
Theoretical Computer Science 599 (2015) 79–101
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Learning Boolean logic models of signaling networks with ASP

Santiago Videla a,b,c, Carito Guziolowski d, Federica Eduati e, Sven Thiele a,b,
Martin Gebser c, Jacques Nicolas a,b, Julio Saez-Rodriguez e, Torsten Schaub c,
Anne Siegel a,b,∗
a UMR CNRS 6074 IRISA, Campus de Beaulieu, 35042 Rennes, France
b INRIA, Dyliss project, Campus de Beaulieu, 35042 Rennes, France
c Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482, Germany
d École Centrale de Nantes, IRCCyN UMR CNRS 6597, 1 rue de la Noë, 44321, Nantes, France
e European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton CB10 1SD, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 January 2013
Received in revised form 17 March 2014
Accepted 15 June 2014
Available online 20 June 2014

Keywords:
Answer set programming
Signaling transduction networks
Boolean logic models
Combinatorial multi-objective optimization
Systems biology

Boolean networks provide a simple yet powerful qualitative modeling approach in systems
biology. However, manual identification of logic rules underlying the system being
studied is in most cases out of reach. Therefore, automated inference of Boolean logical
networks from experimental data is a fundamental question in this field. This paper
addresses the problem consisting of learning from a prior knowledge network describing
causal interactions and phosphorylation activities at a pseudo-steady state, Boolean logic
models of immediate-early response in signaling transduction networks. The underlying
optimization problem has been so far addressed through mathematical programming
approaches and the use of dedicated genetic algorithms. In a recent work we have shown
severe limitations of stochastic approaches in this domain and proposed to use Answer
Set Programming (ASP), considering a simpler problem setting. Herein, we extend our
previous work in order to consider more realistic biological conditions including numerical
datasets, the presence of feedback-loops in the prior knowledge network and the necessity
of multi-objective optimization. In order to cope with such extensions, we propose several
discretization schemes and elaborate upon our previous ASP encoding. Towards real-world
biological data, we evaluate the performance of our approach over in silico numerical
datasets based on a real and large-scale prior knowledge network. The correctness of our
encoding and discretization schemes are dealt with in Appendices A–B.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Systems biology is an emerging field aiming at the investigation and understanding of biology at a system and multi-scale
level. After biological entities have been identified in a specific environment, it remains to elucidate how they interact with
each other in order to carry out a particular biological function. Therefore the construction of mathematical and predictive
models is a fundamental goal of this field.

* Corresponding author at: CNRS, IRISA UMR 6074, Campus de Beaulieu, 35042 Rennes cedex, France.
E-mail addresses: santiago.videla@irisa.fr (S. Videla), carito.guziolowski@irccyn.ec-nantes.fr (C. Guziolowski), federica_eduati@hotmail.com (F. Eduati),

sven.thiele@irisa.fr (S. Thiele), gebser@cs-uni.potsdam.de (M. Gebser), jacques.nicolas@irisa.fr (J. Nicolas), saezrodriguez@ebi.ac.uk (J. Saez-Rodriguez),
torsten@cs-uni.potsdam.de (T. Schaub), anne.siegel@irisa.fr (A. Siegel).
http://dx.doi.org/10.1016/j.tcs.2014.06.022
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.06.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:santiago.videla@irisa.fr
mailto:carito.guziolowski@irccyn.ec-nantes.fr
mailto:federica_eduati@hotmail.com
mailto:sven.thiele@irisa.fr
mailto:gebser@cs-uni.potsdam.de
mailto:jacques.nicolas@irisa.fr
mailto:saezrodriguez@ebi.ac.uk
mailto:torsten@cs-uni.potsdam.de
mailto:anne.siegel@irisa.fr
http://dx.doi.org/10.1016/j.tcs.2014.06.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.06.022&domain=pdf

80 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
Cells respond to their environment by activating signaling networks that trigger processes such as growth, survival,
apoptosis (cell death), and migration. Post-translational modifications, notably protein phosphorylation, play a key role in
signaling. Nowadays, there exist public repositories such as Pathways Commons [10], Pathways Interaction Database [53]
and KEGG [35] that contain curated knowledge about intracellular causal molecular interactions, from which canonical cell
signaling networks can be retrieved [29]. Such biological networks are derived from vast generic knowledge compiled from
different cell types. Nevertheless, little is known about the exact chaining and composition of signaling events within these
networks in specific cells and specific conditions. For example, in cancer cells, signaling networks frequently become com-
promised, leading to abnormal behaviors and responses to external stimuli. Many current and emerging cancer treatments
are designed to block nodes in signaling networks, thereby altering signaling cascades. Thus, advancing our understanding
of how these networks are deregulated across specific environments will ultimately lead to more effective treatment strate-
gies for patients. In this context, phosphorylation assays are a recent form of high-throughput data providing information
about protein-activity modifications in a specific cell type upon various perturbations. Towards the construction of predic-
tive models, one can convert the generic prior knowledge (canonical cell signaling networks) into a mathematical model
(e.g. a set of differential equations or a set of logic rules) that can be simulated. Next, if enough experimental data is avail-
able, the model can be fitted to the data (for example, by determining kinetic constants in a biochemical model) to obtain
the most plausible model for a specific cell type. This is normally achieved by defining an objective fitness function to be
optimized [4].

Boolean logical networks [36,60] provide a simple yet powerful qualitative modeling approach which has become very
popular during the last decade [51,44,63]. In contrast to quantitative methods (which permit fine-grained (kinetic) analysis),
qualitative approaches allow for addressing large-scale biological networks. In this context, the manual identification of
logic rules underlying the system being studied is often hard, error-prone and time consuming. Further, it has been shown
that, if the inherent experimental noise is considered, many different logical networks can be compatible with a set of
experimental observations [52]. Thus, automated inference of Boolean logical networks from experimental data would allow
for identifying admissible large-scale logic models saving a lot of efforts and without any a priori bias.

Notably, the inference of Boolean networks have been addressed by several authors under different hypotheses and
methods as we show in Section 6. Specifically, in this paper we focus on the problem initially described in [52]. Therein,
a genetic algorithm implementation was proposed to solve the underlying combinatorial multi-objective optimization prob-
lem, and a software was provided, CellNOpt [59]. Nonetheless, stochastic search methods cannot characterize the models
precisely: they are intrinsically unable not just to provide a complete set of solutions, but also to guarantee that an op-
timal solution is found. To overcome this limitation, approaches based on Integer Linear Programming (ILP) [43,55] and
Answer Set Programming (ASP) [62] have been applied, providing a proof of concept that a global optimum can be iden-
tified. ASP [5,25] is a declarative problem solving paradigm, in which a problem is encoded as a logic program such that
its answer sets (i.e. stable models) represent solutions to the problem. Moreover, modern ASP tools allow handling complex
preferences and multi-objective optimization, guaranteeing the global optimum by reasoning over the complete solution
space. In fact, combinatorial optimization in computational biology has been reviewed in [28] from the perspective of math-
ematical programming pointing out the importance of exact methods in this subject. Further, multi-objective optimization
in the context of bioinformatics and computational biology has been recently reviewed in [31] showing its increasing rele-
vance in this field. In this context, ASP offers a unique pairing of declarativeness and performance to address combinatorial
multi-objective optimization problems.

Herein we extend our work in [62] as follows. First, we consider numerical datasets instead of only binary. Essentially,
this allows us to simulate realistic experimental datasets and test our approach towards real-world data. Also, in order to
cope with such numerical datasets, we introduce and compare several discretization schemes. Next, in contrast to [52] and
our previous work in [62], we formalize the learning problem as a lexicographic multi-objective optimization. In fact, this is
similar to ILP approaches [43,55]. By doing this, we avoid the usage of additional artifacts in order to transform the prob-
lem into a single-objective optimization. Finally, as detailed in the next section, we aim at learning Boolean logic models
without feedback-loops. Nevertheless, in this work we allow for prior knowledge networks with feedback-loops, which are
often present. Thus, previous methods (including ours) which consider acyclic prior knowledge networks as an input, would
require an expert in order to decide where to “cut” the loops in advance. In fact, this is easily integrated as a constraint
in ASP reducing manual pre-processing and the risk of missing admissible models. Clearly, we have elaborated upon our
previous ASP encoding in order to cope with the mentioned extensions. That is, (1) numerical datasets, (2) lexicographic
multi-objective optimization and (3) feedback-loops in the prior knowledge. We have validated our approach using a real-
world prior knowledge network related to signaling events upon stimulation of cellular receptors in hepatocytes and in silico
generated datasets.

The paper is structured as follows: Section 2 recalls main biological hypotheses underlying the learning of Boolean
logic models; Section 3 provides a formal characterization of our problem; Section 4 introduces ASP and shows how to
learn Boolean logic models using it; Section 5 presents benchmarks evaluating the performance of our approach; Section 6
reviews related work; and Section 7 concludes.

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 81
Fig. 1. Directed hypergraph representation of logic models. The green edges (arrows ending in →) and red edges (arrows ending in �) correspond to
activations and inhibitions, respectively. Green nodes a, b, c represent ligands that can be experimentally stimulated. Red nodes (i.e. d) represent species
that can be inhibited by using a drug. Blue nodes (i.e. f , g) represent species that can be measured by using an antibody. White nodes are neither
measured, nor manipulated. (a) A toy interaction (directed and signed) graph describing causal interactions among proteins. (b) An arbitrary Boolean logic
model derived from the interaction graph shown in (a) describing functional relationship defined by the mapping {d �→ a; e �→ b ∨ c; f �→ d ∧ e; g �→ e ∧¬c}.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

2. Background

2.1. Logical preliminaries

Given a finite set V of propositional variables, we form propositional formulas from V with the connectives ⊥, 	, ¬,
∨, and ∧ in the standard way. Further, we consider truth assignments mapping formulas to truth values {0, 1} according to
classical logic semantics and interpret, 0 as false and 1 as true.

2.2. Boolean logic models of immediate-early response

In what follows we briefly summarize the main biological hypotheses in [52] providing the foundation for the concept of
Boolean logic models of immediate-early response. Generally speaking, a Boolean logic model (V , φ) can be seen as a Boolean
network [36,60]. That is, it consists of a finite set V of propositional variables describing biological species or compounds
and a function φ mapping variables v ∈ V to a propositional formula φ(v) over V . We say that φ is complete if and only if
v ∈ dom(φ) for every v ∈ V . Furthermore, we say that φ is acyclic if and only if there are no feedback-loops in the Boolean
logic model (V , φ). Importantly, Boolean logic models of immediate-early response are simpler than other more elaborate
settings in Boolean networks, for instance, asynchronous (multivalued) [61] or probabilistic [56]. Such approaches are often
used to describe and study complex dynamical properties which is not the goal of our work.

2.2.1. Biological hypotheses
The main assumption under Boolean logic models as treated in [52] is the following. The response of a biological system

to external perturbations occurs at several time scales. Thus, one can discriminate between fast and slow events. Under
this assumption, at a given time after perturbation, the system reaches a state on which fast events are relevant, but slow
events (such as protein degradation) have a relatively insignificant effect. In this context, we say that the system has reached
a pseudo-steady state describing the early events or immediate-early response. Qualitatively, these states can be computed
as logical steady states in the Boolean network (V , φ) [37]. That is, truth assignments over V yielding identical values for
v and φ(v) for all v ∈ dom(φ). Let us illustrate this with our toy example shown in Fig. 1(b). In this case, the Boolean logic
model (V , φ) is defined over variables V = {a, . . . , g} and the mapping φ

{d �→ a; e �→ b ∨ c; f �→ d ∧ e; g �→ e ∧ ¬c}.
Furthermore, let A be the following truth assignment over V

{a �→ 1,b �→ 0, c �→ 1,d �→ 1, e �→ 1, f �→ 1, g �→ 0}.
One can verify that A(v) = A(φ(v)) for all v ∈ dom(φ) where A is extended to formulas in the standard way. Hence, the
truth assignment A describes a logical steady state in the Boolean logic model (V , φ).

In fact, the discrimination between fast and slow events has an important consequence. Since we focus on fast or
early events, it is assumed that oscillation or multi-stability caused by feedback-loops [50,46] cannot happen until the
second phase of signal propagation occurring at a slower time scale. Therefore, feedback-loops are not included in Boolean
logic models of immediate-early response assuming that they will become active in a late phase [40]. Notably, it follows
that starting from any initial state, a Boolean logic model of immediate-early response reaches a unique steady state in
polynomial time [46]. Thus, such modeling approach, although not capable of capturing dynamical properties, provides a
relatively simple framework for input–output predictive models.

82 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
2.2.2. Boolean logic models as directed hypergraphs
Graph theory is a standard tool used to model biological networks. Nodes in the graph typically describe biological

species (genes, proteins, or metabolites) whereas the edges represent causal relations among them. However, functional
relationships in biological networks cannot be captured using only graph theory [38]. If two proteins modeled by nodes a
and b have a positive effect on a third one d, this would be described in a graph by edges a → d, b → d like in Fig. 1(a).
Nevertheless, it is unclear whether a or b can independently activate d, or if both are required. In order to describe such
logical functional relations between species, and to offer a formal representation of cellular networks, directed hypergraphs
like the one in Fig. 1(b) can be used.1 A directed hypergraph H = (V , E) is a generalization of a directed graph G = (V , A),
where V is the set of nodes and E the set of directed hyperedges. While edges in G connect pairs of nodes a, b ∈ V , directed
hyperedges in H connect pairs of sets of nodes S, T ⊆ V . Without loss of generality, assuming only formulas in disjunctive
normal form provides a straightforward link between Boolean logic models and directed hypergraphs. Since hypergraphs
were already described and used to represent Boolean logic models in [37,52], we adopt the same formalism and we simply
give the example in Fig. 1 to introduce this representation. For more details, we refer the reader to the aforecited literature.

