dependencies (see, e.g., [13,15,18,47]). Recently it was extended for query reformulation and schema mapping, and a

number of sufficient conditions were identified for its termination (see [16,48] for recent surveys). This work extends the

chase technique to study the implication analysis of CINDs, for which the chase process always terminates.
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Table 1
Summary of the main results in the absence of finite-domain attributes.

Problems Dependencies Infinite domain only

The satisfiability problem INDs O (1) [19]

CINDs O (1) (Theorem 1)

INDs + FDs O (1) [13]

CINDs + CFDs Undecidable (Theorem 9)

The implication problem INDs PSPACE-complete [13,20]

CINDs PSPACE-complete (Theorem 5)

INDs + FDs Undecidable [13]

CINDs + CFDs Undecidable (Corollary 8)

AINDs NP-complete [13,14]

ACINDs NP-complete (Corollary 10)

UINDs PTIME [13,15]

UCINDs PTIME (Theorem 13)

acyclic UINDs PTIME [13,15]

acyclic UCINDs PTIME (Theorem 13)

The finite axiomatizability INDs IND1, IND2, IND3 [13,20]

CINDs IR1–IR6 (Theorem 2)

INDs + FDs Not finitely axiomatizable [13]

CINDs + CFDs Not finitely axiomatizable (Corollary 8)

Table 2
Summary of the main results in the general setting.

Problems Dependencies General setting

The satisfiability problem INDs O (1) [19]

CINDs O (1) (Theorem 1)

INDs + FDs O (1) [13]

CINDs + CFDs Undecidable (Theorem 9)

The implication problem INDs PSPACE-complete ([13,20], Proposition 6)

CINDs EXPTIME-complete (Theorem 7)

INDs + FDs Undecidable [13]

CINDs + CFDs Undecidable (Corollary 8)

AINDs NP-complete ([13,14], Corollary 11)

ACINDs PSPACE-complete (Theorem 12)

UINDs PTIME ([13,15], Corollary 14)

UCINDs coNP-complete (Theorem 15)

acyclic UINDs PTIME [13,15]

acyclic UCINDs coNP-complete (Corollary 16)

The finite axiomatizability INDs IND1, IND2, IND3 [13,20]

CINDs IR1–IR8 (Theorem 3)

INDs + FDs Not finitely axiomatizable [13]

CINDs + CFDs Not finitely axiomatizable (Corollary 8)

7. Conclusion

We have proposed CINDs, a mild extension of INDs that is important in both contextual schema matching and data

cleaning. We have also settled several fundamental problems associated with static analysis of CINDs, from the satisfiability

to the finite axiomatizability, to the complexity of the implication problem. Tables 1 and 2 summarize the main results

of this work on CINDs, compared with their counterparts for standard INDs. While some proofs for CINDs in the absence

of finite-domain attributes are inspired by the proofs of their IND counterparts, most proofs here are more involved. For

instance, we have to deal with six inference rules, whereas the inference system for INDs has three rules and does not

need to consider constant patterns [20]. In the general setting, our proofs are much more complicated, since we need to

cope with the impact of finite-domain attributes and constant patterns together, as indicated by eight inference rules. The

techniques for dealing with finite-domain attributes are interesting in their own right.

For the satisfiability analysis, the presence of finite-domain attributes does not complicate the problem of INDs, CINDs,

INDs + FDs and CINDs + CFDs. However, while a set of INDs and FDs is always satisfiable [13], the problem of CINDs and

CFDs put together is undecidable, because of the presence of data values.

For the implication analysis, in particular, we have developed a sound and complete inference system for CINDs. We

have also provided a complete picture of complexity bounds for the implication analysis of CINDs and INDs, focusing on the

following dichotomies:

– with constant patterns (CINDs) vs. their absence (INDs);
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– general CINDs vs. ACINDs and UCINDs;

– the absence of finite-domain attributes vs. the general setting in which finite-domain attributes may be present.

We have investigated the impact of these factors on the implication analysis of inclusion dependencies. (a) For traditional

INDs, AINDs, UINDs and acyclic UINDs, the presence of finite-domain attributes does not complicate the implication anal-

ysis. (b) The presence of constant patterns alone does not increase the complexity. Indeed, the implication problem for

CINDs, ACINDs, UCINDs and acyclic UCINDs in the absence of finite-domain attributes retains the same complexity as its

counterpart for INDs, AINDs, UINDs, and acyclic UINDs, respectively. Nevertheless, (c) the presence of both constant patterns

and finite-domain attributes makes our lives harder. Indeed, the implication problem for CINDs, ACINDs, UCINDs and acyclic

UCINDs in the general setting has a higher complexity than its counterpart for INDs, AINDs, UINDs and acyclic UINDs, re-

spectively. These tell us that it is the interaction between constant patterns and finite-domain attributes that complicates

the implication analysis.

There is naturally much more to be done. First, we have shown that when CINDs and CFDs are taken together, both the

satisfiability problem and the implication problem become undecidable. Nevertheless, it is not known yet whether the prob-

lems are decidable for CFDs (or FDs) and fragments of CINDs put together, e.g., AINDs, ACINDs, UINDs, UCINDs, acyclic UINDs

and acyclic UCINDs. Second, an extension of CINDs was proposed in [41] by supporting built-in predicates ( 
=,<,�,>,�),

to capture inconsistencies across different relations. We want to find out the impact of these built-in predicates on the static

analyses of ACINDs and UCINDs. Third, it is important and practical to develop effective algorithms for discovering CINDs,

as studied in [25], along the same lines as their counterparts for CFDs [3,4,49]. Finally, both CFDs and CINDs are useful in

schema matching and data cleaning. However, effective and efficient data repairing and schema matching algorithms are yet

to be developed when both CINDs and CFDs are brought into the play.
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Appendix A. Proofs

A.1. Proof of Theorem 2

Theorem 2. In the absence of finite-domain attributes, the inference rules IR1–IR6 of I are sound and complete for the implication

analysis of CINDs.

Proof. For the soundness, we show that given a set Σ ∪ {ψ} of CINDs, if Σ �I(1−6) ψ by using IR1–IR6, then Σ |	 ψ . This

can be readily verified by induction on the length of proofs with IR1–IR6, by showing that the application of each of IR1–IR6

is sound, by the definition of CINDs.

For the completeness, we show that given a set of CINDs Σ ∪ {ψ} over a relational schema R, if Σ |	 ψ then

Σ �I(1−6) ψ , i.e., ψ is provable from Σ by using IR1–IR6. We assume w.l.o.g. that R = (R1, . . . , Rn), and that ψ is

(Ra[A1, . . . , Am; Xp] ⊆ Rb[B1, . . . , Bm; Yp], tpψ ), in which Ra and Rb are in R.

The proof consists of three parts. (1) We first develop a chase procedure to determine whether Σ |	 ψ . The chase process

starts with a single-tuple instance of R, and repeatedly adds tuples (one at a time) to the instance by applying CINDs in

Σ until no more CINDs can be applied. (2) We then show that the chase process always terminates, and moreover, that if

Σ |	 ψ , then the resulting instance satisfies ψ . (3) Based on these, we finally show that if Σ |	 ψ then Σ �I(1−6) ψ .

(1) We first introduce the chase procedure.

We construct a tuple ta of schema Ra such that (a) ta[Ai] = vi for i ∈ [1,m]; (b) ta[Ap] = tpψ [Ap] for each attribute

Ap ∈ Xp of the CIND ψ ; and (c) ta[A] = v0 for the rest of the attributes A ∈ attr(Ra)\({A1, . . . , Am}∪ Xp). Here v0, v1, . . . , vm
are m + 1 distinct variables that represent data values not appearing in Σ ∪ {ψ}.

The chase process starts with an instance D0 := (I1, . . . , Ia, . . . , In) of R such that the instance Ia of schema Ra contains

the single tuple ta , and for each i ∈ [1,n] with i 
= a, the instance Ii of schema Ri is empty.

The chase adds tuples to the database D0, one at a time, by making use of a chase operation apply. More specifically,

given a CIND ψ ′ = (Ri[U ;Up] ⊆ R j[V ; V p], tpψ ′ ) in Σ and an instance D , apply(D,ψ ′) transforms the instance D into a

new one D ′ by applying CIND ψ ′ to D as follows.

– For each tuple ti ∈ Ii with ti[Up] = tpψ ′ [Up], if there exists no tuple t j ∈ I j such that t j[V ] = ti[U ] and t j[V p] = tpψ ′ [V p],
we say that the CIND ψ ′ is applicable to D . If so then the chase adds a tuple t j to I j such that (a) t j[V ] = ti[U ],
(b) t j[V p] = tpψ ′ [V p], and (c) t j[E] = v0 for all the other attributes E ∈ attr(R j) \ (V ∪ V p).

– If there exists no such tuple ti for the CIND ψ ′ , the instance D remains the same, i.e., D = apply(D,ψ ′).
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The chase process stops when it reaches an instance D f such that no more CINDs in Σ are applicable to D f , i.e., when

D f = apply(D,ψ ′) for all CINDs ψ ′ in Σ . We refer to such D f as a result of apply(D,Σ).

(2) We next show that the chase process always terminates, and that all results D f = apply(D,Σ) satisfies ψ if Σ |	 ψ .

Observe that in any step of the chase process, the database is defined in terms of a finite set of elements, i.e., m + 1

variables {v0, v1, . . . , vm}, and the constants appearing in the constant patterns of CINDs in Σ ∪ {ψ}. There are only finitely

many distinct databases with these elements. From this it follows that the chase process always terminates.

Intuitively, the chase process yields a sequence of databases D0, D1, . . . , D f such that (a) D0 is the initial instance, and

(b) for each i ∈ [0, f − 1], Di+1 := apply(Di,ψ
′) by applying a CIND ψ ′ in Σ to Di . In addition, Di ⊆ Di+1 for all 0 � i < f ,

and apply(D f ,ψ
′) = D f for all ψ ′ in Σ . That is, the instance D f is a fixpoint. When it is clear from the context, we use

Chase(Σ,ψ) to denote such a D f ; in other words, Chase(Σ,ψ) denotes an arbitrary fixpoint D f obtained by such a chase

process.

It is easy to see that Chase(Σ,ψ) |	 Σ , no matter what fixpoint is obtained by the chase process and is denoted by

Chase(Σ,ψ). Thus if Σ |	 ψ , then Chase(Σ,ψ) |	 ψ . That is, the initial tuple ta ∈ Ia enforces the existence of another

tuple tb ∈ Ib such that (a) tb[Bi] = vi for i ∈ [1,m], and (b) tb[Yp] = tpψ [Yp].

Example 1. Consider a database D0 with three relations shown below, and the CINDs ψ ′
1 and ψ ′

3 given in Example 3.3. Let

Σ be {ψ ′
1, ψ ′

3} and ψ = (R1[A; B] ⊆ R3[H;G], (b1 ‖ g)). The chase process works on the database D0 as follows.

I1: A B C
t1: v1 b1 v0

I2: E F G

I3: G H K

(1) Initial instance D0

I1: A B C
t1: v1 b1 v0

I2: E F G
t2: v1 v0 g

I3: G H K

(2) Instance D1 after executing apply(D0,ψ
′
1)

I1: A B C
t1: v1 b1 v0

I2: E F G
t2: v1 v0 g

I3: G H K
t3: g v1 v0

(3) Final instance D2 after executing apply(D1,ψ
′
3)

Note that Σ |	 ψ , and that there exists a tuple t3 such that t3[H] = t1[A] and t3[G] = ‘g’.

(3) We finally show that if Σ |	 ψ , then Σ �I(1−6) ψ . To prove this, it suffices to show the following claim.

Claim 1. Assume that the instance I j of R j in the chase process contains a tuple t, where (a) for each Ei ∈ attr(R j) (i ∈ [1,k]),
t[Ei] = v ji and v ji is in {v1, . . . , vm}, and (b) t[Zp] consists of only constants for a list Z p of distinct attributes in attr(R j). Then

Σ �I(1−6) ψ ′ , where ψ ′ is (Ra[A j1 , . . . , A jk ; Xp] ⊆ R j[E1, . . . , Ek; Zp], t′p), t′p[Xp] = tpψ [Xp] and t′p[Zp] = t[Zp].

