
Motif matching using gapped patterns?

Emanuele Giaquinta1, Kimmo Fredriksson2, Szymon Grabowski3, Alexandru I.
Tomescu1,4, and Esko Ukkonen1

1 Department of Computer Science, University of Helsinki, Finland
{emanuele.giaquinta | tomescu | ukkonen}@cs.helsinki.fi

2 School of Computing, University of Eastern Finland kimmo.fredriksson@uef.fi
3 Institute of Applied Computer Science, Lodz University of Technology, Al.

Politechniki 11, 90–924  Lódź, Poland sgrabow@kis.p.lodz.pl
4 Helsinki Institute for Information Technology HIIT

Abstract. We present new algorithms for the problem of multiple string
matching of gapped patterns, where a gapped pattern is a sequence of
strings such that there is a gap of fixed length between each two con-
secutive strings. The problem has applications in the discovery of tran-
scription factor binding sites in DNA sequences when using generalized
versions of the Position Weight Matrix model to describe transcription
factor specificities. In these models a motif can be matched as a set of
gapped patterns with unit-length keywords. The existing algorithms for
matching a set of gapped patterns are worst-case efficient but not prac-
tical, or vice versa, in this particular case. The novel algorithms that we
present are based on dynamic programming and bit-parallelism, and lie
in a middle-ground among the existing algorithms. In fact, their time
complexity is close to the best existing bound and, yet, they are also
practical. We also provide experimental results which show that the pre-
sented algorithms are fast in practice, and preferable if all the strings in
the patterns have unit-length.

1 Introduction

We consider the problem of matching a set P of gapped patterns against a given
text of length n, where a gapped pattern is a sequence of strings, over a finite
alphabet Σ of size σ, such that there is a gap of fixed length between each
two consecutive strings. We are interested in computing the list of matching
patterns for each position in the text. This problem is a specific instance of
the Variable Length Gaps problem [3] (VLG problem) for multiple patterns and
has applications in the discovery of transcription factor (TF) binding sites in
DNA sequences when using generalized versions of the Position Weight Matrix
(PWM) model to represent TF binding specificities. The paper [8] describes how
a motif represented as a generalized PWM can be matched as a set of gapped
patterns with unit-length keywords, and presents algorithms for the restricted
case of patterns with two unit-length keywords.

? A preliminary version of this paper appeared in the proceedings of the 24th Inter-
national Workshop on Combinatorial Algorithm

ar
X

iv
:1

30
6.

24
83

v2
  [

cs
.D

S]
  7

 J
ul

 2
01

4



In the VLG problem a pattern is a concatenation of strings and of variable-
length gaps. An efficient approach to solve the problem for a single pattern is
based on the simulation of nondeterministic finite automata [12,6]. A method to
solve the case of one or more patterns is to translate the patterns into a regular
expression [13,4]. The best time bound for a regular expression is O(n(k logw

w +
log σ)) [4], where k is the number of the strings and gaps in the pattern and w is
the machine word size in bits. Observe that in the case of unit-length keywords
k = Θ(len(P)), where len(P) is the total number of alphabet symbols in the
patterns. There are also algorithms efficient in terms of the total number α of
occurrences of the strings in the patterns (keywords) within the text [10,15,3] 5.
The best bound obtained for a single pattern is O(n log σ+α) [3]. This method
can also be extended to multiple patterns. However, if all the keywords have unit

length this result is not ideal, because in this case α is Ω(n len(P)
σ ) on average

if we assume that the symbols in the patterns are sampled from Σ according
to a uniform distribution. A similar approach for multiple patterns [9] leads
to O(n(log σ + K) + α′) time, where K is the maximum number of suffixes
of a keyword that are also keywords and α′ is the number of text occurrences
of pattern prefixes that end with a keyword. This result may be preferable in
general when α′ < α. In the case of unit-length keywords, however, a lower
bound similar to the one on α holds also for α′, as the prefixes of unit length

have on average Ω(n |P|σ ) occurrences in the text. Recently, a variant of this
algorithm based on word-level parallelism was presented in [18]. This algorithm
works in time O(n(log σ+(log |P|+ k

w )αm)), where k in this case is the maximum
number of keywords in a single pattern and αm ≥ dα/ne is the maximum number
of occurrences of keywords at a single text position. When α or α′ is large,
the bound of [4] may be preferable. The drawback of this algorithm is that,
to our knowledge, the method used to implement fixed-length gaps, based on
maintaining multiple bit queues using word-level parallelism, is not practical.

Note that the above bounds do not include preprocessing time and the log σ
term in them is due to the simulation of the Aho-Corasick automaton for the
strings in the patterns.

In this paper we present two new algorithms, based on dynamic program-
ming and bit-parallelism, for the problem of matching a set of gapped patterns.
The first algorithm has O(n(log σ+gw-spandk-len(P)/we)+occ)-time complexity,
where k-len(P) is the total number of keywords in the patterns and 1 ≤ gw-span ≤
w is the maximum number of distinct gap lengths that span a single word in our
encoding. This algorithm is preferable only when gw-span � w. We then show
how to improve the time bound to O(n(log σ+log2 gsize(P)dk-len(P)/we)+occ),
where gsize(P) is the size of the variation range of the gap lengths. Note that
in the case of unit-length keywords we have k-len(P) = len(P). This bound is
a moderate improvement over the more general bound for regular expressions
by Bille and Thorup [4] for log gsize(P) = o(

√
logw). This algorithm can also be

extended to support character classes with no overhead. The second algorithm

5 Note that the number of occurrences of a keyword that occurs in r patterns and in
l positions in the text is equal to r × l



Time Reference

O(n log σ + α) Bille et al. [3]
O(n(log σ +K) + α′) Haapasalo et al. [9]
O(n(log σ + logwdk-len(P)/we) + occ) Bille and Thorup [4]
O(n(log σ + log2 gsize(P)dk-len(P)/we) + occ) This paper
O(dn/welen(P) + n+ occ) This paper

Table 1. Comparison of different algorithms for the multiple string matching with
gapped patterns problem. k-len(P) and len(P) are the total number of keywords and
symbols in the patterns, respectively. gsize(P) is the size of the variation range of the
gap lengths. α ≤ nk-len(P) and α′ ≤ nk-len(P) are the total number of occurrences in
the text of keywords and pattern prefixes, respectively. K ≤ k-len(P) is the maximum
number of suffixes of a keyword that are also keywords.

is based on a different parallelization of the dynamic programming matrix and
has O(dn/we len(P) + n + occ)-time complexity. The advantage of this bound
is that it does not depend on the number of distinct gap lengths. However, it
is not strictly on-line, because it processes the text w characters at a time and
it also depends on len(P) rather than on k-len(P). Moreover, it cannot support
character classes without overhead. The proposed algorithms obtain a bound
similar to the one of [4], in the restricted case of fixed-length gaps, while being
also practical. For this reason, they provide an effective alternative when α or
α′ is large. They are also fast in practice, as shown by experimental evaluation.
A comparison of our algorithms with the existing ones is summarized in Table
1.