2.2.3. Learning Boolean logic models
Based on the assumptions and concepts described above, authors in [52] have proposed a method to learn from a prior

knowledge network describing causal interactions (Fig. 1(a)) and phosphorylation activities at a pseudo-steady state, Boolean
logic models (Fig. 1(b)) fitting experimental data. In particular, given a network encoding our knowledge of signal transduc-
tion and a dataset measuring the activation of proteins (outputs) in this network upon various perturbations (inputs), one
can derive from the network Boolean logic models fitting the data. By default, it is assumed a “resting” network (no stimuli
present). Then, the value of a variable that has no mapping in φ is given by its default truth value, i.e. 0. On the other hand,
the value of all other variables is overwritten by signals propagated from the inputs (stimuli and knock-outs) according to
their mappings in φ. Finally, the identification of the Boolean logic models whose input–output predictions best fit the data
is posed as an optimization problem.

3. Learning Boolean logic models

3.1. Problem inputs

Boolean logic models must be learned from three inputs: a prior knowledge network (PKN), a set of experimental con-
ditions, and for each of them, the corresponding experimental observation. A PKN is a signed and directed graph (V , E, σ)

with nodes V , directed edges E ⊆ V × V and signature σ ⊆ E × {1, −1}. Nodes in V describe biological species whereas
the signed and directed edges in E represent causal relationships among them, i.e., activatory or inhibitory effects. Further,
we distinguish three special subsets in V namely, the stimuli (V S), the knock-outs (V K) and the readouts (V R). Nodes in V S
denote extracellular signals and thus, we assume they have indegree equal to zero. Nodes in V K denote species that can
be inhibited by various experimental tools such as small-molecule drugs, antibodies, or RNAi. Finally, nodes in V R denote
species that can be measured by using an antibody. Notably, species in none of these sets, are neither measured, nor ma-
nipulated for the given experimental settings. Let us denote with V U the set of such nodes. Then, except for V R and V K
that may intersect, the sets V S , V K , V R and V U are pairwise mutually disjoint. Note that the signature σ is defined as a
relation and not as a function since it could be the case that both signs are present. This is more likely to happen when the
PKN is compressed as described in [52] in order to remove most of the nodes in V U .

Given a PKN (V , E, σ), the concept of an experimental condition over (V , E, σ) is captured by a truth assignment over
variables V S ∪ V K . If ε is an experimental condition and v ∈ V S , then ε(v) = 0 (resp. 1) indicates that the stimulus v is
absent (resp. present), while if v ∈ V K , then ε(v) = 0 (resp. 1) indicates that the species v is inhibited (resp. not inhibited).
Furthermore, the concept of an experimental observation under ε is captured by a partial mapping ω : V R �→ [0, 1]. That is,
dom(ω) ⊆ V R denotes the set of observed readouts under the experimental condition ε. If v ∈ dom(ω), then ω(v) represents
the phosphorylation activity of the readout v under ε. Since phosphorylation assays represents an average across a popula-
tion of cells, the phosphorylation activity for each readout is usually normalized to [0, 1]. Finally, an experimental dataset ξ

is a finite set of pairs (εi, ωi) with each ωi defined under εi . Further, we denote with Nξ the size of ξ given by the number
of observed readouts across all experiments, i.e., Nξ = ∑n

i=1 |dom(ωi)|.
Let us illustrate the problem inputs with our toy example. Consider the PKN (V , E, σ) defined in Fig. 1(a). From the

graph coloring, we have V S = {a, b, c}, V K = {d} and V R = { f , g}. Finally, let ξ = ((ε1, ω1), . . . , (ε4, ω4)) be an example
experimental dataset over (V , E, σ) defined by

ε1 = {a �→ 1,b �→ 0, c �→ 1,d �→ 1} ω1 = { f �→ 0.9, g �→ 0.0}
ε2 = {a �→ 1,b �→ 0, c �→ 1,d �→ 0} ω2 = { f �→ 0.1, g �→ 0.9}
ε3 = {a �→ 1,b �→ 0, c �→ 0,d �→ 1} ω3 = { f �→ 0.0, g �→ 0.1}
ε4 = {a �→ 1,b �→ 1, c �→ 0,d �→ 1} ω4 = { f �→ 1.0, g �→ 0.8}. (1)

1 Directed hypergraphs are sometimes referred to as “AND/OR graphs” or “labeled graphs” [19].

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 83
3.2. Predictive Boolean logic models

We aim at learning Boolean logic models from a PKN and an experimental dataset. In fact, any learned model has to
be supported by some evidence in the prior knowledge. For example, looking at Fig. 1, it is clear that the logic model in
(b) is not just some arbitrary model, but it is strongly related to the PKN in (a). To be more precise, given a PKN (V , E, σ)

we consider only Boolean logic models (V , φ) without feedback-loops and such that, for each variable v ∈ V , if w occurs
positively (resp. negatively) in φ(v) then, there exists an edge (w, v) ∈ E and ((w, v), 1) ∈ σ (resp. ((w, v), −1) ∈ σ). Notice
that feedback-loops may occur in the PKN, i.e. a cycle in the graph (V , E, σ), but not in the Boolean logic models.

In order to characterize the trajectories and steady states of Boolean logic models, we follow the investigations of [33]
and reformulate the immediate consequence operator T P introduced in [3] for a logic program P . Let (V , φ) be a Boolean
logic model with a complete mapping φ over V . Furthermore, let A be a truth assignment over V . First we define T(V ,φ) as

T(V ,φ)(A) = {
v �→ A

(
φ(v)

) ∣∣ v ∈ V
}
,

where A is extended to formulas in the standard way. Thus, T(V ,φ)(A) is a mapping from variables in V to truth values
{0, 1}, i.e., a truth assignment over V . Next, we define the iterative variant of T(V ,φ) as

T 0
(V ,φ)(A) = A and T j+1

(V ,φ)(A) = T(V ,φ)

(
T j

(V ,φ)(A)
)
.

In biological terms, a sequence (T j
(V ,φ)(A)) j≥0 represents the signal propagation starting in state A.

Let (V , E, σ) be a PKN and let ε be an experimental condition over (V , E, σ). In order to capture the perturbations
generated by ε, to the resting system described by a Boolean logic model (V , φ), we define φ|ε for each v ∈ V as

φ|ε(v) =
{	 if v ∈ V S and ε(v) = 1

⊥ if (v ∈ V S ∪ V K and ε(v) = 0) or v /∈ dom(φ) ∪ V S

φ(v) otherwise

yielding the modified Boolean logic model (V , φ|ε). Importantly, φ|ε is a complete and acyclic mapping over V . Thus,
T(V ,φ|ε) has a unique fixpoint which can be computed in polynomial time [46] via iterated applications of T(V ,φ|ε) starting
at any state. Essentially, by propagating the constant truth values for 	 and ⊥.

Finally, given a Boolean logic model (V , φ), the concept of model prediction ρ under an experimental condition ε is
captured by the truth assignment T j

(V ,φ|ε)(A0) such that, A0 is any truth assignment over V and for some j ≥ 0, we have

that T j
(V ,φ|ε)(A0) = T j+1

(V ,φ|ε)(A0). That is, ρ is the unique fixpoint of T(V ,φ|ε) .
As an example, in the experimental condition ε2 from (1) we have:

{a �→ 1,b �→ 0, c �→ 1,d �→ 0}.
That is, a and c are stimulated while b and d are inhibited. Next, given the Boolean logic model (V , φ) in Fig. 1(b), (V , φ|ε2)

is defined by the mapping

{a �→ 	;b �→ ⊥; c �→ 	;d �→ ⊥; e �→ b ∨ c; f �→ d ∧ e; g �→ e ∧ ¬c}.
Furthermore, let A0 = {v �→ 0 | v ∈ V } be a truth assignment over V . Then, the prediction ρ2 for (V , φ) under ε2 can be
computed via iterated applications of T(V ,φ|ε2) until reaching a fixpoint:

T 0
(V ,φ|ε2)(A0) = A0

T 1
(V ,φ|ε2)(A0) = T(V ,φ|ε2)(A0) = {a �→ 1,b �→ 0, c �→ 1,d �→ 0, e �→ 0, f �→ 0, g �→ 0} = A1

T 2
(V ,φ|ε2)(A0) = T(V ,φ|ε2)(A1) = {a �→ 1,b �→ 0, c �→ 1,d �→ 0, e �→ 1, f �→ 0, g �→ 0} = A2

T 3
(V ,φ|ε2)(A0) = T(V ,φ|ε2)(A2) = {a �→ 1,b �→ 0, c �→ 1,d �→ 0, e �→ 1, f �→ 0, g �→ 0} = A2.

When T 1
(V ,φ|ε2)(A0) is computed giving the truth assignment A1, variables a, c and b, d are assigned to the constant truth

values for 	 and ⊥ respectively, whereas variables e, f and g remain assigned to 0. Next, when T 2
(V ,φ|ε2)(A0) is computed

resulting in A2, the variable e is assigned to 1 since A1(φ|ε2(e)) = A1(b ∨ c) = 1. To conclude, T 3
(V ,φ|ε2)(A0) is computed

showing that a fixpoint, namely A2, has been reached. Hence, such a fixpoint defines the prediction ρ2 for (V , φ) under ε2.

84 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
3.3. Learning as optimization

For a given PKN (V , E, σ), there are exponentially many candidate Boolean logic models (V , φ) having an evidence
on it. Therefore, authors in [52] put forward the idea of training Boolean logic models by comparing their corresponding
predictions to experimental observations at a pseudo-steady state. In this context, two natural optimization criteria arise
in order to conduct the learning: (1) model accuracy (biologically meaningful), and (2) model complexity (Occam’s razor
principle). In fact, this is a typical scenario on automatized learning of predictive models [18].

We now provide the precise formulation for each optimization criteria as defined in [52]. Let (V , E, σ) be a PKN. Let
ξ = ((ε1, ω1), . . . , (εn, ωn)) be an experimental dataset over (V , E, σ). Let (V , φ) be a Boolean logic model having evidence
in (V , E, σ) and let ρ1, . . . , ρn be its Boolean predictions with each ρi defined under εi . Firstly, based on the residual sum
of squares (RSS) we define the fitness (Θ f) of (V , φ) with respect to ξ as

Θ f
(
(V , φ), ξ

) =
n∑

i=1

∑
v∈dom(ωi)

(
ωi(v) − ρi(v)

)2
. (2)

Secondly, for a given logical formula φ(v), let us denote its length by |φ(v)|. Then, we define the size (Θs) of (V , φ) as

Θs
(
(V , φ)

) =
∑

v∈dom(φ)

∣∣φ(v)
∣∣. (3)

A popular and relatively simple approach to cope with multi-objective optimization is to transform it into a single-
objective optimization. Towards this end, one usually combines all criteria by defining a function using free parameters in
order to assign different weights to each criteria. In fact, this is exactly the approach adopted in [52]. Therein, a single-
objective function is defined that balances fitness and size using a parameter α chosen to maximize the predictive power of
the model. Moreover, it has been shown that “predictive power” is best for α < 0.1. However, such approach suffers from
known drawbacks. First, it depends on “magic values” for each weight often based on intuition or empirically determined.
Second, it combines different scales of measurements that need to be normalized. Third, it combines non-commensurable
criteria producing meaningless quantities [18]. On the other hand, the lexicographic approach allows us to assign different
priorities to different objectives in a qualitative fashion. Notably, in our context logic models providing high predictive power
are significantly more relevant than the sizes of such models. Thus, the lexicographic approach is very convenient to cope
with the multi-objective nature of our optimization problem. Yet another popular approach is to look for Pareto optimal
models. However, this method will lead to a large number of models providing either none or very low predictive power.
For example, consider the Boolean logic model (V , φ) with φ = ∅, i.e. the empty model. Such a model is trivially consistent
with any input PKN (V , E, σ) while it minimizes the objective function size, i.e. Θs((V , φ)) = 0. Therefore, (V , φ) is Pareto
optimal although it does not provide any valuable information. Similarly, one can show that many other (non-empty) models
will be Pareto optimal as well although they provide very low predictive power. Hence, Pareto optimality is not well suited
for our problem. Notwithstanding, other multi-objective optimization methods (cf. [41]) could be investigated in the future.

Finally, let M(V ,E,σ) be the space of Boolean logic models without feedback-loops having evidence in (V , E, σ). Then,
our lexicographic multi-objective optimization consists of minimizing first Θ f , and then with lower priority Θs:

(V , φopt) = arg min
(V ,φ)∈M(V ,E,σ)

(
Θ f

(
(V , φ), ξ

)
,Θs

(
(V , φ)

))
. (4)

4. Learning Boolean logic models with Answer Set Programming

4.1. Introduction to Answer Set Programming

Answer Set Programming (ASP; [5,25]) provides a declarative framework for modeling various Knowledge Representation
and Reasoning problems. The unique pairing of declarativeness and performance in state-of-the-art ASP solvers allows for
concentrating on an actual problem, rather than a smart way of implementing it. The basic idea of ASP is to express a
problem in a logical format so that the models of its representation provide the solutions to the original problem. Problems
are expressed as logic programs and the resulting models are referred to as answer sets. Although determining whether
a program has an answer set is the fundamental decision problem in ASP, more reasoning modes are needed for covering
the variety of reasoning problems encountered in applications. Hence, a modern ASP solver, like clasp [26] supports several
reasoning modes for assessing the multitude of answer sets, among them, regular and projective enumeration, intersection
and union, and multi-criteria optimization. As well, these reasoning modes can be combined, for instance, for computing the
intersection of all optimal models. This is accomplished in several steps. At first, a logic program with first-order variables
is turned by efficient database techniques into a propositional logic program. This is in turn passed to a solver computing
the answer sets of the resulting program by using advanced Boolean constraint technology. For optimization, a solver like
clasp uses usually branch-and-bound algorithms (other choices, like computing unsatisfiable cores, exist). The enumeration
of all optimal models, as in our paper, is done in two steps. At first an optimal model is determined along with its optimum

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 85
value. This computation has itself two distinct phases. First, an optimal model candidate must be found and second, it must
be shown that there is no better candidate; the latter amounts to a proof of unsatisfiability and is often complex. Then, all
models possessing the same value are enumerated in a second step.