For if it holds, we can conclude that if Σ |	 ψ , then Σ �I(1−6) ψ . Indeed, as remarked earlier, Chase(Σ,ψ) |	 ψ for all

fixpoints obtained by the chase and denoted by Chase(Σ,ψ). Since the initial D0 contains the tuple ta , by the definition of

chase, there must be a tuple tb ∈ Ib in Chase(Σ,ψ) such that (a) tb[Bi] = vi for i ∈ [1,m], and (b) tb[Yp] = tpψ [Yp]. Hence
by Claim 1, Σ �I(1−6) ψ .

We next prove Claim 1 by induction on the length of the instance sequence generated by the chase process.

Base case. When the length is 1, the sequence consists of the initial instance D0, which contains a single tuple ta in the

instance Ia of schema Ra . We show that (Ra[X ′; X ′
p] ⊆ Ra[X ′; X ′

p], (ta[X ′
p] ‖ ta[X ′

p])) for all X ′ ⊆ {A1, . . . , Am} and X ′
p ⊆ Xp ,

by repeatedly using IR4 as follows.

(1)
(
Ra[X ′, X ′

p;nil] ⊆ Ra[X ′, X ′
p;nil],∅)

, IR1

(2)
(
Ra[X ′; X ′

p] ⊆ Ra[X ′; X ′
p],

(
ta[X ′

p] ‖ ta[X ′
p]

))
, IR4
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Inductive case. Assume that Claim 1 holds for the first i + 1 instances D0, . . . , Di . We next show that Claim 1 also holds on

Di+1 := apply(Di,ψ
′).

If Di+1 = Di , the instance Di is not changed by apply(Di,ψ
′), and the claim obviously holds on Di+1 since it holds

on Di .

Assume that Di+1 
= Di . Then there must be a single tuple w inserted into the instance I j of some schema R j ,

i.e., I j = I j ∪ {w}, as the result of apply(Di,ψ
′) for some ψ ′ ∈ Σ . Assume w.l.o.g. that ψ ′ = (Ri[C1, . . . ,Ck;Up] ⊆

R j[F1, . . . , Fk; V p], tpψ ′ ). Since ψ ′ is applicable to Di , there exists a tuple u in Ii such that u[Up] = tpψ ′ [Up]. By the

induction hypothesis, there is a CIND ψu = (Ra[Ap1 , . . . , Aph ; Xp] ⊆ Ri[Cp1 , . . . ,Cph ;U ′
p], tpu ) such that (a) for each at-

tribute C ∈ attr(Ri), if u[C] is a constant, then C ∈ U ′
p , and if u[C] is a variable in {v1, . . . , vm}, then C ∈ {Cp1 , . . . ,Cph },

(b) tpu [U ′
p] = u[U ′

p], and (c) Σ �I(1−6) ψu . Based on the tuples w,u and the CINDs ψ ′ and ψu , we can derive the following.

(a) tpψ ′ [U ′
p] = u[U ′

p], tpu [Up] = u[Up], and Up ⊆ U ′
p .

(b) Let {Cq1 , . . . ,Cqg } = {C1, . . . ,Ck} ∩ {Cp1 , . . . ,Cph }, where 0 � g � min(k,h). Then {Aq1 , . . . , Aqg } ⊆ {Ap1 , . . . , Aph }, and for

the tuple w , w[F ] ∈ {v1, . . . , vm} iff F ∈ {Fq1 , . . . , Fqg }.
(c) For each attribute F ∈ attr(R j), w[F ] is a constant iff F ∈ V p such that w[F ] = tpψ ′ [F ], or F = Fi (1 � i � k) such that

w[F ] = u[F ] and Ci ∈ Uc = U ′
p ∩ {C1, . . . ,Ck}. We use Vc to denote the list of attributes in attr(R j) that corresponds to

the list of attributes Uc of attr(Ri) in ψ ′ .
(d) Uc ∩ {Cq1 , . . . ,Cqg } = ∅ and Uc ⊆ U ′

p .

We next show that Σ �I(1−6) ψw , where ψw is the CIND (Ra[Ap1 , . . . , Apg′ ; Xp] ⊆ R j[F p1 , . . . , F pg′ ; Z ′
p], tpψw

). Observe

that (a) {F p1 , . . . , F pg′ } ⊆ {Fq1 , . . . , Fqg } by (2) above, and (b) Z ′
p ⊆ V p ∪ Vc by (3).

In addition, we can derive the following.

(a) (Ri[Cq1 , . . . ,Cqg ;UcUp] ⊆ R j[Fq1 , . . . , Fqg ; VcV p], tp1 ), where tp1 [Up; V p] = tpψ ′ [Up; V p] and tp1 [Uc] = tp1 [Vc] u[Uc] =
w[Uc] (using ψ ′ , IR2, IR4).

(b) (Ra[Aq1 , . . . , Aqg ; Xp] ⊆ Ri[Cq1 , . . . ,Cqg ;U ′
p], tp2 ), where tp2 [Xp;U ′

p] = tpu [Xp;U ′
p] (using ψu , IR2).

(c) (Ri[Cq1 , . . . ,Cqg ;U ′
p] ⊆ R j[Fq1 , . . . , Fqg ; VcV p], tp3 ), where tp3 [U ′

p] = tp2 [U ′
p] and tp3 [VcV p] = tp1 [VcV p] (using (1), IR5).

(d) (Ra[Aq1 , . . . , Aqg ; Xp] ⊆ Ri[Cq1 , . . . ,Cqg ;UcUp], tp4 ), where tp4 [Xp;UcUp] = tp2 [Xp;UcUp] (using (2), IR6).

(e) (Ra[Aq1 , . . . , Aqg ; Xp] ⊆ R j[Fq1 , . . . , Fqg ; VcV p], tp5 ), where tp5 [Xp] = ta[Xp] and tp5 [VcV p] = tp1 [VcV p] (using (2), (3),

IR3 or alternatively, (1), (4), IR3).

(f) (Ra[Ap1 , . . . , Apg′ ; Xp] ⊆ R j[F p1 , . . . , F pg′ ; VcV p], tp6 ), where tp6 [Xp; VcV p] = tp5 [Xp; VcV p] (using (5), IR2).

(g) (Ra[Ap1 , . . . , Apg′ ; Xp] ⊆ R j[F p1 , . . . , F pg′ ; Z ′
p], tpw ), where tpw [Xp] = tp6 [Xp] = ta[Xp] and tpw [Z ′

p] = tp6 [Z ′
p] = w[Z ′

p]
(using (6), IR6).

This verifies that Claim 1 holds on Di+1. From this it follows that rules IR1–IR6 are complete for the implication of CINDs

in the absence of finite-domain attributes. �
A.2. Proof of Theorem 3

Theorem 3. The inference system I is sound and complete for the implication of CINDs in the general case, when finite-domain

attributes may be present.

Proof. The soundness of I can be verified by induction on the length of I-proofs.
For the completeness of I , consider a set Σ ∪ {ψ} of CINDs defined on a database schema R. We show that if Σ |	 ψ ,

then Σ �I ψ . Assume that R= (R1, . . . , Rn), and that ψ = (Ra[A1, . . . , Am; Xp] ⊆ Rb[B1, . . . , Bm; Yp], tpψ ).

The proof consists of five parts. (1) We first show that it suffices to consider a special form of CINDs. (2) We then develop

a chase procedure for the special form of CINDs, and (3) show that the chase process always terminates. (4) In addition, we

establish an important property of the chase procedure, and based on which (5) we show that if Σ |	 ψ then Σ �I ψ by

using IR1–IR8.

(1) We first introduce the special form of CINDs. A CIND (Ri[U ;Up] ⊆ R j[V ; V p], tp) is in the special form if (a) the

attribute list U only consists of attributes with an infinite domain, and (b) the attribute list Up contains all the finite-domain

attributes of schema Ri .

As a result, the attribute list V also contains only infinite-domain attributes of the schema R j . However, it is possible

that (a) there is an infinite-domain attribute A of schema Ri such that A ∈ Up , but (b) there is a finite-domain attribute B

of schema R j such that B /∈ V p .

It suffices to consider CINDs in this special form only. Indeed, given a CIND ϕ , we show that there exists a set Σϕ of

CINDs in the special form such that Σϕ is equivalent to ϕ . Better still, Σϕ can be proved from ϕ by using rules in I and

vice versa, i.e., {ϕ} �I Σϕ and Σϕ �I ϕ .
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First, let’s consider CIND ϕ = (Ri[U , A;Up] ⊆ R j[V , B; V p], tpϕ ), where attribute A has a finite-domain dom(A) =
{a1, . . . ,ak}. For each l ∈ [1,k], we define a new CIND ϕl = (Ri[U ; A,Up] ⊆ R j[V ; B, Yp], tpϕl

) such that tpϕl
[A] = tpϕl

[B] = ‘al ’

and tpϕl
[Up ‖ V p] = tpϕ [Up ‖ V p]. This is justified by IR4. Let Σϕ be {ϕ1, . . . , ϕk}. It is easy to verify that {ϕ} ≡ Σϕ , i.e.,

Σϕ |	 {ϕ} and {ϕ} |	 Σϕ .

Next, consider ϕ = (Ri[U ;Up] ⊆ R j[V ; V p], tpϕ ), where there exists an attribute A ∈ attr(Ri) \ (U ∪ Up) with a finite-

domain dom(A) = {a1, . . . ,ak}. For each l ∈ [1,k], we construct a CIND ϕl = (Ri[U ; A,Up] ⊆ R j[V ; V p], tpϕl
) such that

tpϕl
[A] = ‘al ’ and tpϕl

[Up ‖ V p] = tpϕ [Up ‖ V p]. This is justified by IR5. Let Σϕ be {ϕ1, . . . , ϕk}. Then {ϕ} ≡ Σϕ .

This shows how we can convert each CIND ϕ in Σ ∪ {ψ} into an equivalent set Σϕ of CINDs in the special form. In

addition, {ϕ} �I Σϕ by successive applications of IR4 and IR5, and moreover, Σϕ �I ϕ by successive applications of IR7 and

IR8. Thus, we can assume w.l.o.g. that all the CINDs in Σ ∪ {ψ} are in the special form.

(2) We now give the chase procedure for determining whether Σ |	 ψ , which extends the one given in the proof of

Theorem 2 to further deal with finite-domain attributes.

To deal with the interaction between finite domains and constant patterns in the CINDs, the chase process operates on

trees as opposed to relations. In such a tree T , (a) Nroot is its root, (b) each node in T is labeled with a tuple t j and its

schema Ri , denoted by N = ‘Ri : tj’, and (c) for each leaf node Nleaf in T , the path from the root Nroot to Nleaf , denoted by

path(Nroot,Nleaf), encodes an instance of R, such that for each relation schema R in R, the set I R of tuples of R carried by

the nodes on the path is an instance of R .

We now give the detailed chase process.

The chase process starts with a tree T0 consisting of only a root node Nroot = ‘Ra : ta’, in which ta is a tuple of schema Ra

such that (a) ta[Ai] = vi for i ∈ [1,m], (b) ta[A] = tpψ [A] for each attribute A ∈ Xp of CIND ψ , and (c) ta[B] = v0 for each

B in attr(Ra) \ ({A1, . . . , Am} ∪ Xp), where v0, v1, . . . , vm are m + 1 distinct variables. Observe that for each attribute A in

attr(Ra), if ta[A] is a variable vi , then A must have an infinite domain by the definition of the special form of CINDs.

The chase process then repeatedly adds nodes to the tree T0, a set of nodes at a time, by applying a chase operation

apply f . To specify apply f , we need the following notion.

A CIND ψ ′ = (Ri[U ;Up] ⊆ R j[V ; V p], tpψ ′ ) in Σ is said to be applicable to a node N = ‘Ri : ti’ if (a) ti[Up] = tpψ ′ [Up];
(b) there exists no node N′ = ‘Rj : tj’ with t j[V ] = ti[U ] and t j[V p] = tpψ ′ [V p] on path(Nroot,N); and (c) there exists at

least a leaf node Nleaf such that there is no such node N’ on path(N,Nleaf). Intuitively, let D denote the database instance

represented by path(N,Nleaf) on which N appears. Then D 
|	 ψ ′ , and hence, we need to enforce ψ ′ on D .

