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Abstract

The axis compensation is a procedure in which the sender and the receiver
compensate the axes of their transmitter and detector so that the bit sequence
can be transmitted more reliably. We show the optimal axis compensations
maximizing the key generation rate for unital channels. We consider the case
in which only Bob is allowed to compensate his axis, and the case in which
both Alice and Bob are allowed to compensate their axes. In the former case,
we show that we should utilize the mismatched measurement outcomes in
the channel estimation phase. In the latter case, we show that we do not have
to utilize the mismatched measurement outcomes in the channel estimation
phase.

1 Introduction

Quantum key distribution (QKD) has attracted great attention as a technology to
realize the information theoretically secure key agreement. In this paper, we in-
vestigate the Bennett-Brassard 1984 (BB84) protocol [1] and the six-state protocol
[2], and the QKD protocols indicate the BB84 protocol and thesix-state protocol.

Typically in theoretical studies on the QKD protocols, the protocols roughly
consist of three phases: the bit transmission phase, the channel estimation phase,
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and the postprocessing phase. In the bit transmission phase, the legitimate sender,
usually referred to as Alice, sends a bit sequence to the legitimate receiver, usu-
ally referred to as Bob, by encoding them into qubits. In the channel estimation
phase, Alice and Bob estimate the channel and the amount of information gained
by an eavesdropper, usually referred to as Eve. Finally in the postprocessing phase,
Alice and Bob share a secret key based on their bit sequences obtained in the bit
transmission phase.

On the other hand, in the practical QKD protocols, Alice and Bob conduct the
axis compensation (before the bit transmission phase), in which Alice and Bob
compensate the axes of their transmitter and detector so that the bit sequence can
be transmitted more reliably in the bit transmission phase.This axis compensation
is considered to be indispensable in the QKD protocols, and it has been exten-
sively studied from the experimental point of view [3, 4, 5, 6, 7, 8, 9] (see also
[10]). However, it has not been theoretically clarified how Alice and Bob should
compensate the axes in the axis compensation.

In this paper, we investigate the optimal axis compensationin the sense that the
key generation rate is maximized, where the key generation rate is defined as the
ratio between the length of the shared secret key and that of the sequences initially
possessed by Alice and Bob in the postprocessing phase.

We consider the following various settings. In the channel estimation phase,
we consider two kinds of channel estimation: the accurate channel estimation and
the conventional channel estimation (see [11]). In the accurate channel estima-
tion, we use the mismatched measurement outcomes, which arebits transmitted
and received by different bases, in addition to the matched measurement outcomes,
which are bits transmitted and received by the same bases, toestimate the chan-
nel. On the other hand, in the conventional channel estimation, we discard the
mismatched measurement outcomes and only use the matched measurement out-
comes. The reason why we consider two kind of channel estimation is that the
authors recently clarified that the key generation rate is increased if we use the ac-
curate channel estimation instead of the conventional channel estimation [11]. It
is worthwhile to clarify whether we should use the accurate channel estimation in-
stead of the conventional channel estimation when the QKD protocols involve the
axis compensation.

In the postprocessing phase, we employ the standard postprocessing. We do
not use the noisy preprocessing [12, 13] nor the two-way classical communication
[14, 15].

In the axis compensation phase, we consider two kinds of compensations:

(i) (one-side compensation) Only Bob is allowed to compensate his axis.

(ii) ( two-side compensation) Both Alice and Bob are allowed to compensate
their axes.

Furthermore in the BB84 protocol, we subdivide each compensation into two
kinds. In the first kind, Bob (or both Alice and Bob) is allowedto compensate

2



his axis within thez-x plane of the Bloch sphere. In the second kind, Bob (or
both Alice and Bob) is allowed to compensate his axis within any direction. The
reason why we consider these two kind of compensations in theBB84 protocol
is as follows. Since we only use thez-basis andx-basis in the BB84 protocol,
it is natural to consider the axis compensation within thez-x plane. On the other
hand, we might use the axis compensation within any direction if we are allowed to
enhance the device for the compensation. Indeed, several researchers employ the
compensation within any direction in the literature [3, 4, 5, 6, 7, 8, 9]. Therefore,
we also investigate the compensation within any direction.

The optimized key generation rates (of the standard postprocessing)F1(E),
F̃1(E), F2(E), F̃2(E), G1(E), G̃1(E), G2(E), G̃2(E), J1(E), J̃1(E), J2(E), J̃2(E) for
above described 12 settings are summarized in Table 1. Thesequantities are for-
mally defined in Sections 2.2 and 2.3 respectively.

Table 1: Summary of the optimized key generation rates for various settings.
channel estimation accurate conventional

six-state
one-side F1(E) F̃1(E)

two-side F2(E) F̃2(E)

BB84
z-x plane

one-side G1(E) G̃1(E)

two-side G2(E) G̃2(E)

any direction
one-side J1(E) J̃1(E)

two-side J2(E) J̃2(E)

In this paper, we investigate the above described optimizedkey generation
rates, and derive closed-form expression ofF1(E), F2(E), G1(E), G2(E), J1(E), and
J2(E) for unital channels. Since QKD protocols can be implemented over many
different media, such as an optical fiber, free space, and an unknown medium, we
should conduct theoretical research with general quantum channels. In this pa-
per we deal with unital channels because we have closed-formexpressions of key
generations rates of the QKD protocols. The existence of such closed-form ex-
pressions enables us to identify optimal compensation procedures. Without them
identification is difficult.

By using the closed-form expressions of the optimized key generation rates,
we also derive the following relationships:

F2(E) = F̃2(E) = F1(E) ≥ F̃1(E),
G2(E) = G̃2(E) = G1(E) ≥ G̃1(E),
J2(E) = J̃2(E) ≥ J1(E) ≥ J̃1(E)

hold for any unital channel, and

F1(E) > F̃1(E),

G1(E) > G̃1(E),

J1(E) > J̃1(E)
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hold for general cases of unital channels.
Our results provide the following important insight. In theliteratures [3, 4, 5,

6, 7, 8, 9], they employ the one-side compensation for the axis compensation phase
and the conventional channel estimation for the channel estimation phase. How-
ever, when we employ the one-side compensation, above mentioned relationships
imply that we should use the accurate channel estimation. Onthe other hand, when
we employ the two-side compensation, above mentioned relationships imply that
we do not have to use the accurate channel estimation.