Our encodings are written in the input language of gringo 3 [21,26]. In what follows we introduce its basic syntax and
we refer the reader to the aforecited literature for more details. An atom is a predicate symbol followed by a sequence of
terms (e.g. p(a,b), q(X,f(a,b))). A term is a constant (e.g. c, 42) or a function symbol followed by a sequence of terms
(e.g. f(a,b), g(X,10)) where uppercase letters denote first-order variables. Then, a rule is of the form

H : −B1, . . . , Bn,

where H (head) is an atom and any B j (body) is a literal of the form A or not A for an atom A where the connective not
corresponds to default negation. Further, a rule without body is a fact, whereas a rule without head is an integrity constraint.
A logic program consists of a set of rules, each of which is terminated by a period. The connectives :- and , can be read
as if and and, respectively. A statement starting with not is satisfied unless its enclosed proposition is found to be true.
The semantics of a logic program is given by the stable models semantics [27]. Intuitively, the head of a rule has to be true
whenever all its body literals are true. In ASP every atom needs some derivation, i.e., an atom cannot be true if there is no
rule deriving it. This implies that only atoms appearing in some head can appear in answer sets, i.e. stable models.

We end this quick introduction by three language constructs particularly interesting for our encoding. First, the so called
choice rule of the form,

{H1, . . . , Hm}: −B1, . . . , Bn,

allows us to express choices over subsets of atoms. Any subset of its head atoms can be included in a stable model, provided
the body literals are satisfied. Note that using a choice rule one can easily generate an exponential search space of candidate
solutions. Second, a conditional literal is of the form

L : L1 : · · · : Ln

The purpose of this language construct is to govern the instantiation of the literal L through the literals L1, . . . , Ln . In this
respect, the conditional literal above can be regarded as the list of elements in the set {L | L1, . . . , Ln}. Finally, for solving
(multi-criteria) optimization problems, ASP allows for expressing cost functions in terms of a weighted sum of elements
subject to minimization and/or maximization. Such objective functions are expressed in ASP in terms of optimization state-
ments of the form

#minimize{L1 = W1@P1, . . . , LN = W N @P N},
where every L j is a literal and every W j an integer weight. Further, Pi provides an integer priority level. Priorities allow
for representing lexicographically ordered minimization objectives, greater levels being more significant than smaller ones.
More complex preferences, for instance, inclusion-based minimization or Pareto efficiency, can be addressed by means of
meta-programming as described in [23].

4.2. Data discretization schemes

In order to express and solve the multi-objective optimization described in (4) by using ASP, one needs to discretize the
function defined in (2). A very simple approach converts numerical data into binary data according to a threshold. Further,
we propose a finer multi-valued discretization scheme. In fact, the only non-integer variables in (2) are the experimental
observations ωi(v). Then, we introduce a first parametrized discretization scheme of these variables as follows. Such scheme
corresponds to the simplest method which converts real numbers into Boolean values, where �x� stands for the integer part
of a real number x.

∀x ∈ [0,1], δ0(x) =
{ �2x� 0 ≤ x < 1

1 x = 1

Alternatively, one may require to have better approximations (up to 1
10 , 1

100 , . . . , 1
10k) by using truncations:

δ1(x) = �10x�
10

, δ2(x) = �100x�
100

, . . . δk(x) = �10kx�
10k

.

We note that these finer approximations are not direct extensions of the binary approximation δ0 since they are not
continuous for x = 1. Although they are not exactly similar, they appear to be the most commonly used in practice. Hence,
we choose to study all of them in a common framework. Next, we define the discretized fitness Θ fk as

Θ fk

(
(V , φ), ξ

) =
n∑ ∑ [

10kδk
(
ωi(v)

) − 10kρi(v)
]2

. (5)

i=1 v∈dom(ωi)

86 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
Since 10kδk(ωi(v)) are all integer values, we have that Θ fk ((V , φ), ξ) contains only integer variables.
The minimizations of Θ f and Θ fk may yield different Boolean logic models. Nonetheless, the following proposition

guarantees that finding all models minimizing Θ fk within a certain tolerance allows us to find all models minimizing Θ f .
We refer the reader to Appendix A for a detailed proof.

Proposition 4.1. Let (V , E, σ) be a PKN. Let ξ be an experimental dataset over (V , E, σ) with size Nξ . Let k ∈N define the discretiza-
tion scheme. Let us denote with μ and μk, the corresponding minima for Θ f and Θ fk over the space of models M(V ,E,σ) and with
respect to ξ :

μ = min
(V ,φ)∈M(V ,E,σ)

Θ f
(
(V , φ), ξ

)
μk = min

(V ,φ)∈M(V ,E,σ)

Θ fk

(
(V , φ), ξ

)
.

Then 10−2kμk converges to μ when k increases, with an exponential speed:

μk = 102kμ + O
(
10k).

Moreover, any Boolean logic model minimizing Θ f , also minimizes Θ fk within the following tolerance tk:

tk = 2

√
Nξ

μk
+ Nξ

μk
.

Notice that μk increases exponentially with k. Furthermore, as we shall see it in Section 5, in practice, μk is significantly
greater than Nξ provided that k ≥ 1. Hence, in practice, the tolerance tk is relatively small. Importantly, this justifies that
the minimization of Θ f can be successfully addressed by enumerating suboptimal models of Θ fk using a multi-valued
discretization scheme together with the tolerance tk . We illustrate this with our experiments and we refer the reader to
Section 7 for further discussion.

4.3. Input instance

Let (V , E, σ) be a PKN. We represent the nodes in V as facts over the predicate vertex/1, namely vertex(v) for all
v ∈ V .2 Further, facts over the predicate edge/3 represent edges in E with their signature, that is, edge(v,w,s) for all
(v, w) ∈ E and ((v, w), s) ∈ σ . Facts over predicates stimulus/1, inhibitor/1, and readout/1 denote nodes in V S ,
V K , and V R respectively. Let ξ = ((ε1, ω1), . . . , (εn, ωn)) be an experimental dataset over (V , E, σ). Recall that each εi is a
truth assignment over variables in V S ∪ V K . Then, we represent experimental conditions as facts over the predicate exp/3,
namely exp(i,v,εi(v)) for all v ∈ V S ∪ V K and 1 ≤ i ≤ n. Finally, let k define the discretization scheme as in Section 4.2.
We represent discretized experimental observations as facts over the predicate obs/3, namely, obs(i,v,10kδk(ωi(v))) for
all v ∈ dom(ωi) and 1 ≤ i ≤ n. We use the predicate dfactor/1 to denote the discretization factor 10k .

Using the discretization scheme provided by k = 1, Listing 1 shows the instance representation for our toy example. That
is, the PKN in Fig. 1(a) and the dataset given in (1).

1 vertex (a) . vertex (b) . vertex (c) . vertex (d) . vertex (e) . vertex (f) . vertex (g) .
2
3 edge (a , d , 1) . edge (b , d , 1) . edge (b , e , 1) . edge (c , d,−1) . edge (c , e , 1) .
4 edge (d , f , 1) . edge (e , f , 1) . edge (e , g , 1) . edge (g , e ,−1) . edge (c , g,−1) .
5
6 stimulus (a) . stimulus (b) . stimulus (c) . i n h i b i t o r (d) . readout (f) . readout (g) .
7
8 exp (1 , a , 1) . exp (1 , b , 0) . exp (1 , c , 1) . exp (1 , d , 1) .
9 exp (2 , a , 1) . exp (2 , b , 0) . exp (2 , c , 1) . exp (2 , d , 0) .

10 exp (3 , a , 1) . exp (3 , b , 0) . exp (3 , c , 0) . exp (3 , d , 1) .
11 exp (4 , a , 1) . exp (4 , b , 1) . exp (4 , c , 0) . exp (4 , d , 1) .
12
13 obs (1 , f , 9) . obs (2 , f , 1) . obs (3 , f , 0) . obs (4 , f , 1 0) .
14 obs (1 , g , 0) . obs (2 , g , 9) . obs (3 , g , 1) . obs (4 , g , 8) .
15
16 dfactor (10) .

Listing 1: Toy example input instance.

2 We use p/n to indicate that predicate p has arity n.

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 87
4.4. Logic program

We now describe our encoding for learning Boolean logic models as described in Section 3. Our ASP encoding is shown
in Listing 2.

1 sub (set (U, S , n i l) , 1 ,V) :− edge (U, V , S) .
2 sub (set (U, SU , set (W,SW, T)) ,N+1 ,V) :− edge (U, V , SU) , sub (set (W,SW, T) ,N, V) , U<W.
3
4 in (U, S , set (U, S , T)) :− sub (set (U, S , T) ,N, V) .
5 in (W,SW, set (U, SU , T)) :− in (W,SW, T) , sub (set (U, SU , T) ,N, V) .
6
7 { conjunction (C , N, V) } :− sub (C , N, V) .
8
9 path (U, V) :− conjunction (C , _ , V) , in (U, _ , C) .

10 path (U, V) :− conjunction (C , _ , V) , in (W, _ , C) , path (U,W) .
11 :− path (V , V) .
12
13 :− conjunction (C1 , N, V) , conjunction (C2 ,M, V) , N<M, in (U, S , C2) : in (U, S , C1) .
14
15 exp (E) :− exp (E , _ , _) .
16 mapped(V) :− conjunction (_ , _ , V) .
17 f ixed (E , V) :− exp (E , V, 0) .
18 f ixed (E , V) :− exp (E) , vertex (V) , not mapped(V) .
19
20 act ive (E , V) :− exp (E , V, 1) , stimulus (V) .
21 act ive (E , V) :− exp (E) , conjunction (S ,M, V) , not f ixed (E , V) ,
22 act ive (E ,U) : in (U, 1 , S) , not act ive (E ,U) : in (U,−1 ,S) .
23
24 res idual (D, V,1 ,#pow(F−D, 2)) :− obs (E , V , D) , dfactor (F) , D< F .
25 res idual (D, V,0 ,#pow(D, 2)) :− obs (E , V , D) , D> 0 .
26
27 #minimize [conjunction (_ , N, _) =N@1] .
28 #minimize [act ive (E , V) : obs (E , V ,D) : res idual (D, V, 1 ,W) =W@2,
29 not act ive (E , V) : obs (E , V , D) : res idual (D, V, 0 ,W) =W@2] .
30
31 #hide .
32 #show conjunction / 3 .

Listing 2: Logic program.

Since we are only interested in logical formulas having an evidence in (V , E, σ), we construct all possible conjunctions
having such evidence by computing for each v ∈ V all possible subsets of predecessors of v . We denote such subsets over
the predicate sub/3 and the function set/3. The idea is to start with singleton subsets containing only one predecessor,
and to create larger sets by recursively extending singletons until all non-empty subsets are constructed. This is done in
lines 1 and 2. We exploit the order between the vertices U and W to avoid different permutations of the same subsets.
Then, we define the membership relation between vertices and subsets in lines 4 and 5.

In line 7 we use a choice rule to consider each subset as either present or absent. Since each subset describes a
conjunction of literals, we generate over predicate conjunction/3, all possible logical formulas in disjunctive normal
form. That is, we represent a Boolean logic model (V , φ) as a set of facts over the predicate conjunction/3, namely
conjunction(C,n,v) for each conjunct in φ(v) with length n and such that, C is a term of the form set/3 describing
the set of literals in the conjunct. Lines 9–12 eliminate candidate answer sets describing logic models with feedback-loops.
Paths from U to V are represented over the predicate path/2 and derived recursively. Thus, the integrity constraint in line
11 avoids self-reachability in the Boolean logic models. Next, in line 13 we use an integrity constraint to avoid redundant
models by checking inclusion between conjunctions. For example, for two literals a and b, we say that a ∨ (a ∧ b) is re-
dundant since it is logically equivalent to a. This concept was previously introduced in [52] as a way to reduce the search
space during learning inspired on Sperner systems [8]. Notably, other logical redundancies could be considered as well.
However, a complete treatment of redundancies would lead to the NP-complete problem known as minimization of Boolean
functions [42].

Lines 15–18 define auxiliary domain predicates describing fixed nodes in each experimental condition, i.e., stimuli, knock-
outs, and unmapped nodes. Then, for each experimental condition, we represent truth assignments over nodes in V by the
presence or absence of the predicate active/2. Further, we exploit the default negation in order to use false as the default
truth value. Then, lines 20–22 allow us to compute under each experimental condition εi the fixpoint of T(V ,φ|εi)

by the
inductive propagation of the truth values for the fixed nodes.

Finally, in lines 24 and 25 we compute the possible differences (square of residuals) between Boolean predictions and the
corresponding experimental observations. We denote such differences over the predicate residual/4. Next, we describe
our lexicographic multi-objective optimization. In line 27 we declare with lower priority (@1) the minimization over the

88 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
size of logic models (Eq. (3)). Meanwhile, in lines 28 and 29 we declare, with higher priority (@2), the minimization of the
residual sum of squares between the Boolean predictions and experimental observations (Eq. (5)).

The next result shows that our ASP encoding is sound and complete with respect to the multi-objective optimization
problem described in Section 3 and according to some k defining the discretization scheme. We refer the reader to Ap-
pendix B for a detailed proof.