Given a tree T and the CIND ψ ′ , the chase operation apply f (T ,ψ ′) transforms T into a new tree T ′ as follows.

– It traverses T starting from its root node Nroot in a breadth-first order, and checks whether there exists a node to which

the CIND ψ ′ is applicable.

– If such a node N is found, then new nodes are added to T to make T ′ , as follows.

(a) Let S = {Nleaf1 , . . . ,Nleafk } be the set of leaf nodes in T such that for each i ∈ [1,k], path(N,Nleafi ) exists and more-

over, there exists no node N′ = ‘Rj : tj’ with t j[V ] = ti[U ] and t j[V p] = tpψ ′ [V p] on path(Nroot,Nleafi ).

(b) Let ρ(V f ) denote an instantiation of the list V f of all finite-domain attributes in attr(R j) \ (V ∪ V p). That is, for

each attribute C ∈ V f , ρ(C) is a data value drawn from dom(C).

(c) For each possible instantiation ρ(V f ), it generates a new node N′
ρ = ‘Rj : tρ ’ such that tρ [V ] = ti[U ], tρ [V p] =

tpψ ′ [V p], tρ [V f ] = ρ(V f ), and tρ [C] = v0 for all the other attributes C in attr(R j). Observe that there are only a finite

number of instantiations for the attribute list V f , and for each attribute C ∈ attr(R j), tρ [C] is a constant if the attribute

C has a finite domain.

(d) For each leaf Nleafi (i ∈ [1,k]) in S and each new node N′
ρ , it adds N′

ρ as a child of Nleafi . That is, ψ ′ is enforced on

the database represented by path(Nroot,Nleaf).

Let T ′ denote the modified tree. Then the same process repeats starting from the root node of T ′ .
– If there are no nodes to which ψ ′ is applicable, the tree T remains unchanged, i.e., T ′ = apply f (T ,ψ ′) = T .

The chase process stops if no CINDs in Σ are applicable to any nodes in T , i.e., T = apply f (T ,ψ ′) for each ψ ′ in Σ .

Intuitively, the chase process augments tree T0 and generates a sequence T0, T1, . . . , T f of trees such that (a) for each

l ∈ [0, f − 1], Tl+1 := apply f (Tl,ψ
′) for some ψ ′ ∈ Σ , and all the nodes in tree Tl also appear in Tl+1, and (b) T f =

apply f (T f , φ) for each φ in Σ , i.e., T f is a fixpoint reached by apply f . We refer to T f as a result of the chase process with

Σ and ψ , denoted by Chase(Σ,ψ). Note that there may exist multiple distinct resulting trees T f , depending on the orders

of CINDs in Σ used in the chase process. We use Chase(Σ,ψ) to denote an arbitrary fixpoint obtained by the chase, and

study the properties of all such fixpoints.

Example 2. Consider the set Σ ∪ {ψ} of CINDs given in Example 3.4. We first transform each CIND into the special form.

For instance, for the CIND ψ , we generate a set Σψ = {ψ ′
1,ψ

′
2,ψ

′
3,ψ

′
4,ψ

′
5,ψ

′
6} of CINDs, where

ψ ′
1 = (

R1[BC; AD] ⊆ R2[E F ;G], (a,d ‖ d)
)
,

ψ ′
2 = (

R1[BC; AD] ⊆ R2[E F ;G], (b,d ‖ d)
)
,
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Fig. 4. An example chasing process.

ψ ′
3 = (

R1[BC; AD] ⊆ R2[E F ;G], (c,d ‖ d)
)
,

ψ ′
4 = (

R1[BC; AD] ⊆ R2[E F ;G], (a, e ‖ e)
)
,

ψ ′
5 = (

R1[BC; AD] ⊆ R2[E F ;G], (b, e ‖ e)
)
,

ψ ′
6 = (

R1[BC; AD] ⊆ R2[E F ;G], (c, e ‖ e)
)
.

We show the chase process for Σ and ψ ′
2 in Fig. 4, where (a) tree T0 is the initial tree, (b) T1 is derived by applying ψ2

to T0, (c) T2 is the result of applying ψ3,1 to T1, and (d) T3 is produced by applying ψ3,2 to T2. Here ψ3,1 = (R3[I J ; K L] ⊆
R2[E F ;G], (k, g ‖ d, g)), and ψ3,2 = (R3[I J ; K L] ⊆ R2[E F ;G], (k,h ‖ d, g)). These two CINDs are in the special form, derived

from ψ3 by using IR5.

Observe that (1) Σ |	 ψ ′
2, and (2) for each leaf Nleaf in the result T3 = Chase(Σ,ψ ′

2), there exists a node N = ‘R2 : t’ on
path(Nroot,Nleaf) with t[E F ] = (v1, v2) and t[G] = ‘d’. �

(3) We next verify that the chase process always terminates.

Observe that in each tree T generated in the chase process, path(Nroot,Nleaf) from the root Nroot to each leaf Nleaf of T

represents a database instance D of R. In addition, there exist no nodes N1 and N2 on the path such that they are labeled

with the same tuple. Hence the depth of T is determined by the maximum instance of R constructed from the finite set

{v0, . . . , vm} of variables, the finite set of constants appearing in the constant patterns in Σ ∪ {ψ}, and all the constants in

the finite domains of R. That is, the depth of T is determined by R and Σ ∪ {ψ}. Similarly, the maximum number of the

children of a node in T is bounded by the maximum cardinality of finite domains, which is also determined by R. Hence

the size of T is bounded. There exist finitely many distinct trees that are constructed from those variables and constants

with a bounded size. The chase process can generate at most finitely many such trees that are distinct, and hence, it must

terminate.

(4) We next show a property of the chase procedure, which will be used to show that if Σ |	 ψ , then Σ �I ψ .

We first define an operator Υ (N), where N is a node in a tree Tl (l ∈ [0, f ]) generated in the chase process. Given

N = ‘Ri : ti’, we define Υ (N) = (Ri[C1, . . . ,Cm;Up], ti[Up]) if

– for each j ∈ [1,m], ti[C j] = v j , i.e., ti[C1, . . . ,Cm] = (v1, . . . , vm); and

– the list Up consists of all those attributes C ∈ attr(Ri) such that ti[C] is a constant;

whereas Υ (N) is undefined if there exist no attributes C1, . . . ,Cm in Ri such that ti[C1, . . . ,Cm] = (v1, . . . , vm).

Observe that when the CIND ψ is enforced, Υ (N) must be defined on some node. We shall use Υ (N) to inspect the

existence of nodes satisfying the conditions specified by ψ .

The property is stated as follows.

Claim 2. Let ϕ be a CIND (Ra[A1, . . . , Am; Xp] ⊆ Rb′ [D1, . . . , Dm; V p], tpϕ ), Tl be a tree generated in the chase process (l ∈ [0, f ]),
and S = {Nleaf1 , . . . ,Nleafk } be the set of all the leaf nodes in T . Then Σ �I ϕ if Σ �I ϕ j for each j ∈ [1,k], where for a schema Ri

inR,

(a) ϕ j = (Ri[C1 j
, . . . ,Cmj

;Up j
] ⊆ Rb′ [D1, . . . , Dm; V p], tpϕ j

) with tpϕ j
[V p] = tpϕ [V p], and

(b) there exists a node Nj = ‘Ri : tj’ on path(Nroot,Nleafj ) such that Υ (Nj) = (Ri[C1 j
, . . . ,Cmj

;Up j
], t j[Up j

]) and t j[Up j
] =

tpϕ j
[Up j

].
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Fig. 5. Example trees in the chase process.

Observe the following. (a) LHS(ϕ) is the same as LHS(ψ). (b) For each j ∈ [1,k], RHS(ϕ j) is the same as RHS(ϕ), and

ϕ j ’s have the same LHS. As will be seen in part (5) of the proof, we use these to prove Σ �I ψ .

We show the claim by induction on the length of the sequence of trees T0, T1, . . . , T f generated by the chase process.

Base case. For the initial tree T0, the only leaf node in T0 is the root Nroot = ‘Ra : ta ’. In this case, Υ (Nroot) =
(Ra[A1, . . . , Am; Xp], tpψ [Xp]), and ϕroot and ϕ are the same CIND (Ra[A1, . . . , Am; Xp] ⊆ Ra[A1, . . . , Am; Xp], (tpψ [Xp] ‖
tpψ [Xp])). It is obvious that if Σ �I ϕroot , then Σ �I ϕ .

Inductive case. Assume that Claim 2 holds for the first i trees T0, T1, . . . , Ti . We show that it also holds on Ti+1 :=
apply(Ti,ψ

′), i.e., a result of applying some CIND ψ ′ in Σ to a node N in tree Ti . Assume w.l.o.g. that N = ‘Rg : tg’, and
that ψ ′ = (Rg[U1;Up1 ] ⊆ Rg′ [U2;Up2 ], tpψ ′ ).

Here we consider two cases: (a) Ti+1 = Ti and (b) Ti+1 
= Ti . If Ti+1 = Ti , the tree Ti is not changed by apply(Ti,ψ
′),

and the claim obviously holds on Ti+1 since it holds on Ti .

We next focus on the case where Ti+1 
= Ti . Recall the chase operation apply(Ti,ψ
′), by applying the CIND ψ ′ to the

node N. Let Si = {Nleaf1 , . . . ,Nleafk } be the set of all leaf nodes in tree Ti , and let Snew = {Nf1 , . . . ,Nfh } be the set of newly

generated nodes by applying the CIND ψ ′ to the node N. In Ti+1, all the nodes in Snew appear as the children of each leaf

node of the sub-tree rooted at N in tree Ti .

To illustrate this, an example of Ti and Ti+1 is shown in Fig. 5. In Ti , the sub-tree rooted at node N = ‘Rg : tg’ has two

leaf nodes. In Ti+1, three new nodes are added as the children of each of the two leaf nodes.

To simplify the discussion we assume w.l.o.g. that there is a single leaf node Nleaf1 in the sub-tree rooted at node N;

the proof for multiple such leaf nodes is similar. Thus, the set Si+1 of leaf nodes in tree Ti+1 becomes Si ∪ Snew =
{Nf1 , . . . ,Nfh ,Nleaf2 , . . . ,Nleafk }.

We show that the claim holds on Ti+1, by considering the following cases.

Case 1. When the operator Υ (N) is undefined on the node N. Then for each node Nfj in Snew ( j ∈ [1,h]), Υ (Nfj ) is also

undefined by the definition of apply f , which generated those nodes in Snew to enforce ψ ′ . In this case, the claim holds on

Ti+1. Indeed, those nodes Nj ( j ∈ [1,k + h − 1]) required by the claim are in the tree Ti , and so is N. Hence Σ �I ϕ since

the claim holds on Ti by the induction hypothesis.

Case 2. When Υ (N) is defined on N. Consider Υ (N) = (Rg[U ′;U ′
p], tg[U ′

p]). Since the CIND ψ ′ is applicable to the node N,

we can derive the following. (a) Up1 ⊆ U ′
p , (b) tg[Up1 ] = tpψ ′ [Up1 ], (c) tg[U ′] = (v1, . . . , vm), and (d) tg[C] = v0 for each

attribute C of attr(Rg) that is not in U ′ ∪ U ′
p .

We distinguish the following cases.

Case 2(a). U ′ � U1, where U1 is in LHS(ψ ′
1). By Υ (N) we have that tg[U ′] = (v1, . . . , vm). Thus, if U ′ � U1, Υ is not defined

on those new nodes in Snew . Along the same lines as for Case 1 above, one can show that the claim holds on Ti+1.

Case 2(b). U ′ ⊆ U1. We show that Σ �I ϕ if Σ �I ϕ j for each j ∈ [1,k + h − 1], and for each leaf node Nleaf ∈ Si+1, there

exists a node Nj = ‘Ri : tj’ on path(Nroot,Nleaf) such that Υ (Nj) = (Ri[C1 j
, . . . ,Cmj

;Up j
], t j[Up j

]) and t j[Up j
] = tpϕ j

[Up j
]. It

suffices to show that we only need to consider those nodes Nj ( j ∈ [1,k + h − 1]) in Ti . For if this holds, then the same

argument for Case 1 can verify that the claim holds on Ti+1. We show this by distinguishing the following cases.