The rest of the paper is organized as follows. In Section 2 we recall some pre-
liminary notions and elementary facts. In Section 3 we discuss the motivation for
our work. In Section 4 we describe the method based on dynamic programming
for matching a set of gapped patterns and then in Section 5 and 6 we present
the new algorithms based on it. Finally, in Section 7 we present experimental
results to evaluate the performance of our algorithms.

2 Basic notions and definitions

Let Σ denote an integer alphabet of size σ and Σ∗ the Kleene star of Σ, i.e.,
the set of all possible sequences over Σ. |S| is the length of string S, S[i], i ≥ 0,
denotes its (i+ 1)-th character, and S[i . . . j] denotes its substring between the
(i+ 1)-st and the (j+ 1)-st characters (inclusive). For any two strings S and S′,
we say that S′ is a suffix of S (in symbols, S′ w S) if S′ = S[i . . . |S| − 1], for
some 0 ≤ i < |S|.

A gapped pattern P is of the form

S1 · j1 · S2 · . . . · j`−1 · S` ,

where Si ∈ Σ∗, |Si| ≥ 1, is the i-th string (keyword) and ji ≥ 0 is the length of
the gap between keywords Si and Si+1, for i = 1, . . . , `. We say that P occurs



in a string T at ending position i if

T [i−m+ 1 . . . i] = S1 ·A1 · S2 · . . . ·A`−1 · S` ,

where Ai ∈ Σ∗, |Ai| = ji, for 1 ≤ i ≤ ` − 1, and m =
∑`
i=1 |Si| +

∑`−1
i=1 ji. In

this case we write P wg Ti. We denote by len(P ) =
∑`
i=1 |Si| and k-len(P ) = `

the number of alphabet symbols and keywords in P , respectively. The gapped
pattern Pi = S1 · j1 · S2 · . . . · ji−1 · Si is the prefix of P of length i ≤ `.
Given a set of gapped patterns P, we denote by len(P) =

∑
P∈P len(P ) and

k-len(P) =
∑
P∈P k-len(P ) the total number of symbols and keywords in the

patterns, respectively.
The RAM model is assumed, with words of size w in bits. We use some

bitwise operations following the standard notation as in the C language: &, |,
∼, � for and, or, not and left shift, respectively. The function to compute
the position of the most significant non-zero bit of a word x is blog2(x)c.

Given a set S of strings over a finite alphabet Σ, the trie T associated with
S is a rooted directed tree, whose edges are labeled by single characters of Σ,
such that

(i) distinct edges out of the same node are labeled by distinct characters,
(ii) all paths in T from the root are labeled by prefixes of the strings in S,

(iii) for each string S in S there exists a path in T from the root which is labeled
by S.

Let Q denote the set of nodes of T , root the root of T , and label(q) the string
which labels the path from root to q, for any q ∈ Q. The Aho-Corasick (AC)
automaton [1] (Q,Σ, δ, root , F ) for the language

⋃
S∈S Σ

∗S is induced directly
by the trie T for S. The set F of final states include all the states q such that
the set {S ∈ S | S w label(q)} of strings in S which are suffixes of label(q) is
nonempty. The transition function δ(q, c) of the AC automaton is defined as the
unique state q′ such that label(q′) is the longest suffix of label(q) · c. Let fail(q)
be the unique state p such that label(p) is the longest proper suffix of label(q),
for any q ∈ Q \ {root}. Any transition δ(q, c) can be recursively computed as

δ(q, c) =


δT (q, c) if δT (q, c) is defined ,

δ(fail(q), c) if q 6= root ,

root otherwise ,

where δT is the transition function of the trie. Given a string T of length n, let
q−1 = root and qi = δ(qi−1, T [i]) be the state of the AC automaton after reading
the prefix T [0 . . . i] of T , for 0 ≤ i < n. If the transitions of the trie are indexed
using a balanced binary search tree, the sequence of states q0, . . . , qn−1, i..e, the
simulation of the AC automaton on T , can be computed in time O(n log σ).

3 Motivation

Given a DNA sequence and a motif that describes the binding specificities of a
given transcription factor, we study the problem of finding all the binding sites



in the sequence that match the motif. The traditional model used to represent
transcription factor motifs is the Position Weight Matrix (PWM). This model
assumes that there is no correlation between positions in the sites, that is, the
contribution of a nucleotide at a given position to the total affinity does not
depend on the other nucleotides which appear in other positions. The problem
of matching the locations in DNA sequences at which a given transcription factor
binds to is well studied under the PWM model [14]. Many more advanced models
have been proposed to overcome the independence assumption of the PWM
(see [2] for a discussion on the most important ones). One approach, common
to some models, consists in extending the PWM model by assigning weights
to sets of symbol-position pairs rather than to a single pair only. We focus on
the Feature Motif Model (FMM) [17] since, to our knowledge, it is the most
general one. In this model the TF binding specificities are described with so-
called features, i.e., rules that assign a weight to a set of associations between
symbols and positions. Given a DNA sequence, a set of features and a motif
of length m, the matching problem consists in computing the score of each site
(substring) of length m in the sequence, where the score of a site is the sum of
the weights of all the features that occur in the site. Formally, a feature can be
denoted as

{(a1, i1), . . . , (aq, iq)} → ω ,

where ω is the affinity contribution of the feature and aj ∈ {A,C,G, T} is the
nucleotide which must occur at position ij , for j = 1, . . . , q and 1 ≤ ij ≤ m. It
is easy to transform these rules into new rules where the left side is a gapped
pattern: if i1 < i2 < . . . < iq, we can induce the following gapped pattern rule

(a1 · (i2 − i1 − 1) · . . . · (iq − iq−1 − 1) · aq)→ (iq, ω).

Note that we maintain the last position iq to recover the original feature. This
transformation has the advantage that the resulting pattern is position indepen-
dent. Moreover, after this transformation, different features may share the same
gapped pattern. Hence, the matching problem can be decomposed into two com-
ponents: the first component identifies the occurrences of the groups of features
by searching for the corresponding gapped patterns, while the second component
computes the score for each candidate site using the information provided by the
first component. For a motif of length m, the second component can be easily
implemented by maintaining the score for m site alignments simultaneously with
a circular queue of length m. Each time a group of features with an associated
set of position/weight pairs {(i1, ω1), . . . , (ir, ωr)} is found at position j in the
sequence, the algorithm adds the weight ωk to the score of the alignment that
ends at position j +m− ik in the sequence, if j ≥ ik.