The rest of this paper is organized as follows: In Section 2, we formally de-
scribe the problem mentioned above for the six-state protocol and the BB84 proto-
col. In Section 3, we provide closed-form expressions of theoptimized key gener-
ation rates, and also clarify the relationships among the optimized key generation
rates for various settings. We state the conclusion in Section 4.

2 Problem Formulation

In this section, we formally describe the problem we investigate in this paper. Sup-
pose that Alice and Bob are connected by a qubit channelEB from the set of all
qubit density operators to themselves. As is usual in QKD literatures, we assume
that Eve can access all the environment of channelEB; the channel to the environ-
ment is denoted byEE. In the rest of this paper, we omit the subscriptsB andE if
they are obvious from the context.

It should be noted thatE can be any qubit channel throughout the paper, unless
we specify the channel to be a Pauli channel or a unital channel.

2.1 Stokes parameterization and Choi Operator

For convenience, we introduce the Stokes parameterizationand the Choi operator
for the qubit channel. The qubit channelE can be described by the affine map
parameterized by 12 real parameters [16, 17] as follows:
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where (θz, θx, θy) describes a vector in the Bloch sphere [18]. The pair (R, t) of the
matrix and the vector in Eq. (1) is called the Stokes parameterization of the channel
E. In the rest of this paper, we identify the channelE and its Stokes parameteriza-
tion, and occasionally writeE = (R, t).

For the channelE and each pair of bases (a, b) ∈ {z, x, y}2, define the biases of
the outputs as

Qab0 := 〈0b|EB(|0a〉〈0a|)|0b〉 − 〈1b|EB(|0a〉〈0a|)|1b〉,
Qab1 := 〈1b|EB(|1a〉〈1a|)|1b〉 − 〈0b|EB(|1a〉〈1a|)|0b〉,
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where|0a〉, |1a〉 are eigenstates of the Pauli operatorσa for a ∈ {x, y, z} respectively.
Then, a straight forward calculation shows the relations

Rba =
1
2

(Qab0 + Qab1), tb =
1
2

(Qab0 − Qab1). (2)

A unital channel is a channel that maps the completely mixed stateI/2 to itself.
For a unital channel, the vector part (tz, tx, ty) of the Stokes parameterization is the
zero vector. Furthermore, the channel is called a Pauli channel if the matrix part
R of the Stokes parameterization is a diagonal matrix in addition to that the vector
part is the zero vector.

We can also describe the qubit channelE by the Choi operator

ρAB := (id ⊗ EB)(|ψ〉〈ψ|),

where |ψ〉 = |00〉+|11〉√
2

is a maximally entangled state. For the unital channel, the
Choi operator satisfies TrA[ρAB] = I/2. Furthermore, the channel is a Pauli channel
if and only if the Choi operator is a Bell diagonal operator, i.e.,

ρAB =
∑

a∈{i,z,x,y}
qa|ψa〉〈ψa|

for Bell states|ψa〉 := (I ⊗ σa)|ψ〉 and the probability distribution (qi, qz, qx, qy) on
{i, z, x, y}, whereσi is the identity operator. Throughout this paper, we omit the
subscriptAB if it is obvious from the context.

2.2 Six-state protocol

As the preparation phase of the six-state protocol, Alice and Bob conduct the fol-
lowing axis compensation procedure. Alice randomly sends bit 0 or 1 to Bob by
modulating it into a transmission basis that is randomly chosen from thez-basis
{|0z〉, |1z〉}, the x-basis{|0x〉, |1x〉}, or they-basis{|0y〉, |1y〉}. Then Bob randomly
chooses one of measurement observablesσx, σy, andσz, and converts a measure-
ment result+1 or −1 into a bit 0 or 1 respectively. After a sufficient number of
transmissions, Alice and Bob publicly announce their transmission bases and mea-
surement observables. They also announce all of their bit sequences for estimating
channelE. Note that Alice and Bob do not discard mismatched measurement out-
comes, which are transmitted and received by different bases, and they also use the
mismatched measurement outcomes to estimate the channel. From Eq. (2), we find
that Alice and Bob can estimate all parameters (R, t) of the channel in the six-state
protocol [19, 20]. Note that the use of the mismatched measurement outcomes for
channel estimation is also known as the process tomography.

We consider two kinds of compensations:

(i) Only Bob is allowed to compensate his axis, i.e., the channel after the com-
pensation is

E′B = UB ◦ EB, (3)

whereUB is a unitary channel that represents Bob’s compensation.
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(ii) Both Alice and Bob are allowed to compensate their axes,i.e., the channel
after the compensation is

E′B = UB ◦ EB ◦ UA, (4)

whereUA andUB are unitary channels that represent Alice and Bob’s com-
pensations.

Based on the estimate of the parameters (R, t), Bob (or both Alice and Bob) decides
UB (orUA andUB), and he compensates the channel. The choice ofUB (orUA

andUA) can be decided according to Theorem 2 and Corollary 3 of Section 3.1.

Remark 1 Throughout this paper, the prime represents that it is afterthe compen-
sation.

After the compensation procedure, Alice and Bob conduct theabove bit trans-
mission and reception procedure again. This time, they onlyannounce a part of
their bit sequence for estimating the channelE′, and they conduct the postprocess-
ing to generate a secret key from the remaining (unannounced) bit sequences.

Henceforth, we focus on the postprocessing procedure for Alice’s bit sequence
x ∈ Fn

2 that is transmitted inz-basis and corresponding Bob’s bit sequencey ∈ Fn
2

that is received inσz measurement, whereF2 is the finite field of order 2. We
employ the standard postprocessing procedure that consists of the information rec-
onciliation procedure and the privacy amplification procedure (e.g. see [11, Section
2]). Note that we do not use the so-called noisy preprocessing [12, 13] nor the post-
processing with two-way classical communication [14, 15].