Proposition 4.2. Let (V , E, σ) be a PKN and let ξ be an experimental dataset over it. Let k define the discretization scheme. Let L be
the logic program given in Listing 2 and let τ ((V , E, σ), ξ, k) be the instance encoding as described above (e.g. Listing 1). Then, X is an
answer set of L ∪ τ ((V , E, σ), ξ, k) iff X describes a Boolean logic model (V , φopt) such that,

(V , φopt) = arg min
(V ,φ)∈M(V ,E,σ)

(
Θ fk

(
(V , φ), ξ

)
,Θs

(
(V , φ)

))
minimizing first Θ fk , and then with lower priority Θs.

4.5. Solving

We use the ASP solver clasp [20] which implements advanced Boolean constraint technology together with branch-and-
bound algorithms for dealing with multi-objective optimization. In Listing 3 we show the optimal answer set found for the
toy instance described in Listing 1.3 In this case, the optimum answer set is the tenth answer set inspected by the solver
(Answer: 10). Such answer set describes the Boolean logic model given in Fig. 1(b). Further, the values for the optimiza-
tion criteria are given ordered by their priorities (Optimization: 88 7). That is, 88 for the discretized residual sum of
squares (Eq. (5)), and 7 for the model size (Eq. (3)). Next, one could run the solver with option -opt-all=88,7 in order to
enumerate all optimal answer sets.

$ gringo encoding . lp toy . lp | c lasp −−quiet = 1
clasp version 2 . 1 . 3
Reading from stdin
Solving . . .
Answer : 10
conjunction (set (a , 1 , n i l) , 1 , d) conjunction (set (b , 1 , n i l) , 1 , e) conjunction (set (c , 1 , n i l) , 1 , e)
conjunction (set (c ,−1 , set (e , 1 , n i l)) , 2 , g) conjunction (set (d , 1 , set (e , 1 , n i l)) , 2 , f)
Optimization : 88 7
OPTIMUM FOUND

Models : 1
Enumerated : 10
Optimum : yes

Optimization : 88 7
Time : 0.001 s (Solving : 0.00 s 1 s t Model : 0.00 s Unsat : 0.00 s)
CPU Time : 0.000 s

Listing 3: Learning logic models for the toy instance.

5. Benchmarks

5.1. Benchmark generation

In order to study the performance of our ASP-based approach over realistic biological data, we generated in silico nu-
merical datasets based on a real and large-scale prior knowledge network (PKN). We use a generic PKN related to signaling
events upon stimulation of cellular receptors in hepatocytes. After compressing the network as described in [52], the cor-
responding graph has 30 nodes and 56 edges. Meanwhile, there are 180 possible hyperedges and thus, 2180 hypergraphs
describing Boolean logic models can be derived from this PKN.

The method used to generate our benchmarks is illustrated in Fig. 2. We start deriving a (random) Boolean logic model
(V , φgold) from the PKN. Then, using this model as our gold standard, a Boolean dataset ξ0 is generated by computing the
model predictions (outputs) for several experimental conditions (inputs). Then, several numerical datasets ξi , i.e. values in
[0, 1], are generated by adding a Gaussian noise with zero mean and standard deviation from to 0.1 to 0.6. This way, we
generated several numerical datasets based on the predictions made by (V , φgold). Finally, experiments were run considering
each in silico numerical dataset together with the PKN, and using either binary, or multi-valued discretization.4

3 Using the option -quiet=1 only the last (optimum) answer set is printed.
4 Experiments were performed on a MacBook Pro, Intel Core i7, 2.7 GHz and 4 GB of RAM using the ASP grounder gringo 3.0.3 and ASP solver clasp 2.1.3.

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 89
Fig. 2. Generation of in silico numerical datasets: First, a Boolean logic model (V , φgold) is derived from the prior knowledge network (PKN). Then, using
this model, a Boolean dataset ξ0 is generated by computing the outputs (Boolean predictions) for several combinations of inputs. Next, several numerical
datasets ξi , i.e. values in [0, 1], are generated by adding a Gaussian noise with zero mean and standard deviation from to 0.1 to 0.6.

5.2. Experiments

Overall performance We show the overall performance of the experiments run in Table 1. Datasets ξ0 to ξ3 lead to the
same optimal fitness to data (Θ f N−1

ξi
), optimal model size (Θs) and number of optimal models (#opt), using similar CPU

times. However, for datasets ξ3 to ξ6, CPU times grow clearly faster when using binary discretization than multi-valued.
Moreover, learning on datasets ξ4 and ξ5 leads to more fitted Boolean logic models when using multi-valued discretization.
Therefore, we conclude that multi-valued discretization provides a better overall performance than binary discretization for
both, finding an optimal model and enumerating all of them.

Completeness Interestingly, for dataset ξ6 despite of the difference in CPU times, the fitness to data (Θ f N−1
ξi

) and model
size (Θs) are the same regardless of the discretization scheme. Nonetheless, using binary discretization we found 4 optimal
models whereas only 2 of them are found using multi-valued discretization. This opens the way to two discussions. First,
we observe that some optimal solutions are lost between the binary and the multi-valued discretization. This issue is re-
lated to the fact that we defined the multi-valued discretization scheme in terms of the floor function. Hence, while in the
binary scheme values at both sides of the threshold (i.e. 0.5) are equally discretized to either 0 or 1, in the multi-valued
scheme lower values are preferred and may result in a change of the set of optimal models. This shows that the discretiza-
tion scheme has a strong impact over the solutions of the optimization problem. Second, this example confirms that the
discretized optimization problem and the real one may not have the same set of solutions. Thus, in order to overcome this
issue, we rely on our theoretical result in Proposition 4.1. Therein, we prove that the minimization of Θ f can be success-
fully addressed by enumerating suboptimal models of Θ fk . Towards this end, we allow the enumeration of suboptimal logic
models by considering a tolerance over model fitness or model size. To be more precise, let T f , Ts ∈ N be the tolerances
under consideration over model fitness and size, respectively. Then, for each ξi and some optimal model (V , φopti) with
respect to ξi , we enumerate suboptimal Boolean logic models (V , φ) such that,

Θ fk

(
(V , φ), ξi

) ≤ Θ fk

(
(V , φopti), ξi

) + T f Θs
(
(V , φ)

) ≤ Θs
(
(V , φopti)

) + Ts.

For example, for dataset ξ6, according to Proposition 4.1 and using k = 3 (i.e. 1000-valued) one should consider up to 0.5%
of tolerance over the optimum. By doing this, in a few seconds we are able to enumerate 22 181 Boolean models which

90
S.Videla

et
al./TheoreticalCom

puter
Science

599
(2015)

79–101

ization scheme we report the CPU time (seconds) to find
squared error, from the real (Θ f N−1

ξi
) and discrete fitness

valued

tall #opt
Θ f
Nξi

Θ fk
102k Nξi

Θs

0.08 2 0 0 26
0.07 2 0.0048 0.0047 26
0.07 2 0.0221 0.0217 26
0.15 2 0.0458 0.0452 26
0.7 4 0.0833 0.0825 29
3.32 4 0.1164 0.1158 32
9.2 2 0.1514 0.1509 29
Table 1
Computing all optimal Boolean logic models. Datasets ξ0 to ξ6 correspond to the in silico datasets generated as illustrated in Fig. 2. For each discret
1 optimal model (topt), the CPU time to find all optimal models (tall), the number of optimal models (#opt), the normalized optimum RSS, i.e., mean
(Θ fk 10−2k N−1

ξi
), and the optimum size (Θs).

ξi Discretization

Binary 10-valued 100-

topt tall #opt
Θ f
Nξi

Θ fk
102k Nξi

Θs topt tall #opt
Θ f
Nξi

Θ fk
102k Nξi

Θs topt

ξ0 0.67 0.08 2 0 0 26 0.16 0.07 2 0 0 26 0.13
ξ1 0.67 0.07 2 0.0048 0 26 0.23 0.07 2 0.0048 0.0046 26 0.14
ξ2 0.38 0.14 2 0.0221 0.0094 26 0.11 0.07 2 0.0221 0.0200 26 0.19
ξ3 1.85 0.29 2 0.0458 0.0458 26 0.38 0.18 2 0.0458 0.0422 26 0.7
ξ4 32.83 6.0 4 0.0838 0.1187 32 7.47 0.67 4 0.0833 0.0771 29 4.71
ξ5 256.98 38.64 4 0.1174 0.1625 30 17.42 3.47 4 0.1164 0.1108 32 30.14
ξ6 179.64 73.07 4 0.1514 0.2000 29 97.26 9.32 2 0.1514 0.1473 29 56.98

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 91
Fig. 3. Number of Boolean logic models with respect to model fitness tolerances. Each bar describes, for each dataset, the number of models having Θ f2

lower or equal than the minimum plus a tolerance, and model size Θs lower or equal than the optimum size (reported in Table 1). Considered tolerances
T f correspond to 0.02, 0.04, 0.06 and 0.08 times the optimum with respect to ξ3. The corresponding percentage with respect to each dataset ξi is reported
in the table at the top left corner of the figure. Datasets ξ0 and ξ1 have shown the same behavior (blue left handside bar). For datasets with low levels of
noise the number of suboptimal models grows clearly slower than for datasets with high level of noise. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

can be easily inspected towards the identification of the optimal ones with respect to Θ f . This study confirmed that the
4 optimal models for binary discretization (without tolerance) are the only one minimizing Θ f . Notably, for k ≤ 2, the
tolerance to consider is at least 5% of the optimum. Unfortunately, over ξ6, such tolerance yields millions of suboptimal
models which is useless in practice. For further discussion, we refer the reader to Section 7. In what follows we report
experiments corresponding to enumerate suboptimal models according to the discretization scheme given by k = 2.

Tolerance over model fitness First, we evaluate the impact of several tolerances only over model fitness. Towards this end,
we have fixed Ts = 0 and considered tolerances T f corresponding to 2%, 4%, 6% and 8% of the optimum fitness with respect
to ξ3. For the sake of illustration, we take tolerances always relative to ξ3 since it provides an intermediate fitness to data.
Results are shown in Fig. 3. Firstly, for datasets ξ0 and ξ1 we found the same behavior with small impact of the tolerances
under consideration. Secondly, datasets ξ2 and ξ3 have shown not the same, but very similar behavior with respect to the
number of models found for each tolerance. Thirdly, datasets ξ4 to ξ6 have also shown similar results for each tolerance.
Notably, for datasets ξ1, ξ2 and ξ3 the number of suboptimal models grows clearly slower than for datasets ξ4, ξ5 and ξ6.
It is worth noting that for the latter cases, even if the considered tolerance correspond to a relatively small ratio of the
optimum (i.e. 1% to 4%), the number of suboptimal models reaches quantities which are useless in practice. Therefore, this
promotes the use of a more refined discretization scheme for such datasets.

Tolerance over model size Next, we evaluate the impact of several tolerances only over model size. We have fixed T f = 0 and
considered tolerances Ts = 2, 4, 6, 8. Results are shown in Fig. 4. Datasets ξ0 to ξ3 have shown exactly the same behavior
for each tolerance value. Further, for all datasets the number of Boolean logic models grows exponentially as we increase
the tolerance over model size. Notably, minimization over model size is based on Occam’s razor principle (parsimony).
Hence, there is no experimental evidence in order to select among this large number of models. On one hand, one can
consider that larger logic models overfit the available dataset by introducing excessive complexity [52,47]. On the other
hand, one can argue that it is actually necessary to consider such “spurious” links in order to capture cellular robustness
and complexity [58].

6. Related work

We follow the investigations of Saez-Rodriguez et al. in [52], which we first revisited in [62] and now extended herein.
Some variants of our problem were addressed by Mitsos et al. in [43], and by Sharan and Karp in [55], both using Integer
Linear Programming (ILP).

More generally, the inference of Boolean networks has been addressed by several authors under different hypotheses
and methods. Liang et al. have used information theoretic principles of mutual information to infer Boolean networks from
gene expression data [39]. Similarly, Ideker et al. have studied the problem of identifiability and experimental design under
the Boolean networks framework [32]. Akutsu et al. have studied several problems consisting of completing a given Boolean
network so that the input–output behavior is consistent with given examples [2]. In one of such problems, namely the

92 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
Fig. 4. Number of Boolean logic models with respect to model size tolerances. Each bar describes, for each dataset, the number of models having optimal
Θ f2 and model size Θs lower or equal than the minimum plus t with t ∈ {2, 4, 6, 8}. Datasets ξ0, ξ1, ξ2 and ξ3 have shown the same behavior (blue left
handside bar). For all datasets, the number of Boolean logic models grows exponentially. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)

Consistency Problem, they look for a Boolean network consistent with all Boolean examples. An interesting generalization
is the so-called Best-Fit Extension Problem described by Shmulevich et al. [57]. Therein, Boolean networks with weighted
inconsistencies are allowed and an error function is defined subject to minimization. Recently, an evaluation of some of these
methods has been published in [7]. Closer to experimental design, Akutsu et al. also have studied the problem of identifying
a genetic Boolean network from experimental data in regard to the number and the complexity of experiments needed [1].
Overall, our work presents some significant differences with the aforecited literature. To start with, all of them are focused
on gene regulatory networks and gene expression time-series data, whereas we work on signaling transduction networks
and phosphorylation activities at a pseudo-steady state. Further, they work only with Boolean experimental observations
which would correspond to adopt the binary discretization scheme in our framework. Moreover, except for the Best-Fit
Extension Problem, they look for Boolean networks fully consistent with the time-series Boolean data. Meanwhile, herein we
consider an objective function which describes the goodness of the model based on the numerical data that is subsequently
optimized. Finally, all these contributions focus on a “local” inference in the following sense. They aim at learning the
Boolean function for each node based on (local) input–output behaviors for such node. On the other hand, we aim at a
“global” learning given the prior knowledge network and (global) behaviors over the input–output layers in the network.