4 Dynamic Programming

In this section we present a method based on dynamic programming (DP) to
search for a set P of gapped patterns in a text T of length n. Then, in the next two



sections, we show how to parallelize the computation of the DP matrix column-
wise and row-wise using word-level parallelism. Let P be a gapped pattern. We
define the matrix D of size k-len(P )× n where

Dl,i =

{
1 if Pl wg Ti ,
0 otherwise ,

for 0 ≤ l < k-len(P ) and 0 ≤ i < n. For example, the matrix corresponding to
P = c · 2 · at · 1 · t, T = atcgctcatat is

a t c g c t c a t a t
c 0 0 1 0 1 0 1 0 0 0 0
at 0 0 0 0 0 0 0 0 1 0 1
t 0 0 0 0 0 0 0 0 0 0 1

From the definition of D it follows that the pattern P occurs in T at position i if
and only if Dk-len(P ),i = 1. The matrix D can be computed using the recurrence

Dl,i =

{
1 if Sl w T [0 . . . i− 1] and (l = 1 or Dl−1,i−|Sl|−jl−1

= 1) ,

0 otherwise .

Let Dk be the matrix of the k-th pattern in P. This method can be generalized
to multiple patterns by concatenating the matrices Dk for all the patterns into a
single matrix D of size k-len(P)×n and adjusting the definitions accordingly. We
now sketch the intuition behind the column-wise and row-wise parallelization.

Consider a column-wise computation of D. If, for each P ∈ P, we replace
each gap length ji in P with j̄i = ji + |Si+1|, for i = 1, . . . , k-len(P )− 1, and let
G be the set of distinct gap lengths in P, then we have that each column of D
depends on |G| previous columns. For example, in the case of c·2·at·1·t, we have
j̄1 = 4, j̄2 = 2 and the l-th column depends on columns l− 2 and l− 4. Instead,
in the case of c ·2 ·a ·1 ·at we have j̄1 = 3, j̄2 = 3 and the l-th column depends on
column l−3 only. The idea in the column-wise parallelization is to process w cells
of a column in O(gw-span) time, where 1 ≤ gw-span ≤ w is the maximum number
of distinct gap lengths that span a segment of w cells in a column. The total
time to compute one column (n in total) is thus O(gw-spandk-len(P)/we). We also
describe how to obtain an equivalent set of patterns with O(log gsize(P)) distinct
gap lengths, where gsize(P) = maxG−minG+ 1, at the price of O(log gsize(P))
new keywords per gap, thus achieving O(log2 gsize(P)dk-len(P)/we) time.

Consider now a row-wise computation of D. We have that each row of D
depends on the previous row only. To perform this computation efficiently, we
split, for each P ∈ P, each keyword Si in P in |Si| unit-length keywords by
inserting a 0 gap length between each two consecutive symbols. For example,
c · 2 · at · 1 · t becomes c · 2 · a · 0 · t · 1 · t and the corresponding matrix is

a t c g c t c a t a t
c 0 0 1 0 1 0 1 0 0 0 0
a 0 0 0 0 0 0 0 1 0 1 0
t 0 0 0 0 0 0 0 0 1 0 1
t 0 0 0 0 0 0 0 0 0 0 1



In this way the number of rows becomes len(P). Then, the idea in the row-wise
parallelization is to process w cells of a row in O(1) time. The total time to
compute one row (len(P) in total) is thus O(dn/we).

5 Column-wise parallelization

Let P k be the k-th pattern in P. We adopt the superscript notation for Si, ji
and Pl with the same meaning. We define the set

Di = {(k, l) | P kl wg Ti} ,

of the prefixes of the patterns that occur at position i in T , for i = 0, . . . , n− 1,
1 ≤ k ≤ |P| and 1 ≤ l ≤ k-len(P k). The set Di is a sparse representation of the
i-th column of the matrix D defined in the previous section. From the definition
of Di it follows that the pattern P k occurs in T at position i if and only if
(k, k-len(P k)) ∈ Di. For example, if T = accgtaaacg and P = {cgt ·2 ·ac, c ·1 ·gt ·
3 · c}, we have D1 = {(2, 1)}, D4 = {(1, 1), (2, 2)} and D8 = {(1, 2), (2, 1), (2, 3)}
and there is an occurrence of P 1 and P 2 at position 8.

Let K = {1, . . . , k-len(P)} be the set of indices of the keywords in P and let
T̄i ⊆ K be the set of indices of the matching keywords in T ending at position
i. The sequence T̄i, for 0 ≤ i < n, is basically a new text with character classes
over K. In the case of the previous example we have K = {cgt1, ac2, c3, gt4, c5}
and T̄1 = {ac2, c3, c5}, T̄4 = {cgt1, gt4} and T̄8 = {ac2, c3, c5} (we also show the
keyword corresponding to each index for clarity).

We replace each pattern S1 · j1 · S2 · . . . · j`−1 · S` in P with the pattern
S̄1 · j̄1 · S̄2 · . . . · j̄`−1 · S̄` , with unit-length keywords over the alphabet K, where
S̄i ∈ K and j̄i = ji + |Si+1|, for 1 ≤ i < `. For P = {cgt · 2 · ac, c · 1 · gt · 3 · c},
the new set is {cgt1 · 4 · ac2, c3 · 3 · gt4 · 4 · c5}.

The sets Di can be computed using the following lemma:

Lemma 1. Let P and T be a set of gapped patterns and a text of length n,
respectively. Then (k, l) ∈ Di, for 1 ≤ k ≤ |P|, 1 ≤ l ≤ k-len(P k) and i =
0, . . . , n− 1, if and only if

(l = 1 or (k, l − 1) ∈ Di−j̄kl−1
) and S̄kl ∈ T̄i.

The idea is to match the transformed patterns against the text T̄ . Let gmin(P)
and gmax(P) denote the minimum and maximum gap length in the patterns,
respectively. We also denote with gsize(P) = gmax(P) − gmin(P) + 1 the size of
the variation range of the gap lengths. We now present how to efficiently compute
any column Di using Lemma 1 and word-level parallelism.

Let Q denote the set of states of the AC automaton for the set of distinct
keywords in P. We store for each state q a pointer fo(q) to the state q′ such that
label(q′) is the longest suffix of label(q) that is also a keyword, if any. Let

B(q) = {(k, l) | Skl w label(q)}



gq-matcher-preprocess (P, T )

1. (δ, root ,B, fo)← AC(P)
2. G← ∅
3. m← k-len(P)
4. I← 0m,M← 0m

5. for g = 0, . . . , gmax(P) do C(g)← 0m

6. l← 0
7. for S1 · j1 · S2 · . . . · j`−1 · S` ∈ P do
8. I← I | 1� l
9. for k = 1, . . . , ` do

10. if k = ` then
11. M← M | 1� l
12. else g ← jk + |Sk+1|
13. C(g)← C(g) | 1� l
14. G← G ∪ {g}
15. l← l + 1

gq-matcher-search (P, T )

1. q ← root
2. for i = 0, . . . , |T | − 1 do
3. q ← δ(q, T [i]),H← 0m

4. for g ∈ G do
5. H← H | (Di−g & C(g))
6. Di ← ((H� 1) | I) & B(fo(q))
7. H← Di & M
8. report(H)

report(H)

1. while H 6= 0m do
2. k ← blog2(H)c
3. report(k)
4. H← H & ∼(1� k)

Fig. 1. The gq-matcher algorithm.

be the set of all the occurrences of keywords in the patterns in P that are suffixes
of label(q), for any q ∈ Q. We preprocess B(q) for each state q such that label(q)
is a keyword and compute it for any other state using B(fo(q)). The sets B can
be preprocessed as follows: each time we add to the AC automaton a keyword
with index (k, l) and corresponding state q, we first initialize B(q) to ∅, if q is
created during the insertion of this keyword, and then add (k, l) to B(q). After
the AC automaton is built, we perform a breadth-first traversal of the states of
the automaton, and for each state q visited such that label(q) is a keyword we
set B(q) = B(q) ∪B(fo(q)). It is not hard to see that B(fo(qi)) encodes the set
T̄i, where qi is the state of the AC automaton after reading the prefix T [0 . . . i]
of T .