Let

HE′(X|E) := H(ρ′XE) − H(ρ′E)

be the conditional von Neumann entropy with respect to the density operator

ρ′XE :=
∑

x∈F2

1
2
|xz〉〈xz| ⊗ E′E(|xz〉〈xz|)

on the joint systemHX ⊗ HE , whereH(ρ) is the von Neumann entropy [18] for
a density matrixρ, and we take the base of the logarithm to be 2 throughout the
paper. For the compensated channelE′, we define the joint probability distribution

P′XY(x, y) :=
1
2
〈yz|E′B(|xz〉〈xz|)|yz〉

of the joint random variable (X, Y) onF2 × F2. Then, let

HE′(X|Y) := −
∑

x,y∈F2

P′XY(x, y) log P′X|Y(x|y) (5)

be the conditional Shannon entropy ofX givenY.
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In the six-state protocol, since Alice and Bob can estimate the channelE′ ex-
actly if they use the accurate channel estimation, they can asymptotically share a
secure key if the lengthℓ of the key satisfies

ℓ

n
< HE′(X|E) − HE′(X|Y)

(see [21, 11]). Therefore, we consider the following two optimization problems:

(i) Find a closed-form expression of

F1(E) := max
UB

[HE′(X|E) − HE′(X|Y)], (6)

and also findUB that achieves the maximum in Eq. (6).

(ii) Find a closed-form expression of

F2(E) := max
UA,UB

[HE′(X|E) − HE′(X|Y)], (7)

and also find (UA,UB) that achieve the maximum in Eq. (7).

Eqs. (6) and (7) are the key generation rates optimized within the one-side com-
pensation and the two-side compensation respectively.

Next, we consider the case in which Alice and Bob use the conventional chan-
nel estimation (see [11] for the detail of the conventional estimation). From Eq. (2),
we find that Alice and Bob can only estimate the parametersγ′ = (R′zz,R

′
xx,R

′
yy),

and they cannot estimate the parametersκ′ = (R′zx, R′zy, R′xz, R′xy, R′yz, R′yx, t′z, t′x,
t′y). Since we have to consider the worst case with respect to theparametersκ′ that
cannot be estimated, we consider the following two quantities:

F̃1(E) := max
UB

min
Ẽ∈Ps(γ′)

[HẼ(X|E) − HẼ(X|Y)] (8)

and

F̃2(E) := max
UA,UB

min
Ẽ∈Ps(γ′)

[HẼ(X|E) − HẼ(X|Y)], (9)

wherePs(γ′) is the set of all channel for givenγ′, i.e.,

Ps(γ
′) := {Ẽ = (γ̃, κ̃) : γ̃ = γ′}.

Since the definition of̃F1(E) andF̃2(E) involve the minimization, we haveF1(E) ≥
F̃1(E) andF2(E) ≥ F̃2(E) [11].
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2.3 BB84 protocol

2.3.1 Compensation within z-x Plane

The BB84 protocol is almost the same as the six-state protocol. However in the
BB84 protocol with the axis compensation within thez-x plane, Alice uses only
z basis andx basis to transmit the bit sequence, and Bob uses only observableσz

andσx to receive the bit sequence. Therefore, from Eq. (2), we find that Alice
and Bob can only estimate the parametersω = (Rzz,Rzx,Rxz,Rxx, tz, tx), and that
they cannot estimate the parametersτ = (Rzy,Rxy,Ryz,Ryx,Ryy, ty). We consider
the following two kinds of compensations:

(i) Only Bob is allowed to compensate his axis within thez–x plane, i.e., the
channel after the compensation is given by Eq. (3), whereUB is a unitary
channel that rotate the Bloch sphere within thez–x plane.

(ii) Both Alice and Bob are allowed to compensate their axes within the z–x
plane, i.e., the channel after the compensation is given by Eq. (4), where
UA andUB are unitary channels that rotate the Bloch sphere within thez–x
plane.

Based on the estimate of the parametersω, Bob (or both Alice and Bob) decides
UB (orUA andUB), and he compensates the channel. The choice ofUB (orUA

andUB) can be decided according to Theorem 7 and Corollary 8 of Section 3.2.1.
As in the six-state protocol, we also employ the standard postprocessing. We

first consider the case in which Alice and Bob use the accuratechannel estimation.
Note that Alice and Bob can only estimate the parametersω′ = (R′zz,R

′
zx,R

′
xz,R

′
xx, t
′
z, t
′
x),

and that they cannot estimate the parametersτ′ = (R′zy,R
′
xy,R

′
yz,R

′
yx,R

′
yy, t
′
y).

LetPba(ω′) be the set of all channels for givenω′, i.e.,

Pba(ω′) := {Ẽ = (ω̃, τ̃) : ω̃ = ω′}.

In the BB84 protocol, Alice and Bob can asymptotically sharea secure key if the
lengthℓ of the key satisfies

ℓ

n
< min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)]

(see [21, 11]). Therefore, we consider the following two optimization problems:

(i) Find a closed-form expression of

G1(E) := max
UB

min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)], (10)

and also findUB that achieves the maximum in Eq. (10), whereUB is a
unitary channel that rotates the Bloch sphere within thez–x plane.
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(ii) Find a closed-form expression of

G2(E) := max
UA,UB

min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)], (11)

and also find (UA,UB) that achieve the maximum in Eq. (11), whereUA and
UB are unitary channels that rotate the Bloch sphere within thez–x plane.

Next, we consider the case in which Alice and Bob use the conventional chan-
nel estimation. From Eq. (2), we find that Alice and Bob can only estimate the
parametersµ′ = (R′zz,R

′
xx), and they cannot estimate the parametersν′ = (R′zx, R′zy,

R′xz, R′xy, R′yz, R′yx, R′yy, t′z, t′x, t′y). Since we have to consider the worst case with
respect to the parametersν′ that cannot be estimated, we consider the following
two quantities:

G̃1(E) := max
UB

min
Ẽ∈Pbc(µ′)

[HẼ(X|E) − HẼ(X|Y)], (12)

and

G̃2(E) := max
UA,UB

min
Ẽ∈Pbc(µ′)

[HẼ(X|E) − HẼ(X|Y)], (13)

wherePbc(µ′) is the set of all channel for givenµ′, i.e.,

Pbc(µ
′) := {Ẽ = (µ̃, ν̃) : µ̃ = µ′}.