Our work contributes to a growing list of ASP applications in systems biology. Almost a decade ago, Baral et al. have
proposed applying knowledge representation and reasoning methodologies to the problem of representing and reasoning
about signaling networks [6]. More recently, several authors have addressed the question of pruning or identification of
biological networks using ASP. Durzinsky et al. have studied the problem consisting of reconstructing all possible networks
consistent with experimental time series data [14]. Gebser et al. have addressed the problem consisting of detecting in-
consistencies and repairing in large biological networks [24,22]. Fayruzov et al. have used ASP to represent the dynamics
in Boolean networks and find their attractors [15,16]. Ray et al. have integrated numerical and logical information in order
to find the most likely states of a biological system under various constraints [48]. Further, Ray et al. have used an ASP
system to propose revisions to metabolic networks [49]. Papatheodorou et al. have used ASP to integrate RNA expression
with signaling pathway information and infer how mutations affect aging [45]. Kaminski et al. have addressed the prob-
lem consisting of finding minimal intervention strategies in logical signaling networks [34]. Finally, Schaub and Thiele have
first investigated the metabolic network expansion problem with ASP [54] and recently, their work has been extended and
applied in a real-case study by Collet et al. [11]. Altogether, this series of contributions illustrates the potential of ASP to
address combinatorial and multi-objective optimization problems appearing in the field. In particular, our work emphasizes
the power of ASP for performing an exhaustive enumeration of feasible solutions within certain tolerance with respect to
an optimum. More broadly, among other formal approaches applied to the inference of biological models, we find related
to ours, Calzone et al. using temporal logic [9], Folschette et al. relying on the process hitting framework [17], and Corblin
et al. based on constraint programming [12,13]. Moreover, some of them have also adopted ASP among their methodolo-
gies [17,13]. Nonetheless, they are mainly focused on the characterization of dynamical properties emerging from available
models for a given biological system. Hence, combining the enumeration capabilities of ASP to find feasible models with the
characterization of dynamical properties common to all models, poses an interesting challenge for future work.

7. Conclusion

Boolean networks provide a simple yet powerful qualitative modeling approach in systems biology. In this context, we
have formalized the problem consisting of learning from a prior knowledge network (PKN) describing causal interactions

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 93
and phosphorylation activities at a pseudo-steady state, Boolean logic models of immediate-early response in signaling
transduction networks. Previous work addressing this problem consists of dedicated genetic algorithms [52] and mathemat-
ical programming approaches [43,55]. Further, in a recent work [62] we have proposed to use Answer Set Programming
(ASP) considering a simpler problem setting. Nonetheless, we have shown the shortcomings of genetic algorithms: they are
intrinsically unable not only to provide a complete set of solutions, but also to guarantee that an optimal solution is found.
Meanwhile, modern ASP tools allow handling complex preferences and multi-objective optimization, guaranteeing the global
optimum by reasoning over the complete solution space. In this context, ASP offers a unique pairing of declarativeness and
performance to address combinatorial multi-objective optimization problems like the one at hand.

Herein, we have extended our previous work in order to consider: (1) numerical datasets, (2) a multi-objective opti-
mization formulation and (3) feedback-loops in the PKN. Notably, in order to cope with such extensions, we have proposed
several discretization schemes and elaborated upon our previous ASP encoding. In order to study the performance of our
ASP-based approach towards real-world biological data, we have generated in silico numerical datasets based on a real and
large-scale PKN. Experiments performed have shown that the discretization scheme has a stronger impact on the compu-
tation times than on the fitness of optimal models to data. In general, multi-valued discretization has shown to be one
order of magnitude faster than binary discretization. However, some optimal models may be lost due to the discretization
scheme. Hence, in order to overcome this issue, we have proven that the continuous optimization can be successfully ad-
dressed by enumerating suboptimal models of the discretized optimization within a certain (small) tolerance. Further, we
have shown that the number of optimal models is rather small (tens), but if one considers tolerances over fitness or size,
this number can increase significantly (thousands or millions). Notably, being able to perform such exhaustive enumeration
is a key feature of our approach. Nonetheless, either real or more elaborated in silico (e.g. based on ordinary differential
equations) datasets would be required for a further and biologically significant analysis. Moreover, when using real-world
datasets, mechanistic descriptions available in popular databases [53,35,10] might be used (if they exists) to validate the
inferred logical interactions. Although, the method shown herein is highly dependent on the specificity of experiments and
thus, a proper biological validation would imply reproducing the experiments on the same or very similar settings.

Altogether, our experiments have shown that current ASP tools are mature enough to cope with real-world problem
instances. Nevertheless, given the ability to enumerate such a large number of Boolean models, the way to select among
them arises in order to provide new insights to biologists. In fact, rather than select among models one can consider all
of them regardless of their different topologies. That is, to take into account only their input–output behaviors. Although
not shown in this work, we have found that the variability of input–output behaviors is significantly lower than models
topologies. Recent advances in this direction and considering real-world experimental data, can be found in [30]. Briefly,
in the aforecited work it is shown that if the experimental error is considered, several thousands of Boolean logic models
fit the available data similarly well. Nonetheless, such a large number of models can be grouped into less than a hundred
input–output behaviors. Next, these behaviors have been characterized in terms of the number of Boolean logic models they
gather and their fitness to data. Moreover, it was found that for 30% of the space of possible inputs, all behaviors agree on
the given outputs. Hence, in practice this approach may provide a way to extract robust insights despite the high variability.

Several interesting issues could be investigated in the future. Firstly, it would be interesting to consider other discretiza-
tion schemes based on the nearest integer or ceiling functions. Also, rather than truncation using discrete levels as a power
of 10, one could consider discrete levels as a power of 2 or any other base. Notably, each discretization scheme may have
an impact on both, performance and fitness to data. Moreover, considering real-world datasets and their inherent noise,
opens very interesting questions. In particular, one could try to identify what is the most significant information in a given
dataset, based on what it is actually used by each scheme and the models they recovered. Secondly, the computation of
input–output behaviors can be done in a post-processing step but also could be considered as a new search problem by it-
self. Such a problem would consist of finding all input–output behaviors within a given tolerance over fitness or size. Clearly,
without performing the exhaustive enumeration of Boolean logic models. Thirdly, questions related to experimental design
under the Boolean networks framework [1,32] can be investigated with ASP. Assuming that input–output behaviors within
certain tolerance describe the data equally (or similarly) well, the model is said to be non-identifiable. Thus, one needs to
perform further experiments towards lower variability. Since experiments are usually expensive and time-consuming, one
would like to know which experiments are more likely to bring new insights to the optimization process. Thus, a proper
experimental design enables a maximum informative analysis of the experimental data. Finally, it would be interesting to
perform a detailed comparison between ASP and ILP approaches in order to elucidate their strengths and complementary
features on the learning of Boolean logic models as we have described herein.

Acknowledgements

The work of the first author was supported by the project ANR-10-BLANC-0218. We thank the financial aid from the
EU through project “BioPreDyn” (ECFP7-KBBE-2011-5 Grant number 289434). This work was partially funded by DFG grant
SCHA 550/10-1.

94 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
Appendix A. Data discretization schemes

Let (V , E, σ) be a PKN. Let ξ be an experimental dataset over (V , E, σ) with size Nξ . Let k ∈N define the discretization
scheme. Let us denote with μ and μk , the corresponding minima for Θ f and Θ fk over the space of models M(V ,E,σ) and
with respect to ξ :

μ = min
(V ,φ)∈M(V ,E,σ)

Θ f
(
(V , φ), ξ

)
μk = min

(V ,φ)∈M(V ,E,σ)

Θ fk

(
(V , φ), ξ

)
.

Then 10−2kμk converges to μ when k increases, with an exponential speed:

μk = 102kμ + O
(
10k).

Moreover, any Boolean logic model minimizing Θ f , also minimizes Θ fk within the following tolerance tk:

tk = 2

√
Nξ

μk
+ Nξ

μk
.

Proof. Let (V , φ) be any Boolean logic model having evidence in (V , E, σ). Let ρ1, . . . , ρn be the n Boolean predictions of
(V , φ) with each ρi defined under εi . The difference Θ f and 10−2kΘ fk over (V , φ) with respect to ξ is given by:

∣∣[Θ f − 10−2kΘ fk

](
(V , φ), ξ

)∣∣ =
∣∣∣∣∣

n∑
i=1

∑
v∈dom(ωi)

[
ωi(v) − ρi(v)

]2 − [
δk

(
ωi(v)

) − ρi(v)
]2

∣∣∣∣∣
For each triplet (ωi, ρi, v) let γi(v) = δk(ωi(v)) − ρi(v) and δi(v) = ωi − δk(ωi(v)). Therefore:

∣∣[Θ f − 10−2kΘ fk

](
(V , φ), ξ

)∣∣ =
∣∣∣∣∣

n∑
i=1

∑
v∈dom(ωi)

[
γi(v) + δi(v)

]2 − γi(v)2

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

∑
v∈dom(ωi)

δi(v)
[
2γi(v) + δi(v)

]∣∣∣∣∣.
Recall that Nξ = ∑n

i=1 |dom(ωi)|. From the Cauchy–Schwarz inequality we have that

n∑
i=1

∑
v∈dom(ωi)

∣∣γi(v)
∣∣ ≤ √

Nξ

√√√√ n∑
i=1

∑
v∈dom(ωi)

γi(v)2 = √
Nξ

√
10−2kΘ fk

(
(V , φ), ξ

)
.

Notice that from the discretization scheme we have that δi(v) < 10−k for every (i, v). It follows that:

∣∣[Θ f − 10−2kΘ fk

](
(V , φ), ξ

)∣∣ ≤ 10−k

(
n∑

i=1

∑
v∈dom(ωi)

2
∣∣γi(v)

∣∣ +
n∑

i=1

∑
v∈dom(ωi)

∣∣δi(v)
∣∣)

≤ 10−k(2
√

Nξ

√
10−2kΘ fk

(
(V , φ), ξ

) + 10−k Nξ

)
.

We deduce that

μ ≤ 10−2kμk + 10−k(2
√

Nξ

√
10−2kμk + 10−k Nξ

)
≤ 10−2kμk

(
1 + 2 × 10−k

√
Nξ

10−2kμk
+ 10−2k Nξ

10−2kμk

)
= 10−2kμk

(
1 + 2

√
Nξ

μk
+ Nξ

μk︸ ︷︷ ︸
=tk

)
(A.1)

With a similar reasoning introducing γ ′
i (v) = wi(v) − ρi(v) instead of γ (v), we have the following relation:

∣∣[Θ f − 10−2kΘ fk

](
(V , φ), ξ

)∣∣ =
∣∣∣∣∣

n∑
i=1

∑
v∈dom(ωi)

δi(v)
[
2γ ′

i (v) − δi(v)
]∣∣∣∣∣

≤ 10−k(2
√

Nξ

√
Θ f

(
(V , φ), ξ

) + 10−k Nξ

)
.

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 95
Therefore,

μk ≤ 102kμ + 10k(2
√

Nξ
√

μ + 10−k Nξ

)
≤ 102kμ + 10k (2

√
Nξ

√
μ + Nξ)︸ ︷︷ ︸

=B

Introducing this inequality in (A.1), we deduce that:

102kμ ≤ μk + 10k(2
√

Nξ

√
10−2kμk + 10−k Nξ

)
≤ μk + 10k(2

√
Nξ

√
μ + 10−k B + Nξ

)
≤ μk + 10k(2

√
Nξ

√
μ + B + Nξ︸ ︷︷ ︸
=C

)

Altogether, we have that there exists D = max{B, C}, which is independent from k, such that∣∣102kμ − μk
∣∣ ≤ D10k. �

Appendix B. ASP encoding correctness

Let (V , E, σ) be a PKN and let ξ = ((ε1, ω1), . . . , (εm, ωm)) be an experimental dataset over it. Let k define the discretiza-
tion scheme. Let L be the logic program given in Listing 2. Let τ ((V , E, σ), ξ, k) be the instance encoding as described in
Section 4 (e.g. Listing 1).

Next, let us define the following sets of terms needed for our proofs. For every v ∈ V let S1
v be the set of terms describing

the singleton predecessors of v in (V , E, σ):

S1
v = {

set(w, s,nil)
∣∣ (w, v) ∈ E,

(
(w, v), s

) ∈ σ
}
.

Furthermore, for 1 < i ≤ |S1
v | let Si

v be defined recursively describing the sets of i predecessors of v ,

Si
v = {

set(u, su,set(w, sw , t))
∣∣ set(u, su,nil) ∈ S1

v ,set(w, sw , t) ∈ Si−1
v , u < w

}
,

where < denotes a total ordering over V and either t = nil, or t ∈ Si−2
v .

In what follows we show that our ASP encoding L ∪ τ ((V , E, σ), ξ, k) is sound and complete with respect to the multi-
objective optimization problem described in Section 3 and according to the discretization scheme given by k. That is, we
prove that X is an answer set of L ∪ τ ((V , E, σ), ξ, k) iff X describes a Boolean logic model (V , φopt) such that,

(V , φ) = arg min
(V ,φ′)∈M(V ,E,σ)

(
Θ fk

((
V , φ′), ξ)

,Θs
((

V , φ′)))
minimizing first Θ fk , and then with lower priority Θs .

First, let us recall some standard notation for logic rules. For a rule r of the form

A0: − A1, ..., Am,not Am+1, . . . ,not An,

with atoms Ai , we define head(r) = A0, body(r)+ = {A1, . . . , Am}, and body(r)− = {Am+1, . . . , An}. Further, we often use the
connective ← instead of :-.