We describe next how to compute any set Di using word-level parallelism.
Let G be the set of all the distinct gap lengths in the patterns. In addition to
the sets B(q), we preprocess also a set C(g), for each g ∈ G, defined as follows:

C(g) = {(k, l) | j̄kl = g} ,

for 1 ≤ k ≤ |P| and 1 ≤ l < k-len(P k). For example, for the set {cgt1 · 4 ·ac2, c3 ·
3 · gt4 · 4 · c3} we have C(4) = {(1, 1), (2, 2)} and C(3) = {(2, 1)}. We encode the
sets Di, B(q) and C(g) as bit-vectors of k-len(P) bits. The generic element (k, l)

is mapped onto bit
∑k−1
i=1 k-len(P i) + k-len(P kl−1), where k-len(P k0 ) = 0 for any

k. We denote with Di, B(q) and C(g) the bit-vectors representing the sets Di,
B(q) and C(g), respectively. We also compute two additional bit-vectors I and
M, such that the bit corresponding to the element (k, 1) in I and (k, k-len(P k))
in M is set to 1, for 1 ≤ k ≤ |P|. We basically mark the first and the last bit
of each pattern, respectively. Let Hi be the bit-vector equal to the bitwise or of



the bit-vectors
Di−g & C(g) , (1)

for each g ∈ G. Then the corresponding set Hi is equal to⋃
g∈G
{(k, l) | (k, l) ∈ Di−g ∧ j̄kl = g} .

The bit-vector Di can then be computed using the following bitwise operations:

Di ← ((Hi � 1) | I) & B(fo(qi))

which correspond to the relation

{(k, l) | ((k, l − 1) ∈ Hi ∨ l = 1) ∧ (k, l) ∈ B(fo(qi))} .

To report all the patterns that match at position i it is enough to iterate over all
the bits set in Di & M. The algorithm, named gq-matcher, is given in Figure 1.

The bit-vector Hi can be constructed in time O(gw-spandk-len(P)/we), 1 ≤
gw-span ≤ w, as follows: we compute Equation 1 for each word of the bit-vector
separately, starting from the least significant one. For a given word with index
j, we have to compute equation 1 only for each g ∈ G such that the j-th word
of C(g) has at least one bit set. Each position in the bit-vector is spanned by
exactly one gap, so the number of such g is at most w. Hence, if we maintain, for
each index j, the list Gj of all the distinct gap lengths that span the positions

of the j-th word, we can compute Hi in time
∑dk-len(P)/we
j=1 |Gj |, which yields the

advertised bound by replacing |Gj | with gw-span = maxj |Gj |.
The bit-vectors B(fo(qi)) encoding the sets T̄i, for 0 ≤ i < n, can be computed

in O(n log σ) time using the AC automaton for the set of distinct keywords in
P. Given the bit-vectors Hi and B(fo(qi)), the bit-vector Di can be computed
in O(dk-len(P)/we) time. The time complexity of the searching phase of the
algorithm is then O(n(log σ + gw-spandk-len(P)/we) + occ).

The AC automaton requires Θ(len(P)) space. Moreover, for the recursion of
Lemma 1, the algorithm needs to keep the sets D computed in the last gmax(P)
iterations. The lists Gj require O(k-len(P) + dk-len(P)/we) space in total. Fi-
nally, the number of B sets (which corresponds to the number of distinct key-
words) is ≤ k-len(P) while the number of C sets is ≤ gmax(P). Hence, the space
complexity is O(len(P) + (gmax(P) + k-len(P))dk-len(P)/we).

Observe that the size of the sets Gj depends also on the ordering of the
patterns (unless k-len(P ) is a multiple of w for each P ∈ P), since more than
one pattern can be packed into the same word. Hence, it can be possibly reduced
by finding an ordering that maps onto the same word patterns that share many
gap lengths. We now show that the problem of minimizing

∑
j |Gj | is hard. In

order to formally define the problem, we introduce the following definition:

Definition 1. Let L1, L2, . . . , Ln be a sequence of lists of integers and let Lc be
the list resulting from their concatenation, say Lc = l1, . . . , l|Lc|. For a given in-

teger b, we define the b-mapping of the lists as the sequence of lists Lb1, L
b
2, . . . , L

b
r



v1

v2

v3 v4e1

e2

e3

e4

(a) A graph G

L1 = 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6
L2 = 1 3 7 8 1 3 7 8 1 3 7 8 1 3 7 8
L3 = 2 3 4 9 2 3 4 9 2 3 4 9 2 3 4 9
L4 = 4 10 11 12 4 10 11 12 4 10 11 12 4 10 11 12

(b) The encoding of G for Problem 1

Fig. 2. The reduction of the Hamiltonian Path Problem to Problem 1. The encoding
of the graph G with n = 4 vertices and m = 4 edges has U = {1, . . . ,m} ∪ {m +
1, . . . , n2 − m}, and for every vertex vi, there is a list Li made up of n copies of a
sublist of length m consisting of the indices of its incident edges plus some unique
symbols from {m+1, . . . , n2−m}; we take b = (n+1)m and M = (2m−1)(n−1)+m.

where r = d|Lc|/be, list Lbi contains the elements l(i−1)b+1, l(i−1)b+2, . . . , l(i−1)b+b

of Lc, for 1 ≤ i ≤ b|Lc|/bc, and, if r > b|Lc|/bc, list Lbr contains the elements
l(r−1)b+1, l(r−1)b+2, . . . , l(r−1)b+(|Lc| mod b).

Then, the problem of minimizing
∑
j |Gj | can be stated as (where in our case

we have n = |P|, b = w, U = G and Lk = jk1 , j
k
2 , . . . , j

k
k-len(Pk), for 1 ≤ k ≤ |P|):

Problem 1 (Permutation with Minimum Distinct Binned Symbols, PMDBS).
Given a sequence of n lists of integers L1, L2, . . . , Ln over a universe U , and
an integer b, find the permutation π of 1, . . . , n which minimizes the sum, over
all lists Lb in the b-mapping of Lπ(1), . . . , Lπ(n), of the number of distinct ele-

ments in Lb.

We claim that problem PMDBS is intractable (the full proof is in the Ap-
pendix):

Theorem 1. Problem PMDBS is NP-hard in the strong sense.