Since the range of the minimizations in the definitions ofG1(E), G2(E), G̃1(E), and
G̃2(E) satisfyPba(ω′) ⊂ Pbc(µ′), we haveG1(E) ≥ G̃1(E) andG2(E) ≥ G̃2(E) [11].

2.3.2 Compensation within Any Direction

In this section, we consider the BB84 protocol with the axis compensation within
any direction. We consider this problem because several researchers employ the
compensation within any direction in the literatures [3, 4,5, 6, 7, 8, 9].

When we employ the one-side compensation, Alice randomly sends 0 or 1
to Bob by modulating it into a transmission basis that is randomly chosen from
the z-basis or thex-basis. Then Bob measures received qubits by randomly us-
ing observablesσz, σx or σy. Note that Bob can useσy in addition toσz and
σx because he is allowed to rotate the axis of the receiver in theaxis compensa-
tion phase. In this case, from Eq. (2), we find that Alice and Bob can estimate
the parameters (Rzz,Rxz,Ryz,Rzx,Rxx,Ryx, tz, tx, ty), and they cannot estimate the
parameters (Rzy,Rxy,Ryy). Since Bob can useσy, Alice and Bob can estimate
(Ryz,Ryx, ty) in addition to (Rzz,Rxz,Rzx,Rxx, tz, tx), which can be estimated in the
compensation scheme of Section 2.3.1. Based on the estimateof the parameters
(Rzz,Rxz,Ryz,Rzx,Rxx,Ryx, tz, tx, ty), Bob decideUB and compensate the channel.
The choice ofUB can be decided according to Theorem 12 of Section 3.2.2.
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On the other hand, when we employ the two-side compensation,we allow both
Alice and Bob to usez-basis,x-basis, andy-basis in the axis compensation phase.
In this case, from Eq. (2), we find that Alice and Bob can estimate all of the param-
eters (R, t). Based on the estimate of the parameters (R, t), Alice and Bob decide
UA andUB, and they compensate the channel. The choice ofUA andUB can be
decided according to Theorem 11 of Section 3.2.2.

In the bit transmission phase (after the axis compensation phase), we allow
Alice and Bob to use onlyz-basis andx-basis. The channel estimation phase and
the postprocessing phase are exactly the same as in Section 2.3.1. Note that Alice
and Bob can estimate (R′zz,R

′
xz,R

′
zx,R

′
xx, t
′
z, t
′
x), but they cannot estimate the other

parameters, because we do not allow neither Alice nor Bob to usey-basis in the
bit transmission phase. Therefore, we consider the following two optimization
problems:

(i) Find a closed-form expression of

J1(E) := max
UB

min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)], (14)

and also findUB that achieve the maximum in Eq. (14), whereUB is any
unitary channel.

(ii) Find a closed-form expression of

J2(E) := max
UA,UB

min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)], (15)

and also find (UA,UB) that achieve the maximum in Eq. (15), whereUA

andUB are any unitary channels.

We also treat the case in which Alice and Bob use the conventional channel
estimation. In this case, we consider the following two quantities:

J̃1(E) := max
UB

min
Ẽ∈Pbc(µ′)

[HẼ(X|E) − HẼ(X|Y)], (16)

and

J̃2(E) := max
UA,UB

min
Ẽ∈Pbc(µ′)

[HẼ(X|E) − HẼ(X|Y)], (17)

whereUA andUB are any unitary channels. Since the range of the minimizations
in the definitions ofJ1(E), J2(E), J̃1(E), and J̃2(E) satisfyPba(ω′) ⊂ Pbc(µ′), we
haveJ1(E) ≥ J̃1(E) andJ2(E) ≥ J̃2(E) [11].

3 Optimal Compensation for Unital Channels

In this section, we solve the problems formulated in Sections 2.2, 2.3.1, and 2.3.2
respectively for unital channels.
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3.1 Six-state protocol

For any channelE = (R, t), by the singular value decomposition, we can decom-
pose1 the matrixR as

R = B diag[ez, ex, ey] A

=
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〈By|
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0 ex 0
0 0 ey
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=





















〈Bz|Ãz〉 〈Bz|Ãx〉 〈Bz|Ãy〉
〈Bx|Ãz〉 〈Bx|Ãx〉 〈Bx|Ãy〉
〈By|Ãz〉 〈By|Ãx〉 〈By|Ãy〉





















, (18)

whereA andB are the rotation matrices2, |ez|, |ex|, and|ey| are the singular values
of R, and we set〈Ãz| = (ezAzz, exAzx, eyAzy), 〈Ãx| = (ezAxz, exAxx, eyAxy), and
〈Ãy| = (ezAyz, exAyx, eyAyy).

Henceforth, we identify Alice’s compensationUA and Bob’s compensationUB

with the 3× 3 rotation matricesOA andOB. Then, the matrix part of the Stokes
parameterization of the compensated channelE′ = (R′, t′) is given byR′ = OBROA.

The following theorem gives a closed-form expression of thekey generation
rate optimized by the two-side compensation.

Theorem 2 Suppose thatE is a unital channel. LetO∗A = A−1 andO∗B = B−1, and
letU∗A andU∗B be the unitary channels corresponding toO∗A andO∗B respectively.
Then, the compensated channelE∗ = U∗B ◦ E ◦ U∗A is the Pauli channel such that
the matrix part of the Stokes parameterization is given byR∗ = diag[ez, ex, ey], and
E∗ satisfies

F2(E) = max
UA,UB

[HE′(X|E) − HE′(X|Y)] (19)

= HE∗(X|E) − HE∗(X|Y) (20)

= 1− H[qi, qz, qx, qy], (21)

whereH[qi, qz, qx, qy] is the Shannon entropy [22] of the distribution

qi =
1+ ez + ex + ey

4
, (22)

qz =
1+ ez − ex − ey

4
, (23)

qx =
1− ez + ex − ey

4
, (24)

qy =
1− ez − ex + ey

4
. (25)

1The decomposition is not unique because we can change the order of (ez, ex, ey) or the sign of
them by adjusting the rotation matricesA andB. However, the result in this paper does not depends
on a choice of the decomposition.