Soundness Let X be an answer set of L ∪ τ ((V , E, σ), ξ, k). Furthermore, let

P X = {(
head(r) ← body(r)+

)
θ

∣∣ r ∈ L ∪ τ
(
(V , E,σ), ξ,k

)
,
(
body(r)−θ

) ∩ X = ∅, θ : var(r) → A
}

where var(r) is the set of all variables that occur in a rule r, A is the set of all constants appearing in L ∪ τ ((V , E, σ), ξ),
and θ is a ground substitution for the variables in r. Then, by definition of an answer set, we know that X is a ⊆-minimal
model of P X .

Next, let us define

Cv = {
c
∣∣ conjunction(c,n, v) ∈ X, c ∈ Sn

v

}
.

Further, for every c ∈ Cv , let Lc =L+
c ∪L−

c with

L+
c = {

w | in(w,1, c) ∈ X
}

L−
c = {¬w

∣∣ in(w,−1, c) ∈ X
}

be the set of literals occurring in c. Next, we define the mapping φ for every v such that Cv �= ∅ as

96 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
φ(v) =
∨

c∈Cv

∧
l∈Lc

l.

Moreover, for every (εi, ωi) ∈ ξ and v ∈ V let us define the Boolean predictions of (V , φ) under each εi as,

ρi(v) =
{

1 if active(i, v) ∈ X
0 otherwise.

We show that (V , φ) is a Boolean logic model such that,

(V , φ) = arg min
(V ,φ′)∈M(V ,E,σ)

(
Θ fk

((
V , φ′), ξ)

,Θs
((

V , φ′)))
minimizing first Θ fk , and then with lower priority Θs . Towards this end, first we show that (V , φ) is a Boolean logic model
having evidence in (V , E, σ) and without feedback-loops, i.e., (V , φ) ∈ M(V ,E,σ) . Thereafter, we show that ρi is the fixpoint
of T(V ,φ|εi)

for each i = 1, . . . , m. Finally, we show that (V , φ) is an optimum model with respect to the lexicographic
multi-objective optimization, minimizing first Θ fk and then Θs .

Consider the rules in Listing 4:

1 sub (set (U, S , n i l) , 1 ,V) :− edge (U, V , S) .
2 sub (set (U, SU , set (W,SW, T)) ,N+1 ,V) :− edge (U, V , SU) , sub (set (W,SW, T) ,N, V) , U<W.
3
4 in (U, S , set (U, S , T)) :− sub (set (U, S , T) ,N, V) .
5 in (W,SW, set (U, SU , T)) :− in (W,SW, T) , sub (set (U, SU , T) ,N, V) .

Listing 4: Lines 1–5 from Listing 2.

Together with the instance encoding τ ((V , E, σ), ξ, k), the rules in Listing 4 enforce that for every v ∈ V and s ∈ Sn
v we have

sub(s, n, v) ∈ X with 1 ≤ n ≤ |S1
v |. Further, if set(u, s, t) ∈ Sn

v then in(u, s, set(u, s, t)) ∈ X . Moreover, if in(w, sw , t) ∈ X
and set(u, su, t) ∈ Sn

v , then in(w, sw , set(u, su, t)) ∈ X . Therefore, the choice rule in Listing 5:

7 { conjunction (C , N, V) } :− sub (C , N, V) .

Listing 5: Line 7 from Listing 2.

guarantees that φ(v) has an evidence in (V , E, σ). Hence, for every ⊆-minimal model X it holds that if conjunction(c,
n, v) ∈ X then sub(c, n, v) ∈ X for c ∈ Sn

v . Next, consider the rules in Listing 6:

9 path (U, V) :− conjunction (C , _ , V) , in (U, _ , C) .
10 path (U, V) :− conjunction (C , _ , V) , in (W, _ , C) , path (U,W) .
11 :− path (V , V) .

Listing 6: Lines 9–11 from Listing 2.

The rules above eliminate candidate answer sets describing logic models with feedback-loops. Paths from U to V are de-
rived recursively in lines 9 and 10. Then, the integrity constraint in line 11 avoids self-reachability. Notably, it follows
that (V , φ) defines a Boolean logic model without feedback-loops. Otherwise, there must exists v0, . . . , v p and c ∈ Cvi

such that in(v(i+1)%p, s, c) ∈ X with s ∈ {−1, 1} for every i = 0, . . . , p.5 In such a case, the rule in line 9 enforce that
path(v(i+1)%p, vi) ∈ X for every ⊆-minimal model X . Further, by the rule in line 10, if path(v(i+1)%p, vi) ∈ X and
path(v(i+2)%p, v(i+1)%p) ∈ X , then path(v(i+2)%p, vi) ∈ X . Hence, it also holds that path(vi, vi) ∈ X for every i = 0, . . . , p.
Thus, due the integrity constraint in line 11, X cannot be a model of P X . Therefore, (V , φ) defines a Boolean logic model
without feedback-loops.

5 With % we denote the modulo operator.

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 97
Next, we show that ρi as defined above is the fixpoint of T(V ,φ|εi)
, i.e., T(V ,φ|εi)

(ρi) = ρi . Consider the rules in Listing 7:

15 exp (E) :− exp (E , _ , _) .
16 mapped(V) :− conjunction (_ , _ , V) .
17 f ixed (E , V) :− exp (E , V, 0) .
18 f ixed (E , V) :− exp (E) , vertex (V) , not mapped(V) .
19
20 act ive (E , V) :− exp (E , V, 1) , stimulus (V) .
21 act ive (E , V) :− exp (E) , conjunction (S ,M, V) , not f ixed (E , V) ,
22 act ive (E ,U) : in (U, 1 , S) , not act ive (E ,U) : in (U,−1 ,S) .

Listing 7: Lines 15–22 from Listing 2.

The rules in lines 15–18 in Listing 7 together with the instance encoding τ ((V , E, σ), ξ, k) enforce that for every ⊆-minimal
model X , fixed(i, v) ∈ X iff εi(v) = 0 (line 17) or Cv = ∅, i.e., v /∈ dom(φ) (line 18). Further, the rules in lines 20–22
enforce that active(i, v) ∈ X iff v ∈ V S and εi(v) = 1, or fixed(i, v) /∈ X and there exists c ∈ Cv such that for every
w ∈L+

c , active(i, w) ∈ X and for every ¬w ∈L−
c , active(i, w) /∈ X .

Let us compute T(V ,φ|εi)
(ρi) for every v ∈ V . If v ∈ V S and εi(v) = 1 then φ|εi (v) = 	 and active(i, v) ∈ X , thus

T(V ,φ|εi)
(ρi)(v) = ρi() = 1 = ρi(v).

If v ∈ V S ∪ V K and εi(v) = 0, or v /∈ dom(φ) ∪ V S then φ|εi (v) = ⊥, fixed(i, v) ∈ X and active(i, v) /∈ X , thus

T(V ,φ|εi)
(ρi)(v) = ρi(⊥) = 0 = ρi(v).

Otherwise, φ|εi (v) = φ(v) and we have

T(V ,φ|εi)
(ρi)(v) = ρi

(
φ(v)

)
thus, we need to show that ρi(φ(v)) = ρi(v). By definition, ρi(v) = 1 iff active(i, v) ∈ X . Further, as shown above
active(i, v) ∈ X iff v ∈ V S and εi(v) = 1, or fixed(i, v) /∈ X and there exists c ∈ Cv such that for every w ∈ L+

c ,
active(i, w) ∈ X (ρi(w) = 1) and for every ¬w ∈ L−

c , active(i, w) /∈ X (ρi(w) = 0). Therefore, it holds ρi(
∧

l∈Lc
l) = 1.

Further, since φ(v) is in disjunctive normal form, it also holds ρi(φ(v)) = 1. Analogously, it can be shown ρi(v) = 0 iff
ρi(φ(v)) = 0. Thus, we have that ρi is the fixpoint of T(V ,φ|εi)

.
Finally, it remains to show that the following holds,

(V , φ) = arg min
(V ,φ′)∈M(V ,E,σ)

(
Θ fk

((
V , φ′), ξ)

,Θs
((

V , φ′)))
minimizing first Θ fk , and then with lower priority Θs . Consider the rules in Listing 8:

24 res idual (D, V,1 ,#pow(F−D, 2)) :− obs (E , V , D) , dfactor (F) , D< F .
25 res idual (D, V,0 ,#pow(D, 2)) :− obs (E , V , D) , D> 0 .
26
27 #minimize [conjunction (_ , N, _) =N@1] .
28 #minimize [act ive (E , V) : obs (E , V ,D) : res idual (D, V, 1 ,W) =W@2,
29 not act ive (E , V) : obs (E , V , D) : res idual (D, V, 0 ,W) =W@2] .

Listing 8: Lines 24–29 from Listing 2.

Rules in lines 24 and 25 together with the instance encoding τ ((V , E, σ), ξ, k) enforce that residual(d, v, x, w) ∈ X if
there exist (εi, ωi) ∈ ξ and v ∈ dom(ωi) such that d = Akδk(ωi(v)) with w = (Akδk(ωi(v)) − Akx)2 and x ∈ {0, 1}. More-
over, for every atom residual(d, v, x, w) ∈ X , we have w > 0. Therefore, the minimization statement in lines 31 and 32
enforces that (V , φ) is minimal with respect to Θ fk . To be more precise,∑

residual(d, v,1, w) ∈ X
obs(i, v,d) ∈ X
active(i, v) ∈ X

w +
∑

residual(d, v,0, w) ∈ X
obs(i, v,d) ∈ X
active(i, v) /∈ X

w

=
∑

obs(i, v,d) ∈ X
active(i, v) ∈ X

(
Akδk

(
ωi(v)

) − Ak
)2 +

∑
obs(i, v,d) ∈ X
active(i, v) /∈ X

(
Akδk

(
ωi(v)

))2

98 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
=
∑

obs(i,v,d)∈X

(
Akδk

(
ωi(v)

) − Akρi(v)
)2

=
m∑

i=1

∑
v∈dom(ωi)

(
Akδk

(
ωi(v)

) − Akρi(v)
)2 = Θ fk

(
(V , φ), ξ

)
.

Further, with lower priority, the minimization statement in line 30 guarantees that among the models minimizing Θ fk ,
(V , φ) is also minimal with respect to Θs . To be more precise,∑

conjunction(c,n,v)∈X

n =
∑
v∈V

∑
c∈Cv

|Lc| =
∑

v∈dom(φ)

∣∣φ(v)
∣∣ = Θs

(
(V , φ)

)
. �

Completeness Let (V , φ) be a Boolean logic model and let ρ1, . . . , ρm be its Boolean predictions with each ρi defined under
εi such that,

(V , φ) = arg min
(V ,φ′)∈M(V ,E,σ)

(
Θ fk

((
V , φ′), ξ)

,Θs
((

V , φ′)))
minimizing first Θ fk , and then with lower priority Θs .

Next, for every v ∈ V , let Cv be the set of conjuncts occurring in φ(v). Further, for every c ∈ Cv , let Lc be the set of
literals occurring in c. Furthermore, we denote with L+

c and L−
c , the set of positive and negative literals occurring in c,

respectively. Then, a path in φ from un to v is such that there exist literals l1, . . . , ln of the form ui or ¬ui , such that l1 ∈Lc
for some c ∈ Cv , and li+1 ∈Lci for some ci ∈ Cui with i = 1, . . . , n − 1.

We consider the following set X of atoms. First, all atoms in τ ((V , E, σ), ξ, k) are included in X . Next, for every v ∈ V
and s ∈ Sn

v we consider sub(s, n, v) ∈ X with 1 ≤ n ≤ |S1
v |. Further, if set(u, s, t) ∈ Sn

v then in(u, s, set(u, s, t)) ∈ X .
Moreover, if in(w, sw , t) ∈ X and set(u, su, t) ∈ Sn

v , then in(w, sw , set(u, su, t)) ∈ X . Next, for every v ∈ V and c ∈ Cv
with length n, let s ∈ Sn

v such that for every w ∈ L+
c , in(w, 1, s) ∈ X and for every ¬w ∈ L−

c , in(w, −1, s) ∈ X . Then,
we consider atoms conjunction(s, n, v) ∈ X . Next, for every path from u to v in φ, we consider atoms path(u, v) ∈ X .
Recall that ξ = ((ε1, ω1), . . . , (εm, ωm)), then we consider exp(i) ∈ X for every i = 1, . . . , m. Further, for every v ∈ V S ∪ V K
if εi(v) = 0 we consider fixed(i, v) ∈ X . Moreover, for every v ∈ V if Cv = ∅ then, we consider fixed(i, v) ∈ X for
every i = 1, . . . , m. Furthermore, for every v ∈ V such that Cv �= ∅, let mapped(v) ∈ X . Next, we consider active(i, v)

∈ X for every i = 1, . . . , m such that ρi(v) = 1. Finally, we consider residual(d, v, x, w) ∈ X if there exist (εi, ωi) ∈ ξ and
v ∈ dom(ωi) such that d = Akδk(ωi(v)) with w = (Akδk(ωi(v)) − Akx)2 and x ∈ {0, 1}. Moreover, we consider only atoms
residual(d, v, x, w) ∈ X with 0 < w .

We need to show that X is an answer set of L ∪ τ ((V , E, σ), ξ, k) verifying that X is a ⊆-minimal model of

P X = {(
head(r) ← body(r)+

)
θ

∣∣ r ∈ L ∪ τ
(
(V , E,σ), ξ,k

)
,
(
body(r)−θ

) ∩ X = ∅, θ : var(r) → A
}

where var(r) is the set of all variables that occur in a rule r, A is the set of all constants appearing in L ∪ τ ((V , E, σ), ξ, k),
and θ is a ground substitution for the variables in r.