(a) For each leaf node Nleafj ( j ∈ [2,k]), the node Nj on path(Nroot,Nleafj ) must be in Ti since Nleafj appears in Ti .

(b) For each new leaf nodes Nfj ( j ∈ [1,h]) in Snew , there exist path(Nroot,Nfj ) and path(Nroot,Nleaf1 ) in tree Ti+1, where

there is an edge from Nleaf1 to Nfj . In this case, the leaf node Nfj is the only node appearing on path(Nroot,Nfj ), but not on

path(Nroot,Nleaf1 ). That is, if the node Nj ( j ∈ [1,h]) on path(Nroot,Nfj ) is not in tree Ti , it must be the leaf node Nfj (see

Fig. 5).
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If there exists such a node Nj ( j ∈ [1,h]) that is not in Snew , it must be on path(Nroot,Nfj ) and hence, there exists

path(Nj,Nfj ) for each Nfj in Snew . In this case, we only need to consider this Nj in the tree Ti .

If such a node Nj does not exist, we show that we can use the node N instead of Nj , where N is in Ti . In this case,

for each j ∈ [1,h], the node Nj must be the leaf node Nfj , and the CIND ϕ j must be in the form of (Rg′ [U ′
2;Up2 ,U f ] ⊆

Rb′ [D1, . . . , Dm; V p], tpϕ j
) such that tpϕ j

[Up2 ] = tpφ [Up2 ] and tpϕ j
[U f ] = ρ j . Here U f is the list of all finite-domain at-

tributes in attr(Rg′ ) \ (U ′ ∪ Up2 ), and ρU f
= {ρ1, . . . , ρh} is the set of all possible instantiations of U f .

We show that we can use N instead of Nfj , and use a CIND ϕg derived below instead of ϕ j for j ∈ [1,h].

– Since Σ �I ϕ j for each j ∈ [1,h], we have that Σ �I ϕg′ , where ϕg′ = (Rg′ [U ′
2;Up2 ] ⊆ Rb′ [D1, . . . , Dm; V p], tpϕg′ ), and

tpϕg′ [Up2 ‖ V p] = tpϕ1
[Up2 ‖ V p], by using IR7.

– By applying IR2 to the CIND ψ ′ , we have that Σ �I ψ ′′ , where ψ ′′ = (Rg[U ′;Up1 ] ⊆ Rg′ [U ′
2;Up2 ], tpψ ′′ ), and tpψ ′′ = tpψ ′ .

– By applying IR5 to the CIND ψ ′′ , we have that Σ �I ψ ′′′ , where ψ ′′′ = (Rg[U ′;U ′
p] ⊆ Rg′ [U ′

2;Up2 ], tpψ ′′′ ), tpψ ′′′ [U ′
p] =

tg[U ′
p], and tpψ ′′′ [Up2 ] = tpψ ′′ [Up2 ].

– By applying IR3 to ψ ′′′ and ϕg′ , we can get that Σ �I ϕg , where ϕg = (Rg[U ′;U ′
p] ⊆ Rb′ [D1, . . . , Dm; V p], tpϕg

),

tpϕg
[U ′

p] = tpψ ′′′ [U ′
p] = tg[U ′

p] and tpϕg
[V p] = tpϕg′ [V p].

Since Υ (N) = (Rg[U ′;U ′
p], tg[U ′

p]), we can use N and ϕg instead of Nfj and ϕ j ( j ∈ [1,h]), which still satisfy the condi-

tions in the claim.

Hence we only need to use nodes in Ti , on which the claim holds based on the induction hypothesis.

(5) Finally, we show that if Σ |	 ψ , then Σ �I ψ , based on Claim 2. Let T f be an arbitrary fixpoint obtained by the

chase (Chase(Σ,ψ)).

Recall that for each leaf Nleaf of T f , path(Nroot,Nleaf) represents a database instance D of R. Observe that D |	 ψ . Indeed,

D |	 Σ since no CINDs in Σ are applicable to any nodes in T f . By Σ |	 ψ , we have that D |	 ψ .

These tell us that for each leaf node Nleaf in T f , there must exist a node N = ‘Rb : tb’ on path(Nroot,Nleaf) such that

tb[B1, . . . , Bm] = (v1, . . . , vm) and tb[Yp] = tpψ [Yp]. Here Υ (N) = (Rb(B1, . . . , Bm; Y ′
p), t[Y ′

p]), where Yp ⊆ Y ′
p . Hence for

each Nleaf , we can verify the following using the inference system I:

ϕ1 = (
Rb[B1, . . . , Bm; Y ′

p] ⊆ Rb[B1, . . . , Bm; Y ′
p], tpϕ1

)
,

where tpϕ1
[Y ′

pL
] = tpϕ1

[Y ′
pR

] = tb[Y ′
p] IR1

ϕ2 = (
Rb[B1, . . . , Bm; Y ′

p] ⊆ Rb[B1, . . . , Bm; Yp], tpϕ2

)
,

where tpϕ2
[Y ′

p] = tb[Y ′
p] and tpϕ2

[Yp] = tb[Yp] ϕ1, IR6

That is, for each Nleaf , Σ �I ϕ2. Taking this together with the existence of N = ‘Rb : tb’, we have that Σ �I ψ by Claim 2.

That is, if Σ |	 ψ , then Σ �I ψ .

This completes the proof for the completeness of I for CINDs when finite-domain attributes may be present. �
A.3. Proof of Theorem 5

Theorem 5. The implication problem for CINDs is PSPACE-complete in the absence of attributes with finite domains.

Proof. It is known that the implication problem for INDs is PSPACE-complete in the absence of finite-domain attributes [20].

Since CINDs subsume INDs, the implication problem for CINDs is also PSPACE-hard.

We next show that the implication problem for CINDs is in PSPACE in the absence of finite-domain attributes. We

show this by giving a linear space non-deterministic algorithm for deciding whether Σ |	 ψ , along the same lines as its

counterpart for INDs (see [13,20]). If this holds, then by Savitch’s theorem [21], there is a deterministic quadratic-space

algorithm for checking whether Σ |	 ψ , and therefore, the implication problem is in PSPACE.

Indeed, the chase procedure developed in the proof of Theorem 2 gives such an algorithm. Consider a set Σ ∪ {ψ}
of CINDs over a database schema R = (R1, . . . , Rn), where ψ = (Ra[A1, . . . , Am; Xp] ⊆ Rb[B1, . . . , Bm; Yp], tpψ ). Recall that

the chase process starts with an initial database D0, which contains a single tuple ta ∈ Ia such that ta[Ai] = vi for all

i ∈ [1,m] and ta[Xp] = tpψ [Xp]. As we have seen in the proof of Theorem 2, Chase(Σ,ψ) |	 ψ , where Chase(Σ,ψ) denotes

an arbitrary fixpoint (database) generated by the chase process. Moreover, if Σ |	 ψ , then there must exist a tuple tb ∈ Ib
in Chase(Σ,ψ) such that tb[Bi] = vi for i ∈ [1,m], and tb[Yp] = tpψ [Yp]. More specifically, there exists a finite sequence

〈t0, . . . , tl〉 of tuples such that t0 = ta , tl = tb , and for each i ∈ [0, l − 1], ti+1 is obtained by applying a CIND ψ ′ in Σ to ti .

Based on the analysis above, we develop a linear space non-deterministic algorithm:

– Initialize a single tuple t0 := ta ∈ Ia .

– Replace tuple ti with another tuple ti+1 if ti+1 can be derived from ti by applying a CIND ψ ′ in Σ to ti by using rules

IR1–IR6. There are possibly multiple such ti+1’s. The algorithm non-deterministically picks one of them.
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– Repeat these steps until no more changes can be made.

– If tuple tb ∈ Ib , return ‘yes’; and return ‘no’ otherwise.

As shown in the proof of Theorem 2, if Σ |	 ψ , then tb is in Chase(Σ,ψ) and hence, the algorithm returns ‘yes’.

Conversely, if the algorithm returns ‘yes’, i.e., tb is in Chase(Σ,ψ), then by Claim 1, Σ �I(1−6) ψ . By Theorem 2, Σ |	 ψ .

Hence the algorithm correctly determines whether Σ |	 ψ . The algorithm is obviously in PSPACE, as it only stores at most

a single tuple at any time. As a result, the implication problem for CINDs is in PSPACE in the absence of finite-domain

attributes. �
A.4. Proof of Theorem 7

Before we prove Theorem 7, we first examine the chase process introduced in the proof of Theorem 3. Given a set

Σ ∪ {ψ} of CINDs, the chase procedure inspects whether Σ |	 ψ . Below we give its computational complexity.

Lemma 1. Given a set Σ ∪ {ψ} of CINDs defined on a database schema R, the chase procedure given in the proof of Theorem 3

terminates in O (22
n2

) time, where n is the size of the input, i.e., the size ofR, Σ and ψ .

Proof. The chase procedure is obviously in O (|T f |) time, where T f is a result Chase(Σ,ψ) of the chase process, and |T f |
is the number of nodes in T f . Recall that each root-to-leaf path of T f represents a database of schema R. Hence the depth

of T f is bounded by the maximum size |I| of a database instance of R. Moreover, the maximum number of children of a

node in T f is also bounded by |I|. We show that |I| is in O (2n
2
) time as follows.

– The cardinality of a finite domain in R is determined by the schema R and is hence bounded by n.

– For an infinite domain in R, the chase process uses only those constants appearing in the patterns in Σ or ψ , and the

finite set {v0, . . . , vm} of variables (bounded by the size of ψ ). These are also bounded by the input size n.

Hence the size |I| is bounded by O (nn) = O (2log(n)∗n) � O (2n
2
). And therefore |T f | is in O ((2n

2
)2

n2

) = O (2n
2∗2n2 ) =

O (22
log2 n2∗2n2 ) = O (22

n2

) time. �
We are now ready to give the complexity bound for the implication analysis of CINDs in the general setting.

Theorem 7. In the general setting, the implication problem for CINDs is EXPTIME-complete.

Proof. (1) We first show that the problem is in EXPTIME. Given a set Σ ∪ {ψ} of CINDs on a relational schema R, we

develop an algorithm in O (2n
k
) time, where k is a constant and n is the size of R, Σ and ψ , such that it returns ‘yes’ if

and only if Σ |	 ψ . Assume that R= (R1, . . . , Rn), and that ψ = (Ra[A1, . . . , Am; Xp] ⊆ Rb[B1, . . . , Bm; Yp], tpψ ).

Lemma 1 tells us that the chase procedure given in the proof of Theorem 3 cannot be directly used as such an algo-

rithm, since it is doubly exponential. Nevertheless, we shall develop a singly exponential-time algorithm based on the chase

procedure. Indeed, the complexity of the chase process is incurred by redundant nodes in the trees generated, as shown in

Fig. 4. However, we can use graphs instead of trees to remove the redundancy.

Observe the following. Every node in a tree T is reachable from the root node ‘Ra : ta ’. In addition, if Σ |	 ψ , then from

each node in T there exists a path to a node N = ‘Rb : tb ’ such that tb[B1, . . . , Bm] = ta[A1, . . . , Am] and tb[Yp] = tpψ [Yp].
One can check whether there exists a path from a node to another is solvable in quadratic time [29].

We now develop an EXPTIME algorithm based the chase procedure. The main idea is to maintain a directed graph

G(V , E) and a mapping H . Given a node u in V of G , H(u) is the set of CINDs in Σ that have already been applied to the

node u in the chase process. With these two data structures, we can avoid unnecessary computations.

Below we first present the algorithm, and then verify the correctness of the algorithm. Finally, we show that the algo-

rithm is in exponential time.

We first present the algorithm.

(a) It initializes the node set V := {Nroot}, the edge set E := ∅, and H(Nroot) := ∅. Here the node Nroot is the root node

‘Ra : ta’ of a tree T in the chase process.