2The rotation matrix is the real orthogonal matrix with determinant 1.
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Furthermore, the maximum in Eq. (19) is achieved without anycompensation, i.e.,

HE(X|E) − HE(X|Y) = HE∗(X|E) − HE∗(X|Y)

if and only if the vectors|Ãz〉 and|Bz〉 are scalar multiple of each other.

The first statement implies that an optimal compensation procedure is to compen-
sate the channel to a Pauli channel. The second statement implies that (UA,UB)
achieving the maximum are not unique.

The following corollary gives a closed-form expression of the key generation
rate optimized by the one-side compensation.

Corollary 3 Suppose thatE is a unital channel. Let

O∗B =























〈O∗B,z|
〈O∗B,x|
〈O∗B,y|























be a rotation matrix such that〈O∗B,z| is a scalar multiple of (Rzz,Rxz,Ryz), where
〈OB,x∗ | and〈O∗B,y| can be arbitrary as long as they constitute a rotation matrix, and
letU∗B the unitary channel corresponding toO∗B. Then, the compensated channel
E∗ = U∗B ◦ E satisfies

F1(E) = HE∗(X|E) − HE∗(X|Y)

= F2(E).

�

Note that Corollary 3 follows from the second statement of Theorem 2.
Surprisingly, we do not lose any optimality even if we only allow Bob to com-

pensate his axis (one-side compensation). This fact is useful to simplify the imple-
mentation of the optimal compensation procedure.

SinceHE(X|Y) = h((1 + Rzz)/2) for any unital channel andRzz = 〈Bz|Ãz〉,
we find that an optimal one-side compensation procedure is tocompensate the
channel so that Bob can detect Alice’s transmitted state most reliably, i.e.,HE′(X|Y)
is minimized, whereh(·) is the binary entropy function. Note that the fact that|Ãz〉
and|B′z〉 is scalar multiple of each other does not necessarily mean the compensated
channelE′ is a Pauli channel.
Proof of Theorem 2) The equality between Eqs. (20) and (21) is well known
(e.g. see [12] or [11, Eq. (20)]). Since Eq. (19) is obviouslylarger than or equals
to Eq. (20), it suffices to show that Eq. (19) is smaller than or equals to Eq. (21)
for anyUA andUB. For any fixedUA andUB, by using [11, Eq. (20)] and the
discussions right before it, Eq. (19) can be rewritten as

1− H[qi, qz, qx, qy] + h

(

1+ ‖|Ã′z〉‖
2

)

− h

(

1+ 〈B′z|Ã′z〉
2

)

.
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From the form ofh(·), Cauchy’s inequality|〈B′z|Ã′z〉| ≤ ‖|Ã′z〉‖ implies that Eq. (19)
is smaller than or equals to Eq. (21). The equality holds if and only if the vec-
tors |Ã′z〉 and |B′z〉 are scalar multiple of each other, which is exactly the second
statement of the theorem. �

Next, we consider the case in which Alice and Bob use the conventional chan-
nel estimation. The following theorem states that the optimized key generation
rate with the accurate channel estimation coincides with that with the conventional
channel estimation if we use the two-side compensation. Thefollowing theorem
also gives the necessary and sufficient condition such that the optimized key gen-
eration rates with the accurate channel estimation and the conventional channel
estimation coincide when we use the one-side compensation.

Theorem 4 Suppose thatE is a unital channel. Then, we have

F2(E) = F̃2(E),

whereF̃2(E) is achieved byO∗A andO∗B specified in Theorem 2. Furthermore, we
have

F1(E) = F̃1(E)

if and only if |Ãz〉, |Ãx〉, and|Ãy〉 are orthogonal to each other. If this condition is
satisfied, thenF̃1(E) is achieved byO∗B such that〈O∗B,z| and〈O∗B,x| and〈O∗B,y| are
scalar multiple of (Rzz,Rxz,Ryz), (Rzx,Rxx,Ryx), and (Rzy,Rxy,Ryy) respectively.

Corollary 5 Suppose thatE is a unital channel. Then, we have

F̃1(E) = F̃2(E)

if and only if |Ãz〉, |Ãx〉, and|Ãy〉 are orthogonal to each other. �

Proof of Theorem 4) Let E∗ be the Pauli channel defined in Theorem 2. Then, we
have

F2(E) ≥ F̃2(E)

≥ min
Ẽ∈Ps(γ∗)

[HẼ(X|E) − HẼ(X|Y)]

= 1− H[qi, qz, qx, qy]

= F2(E),

which implies the first statement of the theorem.
To prove the “if” part of the second statement, assume that|Ãz〉, |Ãx〉, and

|Ãy〉 are orthogonal to each other. Then, we can take a rotation matrix O∗B so that
〈O∗B,z| and 〈O∗B,x| and 〈O∗B,y| are scalar multiple of (Rzz,Rxz,Ryz), (Rzx,Rxx,Ryx),
and (Rzy,Rxy,Ryy) respectively, and we haveR′ = O∗BR = diag[ez, ex, ey]. Thus, we
have

F1(E) ≥ F̃1(E) ≥ 1− H[qi, qz, qx, qy] = F1(E).