Outline of the proof. We reduce from the Hamiltonian Path Problem (see [7]
for basic notions and definitions). In the decision version of the Problem PMDBS,
we ask for a permutation π of 1, . . . , n such that the sum, over all lists Lb in
the b-mapping of Lπ(1), . . . , Lπ(n), of the number of distinct elements in Lb is at
most a given number M .

The idea behind our reduction is that, given a graph G with n vertices, the
vertices of G will be encoded by lists, where the list of a vertex consists of the
indices of the edges incident to it, under a suitable encoding (see Fig. 2 for an
example). This encoding will be such that, choosing M suitably, a permutation
of 1, . . . , n satisfying the bound M corresponds to a Hamiltonian Path in G and
vice versa. ut

We now show how to improve the time complexity in the worst-case by con-
structing an equivalent set of patterns with O(log gsize(P)) distinct gap lengths.
Given a set S ⊂ N, a set X ⊂ N is a γ-generating set of S if every element of



S can be expressed as the sum of at most γ, non necessarily distinct, elements
of X. Suppose that X is a γ-generating set of G. We augment the alphabet Σ
with a wildcard symbol ∗ that matches any symbol of the original alphabet and
define the function

φ(g) = (i1 − 1) · ∗ · (i2 − 1) · ∗ · . . . · (il−1 − 1) · ∗ · il ,

for g ∈ G, where {i1, i2, . . . , il} is an arbitrary combination with repetitions from

X of size l ≤ γ which generate g, i.e.,
∑l
j=1 ij = g. The function φ maps a gap

length g onto a concatenation of l gap lengths from the set X ∪ {i− 1 | i ∈ X}
and l − 1 wildcard symbols. For example, if G = {1, 2, 5, 6, 10} then X = {1, 5}
is a 2-generating set of G and

φ(1) = 1
φ(2) = φ(1 + 1) = 0 · ∗ · 1
φ(5) = 5
φ(6) = φ(1 + 5) = 0 · ∗ · 5
φ(10) = φ(5 + 5) = 4 · ∗ · 5

We generate a new set of patterns P ′ from P, by transforming each pattern
S̄1 · j̄1 · S̄2 · . . . · j̄`−1 · S̄` in P into the equivalent pattern

S̄1 · φ(j̄1) · S̄2 · . . . · φ(j̄`−1) · S̄` .

In the next subsection we describe how to extend the algorithm presented above
to support character classes and therefore also wildcard symbols, since a wildcard
is equivalent to a character class containing all the symbols in Σ. By definition
of φ we have that k-len(P ′) < γk-len(P), since the number of gaps that are split
is at most k-len(P) − |P| and the number of wildcard symbols that are added
per gap is at most γ − 1. The number of words needed for a bit-vector is then
< dγk-len(P)/we ≤ γdk-len(P)/we. Moreover, the set G′ of distinct gap lengths
in P ′ is contained in X ∪ {i − 1 | i ∈ X} and so its cardinality is O(|X|). This
construction thus yields a O(n(log σ + |X|γdk-len(P)/we) + occ) bound, which
depends on the generating set used.

W.l.o.g. we assume that gmax(P) is a power of two (if it is not, we round
it up to the nearest power of two). Any positive integer g ≤ gmax(P) can be
expressed as a sum of distinct positive powers of two, i.e., the binary encoding of
g, such that the largest power of two is ≤ 2log gmax(P). This implies that the set
X = {0} ∪ {2i | 0 ≤ i ≤ log gmax(P)} is a (log gmax(P) + 1)-generating set of G
(we include 0 in X because G may contain 0). For example, if G = {1, 2, 5, 6, 10}
then X = {2i | 0 ≤ i ≤ 3} and

φ(1) = 1
φ(2) = 2
φ(5) = φ(20 + 22) = 0 · ∗ · 4
φ(6) = φ(21 + 22) = 1 · ∗ · 4
φ(10) = φ(21 + 23) = 1 · ∗ · 8



This generating set yields a log2 gmax(P) factor in the bound, since |X| =
log gmax(P) + 2 and γ = log gmax(P) + 1. We now show how to further im-
prove the bound. Any integer gmin(P) ≤ g ≤ gmax(P) can be written as
gmin(P) + g′, where 0 ≤ g′ ≤ gsize(P). Hence, based on the reasoning above,
the set {gmin(P)} ∪ {2i | 0 ≤ i ≤ log gsize(P)} is a (log gsize(P) + 2)-generating
set of G. We thus obtain the following result:

Theorem 2. Given a set P of gapped patterns and a text T of length n, all
the occurrences in T of the patterns in P can be reported in time O(n(log σ +
log2 gsize(P)dk-len(P)/we) + occ).

5.1 Character classes

In this subsection we describe how to extend the gq-matcher algorithm to
support character classes in the patterns. Let

X1 · j1 ·X2 · . . . · j`−1 ·X`

be a gapped pattern with character classes, where the keyword Xi is either a
string or a character class, i.e., a subset of Σ. We again replace each pattern
X1 · j1 · X2 · . . . · j`−1 · X` with the pattern X̄1 · j̄1 · X̄2 · . . . · j̄`−1 · X̄` with
unit-length keywords over the alphabet {1, . . . , k-len(P)}, where j̄i = ji if Xi is
a character class. Let Si be the set including Xi itself if Xi is a string and all
the symbols in Xi otherwise. A keyword Xi matches in T at ending position i,
i.e., X̄i ∈ T̄i, if there is a string S ∈ Si such that S w T [0 . . . i]. Observe that
Lemma 1 can be used as it is. We build the AC automaton for the set

⋃
Skl , for

1 ≤ k ≤ |P| and 1 ≤ l ≤ k-len(P k). To support this generalized pattern it is
enough to change the definition of the sets B(q) as follows:

B(q) = {(k, l) | ∃S ∈ Skl : S w label(q)} .

Note that all the strings in a given set Skl are mapped onto the same index (k, l).
The algorithm (including the computation of the sets B(q)) does not require any
change. Since we add σ distinct strings at most in total for the character classes,
the number of B sets is ≤ k-len(P) + σ and thus we have an O(σdk-len(P)/we)
overhead in the preprocessing time and space complexity.