(b) For each node u = ‘Ri : ti’ in V , it checks whether there exists a CIND ψ ′ = (Ri[U ;Up] ⊆ R j[V ; V p], tpψ ′ ) in Σ , but

not in H(u), such that ti[Up] = tpψ ′ [Up].
(c) If there exists such a CIND ψ ′ for the node u = ‘Ri : ti’, it first generates a set Snew of new nodes, and then updates

the graph G and the mapping H accordingly.

The set Snew is generated along the same lines as the process in the proof of Theorem 3.

– Let V f be the list of all finite-domain attributes in attr(R j) \ (V ∪ V p), and ρ(V f ) be an instantiation of V f . That is, for

each attribute C ∈ V f , ρ(C) is a data value drawn from the finite domain dom(C).
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– For each possible instantiation ρ(V f ), it generates a new node u′
ρ := ‘Rj : tρ ’ such that tρ [V ] = ti[U ], tρ [V p] = tpψ ′ [V p],

tρ [V f ] = ρ(V f ), and tρ [C] = v0 for all the other attributes C in attr(R j).

Then, for the mapping H , H(u) := H(u) ∪ {ψ ′}, and for each node u′
ρ in Snew , but not in V , H(u′

ρ) is empty. For the

graph G(V , E), its node set V is updated to be V ∪ Snew , and its edge set E is updated as follows. Let Snbr = {u1, . . . ,uk} be

the set of neighboring nodes of the node u such that for each node ul (l ∈ [1,k]), there is an edge (u,ul) in E .

– If Snbr is empty, then for each node u′
ρ in Snew , it simply adds an edge (u,u′

ρ) to E .

– Otherwise, for each node ul (l ∈ [1,k]) in Snbr and each node u′
ρ = ‘Rj : tρ ’ in Snew , (a) if R j = Rb , tρ [B1, . . . , Bm] =

(v1, . . . , vm) and tρ [Yp] = tpψ [Yp], it replaces the edge (u,ul) with a new edge (u,u′
ρ), and (b) if not, it replaces the

edge (u,ul) with two new edges (u,u′
ρ) and (u′

ρ,ul).

(d) The above process repeats until there are no more changes to the node set V and the edge set E of the graph G . We

denote the final resulting graph as G f .

(e) The algorithm finally checks whether Σ |	 ψ based on the graph G f .

– Let Sa be the set of nodes in G f that are reachable from the node Nroot = ‘Ra : ta ’ such that ta[A1, . . . , Am] = (v1, . . . , vm)

and ta[Xp] = tpψ [Xp].
– Let Sb be the set of nodes ‘Rb : tb ’ in G f such that tb[B1, . . . , Bm] = (v1, . . . , vm) and tb[Yp] = tpψ [Yp].
– The algorithm checks if there exists a node u in Sa such that no nodes u’ in Sb are reachable from u, i.e., there exists

no path(u,u′) in graph G f .

If there exists such a node, it returns ‘no’, and returns ‘yes’ otherwise.

We next show that Σ |	 ψ iff the algorithm returns ‘yes’. Indeed, the algorithm simulates the chase procedure given in

the proof of Theorem 3. If it returns ‘no’, one can readily expand G f into a tree, which represents a database instance D

(see the proof of Theorem 3) such that D |	 Σ , but not D |	 ψ , i.e., Σ 
|	 ψ . If it returns ‘yes’, then Σ |	 ψ by Claim 2 given

in the proof of Theorem 3.

To see that the algorithm is in exponential time, observe the following. (a) The number of nodes in the graph G f is

bounded by the maximum size |I| of a database instance. Therefore, the size of G f is bounded by O (2n
2
) as argued in

the proof of Lemma 1. (b) For the set Σ of CINDs, the number of equivalent CINDs in the special form is bounded by

|I| = O (2n
2
) as indicated in the proof of Theorem 3, and the number of CINDs equivalent to ψ in the special form is also

bounded by I = O (2n
2
). (c) The size of Sa is bounded by the number of nodes in G f , i.e., in O (2n

2
); so is the size of Sb .

From these it follows that graph G f can be constructed in O (2n
2 ∗ 2n

2
) = O (2n

3
) time, and the reachability between nodes

in Sa and nodes in Sb can be checked in O (2n
2 ∗ 2n

2 ∗ (2n
2
)2) = O (2n

3
) time [29]. Based on these one can see that the

algorithm is indeed in EXPTIME.

(2) We next show that the problem is EXPTIME-hard, by reduction from the two-player game of corridor tiling problem

(TPG-CT), which is EXPTIME-complete [22,23].

An instance of TPG-CT consists of a tiling system (X, H, V ,�t, �b) and a positive integer n, where X is a finite set of tiles

(dominoes), H, V ⊆ X × X are two binary relations, �t and �b are two n-vectors of given tiles in X , and n is the number of

columns (the width of the corridor). It is to determine whether or not player I has a winning strategy for tiling the corridor.

By tiling the corridor we mean that there exists a tiling τ : N × N → X and a positive integer m such that for all x ∈ [1,n]
and y ∈ [1,m], the tiling adjacency conditions are observed, i.e.,

– if τ (x, y) = d and τ (x+ 1, y) = d′ , then (d,d′) ∈ H , i.e., horizontally adjacent tiles have matching “colors”;

– if τ (x, y) = d and τ (x, y + 1) = d′ , then (d,d′) ∈ V , i.e., vertically adjacent tiles have matching colors; and

– τ (x,1) = �t[x] and τ (x,m) = �b[x], where �t[x] (resp. �b[x]) denotes the x-th element of the vector �t (resp. �b); that is, the

given tiles of �t and �b are placed on the top and the bottom rows, respectively. The given tiles �t are placed on the top

row by the referee of the game.

Each player in turn places a tile from X in the first free location (column by column from left to right, and row by row

from top to bottom), observing the tiling adjacency conditions. Player I wins if either Player II makes an illegal move by

placing a tile that violates one of the adjacent conditions, or if the bottom row �b is placed. Player I has a winning strategy

iff Player I can always win no matter how Player II plays. The problem is already EXPTIME-complete when n is odd [22,23],

and thus below we assume that n is an odd number, and that Player I makes the first move.

Given an instance of TPG-CT (X, H, V ,�t, �b) and n, we define a relational schema R, a set of CINDs Σ and a CIND ψ such

that Σ 
|	 ψ if and only if there is a winning strategy for Player I. If this holds, then the problem is EXPTIME-hard. Indeed,

this problem is the complement problem of the implication problem, from which it follows that the implication problem

for CINDs is also EXPTIME-hard.
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IR : K A0 A1 A2 A3 A4 next P Z

k1 a1 a2 a3 a4 b k2 1 #

k2 a2 a3 a4 b c k3 2 #

k3 a3 a4 b c d k4 3 #

k4 a4 b c d e k5 4 #

k5 b c d e f k6 1 #

. . .

. . .

kx x b1 b2 b3 b4 k1 4 #

I S : B
b

Fig. 6. Encoding of a TPG-GT instance with n = 4, �t = (a1,a2,a3,a4) and �b = (b1,b2,b3,b4) for the proof of Theorem 7.

(A) The database schema R consists of two relation schemas R(K , A0, A1, . . . , An,next, P , Z) and S(B), where for all

i ∈ [0,n], Ai has a finite domain dom(Ai) = X , P has a finite domain dom(P ) = {1, . . . ,n}, the domains of attributes K

and next are positive integers, and Z has a finite domain with two symbols # and !. The attribute B has a finite domain

consisting of two distinct values: c and b.

Intuitively, an R tuple t encodes a placement of tiles in the game. More specifically, tuple t is the snapshot of the game

showing the last n + 1 plays, where (a) t[An] is the new tile placed by a player, (b) t[A0, . . . , An−1] consists of the n tiles

placed before t[An], (c) t[P ] codes the horizontal position of tile t[An] in a row, (d) t[K ] and t[next] encode a list of such

snapshots: t[K ] is the “identifier” of the current snapshot, while t[next] is a pointer to the next one (see Fig. 6). In addition,

t[Z ] indicates that the game continues when it is #, and that the game should stop if it is !. An illegal move by Player I is

indicated by the presence of a tuple s of schema S with s[B] = ‘c’.

We want to show that there exists an instance D = (I R , I S ) of R such that D satisfies Σ , but not ψ , if and only if

Player I has a winning strategy.

(B) We next define the set Σ of CINDs that encodes the play. We use Nodd and Neven to denote the set of even numbers

and the set of odd numbers in [1,n], indicating the moves of Player I and Player II, respectively.

Initial condition. The top row of the corridor has to be set to �t . We use a CIND ϕ1 to ensure that if I S is nonempty, then

there exists an R tuple t such that t[A0, . . . , An−1] matches �t .

ϕ1 = (
S[nil;nil] ⊆ R[nil; A0, . . . , An−1, P , Z ], tpϕ1

)
, where tpϕ1

[A0, . . . , An−1] = �t and tpϕ1
[P , Z ] = (1,#).

Adjacency constraints. The vertical and horizontal tiling conditions must hold. For each R tuple t , t[An] corresponds to the

tile directly under tile t[A0], and t[An] is the tile placed next to t[An−1] in a row. Thus for each tuple t ∈ I R , we must ensure

that (t[A0], t[An]) ∈ V and that (t[An−1], t[An]) ∈ H .

The adjacency constraints are enforced by two sets ΣV and ΣH of CINDs below. These CINDs assert the following: (a) if

Player I makes an illegal move, then I S contains a tuple (‘c’); and (b) if any player makes an illegal move, then the game

should stop, by adding an R tuple t′ with t′[Z ] = !.

ΣV :
(
R[nil; A0, An, P ] ⊆ S[nil; B], tv(x,y)

)
,

where tv(x,y)[A0, An,h ‖ B] = (x, y,h ‖ c) for all (x, y) ∈ (X × X) \ V and all h ∈ Nodd
(
R[next, A1, . . . , An−1; A0, An, P ] ⊆ R[K , A0, . . . , An−2; P , An−1, Z ], tv(x,y)

)
,

where tv(x,y) = (x, y,h ‖ h + 1, y, !) for all h ∈ [1,n − 1] and all (x, y) ∈ (X × X) \ V .

ΣH :
(
R[nil; An−1, An, P ] ⊆ S[nil; B], th(x,y)

)
,

where th(x,y) = (x, y,h ‖ c) for all (x, y) ∈ (X × X) \ H and all h ∈ Nodd
(
R[next, A1, . . . , An−2; An−1, An, P ] ⊆ R[K , A0, . . . , An−3; P , An−2, An−1, Z ], tv(x,y)

)
,

where tv(x,y) = (x, y,h ‖ h + 1, x, y, !) for all h ∈ [1,n − 1] and all (x, y) ∈ (X × X) \ H .

Player I has to respond to all possible legal moves of Player II. For each R tuple t1 that is a legal move, if t1[P ] is even, i.e., if the

last move t1[An] was made by Player II, then for each tile x ∈ X that satisfies the horizontal constraint (t1[An], x) ∈ H and

the vertical constraint (t1[A0], x) ∈ V , there must exist a tuple t2 in I R with t2[K ] = t1[next], t2[An−1] = x and moreover,

t2[Ai] = t1[Ai+1] for i ∈ [0,n− 1]. That is, all possible legal moves of Player II have to be considered. We encode this with a

set Σ∀ of CINDs.

Σ∀:
(
R[next, A1, A2, . . . , An−2; P , A0, An−1, An, Z ] ⊆ R[K , A0, A1, . . . , An−2; P , An−1, Z ], t(x,y,w)

)
,

where t(x,y,w) = (h, x, y, w,# ‖ h + 1, w,#), for all h ∈ Neven, and for all (x, w) ∈ V and (y, w) ∈ H .
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Play continues unless Player I has won. For each R tuple t1, if t1[P ] < n and t1[Z ] = #, then there must exist some tuple t2 such

that t2[K ] = t1[next], t2[A0, . . . , An−1] = t1[A1, . . . , An] and t2[P ] = t1[P ] + 1. If t1[P ] = n and if the bottom vector �b is not

matched, i.e., if for some i ∈ [1,n], t1[Ai] 
= �b[i], then there must exist some t2 such that t2[K ] = t1[next], t2[A0, . . . , An−1] =
t1[A1, . . . , An] and t2[P ] = 1. We express this as a set Σp consisting of the following CINDs:

ϕh = (
R[next, A1, . . . , An; P , Z ] ⊆ R[K , A0, . . . , An−1; P , Z ], tph

)
,

where for each h ∈ [1,n − 1], tph = (h,# ‖ h + 1,#).