To start with, we note that X includes all the facts in τ ((V , E, σ), ξ, k). Each of these facts belongs also to P X . Thus, any
set Y of atoms excluding at least one of them, cannot be a model of P X . Next, consider the rules in Listing 9:

1 sub (set (U, S , n i l) , 1 ,V) :− edge (U, V , S) .
2 sub (set (U, SU , set (W,SW, T)) ,N+1 ,V) :− edge (U, V , SU) , sub (set (W,SW, T) ,N, V) , U<W.
3
4 in (U, S , set (U, S , T)) :− sub (set (U, S , T) ,N, V) .
5 in (W,SW, set (U, SU , T)) :− in (W,SW, T) , sub (set (U, SU , T) ,N, V) .

Listing 9: Lines 1–5 from Listing 2.

The ground instances of the rules above belongs to P X . Furthermore, all of them are satisfied by X , but not by any set
Y ⊂ X . Rules in lines 1 and 2 enforce that for every s ∈ Sn

v , an atom sub(s, n, v) is included in every ⊆-minimal model. In
addition, rules in lines 4 and 5 enforce that any set excluding from X at least one atom over predicate in/3 cannot be a
model of P X .

Next, we consider the choice rule in Listing 10:

7 { conjunction (C , N, V) } :− sub (C , N, V) .

Listing 10: Line 7 from Listing 2.

In fact, a choice rule of the form:

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 99
{H} ← B

can be translated into 3 rules:

A← B H← A,not H H← not H

by introducing new atoms A and H. Therefore, for every atom conjunction(c, n, v) ∈ X with c ∈ Sn
v , P X includes rules of

the form:

A← sub(c,n, v) conjunction(c,n, v) ← A.

Recall that for every c ∈ Sn
v , an atom sub(c, n, v) is included in every ⊆-minimal model. Thus, we have that X satisfies such

rules and any set excluding from X at least one atom over predicate conjunction/3 cannot be a model of P X .
Now, consider the rules in Listing 11:

9 path (U, V) :− conjunction (C , _ , V) , in (U, _ , C) .
10 path (U, V) :− conjunction (C , _ , V) , in (W, _ , C) , path (U,W) .
11 :− path (V , V) .

Listing 11: Lines 9–11 from Listing 2.

All the ground instance of the rules above are in P X . Further, by construction of X , we have that conjunction(s, n, v) ∈ X
if there is some c ∈ Cv such that for every w ∈ L+

c , in(w, 1, s) ∈ X and for every ¬w ∈ L−
c , in(w, −1, s) ∈ X . Thus, the

rules in lines 9 and 10 enforce to have an atom path(u, v) included in every ⊆-minimal model of P X for each path from u
to v in φ. Therefore, any set excluding from X at least one atom over predicate path/3 cannot be a model of P X . Further,
since (V , φ) is feedback-loops free, the integrity constraint in line 11 is also satisfied by X .

13 :− conjunction (C1 , N, V) , conjunction (C2 ,M, V) , N<M, in (U, S , C2) : in (U, S , C1) .

Listing 12: Line 13 from Listing 2.

Moreover, since among the models minimizing Θ fk , (V , φ) is also minimal with respect to Θs , X satisfies the integrity
constraint in Listing 12 as well. Otherwise, for some v ∈ V there must exist c1, c2 ∈ Cv such that Lc1 ⊂Lc2 . Notably, in such
a case, c1 ∨ c2 is logically equivalent to c1. Therefore, there is a Boolean logic model (V , φ′) such that Θ fk ((V , φ′), ξ) =
Θ fk ((V , φ), ξ) and Θs((V , φ′)) < Θs((V , φ)).

Consider the rules in Listing 13:

15 exp (E) :− exp (E , _ , _) .
16 mapped(V) :− conjunction (_ , _ , V) .
17 f ixed (E , V) :− exp (E , V, 0) .
18 f ixed (E , V) :− exp (E) , vertex (V) , not mapped(V) .
19
20 act ive (E , V) :− exp (E , V, 1) , stimulus (V) .
21 act ive (E , V) :− exp (E) , conjunction (S ,M, V) , not f ixed (E , V) ,
22 act ive (E ,U) : in (U, 1 , S) , not act ive (E ,U) : in (U,−1 ,S) .

Listing 13: Lines 15–22 from Listing 2.

Since for every (εi, ωi) ∈ ξ and v ∈ V S ∪ V K there is an atom exp(i, v, εi(v)) included in every ⊆-minimal model of P X , the
rule in line 15 enforces that there is also an atom exp(i) included in every ⊆-minimal model of P X for every i = 1, . . . , m.
Furthermore, the rule in line 16 guarantees that for every v ∈ V such that Cv �= ∅, we have an atom mapped(v) included
in every ⊆-minimal model of P X . Next, the rules in lines 17 and 18 enforce that an atom fixed(i, v) is included in every
⊆-minimal model of P X if either εi(v) = 0 with v ∈ V S ∪ V K , or if Cv = ∅ with v ∈ V and i = 1, . . . , m. Hence, any set
excluding from X at least one atom over predicates exp/1, mapped/1 or fixed/2 cannot be a model of P X . Now, let us
show that for every v ∈ V and i = 1, . . . , m, an atom active(i, v) is included in every ⊆-minimal model of P X if ρi(v) = 1.
To start with, recall that ρi is the fixpoint of T(V ,φ|εi)

. Thus, for every v ∈ V it holds that, ρi(v) = ρi(φ|εi (v)). Then, ρi(v) = 1
iff φ|εi (v) = 	 or φ|εi (v) = φ(v) and for some c ∈ Cv it holds that, ρi(w) = 1 for every w ∈ L+

c and ρi(w) = 0 for every
w ∈ L−

c . The rule in line 20 enforces that an atom active(i, v) is included in every ⊆-minimal model of P X if εi(v) = 1
with v ∈ V S and i = 1, . . . , m. In such case, we have φ|εi (v) = 	. Meanwhile, the rule in lines 21 and 22 enforces that
an atom active(i, v) is included in every ⊆-minimal model of P X if φ|εi (v) = φ(v) and for some c ∈ Cv it holds that,
ρi(w) = 1 for every w ∈ L+

c and ρi(w) = 0 for every w ∈ L−
c . Therefore, any set excluding from X at least one atom over

predicate active/2 cannot be a model of P X .

100 S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101
Finally, consider the rules in Listing 14:

24 res idual (D, V,1 ,#pow(F−D, 2)) :− obs (E , V , D) , dfactor (F) , D< F .
25 res idual (D, V,0 ,#pow(D, 2)) :− obs (E , V , D) , D> 0 .
26
27 #minimize [conjunction (_ , N, _) =N@1] .
28 #minimize [act ive (E , V) : obs (E , V , D) : res idual (D, V, 1 ,W) =W@2,
29 not act ive (E , V) : obs (E , V ,D) : res idual (D, V, 0 ,W) =W@2] .

Listing 14: Lines 24–29 from Listing 2.

All the ground instances of the rules in lines 24 and 25 belong to P X . Furthermore, such rules enforce that every ⊆-minimal
model of P X includes an atom residual(d, v, x, w) if there exists (εi, ωi) ∈ ξ and v ∈ dom(ωi) such that d = Akδk(ωi(v))

with w = (Akδk(ωi(v)) − Akx)2 and x ∈ {0, 1}. In fact, only atoms residual(d, v, x, w) with 0 < w are included. Thus,
any set excluding from X at least one atom over predicate residual/4 cannot be a model of P X . To conclude the proof,
given that (V , φ) minimize Θ fk , X satisfies the minimization statement in lines 31 and 32. Moreover, given that among the
Boolean logic models minimizing Θ fk , (V , φ) also minimize Θs , X satisfies the minimization statement in line 30 as well.
For more details on the equivalence between the objective functions and the minimization statements, we refer the reader
to the proof of soundness.

We have investigated all rules in L ∪ τ ((V , E, σ), ξ, k) and shown that their ground instances in P X are satisfied by X .
Moreover, we have checked that any set excluding from X at least one atom is not a model of P X . Hence, X is a ⊆-minimal
model of P X and thus an answer set of L ∪ τ ((V , E, σ), ξ, k).

References

[1] T. Akutsu, S. Kuhara, O. Maruyama, S. Miyano, Identification of genetic networks by strategic gene disruptions and gene overexpressions under a
boolean model, Theoret. Comput. Sci. 298 (1) (Mar. 2003) 235–251.

[2] T. Akutsu, T. Tamura, K. Horimoto, Completing networks using observed data, in: Algorithmic Learning Theory, Springer, Berlin, Heidelberg, 2009,
pp. 126–140.

[3] K.R. Apt, M.H. van Emden, Contributions to the theory of logic programming, J. ACM 29 (3) (1982) 841–862.
[4] J. Banga, Optimization in computational systems biology, BMC Syst. Biol. 2 (1) (2008) 47.
[5] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, Cambridge University Press, 2003.
[6] C. Baral, K. Chancellor, N. Tran, N. Tran, A. Joy, M. Berens, A knowledge based approach for representing and reasoning about signaling networks, in:

Proceedings of the Twelfth International Conference on Intelligent Systems for Molecular Biology/Third European Conference on Computational Biology
(ISMB’04/ECCB’04), 2004, pp. 15–22.

[7] N. Berestovsky, L. Nakhleh, An evaluation of methods for inferring Boolean networks from time-series data, PLoS ONE 8 (6) (2013) e66031.
[8] B. Bollobás, Combinatorics: Set Systems, Hypergraphs, Families of Vectors, and Combinatorial Probability, Cambridge University Press, 1986.
[9] L. Calzone, N. Chabrier-Rivier, F. Fages, S. Soliman, Machine learning biochemical networks from temporal logic properties, in: C. Priami, G. Plotkin

(Eds.), Transactions on Computational Systems Biology VI, in: Lecture Notes in Computer Science, vol. 4220, Springer, Berlin, Heidelberg, 2006,
pp. 68–94.

[10] E.G. Cerami, B.E. Gross, E. Demir, I. Rodchenkov, O. Babur, N. Anwar, N. Schultz, G.D. Bader, C. Sander, Pathway Commons, a web resource for biological
pathway data, Nucleic Acids Res. 39 (Database issue) (2011) D685–D690.

[11] G. Collet, D. Eveillard, M. Gebser, S. Prigent, T. Schaub, A. Siegel, S. Thiele, Extending the metabolic network of Ectocarpus siliculosus using answer set
programming, in: P. Cabalar, T. Son (Eds.), Proceedings of the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’13), in: Lecture Notes in Artificial Intelligence, vol. 8148, Springer-Verlag, 2013, pp. 245–256.

[12] F. Corblin, E. Fanchon, L. Trilling, Applications of a formal approach to decipher discrete genetic networks, BMC Bioinform. 11 (1) (2010) 385.
[13] F. Corblin, E. Fanchon, L. Trilling, C. Chaouiya, D. Thieffry, Automatic inference of regulatory and dynamical properties from incomplete gene interaction

and expression data, in: M. Lones, S. Smith, S. Teichmann, F. Naef, J. Walker, M. Trefzer (Eds.), Information Processing in Cells and Tissues, in: Lecture
Notes in Computer Science, vol. 7223, Springer, Berlin, Heidelberg, 2012, pp. 25–30.

[14] M. Durzinsky, W. Marwan, M. Ostrowski, T. Schaub, A. Wagler, Automatic network reconstruction using ASP, Theory Pract. Log. Program. 11 (2011)
749–766.

[15] T. Fayruzov, M. De Cock, C. Cornelis, D. Vermeir, Modeling protein interaction networks with answer set programming, in: IEEE International Conference
on Bioinformatics and Biomedicine, 2009, BIBM ’09, Nov. 2009, pp. 99–104.

[16] T. Fayruzov, J. Janssen, D. Vermeir, C. Cornelis, M.D. Cock, Modelling gene and protein regulatory networks with answer set programming, Int. J. Data
Min. Bioinform. 5 (2) (2011) 209–229.

[17] M. Folschette, L. Paulevé, K. Inoue, M. Magnin, O. Roux, Concretizing the process hitting into biological regulatory networks, in: D. Gilbert, M. Heiner
(Eds.), Computational Methods in Systems Biology, in: LNCS, Springer, Berlin, Heidelberg, 2012, pp. 166–186.

[18] A.A. Freitas, A critical review of multi-objective optimization in data mining, ACM SIGKDD Explor. Newsl. 6 (2) (Dec. 2004) 77.
[19] G. Gallo, G. Longo, S. Pallottino, S. Nguyen, Directed hypergraphs and applications, Discrete Appl. Math. 42 (2–3) (1993) 177–201.
[20] M. Gebser, B. Kaufmann, A. Neumann, T. Schaub, CLASP: a conflict-driven answer set solver, in: C. Baral, G. Brewka, J. Schlipf (Eds.), Proceedings of the

Ninth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07), in: Lecture Notes in Artificial Intelligence, vol. 4483,
Springer-Verlag, 2007, pp. 260–265.

[21] M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub, S. Thiele, On the input language of ASP grounder Gringo, in: E. Erdem, F. Lin, T. Schaub (Eds.),
Proceedings of the Tenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09), in: Lecture Notes in Artificial
Intelligence, vol. 5753, Springer-Verlag, 2009, pp. 502–508.

[22] M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, P. Veber, Repair and prediction (under inconsistency) in large biological net-
works with answer set programming, in: F. Lin, U. Sattler (Eds.), Proceedings of the Twelfth International Conference on Principles of Knowledge
Representation and Reasoning (KR’10), AAAI Press, 2010, pp. 497–507.