13



Next, we show the “only if” part of the second statement. Suppose that at least
one pair of|Ãz〉, |Ãx〉, and|Ãy〉 is not orthogonal to each other. Then, for arbitrarily
fixedUB, the compensated channelE′ is not a Pauli channel, i.e., the Choi operator
ρ′ is not a Bell diagonal state. Letρ′a := (σ̄a ⊗ σa)ρ′(σ̄a ⊗ σa) for a ∈ {i, z, x, y},
whereσ̄a is the complex conjugate ofσa. Sinceρ′ is not Bell diagonal state, at
least one ofρ′z, ρ′x, andρ′y is different fromρ′i . Let

ρtw :=
∑

a∈{i,z,x,y}

1
4
ρ′a

be the partially twirled state [23]. Then, since the von Neumann entropy is a strict
concave function [18], we have

F̃1(E) = max
UB

[1 − H(ρtw)]

< max
UB

[1 −
∑

a∈{i,z,x,y}

1
4

H(ρ′a)]

= max
UB

[1 − H(ρ′)]

= F1(E).

�

3.2 BB84 protocol

3.2.1 Compensation within z-x Plane

For any channelE = (R, t), by the singular value decomposition, we can decompose
the left upper 2× 2 sub-matrixS of the matrixR as

S = V diag[dz, dx] U

=

[

〈Vz|
〈Vx|

] [

dz 0
0 dx

]

[

|Uz〉 |Ux〉
]

=

[

〈Vz|Ũz〉 〈Vz|Ũx〉
〈Vx|Ũz〉 〈Vx|Ũx〉

]

,

whereU andV are the rotation matrices,|dz| and|dx| are the singular values ofS ,
and we set〈Ũz| = (dzUzz, dxUzx) and〈Ũx| = (dzUxz, dxUxx).

Henceforth, we identify Alice’s compensationUA and Bob’s compensation
UB with the 2× 2 rotation matricesQA andQB, because their compensation are
restricted within thez-x plane. Note that the left upper 2× 2 sub-matrixS ′ of the
matrix R′ of the compensated channel is given byS ′ = QBS QA.

The following lemma provides a closed-form expression of the key generation
rate with the accurate channel estimation for unital channels, and it will be used
several times in the rest of this paper.
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Lemma 6 For any unital channelE = (ω, τ), we have

min
Ẽ∈Pba(ω)

[HẼ(X|E) − HẼ(X|Y)]

= 1− h

(

1+ dz

2

)

− h

(

1+ dx

2

)

+ h

























1+
√

R2
zz + R2

xz

2

























− h

(

1+ Rzz

2

)

.

Proof of Lemma 6) This lemma follows from [11, Proposition 2] and the fact
HE(X|Y) = h((1+ Rzz)/2) for any unital channel. �

The following theorem gives a closed-form expression of thekey generation
rate optimized by the two-side compensation.

Theorem 7 Suppose thatE is a unital channel. LetQ∗A = U−1 andQ∗B = V−1, and
letU∗A andU∗B be the unitary channels corresponding toQ∗A andQ∗B respectively.
Then, the compensated channelU∗B ◦ E ◦ U∗A =: E∗ = (ω∗, τ∗) satisfies

G2(E) = max
UA,UB

min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)] (26)

= min
Ẽ∈Pba(ω∗)

[HẼ(X|E) − HẼ(X|Y)] (27)

= 1− h

(

1+ dz

2

)

− h

(

1+ dx

2

)

. (28)

Furthermore, the maximum is achieved without any compensation, i.e.,

min
Ẽ∈Pba(ω)

[HẼ(X|E) − HẼ(X|Y)] = min
Ẽ∈Pba(ω∗)

[HẼ(X|E) − HẼ(X|Y)]

if and only if the vectors|Ũz〉 and|Vz〉 are scalar multiple of each other.

The first statement implies that an optimal compensation procedure is to compen-
sate the channel to a channel such that the left upper sub-matrix S ′ of the Stokes
parameterization of the compensated channel is a diagonal matrix. The latter state-
ment implies that (UA,UB) achieving the maximum is not unique.

By using Theorem 7, we can derive the following corollary, which gives the
key generation rate optimized by the one-side compensation.

Corollary 8 Suppose thatE is a unital channel. Let

Q∗B =

[ 〈Q∗B,z|
〈Q∗B,x|

]

be a rotation matrix such that〈Q∗B,z| is a scalar multiple of (Rzz,Rxz)3, and let
U∗B be the unitary channel corresponding toO∗B. Then, the compensated channel

3Note that〈QB,x| is uniquely determined from〈QB,z| because they constitute a rotation matrix.
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U∗B ◦ E =: E∗ = (ω∗, τ∗) satisfies

G1(E) = min
Ẽ∈Pba(ω∗)

[HẼ(X|E) − HẼ(X|Y)] (29)

= G2(E). (30)

�

Note that Corollary 8 follows from the latter statement of Theorem 7.
Surprisingly, we do not lose any optimality even if we only allow Bob to com-

pensate his axis (one-side compensation). This fact is useful to simplify the imple-
mentation of the optimal compensation procedure.

SinceHE(X|Y) = h((1 + Rzz)/2) for any unital channel andRzz = 〈Vz|Ũz〉, we
find that an optimal one-side compensation procedure is to compensate the channel
so that Bob can detect Alice’s transmitted state most reliably, i.e.,HE′(X|Y) is mini-
mized. Note that the fact that|Ũz〉 and|V ′z〉 is scalar multiple of each other does not
necessarily mean that the left upper sub-matrixS ′ of the Stokes parameterization
of the compensated channel is a diagonal matrix.
Proof of Theorem 7) By using Lemma 6, we have the equality between Eqs. (27)
and (28). Since Eq. (26) is obviously larger than or equals toEq. (27), it suffices to
show that Eq. (26) is smaller than or equals to Eq. (28). For any fixedUA andUB,
by using Lemma 6 again, Eq. (26) can be rewritten as

1− h

(

1+ dz

2

)

− h

(

1+ dx

2

)

+ h

(

1+ ‖|Ũ′z〉‖
2

)

− h

(

1+ 〈V ′z|Ũ′z〉
2

)

.