ϕ(i,x) = (
R[next, A1, . . . , Ai, Ai+2, . . . , An; P , Ai+1, Z ] ⊆ R[K , A0, . . . , Ai−1, Ai+1, . . . , An−1; P , Ai, Z ], tni,x

)
,

where tn(i,x) = (n, x,# ‖ 1, x,#), for all i ∈ [1,n] and all x ∈ X \ {�b[i]}.
Observe that if an illegal move was made, a next move t2 is added with t2[Z ] = ! and t2[P ] = h + 1, by ΣH or ΣV .

The set Σ consists of all the CINDs given above, i.e., Σ = {ϕ1} ∪ ΣV ∪ ΣH ∪ Σp ∪ Σ∀ . The number of CINDs in Σ is

bounded by a polynomial of n and the number of tiles in X .

(C) We define CIND ψ = (S[nil;nil] ⊆ S[nil; B], (nil ‖ c)). Intuitively, if D 
|	 ψ then (a) I S is nonempty, and (b) there exists

no tuple t ∈ I S such that t[B] = ‘c’. That is, Player I does not make illegal move.

The reduction is obviously in polynomial time. We next verify that Player I has a winning strategy iff Σ 
|	 ψ .

First, suppose that Σ 
|	 ψ . Then there exists an instance D = (I R , I S ) of R such that D |	 Σ , but D 
|	 ψ . We give a

wining strategy for Player I. Player I begins with the tuple in R enforced by ϕ1 in Σ . Such a tuple must exist because I S
must be nonempty (by D 
|	 ψ ) and hence, ϕ1 is applicable. At any step in the game, there is a tuple in I R that represents

the last n + 1 moves of the play thus far. For each valid tile x j that Player II places as the next move, represented by t , the

CINDs in Σ∀ ensure the existence of a tuple t′ with t[next] = t′[K ] and t′[An−1] = x j and t′[Ai] = t[Ai+1] for i ∈ [0,n − 1],
i.e., a response from Player I. By D 
|	 ψ and D |	 ΣH ∪ ΣV ∪ Σ∀ , the move t′ satisfies both the horizontal and the vertical

constraints, and it also correctly updates the last n + 1 tiles played. Furthermore, by D |	 Σp , the play continues until

Player I wins. Thus Player I has a winning strategy.

Conversely, suppose that Player I has a winning strategy. We then form an instance D = (I R , I S ) of R such that I R
consists of all valid plays in any game, where each tuple codes the horizontal position of the last move in a row and the

last n + 1 tiles played in the game, and I S has a single tuple t such that t[B] = ‘b’ (i.e., Player I makes no illegal move). It is

easy to confirm that D |	 Σ , but D 
|	 ψ . �
A.5. Proof of Theorem 12

Theorem 12. In the general setting, the implication problem for ACINDs is PSPACE-complete.

Proof. (1) We first show that the problem for ACINDs is in PSPACE in the general setting.

We show this by giving a linear space non-deterministic algorithm for determining whether Σ 
|	 ψ , i.e., the complement

of Σ |	 ψ . This suffices. For if it holds, then (a) by the Immerman–Szelepcsényi theorem [27,28], there exists a linear space

non-deterministic algorithm for determining whether Σ |	 ψ ; and (b) by Savitch’s theorem [21], there is a deterministic

quadratic-space algorithm for checking whether Σ |	 ψ . From these it follows that the problem is in PSPACE.

Consider a set Σ ∪ {ψ} of acyclic CINDs defined over a database schema R = (R1, . . . , Rn). Assume w.l.o.g. that for any

two schemas Ri and R j (i, j ∈ [1,n]), there exist no CINDs in the form of (Ri[U ;Up] ⊆ R j[V ; V p], tp) in Σ such that j < i.

Observe that we can always rearrange the schemas in R to satisfy this condition since the CINDs in Σ are acyclic. We also

assume w.l.o.g. that the CIND ψ is (R1[A1, . . . , Am; Xp] ⊆ Rn[B1, . . . , Bm; Yp], tpψ ); the proof is similar for the cases where

ψ is from Ri to R j when i 
= 1 or j 
= n.

The proof consists of three parts. (a) We first introduce notations to be used. (b) We then present the linear space

non-deterministic algorithm. (c) Finally, we show that the algorithm is correct and that it runs in PSPACE.

(1.1) Before we present the algorithm, we first introduce the following notations to be used in the algorithm.

(a) Let {Σ1, . . . ,Σn−1} be the partition of Σ such that
⋃n−1

i=1 Σi = Σ , and for each i ∈ [1,n − 1], Σi is the set of CINDs

of the form (Ri[U ;Up] ⊆ R j[V ; V p], tp) such that j ∈ [i + 1,n].
(b) The number of CINDs in Σi (i ∈ [1,n − 1]) is denoted as ni . We assume w.l.o.g. that for each i ∈ [1,n − 1], ni > 0, i.e.,

there exists at least one CIND in each Σi .

(c) All CINDs in Σi (i ∈ [1,n − 1]) are sorted in an arbitrary order. We use a pointer pi to indicate the pi-th CIND in Σi .

It is obvious that 1 � pi � ni for each i ∈ [1,n − 1].
(d) Given the list P = [p1, . . . , pn−1] of pointers, let ΣP ,ψ = {ϕ1, . . . , ϕn−1} be the set of CINDs such that for each

i ∈ [1,n − 1], ϕi is the pi-th CIND in Σi .

(1.2) We now present the linear space non-deterministic algorithm for determining whether Σ 
|	 ψ .

(a) It guesses an instantiation ρ1 for the list X f of all finite-domain attributes in attr(R1) \ (Xp), where for each attribute

C in X f , ρ1(C) is a value drawn from the finite dom(C).

(b) It initializes a database instance D := (I1, . . . , In), such that for each i ∈ [1,n], Ii is an empty instance of schema Ri ,

except that I1 contains a single tuple ta of schema R1, where t1[A1, . . . , Am] = (v1, . . . , vm), t1[Xp] = tpψ [Xp], and t1[X f ] =
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ρ1[X f ] for the list X f of all finite-domain attributes in attr(R1) \ (Xp). Here v1, . . . , vm are m distinct variables. Intuitively,

t1 encodes the LHS of the CIND ψ , and is to serve as a “witness” for D 
|	 ψ . We assume w.l.o.g. that X f ∩ {A1, . . . , Am} is

empty since if not, in the process to be seen shortly, we can simply replace the variable with the constant ρ[A] for each

attribute A in X f ∩ {A1, . . . , Am}.
The algorithm will ensure that for each i ∈ [1,n], the instance Ii contains at most one tuple, which guarantees that the

algorithm uses only linear space.

(c) Starting with pi := 1 for all pointers pi in P (i ∈ [1,n − 1]), the algorithm processes CINDs in ΣP ,ψ one by one, as

follows.

We set i = 1, and let φ be the pi-th CIND (Ri[U ;Up] ⊆ R j[V ; V p], tpφ ) in Σi .

– Guess an instantiation ρ j for the list V f of all finite-domain attributes in attr(R j) \ (V ∪ V p), in which for each C in V f ,

ρ j(C) is a value drawn from the finite dom(C).

– If there is a tuple ti in Ii , but there exists no tuple t j in I j such that t j[V ] = ti[U ], t j[V p] = tpφ [V p], it first creates a

new tuple t′j such that t′j[V ] = ti[U ], t′j[V p] = tpφ [V p], and t′j[V f ] = ρ j(V f ), and then updates the instance I j := {t′j} to

contain this new tuple.

– If i < (n − 1), it increases the variable i by 1, and repeats the process above.

– Otherwise, it checks whether there exists a tuple tn ∈ In such that tn[B1, . . . , Bm] = t1[A1, . . . , Am] = (v1, . . . , vm) and

tn[Yp] = tpψ [Yp]. Observe that the current database instance DP |	 ΣP ,ψ .

(d) If there exists a pointer p j (1 � j � n − 1) such that p j 
= n j , the algorithm then adjusts the list P = [p1, . . . , pn−1]
of pointers by the following pseudo-codes.

let j := n − 1, and increase pn−1 by 1;

while ( j > 1) do

if p j = (n j + 1) then

let p j := 1, and increase p j−1 by 1;

decrease the variable j by 1.

(e) If there exist no such pointers in P , i.e., p j = n j for all j ∈ [1,n− 1], the algorithm stops and returns ‘yes’ if the tuple

tn is not found in all the cases of the list P of pointers, i.e., from [1, . . . ,1] to [n1, . . . ,nn−1]. Otherwise, the algorithm starts

again from step (a).

(1.3) We next show that the algorithm is in PSPACE and that it is correct.

Observe that at any step of the process, the database instance D contains at most n tuples, where n is the number of

relation schemas in R. Hence, it is obvious that the non-deterministic algorithm runs in linear space.

To show the correctness of the algorithm, first observe the following.

(a) The algorithm examines each combination of those CINDs in all Σi ’s (i ∈ [1,n − 1]), represented by the pointer list

P = [p1, . . . , pn−1] of pointers. Recall that for each i ∈ [1,n − 1], the pointer pi denotes the pi-th CIND in Σi .

For acyclic CINDs Σ , this suffices for determining whether Σ |	 ψ .

(b) The algorithm examines various instantiation of variables for finite-domain attributes, by backtracking. More specif-

ically, it changes the list P = [p1, . . . , pn−1] of pointers starting from the last pointer pn−1, and does not change pi until

p j � n j for each j > i (recall that for each i ∈ [1,n − 1], ni is the number of CINDs in Σi). This allows us to avoid random

valuations of finite-domain attributes and moreover, to use the same space in the entire process.

Having seen these, we finally show the correctness of the algorithm, i.e., it returns ‘yes’ if and only if Σ 
|	 ψ .

First assume that Σ 
|	 ψ . Then there exists a database instance D = (I1, . . . , In) of R such that D |	 Σ but D 
|	 ψ . By

the definition of ψ , there must exist a tuple t1 in the instance I1 of schema R1 such that t1[Xp] = tpψ [Xp], but there exists

no tuple tn in the instance In of schema Rn such that tn[Y ] = t1[X] and tn[Yp] = tpψ [Yp]. If we choose the instantiation

ρ1(X f ) = t1[X f ] at step (a), and the instantiations ρ j[V f ] at step (c) based on the instance D , then for each combination of

the list P of pointers, there exists no tuple tn in the instance In of schema Rn such that tn[Y ] = t1[X] and tn[Yp] = tpψ [Yp].
Thus the algorithm must stop and return ‘yes’.

Conversely, assume that the algorithm returns ‘yes’. We construct a nonempty database instance D of R such that D |	 Σ

but D 
|	 ψ . Let D be the union of all database instances DP at step (c), where DP |	 ΣP ,ψ . Then as observed earlier, D |	 Σ

and D 
|	 ψ .

(2) We next show that the problem is PSPACE-hard by reduction from the Q3SAT problem, which is PSPACE-complete

(cf. [29]).

An instance of Q3SAT is a first-order logic sentence θ = ∀x1∃x2∀x3 · · · Qmxmφ, where Qm is ∀ if m is odd and it is ∃ if m

is even; φ = C1 ∧· · ·∧Cn is an instance of the 3SAT problem in which all the variables are x1, . . . , xm , and for each j ∈ [1,n],
the clause C j is y j1 ∨ y j2 ∨ y j3 such that for i ∈ [1,3], y ji is either xp ji

or xp ji
for p ji ∈ [1,m]. Here we use xp ji

to denote

the occurrence of a variable in the literal li of clause C j . The Q3SAT problem is to decide whether θ is true.