6 Row-wise parallelization

We now describe the row-wise parallelization of the DP matrix, based on the
ideas of the (δ, α)-matching algorithm described in [5]. This algorithm works
for a single pattern only, thus to solve the multi-pattern case we need to run
(the search phase of) the algorithm several times. In this algorithm we take a
different approach to handle arbitrary length keywords. In particular, we first



gq-matcher-t (P, T )

1. for s ∈ Σ do V[s]← 0
2. for c← 0 to dn/we do
3. for i← cw to min(n, (c+ 1)w)− 1 do V[T [i]]← V[T [i]] | (1� (i mod w))
4. for k ← 1 to |P| do
5. Dk,w

1,c ← V[pk1 ]

6. for r ← 2 to len(P k) do Dk,w
r,c ← V[pkr ] & M(k, r − 1, c, jr−1 + 1)

7. report(Dk,w

len(Pk),c
)

8. for i← cw to min(n, (c+ 1)w)− 1 do V[T [i]]← 0

Fig. 3. The gq-matcher-t algorithm.

transform each pattern S1 · j1 ·S2 · . . . · j`−1 ·S` in P into the equivalent pattern
ψ(S1) · j1 · ψ(S2) · . . . · j`−1 · ψ(S`), where

ψ(S) =

{
S[0] · 0 · ψ(S[1 . . . |S| − 1]) if |S| > 1 ,

S[0] otherwise ,

so that all the keywords have unit length and the number of keywords is len(P).
We denote by pkr the r-th keyword (symbol) of the k-th pattern. We also par-
allelize over the text, rather than over the set of patterns. The main benefit is
that now there is only one gap length to consider at each step. This also means
that instead of preprocessing the set of patterns, we now must preprocess the
text. For the same reason the algorithm is not strictly on-line anymore, as it
processes the text w characters at a time.

Let Dk be the matrix as defined in Section 4 for the k-th pattern in P and
let Dk

r,c be the cell of Dk at row r and column c. Observe that in the case of

unit-length keywords the recurrence to compute Dk simplifies to

Dk
r,c =

{
1 if pkr = T [c] and (r = 1 or Dk

r−1,c−jkr−1−1
= 1) ,

0 otherwise.

The matrix Dk has len(P k) rows and n columns and is easy to compute in
O(n len(P k)) time using dynamic programming. We now show how it can be
computed in O(dn/we len(P k)) time using word-level parallelism by processing
chunks of w columns in O(1) time.

To this end, let V be a matrix of size σ × n, where

Vs,c =

{
1 if s = T [c] ,

0 otherwise ,

for s ∈ Σ and 0 ≤ c < n. Let also ΣP be the subset of Σ of size σP ≤
min(σ, len(P)) of the symbols occurring in the patterns. Assume that we have
the rows of V which correspond to the symbols of ΣP encoded in an array of σ



bit-vectors of dn/we bits. The entries corresponding to symbols not in ΣP are
not initialized. The set ΣP can be trivially computed in O(len(P) log σP) time
using a binary search tree. The array can be computed in O(dn/we σP+n) time.

The computation of Dk will proceed row-wise, w columns at once, as each
matrix element takes only one bit of storage and we can store w columns into
a single machine word. We adopt the notation Dk,wr,c = Dk

r,cw...(c+1)w−1, and

analogously for V. First notice that by definition Dk,w1,c = Vw
pk1 ,c

. Assume now

that the words Dk,wr−1,c′ for c′ ≤ c have been already computed, and we want to

compute Dk,wr,c . To do so, we need to check if any text character in the current

chunk T [cw . . . (c+ 1)w− 1] matches the pattern character pkr (readily solved as
Vwpkr ,c

), and if g = jr−1 + 1 text characters back there was a matching pattern

prefix of length r − 1. The corresponding bits signaling these prefix matches,
relevant to the current chunk, are distributed in at most two consecutive words
in a w-bit wide interval in the previous row, namely in words Dk,wr−1,c′−1 and

Dk,wr−1,c′ , where c′ = c−bg/wc. We select the relevant bits and combine them into
a single word using the following function:

M(k, r, c, g) = (Dk,wr,c−bg/wc−1 � (w − (g mod w))) | (Dk,wr,c−bg/wc � (g mod w)).

The recurrence can now be written as

Dk,wr,c ← Vwpkr ,c & M(k, r − 1, c, jr−1 + 1),

and Dk can be computed in O(dn/we len(P k)) time for any k. To check the
occurrences, we just scan the last row of the matrix and report every position
where the bit is 1. To handle all the patterns, we run the search algorithm
|P| times, which gives O(dn/we len(P) + n + occ) total time, including the
preprocessing. The algorithm needs O(σ + dgmax(P)/wemaxk(len(P k))) words
of space, as only the current column of Vw and the last O(dgmax(P)/we) columns
of Dk,w need to be kept in memory at any given time.

Based on the observation that we need only the rows of V corresponding to
the symbols in ΣP , we can also manage to reduce the space for V from O(σ)
to O(min(σP , w) + dσ/we) words. First, we build a (constant time) mapping µ
from ΣP to {1, . . . , σP}. One (practical) way to compute µ is to encode ΣP in a
bit-vector S of σ bits and build a rank dictionary [11] for it. The rank dictionary
allows one to compute the function rank1(S, i) which returns the number of
bits set to 1 among the first i positions in S. In this way the mapping can be
implemented as µ(s) = rank1(S, s). The rank dictionary can be built in O(σ)
time and requires O(dσ/we) space. We can then encode V using O(σP) words
and access the row corresponding to any symbol s ∈ ΣP as V [µ(s)]. If w < σP
we can further reduce the space for V by exploiting the fact that we process T
in chunks. The idea is to compute, for a given chunk of T of length w starting at
position c, a bit-vector S′ of σP bits where we set bit µ(s) for each s ∈ ΣP which
occurs in the chunk. Note that if s does not occur in the chunk then Vws,c = 0.
By building a rank dictionary for S′ we obtain a mapping from the subset of



ΣP encoded in S′ to {1, . . . , w}, i.e., rank1(S′, µ(s)) is the mapping for symbol
s. We can then encode V using O(w) words and access the row corresponding
to any symbol s ∈ ΣP as V [rank1(S′, µ(s))], if bit µ(s) is set in S′, and as
a word equal to 0 otherwise. Observe that there are dn/we chunks; the time
to compute any bit-vector S′ and its rank dictionary is O(w + σP). Hence, we
spend O(dn/weσP +n) time in total and maintain the original time complexity.
Alternatively, we can reduce the space for V to O(σP) by computing µ using
Ružić’s dictionary [16] for ΣP , whose construction requires O(σP(log log σP)2)
time.

The algorithm, named gq-matcher-t, is given in Figure 3. We thus obtain
the following result:

Theorem 3. Given a set P of gapped patterns and a text T of length n, given
in chunks of w characters, all the occurrences in T of the patterns in P can be
reported in time O(dn/we len(P) + n+ occ).