From the form ofh(·), Cauchy’s inequality|〈V ′z|Ũ′z〉| ≤ ‖|Ũ′z〉‖ implies that Eq. (26)
is smaller than or equals to Eq. (28). The equality holds if and only if the vec-
tors |Ũ′z〉 and |V ′z〉 are scalar multiple of each other, which is exactly the second
statement of the theorem. �

Next, we consider the case in which Alice and Bob use the conventional chan-
nel estimation. The following theorem states that the optimized key generation
rate with the accurate channel estimation coincides with that with the conventional
channel estimation if we use the two-side compensation. Thefollowing theorem
also gives the necessary and sufficient condition such that the optimized key gen-
eration rates with the accurate channel estimation and the conventional channel
estimation coincide when we use the one-side compensation.

Theorem 9 Suppose thatE is a unital channel. Then, we have

G2(E) = G̃2(E),

whereG̃2(E) is achieved byQ∗A andQ∗B specified in Theorem 7. Furthermore, we
have

G1(E) = G̃1(E)
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if and only if |Ũz〉 and |Ũx〉 are orthogonal to each other. If this condition is sat-
isfied, G̃1(E) is achieved byQ∗B such that〈Q∗B,z| and〈Q∗B,x| are scalar multiple of
(Rzz,Rxz) and (Rzx,Rxx) respectively.

Corollary 10 Suppose thatE is a unital channel. Then, we have

G̃1(E) = G̃2(E)

if and only if |Ũz〉 and|Ũx〉 are orthogonal to each other. �

Proof of Theorem 9) Let E∗ be the channel defined in Theorem 7. Then, we have

G2(E) ≥ G̃2(E)

≥ min
E∈Pbc(µ∗)

[HẼ(X|E) − HẼ(X|Y)]

= 1− h

(

1+ dz

2

)

− h

(

1+ dx

2

)

= G2(E),

which implies the first statement of the theorem.
To prove the “if” part of the second statement, assume that|Ũz〉 and |Ũx〉 are

orthogonal to each other. Then, we can take a rotation matrixQ∗B so that〈Q∗B,z|
and〈Q∗B,x| are scalar multiple of (Rzz,Rxz) and (Rzx,Rxx) respectively, and we have
S ′ = Q∗BS = diag[dz, dx]. Then, we have

G1(E) = G̃1(E) ≥ 1− h

(

1+ dz

2

)

− h

(

1+ dx

2

)

= G1(E).

Next, we show the “only if” part. Suppose that|Ũz〉 and|Ũx〉 are not orthogonal
to each other. Then, for an arbitrarily fixedUB, either〈V ′z|Ũx〉 , 0 or 〈Vx|Ũz〉 , 0
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holds. Then, we have

G̃1(E) = 1− h

(

1+ 〈Vz|Ũz〉
2

)

− h

(

1+ 〈Vx|Ũx〉
2

)

< 1− h

(

1+ ‖|Ũz〉‖
2

)

− h

(

1+ ‖|Ũx〉‖
2

)

= 1− h

























1+
√

d2
zU2

zz + d2
xU2

zx

2

























− h

























1+
√

d2
zU2

xz + d2
xU2

xx

2

























≤ 1− U2
zzh

























1+
√

d2
z

2

























− U2
zxh

























1+
√

d2
x

2

























− U2
xzh

























1+
√

d2
z

2

























− U2
xxh

























1+
√

d2
x

2

























(31)

= 1− (U2
zz + U2

xz)h

(

1+ dz

2

)

− (U2
zx + U2

xx)h

(

1+ dx

2

)

= 1− h

(

1+ dz

2

)

− h

(

1+ dx

2

)

= G1(E),

where we used the concavity of the function

h

(

1+
√

x
2

)

(32)

in the inequality of Eq. (31). We can show the concavity of Eq.(32) by showing
that the second derivative is non-positive. �

3.2.2 Compensation within Any Direction

In this section, we consider the case in which either Alice orBob are allowed to
compensate their axes within any direction [3, 4, 5, 6, 7, 8, 9]. For any channel
E = (R, t), by the singular value decomposition, we can decompose thematrix
R as in Eq. (18). Furthermore, we identify Alice’s compensationUA and Bob’s
compensationUB with the 3× 3 rotation matricesOA andOB as in Section 3.1.
When we consider the compensation within any direction, it should be noted that
we can estimate all the parameters in the two-side compensation and only a part of
the parameters in the one-side compensation (see also Section 2.3.2).

The following theorem gives the key generation rate optimized by the two-side
compensation.

18



Theorem 11 Suppose thatE is a unital channel. LetU∗A andU∗B be unitary
channels such that the compensated channelU∗B ◦ E ◦ U∗A =: E∗ = (ω∗, τ∗) is
a Pauli channel and the singular values|e∗z|, |e∗x|, and |e∗y| of R∗ = diag[e∗z, e

∗
x, e
∗
y]

satisfy

|e∗z| ≥ |e∗x| ≥ |e∗y|.

Then, we have

J2(E) = max
UA,UB

min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)] (33)

= min
Ẽ∈Pba(ω∗)

[HẼ(X|E) − HẼ(X|Y)] (34)

= 1− h

(

1+ e∗z
2

)

− h

(

1+ e∗x
2

)

. (35)

Proof of Theorem 11) By using Lemma 6, we have the equality between Eqs. (34)
and (35). Since Eq. (33) is obviously larger than or equals toEq. (34), it suffices to
show that Eq. (33) is smaller than or equals to Eq. (35).

For any fixedUA andUB, Theorem 7 implies

min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)]

≤ G2(E′)

= 1− h

(

1+ d′z
2

)

− h

(

1+ d′x
2

)

, (36)

where|d′z| and|d′x| are the singular values of the left upper 2× 2 sub-matricesS ′ of
R′ of the compensated channelE′.

Note that the singular values ofR′ are equal to those ofR∗. By using the
interlacing inequalities for singular values of sub-matrices [24], we have

|e∗z| ≥ max[|d′z|, |d′x|]

and

|e∗x| ≥ min[|d′z|, |d′x|].

These inequalities imply that Eq. (36) is smaller than or equals to Eq. (35), which
completes the proof. �

The following theorem gives the key generation rate optimized by the one-side
compensation.