Given an instance θ of Q3SAT, we construct an instance of the implication problem for acyclic CINDs, which consists of

a database schema R with finite-domain attributes, a set Σ of acyclic CINDs defined on R and another CIND ψ on R. We

show that Σ 
|	 ψ if and only if θ is true. This suffices. For it holds, then it is also PSPACE-hard to decide whether Σ |	 ψ .
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(a) The CINDs from R0 to R1:

ψ1,0 = (R0[nil;nil] ⊆ R1[nil; A1], (nil ‖ 0)),

ψ1,1 = (R0[nil;nil] ⊆ R1[nil; A1], (nil ‖ 1)).

(b) The CIND from R1 to R2:

ψ2 = (R1[A1;nil] ⊆ R2[A1;nil], (nil ‖ nil)).

(c) The CINDs from R2 to R3:

ψ3,0 = (R2[A1, A2;nil] ⊆ R3[A1, A2; A3], (nil ‖ 0)),

ψ3,1 = (R2[A1, A2;nil] ⊆ R3[A1, A2; A3], (nil ‖ 1)).

(d) The CIND from R3 to R4:

ψ4 = (R3[A1, A2, A3;nil] ⊆ R4[A1, A2, A3;nil], (nil ‖ nil)).

(e) The CINDs from R4 to S:

ψS,1 = (Rm[nil; A1, A2, A3] ⊆ S[nil; B], (0,0,0 ‖ 0)),

ψS,2 = (Rm[nil; A2, A3, A4] ⊆ S[nil; B], (0,1,0 ‖ 0)).

Fig. 7. A (partial) example reduction for the proof of Theorem 12.

(A) The database schema R consists of m + 2 relation schemas R0(A1, . . . , Am), . . . , Rm(A1, . . . , Am), and S(B). All the

attributes in R have a finite domain {0,1}. Intuitively, each Ri is to encode a quantifier in θ , which is either ∀ or ∃, for
each i ∈ [1,m]. In an instance Im of schema Rm , each tuple t[A1, . . . , Am] is to carry a truth assignment of the variables

{x1, . . . , xm} in θ . In addition, we shall use an instance of S to indicate whether θ is satisfied.

(B) The set Σ contains the following ACINDs.

– For each odd number 1 � i �m, we define two CINDs ψi,0 and ψi,1 from Ri−1 to Ri as follows:

ψi,0 = (
Ri−1[A1, . . . , Ai−1;nil] ⊆ Ri[A1, . . . , Ai−1; Ai], (nil ‖ 0)

)
, and

ψi,1 = (
Ri−1[A1, . . . , Ai−1;nil] ⊆ Ri[A1, . . . , Ai−1; Ai], (nil ‖ 1)

)
.

When i = 1, Ri−1[A1, . . . , Ai−1] is R0[nil].
These CINDs together assert that for each tuple t in an Ri−1 relation (i ∈ {1,3, . . . ,m−1}), there exist two tuples t0 and

t1 in the Ri relation such that t0[A1, . . . , Ai−1] = t1[A1, . . . , Ai−1] = t[A1, . . . , Ai−1], while t0[Ai] = 0 and t1[Ai] = 1.

Intuitively, we encode a universal quantifier ∀ by using these CINDs.

– For each even number 1 < i �m, we define a CIND ψi from Ri−1 to Ri :

ψi =
(
Ri−1[A1, . . . , Ai−1;nil] ⊆ Ri[A1, . . . , Ai−1;nil], (nil ‖ nil)

)
.

This CIND ensures that for each tuple t in an Ri−1 relation (i ∈ {2,4, . . . ,m − 2}), there exists a tuples t′ in the Ri

relation such that t′[A1, . . . , Ai−1] = t[A1, . . . , Ai−1] while t′[Ai] is either 0 or 1.

Intuitively, we encode an existential quantifier ∃ by using such CINDs.

– For each clause C j = y j1 ∨ y j2 ∨ y j3 in the 3SAT instance φ, we define CIND ψS, j from Rm to S:

ψS, j =
(
Rm[nil; Ap j1

, Ap j2
, Ap j3

] ⊆ S[nil; B], tpψm, j

)
,

where tpψm, j
[B] = 0, and for each i ∈ [1,3], tpψS, j

[Ap ji
] = ξ j(xp ji

). Here ξ j is the unique truth assignment of the 3SAT

instance φ that makes clause C j false, and ξ j(xp ji
) is the truth value of variable xp ji

by treating true as 1 and false as 0.

Intuitively, these CINDs assure that for each tuple t in an Rm relation, t(A1, . . . , Am) denotes a truth assignment ξ for

the 3SAT instance φ, such that for each i ∈ [1,m], ξ(xi) = true if t[Ai] = 1, and ξ(xi) = false if t[Ai] = 0. If the truth

assignment ξ makes φ false, then there exists a tuple t′ in relation S such that t′[B] = 0.

The set Σ has no more than 2m + n of CINDs in total. Note that Σ is acyclic.

For example, consider the following instance of the Q3SAT problem: θ = ∀x1∃x2∀x3∃x4(C1 ∧ C2), where C1 = x1 ∨ x2 ∨ x3,

and C2 = x2 ∨ x̄3 ∨ x4. Then the set Σ for θ consists of 7 CINDs, as shown in Fig. 7.

(C) We define CIND ψ = (R0[nil;nil] ⊆ S[nil; B], (nil ‖ 0)). It ensures that if the R0 relation is not empty, then there exists

a tuple t in relation S such that t[B] = 0.

We next show that the Q3SAT instance θ is true if and only if Σ 
|	 ψ .

First, assume that θ is satisfiable. We define an instance D of R as follows. For i ∈ [1,m], the instance Ii of Ri in D

consists of all truth assignments for x1, . . . , xm that satisfy the 3SAT instance φ. The instance I S of S in D consists of a

single tuple s with s[B] = 1. One can readily verify that D |	 Σ but D 
|	 ψ . Hence Σ 
|	 ψ .

Conversely, assume that Σ 
|	 ψ . Then there exists an instance D of R such that D |	 Σ but D 
|	 ψ . By D 
|	 ψ , the

instance of I0 of schema R0 in D is nonempty, and hence so is the instance Ii of Ri in D for all i ∈ [1,m], by D |	 Σ .

Observe that the instance Im of Rm encodes truth assignments for x1, . . . , xm . By D |	 Σ , we know that Im−1 includes all

the truth assignments required by the quantifiers in θ . By D 
|	 ψ again, the instance I S of S in D does not have any

tuple s with s[B] = 0. Hence by the definition of the CINDs ψm, j , none of those truth assignments in Im violates the 3SAT

instance φ. Therefore, θ is true. �
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A.6. Proof of Theorem 13

Theorem 13. The implication problem for UCINDs is in polynomial time in the absence of finite-domain attributes.

Proof. It suffices to give a PTIME algorithm for checking whether Σ |	 ψ or not. Similar to the upper bound proof of

Theorem 7, the algorithm converts the problem to the graph reachability problem, i.e., checking whether there exists a path

from a node to another in a graph. Recall that the graph reachability problem is solvable in quadratic time [29].

The proof consists of three parts. We first present the algorithm. We then show that the algorithm is correct. Finally, we

show that the algorithm is in PTIME.

Consider a set Σ ∪ {ψ} of UCINDs over a database schema R = (R1, . . . , Rn), where the UCIND ψ = (Ra[A; Xp] ⊆
Rb[B; Yp], tpψ ).

(1) The algorithm simulates the chase procedure given in the proof of Theorem 2, fine-tuned to leverage unary CINDs.

(a) The algorithm first builds a directed graph G(V , E), based on which it checks whether Σ |	 ψ . A node in graph G is

in the form of (Ri[C;Up], t[Up]) (1 � i � n) such that:

(i) Ri is a schema in R,

(ii) C is a single attribute in attr(Ri),

(iii) Up is a list of attributes in attr(Ri), and

(iv) t[Up] is a partial tuple of Ri defined on Up .

The set V of nodes in G includes the following: (a) a single node ua = (Ra[A; Xp], tpψ [Xp]), which corresponds to the

LHS of the UCIND ψ ; and (b) for each UCIND ψ ′ = (Ri[C;Up] ⊆ R j[F ; V p], tp) in Σ , a node u = (R j[F ; V p], tp[V p]), which

denotes the RHS of ψ ′ .
The set E of edges contains a directed edge (u1,u2) for all nodes u1 = (Ri[C;Up], ti[Up]) and u2 = (R j[F ; V p], t j[V p])

in V if there exists a UCIND (Ri[C;U ′
p] ⊆ R j[F ; V ′

p], tp) in Σ such that U ′
p ⊆ Zp , V p ⊆ V ′

p , tp[U ′
p] = ti[U ′

p], and tp[V p] =
t j[V p].

(b) The algorithm then checks whether Σ |	 ψ , based on graph G .

Let Sb be the set of nodes that are of the form ub = (Rb[B;Up], tb[Up]) in G such that Yp ⊆ Zp and tb[Yp] = tpψ [Yp].
Recall that Yp and tpψ [Yp] are from the UCIND ψ .

The algorithm checks whether there exists a node ua in the node set Sb such that there is a path from ua to ub in graph

G (recall that ua denotes the LHS of ψ ). If there exists such u, it returns ‘yes’, and it returns ‘no’ otherwise.

(2) We now verify the correctness of the algorithm that returns ‘yes’ iff Σ |	 ψ .

First assume that the algorithm returns ‘yes’. Then there must exist a path from the node ua to a node ub =
(Rb[B;Up], tb[Up]) in the graph G , where Yp ⊆ Zp and tb[Yp] = tpψ [Yp]. Along the same lines as the proof of Theorem 2,

one can construct a proof to show that Σ �I(1−6) ψ based on IR1–IR6 in the inference system I (see Section 3.2.1). By

Theorem 2, IR1–IR6 are sound and complete for the implication analysis of CINDs in the absence of finite-domain attributes,

by which we have Σ |	 ψ .

Conversely, assume that the algorithm returns ‘no’. We show that Σ 
|	 ψ by constructing a database instance D of R
such that D |	 Σ , but D 
|	 ψ . The instance D is constructed step by step as follows.

(a) Initialize D := {I1, . . . , In} such that I1 = · · · = In = ∅.
(b) Create a tuple ta such that ta[A] = v , ta[Xp] = tpψ [Xp], and ta[A′] = v0 for all the other attributes A′ in attr(Ra), and

let Ia = Ia ∪ {ta}. Here v and v0 are two distinct variables.

(c) For each node u = (Ri[C;Up], ti[Up]) in the graph G such that there exists a path from nodes ua to u, construct a

tuple t such that t[C] = v , t[Up] = ti[Up], and t[C ′] = v0 for all the other attributes C ′ in attr(Ri), and let Ii = Ii ∪ {t}.
(d) Extend the instance D by using the chase procedure given in the proof of Theorem 2 until D reaches a fixpoint.

Then as argued in the proof of Theorem 2 about the chase procedure, one can verify that D |	 Σ , but D 
|	 ψ . Therefore,

Σ 
|	 ψ .

(3) We next show that the algorithm is in polynomial time.

It is obvious that the graph G can be built in polynomial time. Observe that the size of the set Sb is bounded by the

number of nodes in the graph G , of which the size is bounded by a polynomial in the size of Σ ∪ {ψ}. Based on these, it is

easy to verify that the algorithm is indeed in PTIME.

Putting these together, we conclude that the implication problem for UCINDs is in PTIME, in the absence of finite-domain

attributes. �
A.7. Proof of Theorem 15

Theorem 15. The implication problem for UCINDs is coNP-complete in the general setting.

Proof. (1) We first show that the problem is in co NP. Consider a set Σ ∪ {ψ} of UCINDs defined on a database schema

R= (R1, . . . , Rn).
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To show that the problem is in coNP, it suffices to give NP algorithms for checking whether Σ 
|	 ψ . We first show that

UCINDs can be transformed into two normal forms. We then present two NP algorithms based on the forms of ψ , and show

that the algorithms are indeed correct.