7 Experimental results

The proposed algorithms have been experimentally validated. In particular, we
compared the new algorithms gq-matcher, gq-matcher-t with the d-pma
algorithm of [9] and the l-pma algorithm of [3]. The gq-matcher and gq-
matcher-t have been implemented in the C++ programming language and
compiled with the GNU C++ Compiler 4.6, using the options -O3. The source
code of the d-pma algorithm was kindly provided by the authors. The test ma-
chine was a 3.00 GHz Intel Core 2 Quad Q9650 running Ubuntu 12.04 and
running times were measured with the getrusage function. The benchmarks con-
sisted of searching for a set of randomly generated gapped patterns in the DNA
sequence of 4, 638, 690 base pairs of the Escherichia coli genome (σ = 4)6 and
in the protein sequence of 2, 922, 023 symbols of the Saccharomyces cerevisiae
genome (σ = 20)7. The patterns were generated using the following procedure:
given the number k of keywords, the length l of each keyword and the maximum
length b of a gap, we first randomly generate a sequence g1, g2, . . . , gl−1 of l− 1
gap lengths in the interval [0, b]; then, we randomly sample a string of length

k × l +
∑l−1
i=1 gi from the text, and replace the substrings corresponding to the

gaps with their lengths. Figures 4 and 5 show the experimental results for the
DNA and protein sequence, respectively. For each sequence, we performed the
following experiments:

1. (top row of Figures 4 and 5) searching a set of gapped patterns with 6
keywords of unit length with a fixed number of patterns equal to 50 and
100, respectively, and such that the maximum gap varies between 5 and 60;

2. (middle row of Figures 4 and 5) searching a set of gapped patterns with 6
keywords of unit length with a fixed maximum gap of 20 and 40, respectively,
and such that the number of patterns varies between 25 and 200;

6 http://corpus.canterbury.ac.nz/
7 http://www.yeastgenome.org/

http://corpus.canterbury.ac.nz/
http://www.yeastgenome.org/


 10

 100

 1000

 10000

 100000

 10  20  30  40  50  60

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

max gap (50 patterns)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 100

 1000

 10000

 100000

 10  20  30  40  50  60

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

max gap (100 patterns)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 10

 100

 1000

 10000

 100000

 40  60  80  100  120  140  160  180  200

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

number of patterns (max gap 20)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 10

 100

 1000

 10000

 100000

 40  60  80  100  120  140  160  180  200

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

number of patterns (max gap 40)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 10

 100

 1000

 10000

 2  3  4  5  6

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

keyword length (total number of symbols 256)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 10

 100

 1000

 10000

 2  3  4  5  6

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

keyword length (50 patterns)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

Fig. 4. Experimental results on the DNA sequence of the Escherichia coli genome with
randomly generated gapped patterns. Top row: 6 unit-length keywords, varying gap
interval with a set of 50 and 100 patterns; Middle row: 6 unit-length keywords, varying
number of patterns with maximum gap 20 and 40; Bottom row: 2 keywords, varying
keyword length.



 10

 100

 1000

 10000

 10  20  30  40  50  60

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

max gap (50 patterns)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 10

 100

 1000

 10000

 10  20  30  40  50  60

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

max gap (100 patterns)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 10

 100

 1000

 10000

 40  60  80  100  120  140  160  180  200

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

number of patterns (max gap 20)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 10

 100

 1000

 10000

 40  60  80  100  120  140  160  180  200

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

number of patterns (max gap 40)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 10

 100

 1000

 2  3  4  5  6

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

keyword length (total number of symbols 256)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

 10

 100

 1000

 2  3  4  5  6

ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

keyword length (50 patterns)

GQ-MATCHER
GQ-MATCHER-T

D-PMA
L-PMA

Fig. 5. Experimental results on the protein sequence of the Saccharomyces cerevisiae
genome with randomly generated gapped patterns. Top row: 6 unit-length keywords,
varying gap interval with a set of 50 and 100 patterns; Middle row: 6 unit-length
keywords, varying number of patterns with maximum gap 20 and 40; Bottom row: 2
keywords, varying keyword length.



3. (bottom row of Figures 4 and 5) searching a set of gapped patterns with 2
keywords and a fixed maximum gap of 20 and such that the keyword length
varies between 2 and 6. In the benchmark to the left the number of patterns
is calculated using the formula 4w/2l, where l is the keyword length, so as
to fix the total number of symbols, i.e., len(P), to 4w (i.e., 4 words in our
algorithm). In the one to the right the number of patterns is fixed to 50, so
that len(P) increases as the keyword length grows.

We used a logarithmic scale on the y axis. Note that the number of words
used by our algorithm is equal to d6× |P|/we, so it is between 3 and 19 in our
experiments since w = 64. Concerning the benchmark on DNA, the experimental
results show that the new algorithms are significantly faster (up to 50 times)
than the d-pma and l-pma algorithms in the case of unit-length keywords (top
and middle row). in the case of arbitrary length keywords (bottom row), our
algorithms are significantly faster than d-pma and l-pma up to keyword length
4, while for longer keywords they have similar performance. In the benchmark on
the protein sequence the d-pma and l-pma algorithms are considerably faster
compared to the case of DNA, which is expected since the average value of α and
α′ is inversely proportional to the alphabet size. Instead, our algorithms exhibit
a similar behaviour and are still faster than both d-pma and l-pma.

The gq-matcher-t algorithm is preferable if the text can be processed by
reading w symbols at a time. This implies that, in the worst-case, we report an
occurrence of a pattern at position i in the text only after reading the symbols
up to position i+w−1. This condition may not be feasible for some applications.
Otherwise, albeit slower, the gq-matcher algorithm is a good choice.

8 Conclusions

Motivated by a problem in computational biology, we have presented new algo-
rithms for the problem of multiple string matching of gapped patterns, where a
gapped pattern is a sequence of strings such that there is a gap of fixed length
between each two consecutive strings. The presented algorithms are based on dy-
namic programming and bit-parallelism, and lie in a middle-ground among the
existing algorithms. In fact, their time complexity is close to the best existing
bound and, yet, they are also practical. We have also assessed their performance
with experiments and showed that they are fast in practice and preferable if the
strings in the patterns have unit-length.

9 Acknowledgments

We thank the anonymous reviewers and Djamal Belazzougui for helpful com-
ments.



References

1. Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to
bibliographic search. Commun. ACM, 18(6):333–340, 1975.

2. Yingtao Bi, Hyunsoo Kim, Ravi Gupta, and Ramana V. Davuluri. Tree-based
position weight matrix approach to model transcription factor binding site profiles.
PLoS ONE, 6(9), 2011.

3. Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and David Kofoed Wind. String
matching with variable length gaps. Theor. Comput. Sci., 443:25–34, 2012.

4. Philip Bille and Mikkel Thorup. Regular expression matching with multi-strings
and intervals. In Moses Charikar, editor, SODA, pages 1297–1308. SIAM, 2010.

5. Kimmo Fredriksson and Szymon Grabowski. Efficient bit-parallel algorithms for
(δ, α)-matching. In Carme Àlvarez and Maria J. Serna, editors, WEA, volume 4007
of Lecture Notes in Computer Science, pages 170–181. Springer, 2006.

6. Kimmo Fredriksson and Szymon Grabowski. Nested counters in bit-parallel string
matching. In Adrian Horia Dediu, Armand-Mihai Ionescu, and Carlos Mart́ın-
Vide, editors, LATA, volume 5457 of Lecture Notes in Computer Science, pages
338–349. Springer, 2009.

7. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

8. Emanuele Giaquinta, Szymon Grabowski, and Esko Ukkonen. Fast matching of
transcription factor motifs using generalized position weight matrix models. Jour-
nal of Computational Biology, 20(9):1–10, 2013.