[23] M. Gebser, R. Kaminski, T. Schaub, Complex optimization in answer set programming, Theory Pract. Log. Program. 11 (4–5) (2011) 821–839.

http://refhub.elsevier.com/S0304-3975(14)00458-7/bib416B757473753A323030336764s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib416B757473753A323030336764s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib416B757473753A32303039626Es1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib416B757473753A32303039626Es1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4170743A31393832s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib62616E676132303038s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib626172616C303261s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib62616368747274726A6F6265303461s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib62616368747274726A6F6265303461s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib62616368747274726A6F6265303461s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4265726573746F76736B793A323031336B65s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib426F6C6C6F6261733A313938367676s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib43616C7A6F6E653A32303036s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib43616C7A6F6E653A32303036s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib43616C7A6F6E653A32303036s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib436572616D6932303131s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib436572616D6932303131s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib636F657667657072736373697468313361s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib636F657667657072736373697468313361s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib636F657667657072736373697468313361s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib436F72626C696E32303130s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib436F72626C696E32303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib436F72626C696E32303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib436F72626C696E32303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6475727A696E736B7932303131s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6475727A696E736B7932303131s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib66617972757A6F7632303039s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib66617972757A6F7632303039s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib46617972757A6F7632303131s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib46617972757A6F7632303131s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib466F6C736368657474653A32303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib466F6C736368657474653A32303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib467265697461733A323030346273s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib47616C6C6F3A313939336A63s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib67656B616E657363303762s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib67656B616E657363303762s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib67656B616E657363303762s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4765627365723A323030396270s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4765627365723A323030396270s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4765627365723A323030396270s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6765677569767363736974687665313061s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6765677569767363736974687665313061s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6765677569767363736974687665313061s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib67656B617363313162s1

S. Videla et al. / Theoretical Computer Science 599 (2015) 79–101 101
[24] M. Gebser, T. Schaub, S. Thiele, P. Veber, Detecting inconsistencies in large biological networks with answer set programming, Theory Pract. Log.
Program. 11 (2–3) (2011) 323–360.

[25] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning,
Morgan and Claypool Publishers, 2012.

[26] M. Gebser, B. Kaufmann, T. Schaub, Multi-threaded ASP solving with clasp, Theory Pract. Log. Program. 12 (4–5) (2012) 525–545.
[27] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. Kowalski, K. Bowen (Eds.), Proceedings of the Fifth International

Conference and Symposium of Logic Programming (ICLP’88), MIT Press, 1988, pp. 1070–1080.
[28] H.J. Greenberg, W.E. Hart, G. Lancia, Opportunities for combinatorial optimization in computational biology, INFORMS J. Comput. 16 (3) (Jun. 2004)

211–231.
[29] C. Guziolowski, A. Kittas, F. Dittmann, N. Grabe, Automatic generation of causal networks linking growth factor stimuli to functional cell state changes,

FEBS J. 279 (18) (2012) 3462–3474.
[30] C. Guziolowski, S. Videla, F. Eduati, S. Thiele, T. Cokelaer, A. Siegel, J. Saez-Rodriguez, Exhaustively characterizing feasible logic models of a signaling

network using answer set programming, Bioinformatics (2013), in press, http://dx.doi.org/10.1093/bioinformatics/btt393.
[31] J. Handl, D.B. Kell, J. Knowles, Multiobjective optimization in bioinformatics and computational biology, IEEE/ACM Trans. Comput. Biol. Bioinform. 4 (2)

(Apr. 2007) 279–292.
[32] T.E. Ideker, V. Thorsson, R.M. Karp, Discovery of regulatory interactions through perturbation: inference and experimental design, Pac. Symp. Biocomput.

5 (2000) 305–316.
[33] K. Inoue, Logic programming for boolean networks, in: T. Walsh (Ed.), Proceedings of the Twenty-Second International Joint Conference on Artificial

Intelligence (IJCAI’11). IJCAI/AAAI, 2011, pp. 924–930.
[34] R. Kaminski, T. Schaub, A. Siegel, S. Videla, Minimal intervention strategies in logical signaling networks with answer set programming, Theory Pract.

Log. Program. 13 (4–5) (2013) 675–690.
[35] M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, M. Hirakawa, KEGG for representation and analysis of molecular networks involving diseases and drugs,

Nucleic Acids Res. 38 (Database issue) (Jan. 2010) D355–D360.
[36] S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, J. Theoret. Biol. 22 (3) (Feb. 1969) 437–467.
[37] S. Klamt, J. Saez-Rodriguez, J. Lindquist, L. Simeoni, E. Gilles, A methodology for the structural and functional analysis of signaling and regulatory

networks, BMC Bioinform. 7 (1) (2006) 56.
[38] S. Klamt, U.-U. Haus, F.J. Theis, Hypergraphs and cellular networks, PLoS Comput. Biol. 5 (5) (2009) e1000385.
[39] S. Liang, S. Fuhrman, R. Somogyi, REVEAL, a general reverse engineering algorithm for inference of genetic network architectures, Pac. Symp. Biocomput.

3 (1998) 19–29.
[40] A. Macnamara, C. Terfve, D. Henriques, B.P. Bernabé, J. Saez-Rodriguez, State-time spectrum of signal transduction logic models, Phys. Biol. 9 (4) (Aug.

2012) 045003.
[41] R.T. Marler, J.S. Arora, Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim. 26 (6) (Apr. 2004) 369–395, http://dx.

doi.org/10.1007/s00158-003-0368-6.
[42] E.J. McCluskey Jr., Minimization of Boolean functions, Bell Syst. Tech. J. (1956).
[43] A. Mitsos, I. Melas, P. Siminelakis, A. Chairakaki, J. Saez-Rodriguez, L.G. Alexopoulos, Identifying drug effects via pathway alterations using an integer

linear programming optimization formulation on phosphoproteomic data, PLoS Comput. Biol. 5 (12) (Sep. 2009) e1000591.
[44] M. Morris, J. Saez-Rodriguez, P. Sorger, D.A. Lauffenburger, Logic-based models for the analysis of cell signaling networks, Biochemistry 49 (15) (2010)

3216–3224.
[45] I. Papatheodorou, M. Ziehm, D. Wieser, N. Alic, L. Partridge, J.M. Thornton, Using answer set programming to integrate RNA expression with signalling

pathway information to infer how mutations affect ageing, PLoS ONE 7 (12) (Dec. 2012) e50881.
[46] L. Paulevé, A. Richard, Static analysis of boolean networks based on interaction graphs: a survey, Electronic Notes in Theoretical Computer Science 284

(Jun. 2012) 93–104.
[47] R.J. Prill, J. Saez-Rodriguez, L.G. Alexopoulos, P.K. Sorger, G. Stolovitzky, Crowdsourcing network inference: the DREAM predictive signaling network

challenge, Sci. Signal. 4 (189) (Sep. 2011) mr7.
[48] O. Ray, T. Soh, Analyzing pathways using ASP-based approaches, in: Algebraic and Numeric Biology, 2012.
[49] O. Ray, K. Whelan, R. King, Logic-based steady-state analysis and revision of metabolic networks with inhibition, in: Proceedings of the 2010 Interna-

tional Conference on Complex, Intelligent and Software Intensive Systems (CISIS ’10), vol. 0, 2010, pp. 661–666.
[50] E. Remy, P. Ruet, D. Thieffry, Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework, Adv. in Appl. Math. 41 (3)

(2008) 335–350.
[51] A. Saadatpour, R. Albert, Boolean modeling of biological regulatory networks: a methodology tutorial, Methods (Nov. 2012), http://dx.doi.org/10.1016/

j.ymeth.2012.10.012.
[52] J. Saez-Rodriguez, L.G. Alexopoulos, J. Epperlein, R. Samaga, D.A. Lauffenburger, S. Klamt, P.K. Sorger, Discrete logic modelling as a means to link protein

signalling networks with functional analysis of mammalian signal transduction, Mol. Syst. Biol. 5 (2009) 331.
[53] C.F. Schaefer, K. Anthony, S. Krupa, J. Buchoff, M. Day, T. Hannay, K.H. Buetow, PID: the pathway interaction database, Nucleic Acids Res. 37 (2009)

(Database issue), D674–D679.
[54] T. Schaub, S. Thiele, Metabolic network expansion with ASP, in: P. Hill, D. Warren (Eds.), Proceedings of the Twenty-Fifth International Conference on

Logic Programming (ICLP’09), in: Lecture Notes in Computer Science, vol. 5649, Springer-Verlag, 2009, pp. 312–326.
[55] R. Sharan, R.M. Karp, Reconstructing Boolean models of signaling, in: Research in Computational Molecular Biology, Springer, Berlin, Heidelberg, 2012,

pp. 261–271.
[56] I. Shmulevich, E.R. Dougherty, S. Kim, W. Zhang, Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks, Bioin-

formatics 18 (2) (Jan. 2002) 261–274.
[57] I. Shmulevich, A. Saarinen, O. Yli-Harja, J. Astola, Inference of genetic regulatory networks via best-fit extensions, in: W. Zhang, I. Shmulevich (Eds.),

Computational and Statistical Approaches to Genomics, Springer US, 2003, pp. 197–210.
[58] J. Stelling, U. Sauer, Z. Szallasi, F. Doyle, J. Doyle, Robustness of cellular functions, Cell 118 (6) (2004) 675–685.
[59] C.D.A. Terfve, T. Cokelaer, D. Henriques, A. Macnamara, E. Gonçalves, M. Morris, M. van Iersel, D.A. Lauffenburger, J. Saez-Rodriguez, CellNOptR: a flexible

toolkit to train protein signaling networks to data using multiple logic formalisms, BMC Syst. Biol. 6 (1) (Oct. 2012) 133.
[60] R.R. Thomas, Boolean formalization of genetic control circuits, J. Theoret. Biol. 42 (3) (Nov. 1973) 563–585.
[61] R. Thomas, Regulatory networks seen as asynchronous automata: a logical description, J. Theoret. Biol. 153 (1) (1991) 1–23.
[62] S. Videla, C. Guziolowski, F. Eduati, S. Thiele, N. Grabe, J. Saez-Rodriguez, A. Siegel, Revisiting the training of logic models of protein signaling networks

with ASP, in: D. Gilbert, M. Heiner (Eds.), Computational Methods in Systems Biology, in: LNCS, Springer, Berlin, Heidelberg, 2012, pp. 342–361.
[63] R.-S.R. Wang, A.A. Saadatpour, R.R. Albert, Boolean modeling in systems biology: an overview of methodology and applications, Phys. Biol. 9 (5) (Sep.

2012).

http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6765736374687665313061s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6765736374687665313061s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib67656B616B617363313261s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib67656B616B617363313261s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib67656B617363313262s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib67656C6C6966383862s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib67656C6C6966383862s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib477265656E626572673A32303034656Es1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib477265656E626572673A32303034656Es1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib47757A696F6C6F77736B6932303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib47757A696F6C6F77736B6932303132s1
http://dx.doi.org/10.1093/bioinformatics/btt393
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib68616E646C32303037s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib68616E646C32303037s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4964656B6572323030307565s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4964656B6572323030307565s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib696E6F7565313161s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib696E6F7565313161s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6B61736373697669313361s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6B61736373697669313361s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4B616E65686973613A323031306566s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4B616E65686973613A323031306566s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4B617566666D616E3A313936397570s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6B6C616D7432303036s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6B6C616D7432303036s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4B6C616D7432303039s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4C69616E6731393938s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4C69616E6731393938s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4D61636E616D6172613A323031326575s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4D61636E616D6172613A323031326575s1
http://dx.doi.org/10.1007/s00158-003-0368-6
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4D63436C75736B65794A723A313935367672s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4D6974736F7332303039s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib4D6974736F7332303039s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6D6F7272697332303130s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib6D6F7272697332303130s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib706170617468656F646F726F7532303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib706170617468656F646F726F7532303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib5061756C6576653A323031326972s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib5061756C6576653A323031326972s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib5072696C6C32303131s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib5072696C6C32303131s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib5261793A323031327571s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib52656D793A323030386577s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib52656D793A323030386577s1
http://dx.doi.org/10.1016/j.ymeth.2012.10.012
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib5361657A2D526F6472696775657A32303039s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib5361657A2D526F6472696775657A32303039s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib536368616566657232303039s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib536368616566657232303039s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib736368746869303961s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib736368746869303961s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib53686172616E3A323031326376s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib53686172616E3A323031326376s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib73686D646F756B696D7A68613032s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib73686D646F756B696D7A68613032s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib53686D756C657669636832303033s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib53686D756C657669636832303033s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib7374656C6C696E6732303034s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib5465726676653A32303132656As1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib5465726676653A32303132656As1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib54686F6D61733A313937337665s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib74686F6D61733931s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib566964656C6132303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib566964656C6132303132s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib57616E673A323031326875s1
http://refhub.elsevier.com/S0304-3975(14)00458-7/bib57616E673A323031326875s1
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1016/j.ymeth.2012.10.012

	Learning Boolean logic models of signaling networks with ASP
	1 Introduction
	2 Background
	2.1 Logical preliminaries
	2.2 Boolean logic models of immediate-early response
	2.2.1 Biological hypotheses
	2.2.2 Boolean logic models as directed hypergraphs
	2.2.3 Learning Boolean logic models

	3 Learning Boolean logic models
	3.1 Problem inputs
	3.2 Predictive Boolean logic models
	3.3 Learning as optimization

	4 Learning Boolean logic models with Answer Set Programming
	4.1 Introduction to Answer Set Programming
	4.2 Data discretization schemes
	4.3 Input instance
	4.4 Logic program
	4.5 Solving

	5 Benchmarks
	5.1 Benchmark generation
	5.2 Experiments

	6 Related work
	7 Conclusion
	Acknowledgements
	Appendix A Data discretization schemes
	Appendix B ASP encoding correctness
	References