(A) We show that UCINDs can be expressed in certain “normal” forms. Consider a UCIND ϕ = (Ri[C;Up] ⊆ R j[F ; V p], tpϕ )

such that the attribute C has a finite domain dom(C) = {c1, . . . , ck}. Let Σϕ = {ϕ1, . . . , ϕk}, where for each l ∈ [1,k], ϕl =
(Ri[nil;C,Up] ⊆ R j[nil; F , V p], tpϕl

) such that tpϕl
[Up ‖ V p] = tpϕ [Up ‖ V p] and tpϕl

[C] = tpϕl
[F ] = ‘cl ’. It is easy to verify that

Σϕ ≡ {ϕ}, by IR4 and IR8 in the inference system I for CINDs (see Section 3.2.1).

As a result, given a set Σ of UCINDs, we can derive an equivalent set Σ ′ of CINDs by using the transformations above.

Note that the number of CINDs in Σ ′ is bounded by a polynomial of the size of R and the number of UCINDs in Σ . In

light of this, we can assume w.l.o.g. that all the UCINDs in Σ ∪ {ψ} are of one of the following forms:

– (Ri[nil;Up] ⊆ R j[nil; V p], tp); and
– (Ri[C;Up] ⊆ R j[F ; V p], tp), where attributes C and F have an infinite domain.

Given a set Σ ∪{ψ} of CINDs in these two forms, we develop two NP algorithms for checking whether Σ 
|	 ψ , depending

on the form of the CIND ψ . We use Σ1 and Σ2 to denote those CINDs in Σ in the first form and those in the second one,

respectively, where Σ = Σ1 ∪ Σ2 and Σ1 ∩ Σ2 = ∅.
(B) We now provide an NP algorithm for the first case, where the CIND ψ is of the form (Ra[nil; Xp] ⊆ Rb[nil; Yp], tpψ ).

To treat Σ1 and Σ2 uniformly, we further transform the CINDs of Σ2 into CINDs in the first form. More specifically, for

each CIND ϕ = (Ri[C;Up] ⊆ R j[F ; V p], tpϕ ) in Σ2, we define a set Σϕ of CINDs in the first form as follows.

– Let adom := {a1, . . . ,ah} be the set of constants appearing in either Σ ∪ {ψ} or in the finite domains of R.

– Let Σϕ to be the set {ϕ0,ϕ1, . . . , ϕh}, where (a) ϕ0 = (Ri[nil;Up] ⊆ R j[nil; V p], tpϕ ), and (b) for each l ∈ [1,h], ϕl =
(Ri[nil;C,Up] ⊆ R j[nil; F , V p], tpϕl

) such that tpϕl
[Up ‖ V p] = tpϕ [Up ‖ V p] and tpϕl

[C] = tpϕl
[F ] = ‘al ’.

Here CIND ϕ0 is derived from ϕ by IR2, and the other CINDs in Σϕ are derived from ϕ by IR4 in the inference system I .
Observe that the total number of CINDs in Σϕ is bounded by a polynomial in the size of R, Σ , and ψ .

Let Σ ′
2 be the union of Σϕ ’s when ϕ ranges over all CINDs in Σ2. We show that it suffices to consider CINDs in

Σ1 ∪Σ ′
2. Indeed, a close examination of the chase procedure given in the proof of Theorem 3 tells us that the chase process

for Σ1 ∪ Σ2 ∪ {ψ} is equivalent to the one for Σ1 ∪ Σ ′
2 ∪ {ψ} since whenever a CIND in Σ1 ∪ Σ2 is applied, we can use one

in Σ1 ∪Σ ′
2 instead to reach the same result, and vice versa. Recall that the chase procedure determines whether Σ |	 ψ for

CINDs in the general setting.

We now give the details of the NP algorithm, which is a non-deterministic extension of the PTIME algorithm given in

the proof of Theorem 13, to handle finite-domain attributes. Given the set Σ1 ∪ Σ ′
2 ∪ {ψ} of CINDs, it extends the PTIME

algorithm as follows.

– It adds an extra step after generating the node set V but before generating the edge set E . For each node u =
(Ri[nil;Up], t[Up]) in V , it guesses an instantiation ρu for the list U f of all finite-domain attributes in attr(Ri) \ (Up)

such that for each attribute C ′ ∈ U f , ρu(C
′) is a data value drawn from the finite dom(C ′).

Note that the format of nodes is a little different from those used in the PTIME algorithm. However, this has no impact

on the algorithm itself.

– The NP algorithm returns an answer opposite to that of the PTIME algorithm.

That is, if there exists no node ub in the set Sb such that there exists a path from the node ua to ub in the graph

G , the algorithm returns ‘yes’, and it returns ‘no’ otherwise. Recall that ua and ub denote the LHS and the RHS of

ψ , respectively. This is because the NP algorithm checks whether Σ 
|	 ψ , while the PTIME algorithm checks whether

Σ |	 ψ .

It is easy to see that the algorithm is in NP.

We next show that algorithm returns ‘yes’ if and only if Σ 
|	 ψ . Assume first that the NP algorithm returns ‘yes’. Along

the same lines as the argument for the ‘no’ answer of the PTIME algorithm given in the proof of Theorem 13, we can

construct a nonempty instance D of R such that D |	 Σ but D 
|	 ψ , i.e., Σ 
|	 ψ . Here when populating D , it suffices to

randomly guess an instantiation for the finite-domain attributes of the new tuple to be inserted into D (the one shown in

the NP algorithm will do).

Conversely, assume that Σ 
|	 ψ . We show that there exists a set of instantiations for the node set V such that the

algorithm returns ‘yes’. Since Σ 
|	 ψ , there exists a database instance D = (I1, . . . , In) such that D |	 Σ and D 
|	 ψ . That

is, there exists a tuple ta ∈ Ia such that ta[Xp] = tpψ [Xp], but there exists no tuple tb ∈ Ib such that tb[Yp] = tpψ [Yp].
The instantiations are defined as follows. For the node ua = (Ra[nil; Xp], tpψ [Xp]) in V , define an instantiation ρua such that

ρua [X f ] = ta[X f ] for the list X f of all finite-domain attributes in attr(Ra)\ Xp . For all the other nodes u = (Ri[nil;Up], t[Up])
in V , if there exists a tuple tu ∈ Ii such that tu[Up] = t[Up], define an instantiation ρu such that ρu[U f ] = tu[U f ] for

the list U f of all finite-domain attributes in attr(Ru) \ Up . Otherwise, let ρu[U f ] be defined in terms of arbitrary values
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(a) The database schema R = (R(B, A1, . . . , A5), S(B,C)).

(b) The set of UCINDs Σ = {ϕ1,ϕ2,ϕ3}, where ϕ1 = (R[B; A1, A2, A3] ⊆ S[B;C], (0,0,0 ‖ 0)),

ϕ2 = (R[B; A2, A3, A4] ⊆ S[B;C], (0,1,0 ‖ 0)), and

ϕ3 = (R[B; A3, A4, A5] ⊆ S[B;C], (0,1,1 ‖ 0)).

(c) The UCIND ψ = (R[B;nil] ⊆ S[B;C], (nil ‖ 0)).

Fig. 8. An example reduction for the proof of Theorem 15.

in the domains. The algorithm must return ‘yes’ for this specific graph G since there exist no tuples tb ∈ Ib such that

tb[Yp] = tpψ [Yp].
(C) We next present an NP algorithm for the second case where the CIND ψ is of the form (Ra[A; Xp] ⊆ Rb[B; Yp], tpψ ).

This case is simpler. Indeed, the chase procedure given in the proof of Theorem 3 tells us that those CINDs in Σ1 can be

simply left out. In this case, the NP algorithm is the same as the one for the first case, except that only those CINDs in Σ2

are considered when generating the graph G . Here the nodes have the same format as those used in the PTIME algorithm

given in the proof of Theorem 13.

An argument similar to the one for the first case can verify that this NP algorithm returns ‘yes’ if and only if Σ 
|	 ψ .

(2) We next show that the problem is coNP-hard by reduction from the 3SAT problem to the complement of the problem

(i.e., to decide whether Σ 
|	 ψ ). It is known that 3SAT is NP-complete (cf. [30]).

Consider an instance φ = C1 ∧ · · · ∧ Cn of 3SAT, where x1, . . . , xm are all the variables in φ, and for each j ∈ [1,n], C j is

of the form y j1 ∨ y j2 ∨ y j3 such that for i ∈ [1,3], y ji is either xp ji
or xp ji

for p ji ∈ [1,m]. Here xp ji
denotes the occurrence

of a variable in the literal li of clause C j . The 3SAT problem is to decide whether φ is satisfiable.

Given an instance φ of 3SAT, we construct an instance of the implication problem for unary CINDs, which consists of a

database schema R with finite-domain attributes, and a set Σ ∪ {ψ} of UCINDs defined on R. We show that Σ 
|	 ψ if and

only if φ is satisfiable.

(A) The database schema R consists of two relation schemas R(B, A1, . . . , Am) and S(B,C), where all attributes have a

finite domain {0,1}.
Intuitively, a tuple t(A1, . . . , Am) in an instance I R of schema R denotes a truth assignment ξt of the 3SAT instance φ,

such that for each i ∈ [1,m] ξt(xi) = true if t[Ai] = 1, and ξt(xi) = false if t[Ai] = 0. As will be seen shortly, an instance I S of

schema S is used to indicate whether φ is satisfiable.

(B) The set Σ consists of n UCINDs given as follows. For each j ∈ [1,n], let ξ j be the unique truth assignment of the

3SAT instance φ that makes the clause C j = y j1 ∨ y j2 ∨ y j3 false. Then we define a UCIND ϕ j = (R[B; Ap j1
, Ap j2

, Ap j3
] ⊆

S[B;C], tpϕ j
), where tpϕ j

[C] = 0, and for each i ∈ [1,3], tpϕ j
[Ap ji

] = 1 if ξ j(xp ji
) = true, and tpϕ j

[Ap ji
] = 0 otherwise.

These UCINDs assert that for a tuple t in an R relation, if its carries a truth assignment ξt that makes φ false, then there

must exist a tuple t′ in the S relation such that t′[B] = t[B] and t′[C] = 0. Observe that if there exists a database instance

D = (I R , I S ) such that I R is nonempty, I S is empty, and D |	 Σ , then the 3SAT instance φ must be satisfiable.

(C) The UCIND ψ = (R[B;nil] ⊆ S[B;C], (nil ‖ 0)). It enforces that for each tuple t in relation I R , there exists a tuple t′ in
relation I S such that t′[B] = t[B] and t′[C] = 0.

As an example, consider an instance φ = C1 ∧ C2 ∧ C3 of the 3SAT problem, where C1 = x1 ∨ x2 ∨ x3, C2 = x2 ∨ x̄3 ∨ x4
and C3 = x3 ∨ x̄4 ∨ x̄5. The reduction for φ is shown in Fig. 8.

The reduction above is obviously in polynomial time.

We next show that Σ 
|	 ψ if and only if the 3SAT instance φ is satisfiable.

We first assume that φ is satisfiable, and show that Σ 
|	 ψ . It suffices to construct a database D such that D |	 Σ

but D 
|	 ψ . Since φ is satisfiable, there exists a truth assignment ξ that satisfies φ. Based on ξ , we define a tuple t on R

such that (a) for each i ∈ [1,m], t[Ai] = 1 if ξt(xi) = true, and t[Ai] = 0 if ξt(xi) = false, and (b) t[B] = 1. Let the instance

D = (I R , I S ) such that I R = {t} and I S = ∅. Then D |	 Σ but D 
|	 ψ .

Conversely, we assume that Σ 
|	 ψ , and show that φ is satisfiable. It suffices to find a truth assignment ξ that satisfies φ.

Since Σ 
|	 ψ , there exists a database instance D = (I R , I S) such that D |	 Σ but D 
|	 ψ . By D 
|	 ψ , there is a tuple t in

I R but there exists no tuple t′ in I S with t′[B] = t[B] and t′[C] = 0. Define a truth assignment ξ for φ such that for each

i ∈ [1,m], ξ(xi) = true if t[Ai] = 1, and ξ(xi) = false if t[Ai] = 0. Then ξ satisfies φ since otherwise, there must exist a tuple

t′ in I S with t′[B] = t[B] and t′[C] = 0 by the definition of those UCINDs in Σ . Hence φ is satisfiable. �
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