9. Tuukka Haapasalo, Panu Silvasti, Seppo Sippu, and Eljas Soisalon-Soininen. Online
dictionary matching with variable-length gaps. In Panos M. Pardalos and Steffen
Rebennack, editors, SEA, volume 6630 of Lecture Notes in Computer Science, pages
76–87. Springer, 2011.

10. Michele Morgante, Alberto Policriti, Nicola Vitacolonna, and Andrea Zuccolo.
Structured motifs search. Journal of Computational Biology, 12(8):1065–1082,
2005.

11. J. Ian Munro. Tables. In Vijay Chandru and V. Vinay, editors, FSTTCS, volume
1180 of Lecture Notes in Computer Science, pages 37–42. Springer, 1996.

12. Gonzalo Navarro and Mathieu Raffinot. Fast and simple character classes and
bounded gaps pattern matching, with applications to protein searching. Journal
of Computational Biology, 10(6):903–923, 2003.

13. Gonzalo Navarro and Mathieu Raffinot. New techniques for regular expression
searching. Algorithmica, 41(2):89–116, 2004.

14. Cinzia Pizzi and Esko Ukkonen. Fast profile matching algorithms - a survey. Theor.
Comput. Sci., 395(2-3):137–157, 2008.

15. M. Sohel Rahman, Costas S. Iliopoulos, Inbok Lee, Manal Mohamed, and
William F. Smyth. Finding patterns with variable length gaps or don’t cares. In
Danny Z. Chen and D. T. Lee, editors, COCOON, volume 4112 of Lecture Notes
in Computer Science, pages 146–155. Springer, 2006.

16. Milan Ružić. Constructing efficient dictionaries in close to sorting time. In
Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (1), volume 5125 of Lecture
Notes in Computer Science, pages 84–95. Springer, 2008.

17. Eilon Sharon, Shai Lubliner, and Eran Segal. A feature-based approach to modeling
protein-DNA interactions. PLoS Computational Biology, 4(8), 2008.



18. Seppo Sippu and Eljas Soisalon-Soininen. Online matching of multiple regular pat-
terns with gaps and character classes. In Adrian Horia Dediu, Carlos Mart́ın-Vide,
and Bianca Truthe, editors, LATA, volume 7810 of Lecture Notes in Computer
Science, pages 523–534. Springer, 2013.



A Proof of Theorem 1

Theorem 1. Problem PMDBS is NP-hard in the strong sense.

Proof. Given an input G = (V = {v1, . . . , vn}, E = {e1, . . . , em}) to the Hamil-
tonian Path Problem, we construct the following instance LG to Problem 1 (see
Fig. 2 for an example).

– The universe U consists of numbers {1, . . . ,m}, which will be used to encode
adjacencies, and numbers {m+1, . . . , n2−m}, which will be used for padding,
to ensure that all lists have the same length.

– For every vertex vi ∈ V , we have a list Li constructed as follows. Suppose
the incident edges of vi are ei1 , ei2 , . . . , eit , and say that the basic list of
Li is the list i1, i2, . . . , it padded (at the end) with m − t new numbers
from {m + 1, . . . , n2 − m}, unused by any other list. List Li consists of n
concatenated copies of its basic list, so that |Li| = nm.

– We set b = (n+ 1)m and M = (2m− 1)(n− 1) +m.

We show that G has a Hamiltonian path if and only if instance LG admits a
permutation π of 1, . . . , n such that the sum, over all lists Lb in the b-mapping
of Lπ(1), . . . , Lπ(n), of the number of distinct elements in Lb is at most M . Since
the values of the integers in U are bounded by a polynomial in the size of the
lists L1, . . . , Ln, this claim will entail the NP-hardness in the strong sense of
Problem PMDBS.

First, observe that from the choice of b and of the lengths of lists Li, for any
permutation π of 1, . . . , n, the b-mapping Lb1, . . . , L

b
r of Lπ(1), Lπ(2), . . . , Lπ(n)

has a special form. Indeed, since b = (n + 1)m, and the length of the lists Li
is nm, we have that r = d(n2m)/((n + 1)m)e = dn2/(n + 1)e = n. It can be
easily shown by induction that, for all 1 ≤ j ≤ n− 1, list Lbj consists of the last
(n− j + 1)m integers in the list Lπ(j) followed by the first jm integers from the

list Lπ(j+1). List Lbn consists of the last m integers of list Lπ(n).
For the forward direction, let P = vi1 , . . . , vin be a Hamiltonian path ofG. We

show that the permutation π of 1, . . . , n defined such that π(j) = ij satisfies the
bound M . Let Lb1, L

b
2, . . . , L

b
n be the b-mapping of Lπ(1), Lπ(2), . . . , Lπ(n). From

the above observation, for all 1 ≤ j ≤ n − 1, the number of distinct integers in
Lbj equals the number of distinct integers in Lπ(j), which is m, plus the number
of distinct integers in Lπ(j+1), which is m, minus the number of integers shared
between Lπ(j) and Lπ(j+1). Since vπ(j) and vπ(j+1) are connected by an edge,
then the index of this edge appears in both Lπ(j) and Lπ(j+1), thus the number

of distinct elements in Lbj is at most 2m − 1. The claim is now clear, since Lbn
consists of m distinct integers.

For the backward implication, let π be a permutation of 1, . . . , n such that
the sum, over all lists Lb in the b-mapping of Lπ(1), . . . , Lπ(n), of the num-

ber of distinct elements in Lb is at most M . We claim that the sequence
P = vπ(1), . . . , vπ(n) is a Hamiltonian path in G. Since π is a permutation of
1, . . . , n, we only have to show that for all 1 ≤ i ≤ n − 1, there is an edge
between vπ(i) and vπ(i+1).



Let Lb1, L
b
2, . . . , L

b
n be the b-mapping of Lπ(1), Lπ(2), . . . , Lπ(n). The fact

that the number of distinct elements in the list Lbn is m entails that the sum,
over all 1 ≤ j ≤ n − 1, of the number of distinct elements in Lbj is at most
M − m = (2m − 1)(n − 1). For all 1 ≤ j ≤ n − 1, vertices vπ(j) and vπ(j+1)
have at most one edge incident to both of them (the edge connecting them),
therefore, the number of distinct integers in each list Lbj is at least 2m−1. From
the above observation, for all 1 ≤ j ≤ n − 1, the number of distinct integers in
each list Lbj is exactly 2m− 1.

Since the number of distinct integers in the list Lπ(j) is m and the number
of distinct integers in the list Lπ(j+1) is m, but the number of distinct integers

in Lbj is at most 2m − 1, we have that lists Lπ(j) and Lπ(j+1) share at least
one integer. We padded the basic lists of Lπ(j) and Lπ(j+1) with integers unique
to them, thus the only integer shared by them must be the index of the edge
incident to both vπ(j) and vπ(j+1). Such an edge connects vπ(j) and vπ(j+1), and
thus P is a path in G.


	Motif matching using gapped patterns