Theorem 12 SupposeE be a unital channel. Let

O∗B =























〈O∗B,z|
〈O∗B,x|
〈O∗B,y|
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be a rotation matrix such that〈O∗B,z| and 〈O∗B,x| span the same subspace as that
spanned by (Rzz,Rxz,Ryz) and (Rzx,Rxx,Ryx), and that〈O∗B,z| is a scalar multiple of
(Rzz,Rxz,Ryz)4, and letU∗B be the unitary channel corresponding toO∗B. Then, the
compensated channelU∗B ◦ E =: E∗ = (ω∗, τ∗) satisfies

J1(E) = max
UB

min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)] (37)

= min
Ẽ∈Pba(ω∗)

[HẼ(X|E) − HẼ(X|Y)] (38)

= 1− h

(

1+ s∗1
2

)

− h

(

1+ s∗2
2

)

, (39)

wheres∗1 ands∗2 are the singular values of the upper left 2× 2 sub-matrix matrix

S ∗ =

[

〈B∗z|Ãz〉 〈B∗z|Ãx〉
〈B∗x|Ãz〉 〈B∗x|Ãx〉

]

of R∗ = O∗BR such thats∗1 ≥ s∗2.

Proof of Theorem 12) The second statement of Theorem 7 implies that the equality
between Eqs. (38) and (39). Since Eq. (37) is obviously larger than or equals to
Eq. (38), we show that Eq. (37) is smaller than or equals to Eq.(39).

For arbitrarily fixedOB, let s′1 and s′2 be the singular values of the upper left
2× 2 matrix

S ′ =

[

〈B′z|Ãz〉 〈B′z|Ãx〉
〈B′x|Ãz〉 〈B′x|Ãx〉

]

of R′ = OBR such thats′1 ≥ s′2. Then, by using Corollary 8, we have

min
Ẽ∈Pba(ω′)

[HẼ(X|E) − HẼ(X|Y)]

≤ G1(E′)

= 1− h

(

1+ s′1
2

)

− h

(

1+ s′2
2

)

. (40)

By using the minimax principle for singular values [25, Problem 3.6.1], we

4Note that〈OB,y| is uniquely determined from〈OB,z| and〈OB,x| because they constitute a rotation
matrix.
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have

s′1 = max
x∈R2:‖x‖=1

‖S ′x‖

= max
α,β∈R

α2+β2=1

∥

∥

∥

∥

∥

∥

[

〈B′z|Ãz〉 〈B′z|Ãx〉
〈B′x|Ãz〉 〈B′x|Ãx〉

] [

α

β

]
∥

∥

∥

∥

∥

∥

= max
α,β∈R

α2+β2=1

∥

∥

∥

∥

∥

∥

[

〈B′z|(α|Ãz〉 + β|Ãx〉)
〈B′x|(α|Ãz〉 + β|Ãx〉)

]
∥

∥

∥

∥

∥

∥

= max
α,β∈R

α2+β2=1

√

〈B′z|Γα,β〉2 + 〈B′x|Γα,β〉2

≤ max
α,β∈R

α2+β2=1

√

〈B∗z|Γα,β〉2 + 〈B∗x|Γα,β〉2 (41)

= s∗1, (42)

where we set|Γα,β〉 := α|Ãz〉 + β|Ãx〉, and the equality in Eq. (41) holds if|B′z〉
and |B′x〉 span the same subspace as that spanned by|Ãz〉 and |Ãx〉. By using the
minimax principle for singular values in a similar manner, we also have

s′2 = min
x∈R2:‖x‖=1

‖S ′x‖ ≤ s∗2. (43)

Combining Eqs. (40), (42), and (43), we have shown that Eq. (37) is smaller
than or equals to Eq. (39). �

Remark 13 The equality

J1(E) = J2(E)

does not hold in general. For example,J1(E) , J2(E) if R = diag[ez, ex, ey] and
|ez| < |ex| < |ey|.

Next, we consider the case in which Alice and Bob use the conventional chan-
nel estimation. The following theorem states that the optimized key generation
rate with the accurate channel estimation coincides with that with the conventional
channel estimation if we use the two-side compensation. Thefollowing theorem
also gives the necessary and sufficient condition such that the optimized key gen-
eration rates with the accurate channel estimation and the conventional channel
estimation coincide.

Theorem 14 Suppose thatE is a unital channel. Then, we have

J2(E) = J̃2(E),

whereJ̃2(E) is achieved byO∗A andO∗B specified in Theorem 11. Furthermore, we
have

J1(E) = J̃1(E)
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if and only if |Ãz〉 and|Ãx〉 are orthogonal to each other. If this condition is satisfied,
then J̃1(E) is achieved byO∗B such that〈O∗B,z| and 〈O∗B,x| are scalar multiple of
(Rzz,Rxz,Ryz) and (Rzx,Rxx,Ryx) respectively.

Corollary 15 Suppose thatE is a unital channel. Then, we have

J̃1(E) < J̃2(E)

if |Ãz〉 and|Ãx〉 are not orthogonal to each other. �

Proof of Theorem 14) This theorem can be proved almost in a similar manner to
Theorem 9. Therefore, we omit the proof. �

4 Conclusion

In this paper, we investigated the axis compensation in the QKD protocols in var-
ious settings. We clarified optimal compensation procedures over unital channels
for one-side compensation with the accurate channel estimation and for two-side
compensation with both estimation, while we could not identify an optimal com-
pensation procedure for one-side compensation with the conventional channel es-
timation. Although our proposed compensation procedures are optimal for unital
channels, it is not clear whether those compensation procedures are optimal or not
for general channels. We also clarified that the optimized key generation rates
with the conventional channel estimation are strictly smaller than the optimized
key generation rates with the accurate channel estimation for the one-side compen-
sation. Our results imply that we should use the accurate channel estimation when
we employ the one-side compensation. On the other hand, we donot have to use
the accurate channel estimation when we employ the two-sidecompensation.

Although we clarified the optimal compensation procedures for the standard
postprocessing, it is an important future research agenda to clarify the optimal com-
pensation procedures when we employ more complicated postprocessing (e.g. the
postprocessing with the noisy preprocessing [12, 13] or thetwo-way classical com-
munication [14, 15]).
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