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Abstract

The axis compensationis a procedure in which the sendehanddeiver
compensate the axes of their transmitter and detector sthénhit sequence
can be transmitted more reliably. We show the optimal aximensations
maximizing the key generation rate for unital channels. Wfes@er the case
in which only Bob is allowed to compensate his axis, and trse éa which
both Alice and Bob are allowed to compensate their axes.difdimer case,
we show that we should utilize the mismatched measuremeobmes in
the channel estimation phase. In the latter case, we shawéhdo not have
to utilize the mismatched measurement outcomes in the ehastimation
phase.

1 Introduction

Quantum key distribution (QKD) has attracted great attentis a technology to
realize the information theoretically secure key agreegmémthis paper, we in-
vestigate the Bennett-Brassard 1984 (BB84) protacol [di]tare six-state protocol
[2], and the QKD protocols indicate the BB84 protocol andgshestate protocol.
Typically in theoretical studies on the QKD protocols, thretpcols roughly
consist of three phases: the bit transmission phase, theehastimation phase,
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and the postprocessing phase. In the bit transmission ptieskegitimate sender,
usually referred to as Alice, sends a bit sequence to thérnege receiver, usu-
ally referred to as Bob, by encoding them into qubits. In thanmel estimation
phase, Alice and Bob estimate the channel and the amountoofriation gained
by an eavesdropper, usually referred to as Eve. Finallyampustprocessing phase,
Alice and Bob share a secret key based on their bit sequetaimed in the bit
transmission phase.

On the other hand, in the practical QKD protocols, Alice amit Bonduct the
axis compensation (before the bit transmission phase), in which Alice and Bob
compensate the axes of their transmitter and detector sthindit sequence can
be transmitted more reliably in the bit transmission phasés axis compensation
is considered to be indispensable in the QKD protocols, ama@s been exten-
sively studied from the experimental point of view [3, 4] 5[75[8,[9] (see also
[10]). However, it has not been theoretically clarified holicA and Bob should
compensate the axes in the axis compensation.

In this paper, we investigate the optimal axis compensatitine sense that the
key generation rate is maximized, where the key generatitmis defined as the
ratio between the length of the shared secret key and thhedgquences initially
possessed by Alice and Bob in the postprocessing phase.

We consider the following various settings. In the chansgihgtion phase,
we consider two kinds of channel estimation: the accurasambl estimation and
the conventional channel estimation (seel [11]). In the @&teuchannel estima-
tion, we use the mismatched measurement outcomes, whidbitargansmitted
and received by dierent bases, in addition to the matched measurement outcome
which are bits transmitted and received by the same basestitnate the chan-
nel. On the other hand, in the conventional channel estimative discard the
mismatched measurement outcomes and only use the matcledine@ent out-
comes. The reason why we consider two kind of channel estmé&t that the
authors recently clarified that the key generation ratedeeimsed if we use the ac-
curate channel estimation instead of the conventional redlagstimation[[11]. It
is worthwhile to clarify whether we should use the accuréi@nnel estimation in-
stead of the conventional channel estimation when the QKibpols involve the
axis compensation.

In the postprocessing phase, we employ the standard posfsiog. We do
not use the noisy preprocessing|[iL2], 13] nor the two-waysakcommunication
[14,[15].

In the axis compensation phase, we consider two kinds of eosgiions:
(i) (one-side compensation) Only Bob is allowed to compensate his axis.

(ii) (two-side compensation) Both Alice and Bob are allowed to compensate
their axes.

Furthermore in the BB84 protocol, we subdivide each comg@ns into two
kinds. In the first kind, Bob (or both Alice and Bob) is allowsm compensate



his axis within thez-x plane of the Bloch sphere. In the second kind, Bob (or
both Alice and Bob) is allowed to compensate his axis withip direction. The
reason why we consider these two kind of compensations iBB®&4 protocol
is as follows. Since we only use tlxebasis andk-basis in the BB84 protocol,
it is natural to consider the axis compensation withinzheplane. On the other
hand, we might use the axis compensation within any diredtive are allowed to
enhance the device for the compensation. Indeed, seveedrahers employ the
compensation within any direction in the literature([B, 4657,[8/9]. Therefore,
we also investigate the compensation within any direction.

N The optimi~zed key gengration rates (~of the standgrd pampaing)Fl(S),
F1(8), F2(E), Fa(E), Ga(E), Gi(E), G2(E), G2(E), I1(E), (), J2(E), J(E) for
above described 12 settings are summarized in Table 1. Thestities are for-
mally defined in Sectioris 2.2 ahd P.3 respectively.

Table 1: Summary of the optimized key generation rates fooua settings.

channel estimation accurate| conventional
six-state one-side F1(6) Fu(6)
two-side F2(E) F2(E)
BB84 _ 2(8) ~z( )
. . one-side| 36 Jie)
any direction . .
two-side J(E) J2(8)

In this paper, we investigate the above described optimksgdgeneration
rates, and derive closed-form expressiofr gf€), F2(E), G1(E), G2(E), J1(E), and
Jo(E) for unital channels. Since QKD protocols can be implemegimeer many
different media, such as an optical fiber, free space, and anwnkmedium, we
should conduct theoretical research with general quantuamreels. In this pa-
per we deal with unital channels because we have closeddgpressions of key
generations rates of the QKD protocols. The existence difi slased-form ex-
pressions enables us to identify optimal compensationgoioes. Without them
identification is dfficult.

By using the closed-form expressions of the optimized keyegaion rates,
we also derive the following relationships:

Fo6) = FaA8) = Fu8) = Fui8),
G2(8) = G2A€) = Gul&) = Gi(&),
RE) = R = W(E) = A©)

hold for any unital channel, and

Fi(€) > Fi(&),
Gi(&) > Gu(),
WE) > di®)
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hold for general cases of unital channels.

Our results provide the following important insight. In thiteratures [[3/°4, 5,
[6,[7,/8]9], they employ the one-side compensation for th& @inpensation phase
and the conventional channel estimation for the channehason phase. How-
ever, when we employ the one-side compensation, above eneqtirelationships
imply that we should use the accurate channel estimatiorth®ather hand, when
we employ the two-side compensation, above mentionedaesdtips imply that
we do not have to use the accurate channel estimation.

The rest of this paper is organized as follows: In Sedfion € fevmally de-
scribe the problem mentioned above for the six-state pobtnwd the BB84 proto-
col. In Sectiori B, we provide closed-form expressions ofgbtamized key gener-
ation rates, and also clarify the relationships among thieniged key generation
rates for various settings. We state the conclusion in Gedti

2 Problem Formulation

In this section, we formally describe the problem we ingze in this paper. Sup-
pose that Alice and Bob are connected by a qubit chafigdrom the set of all
qubit density operators to themselves. As is usual in QK&diures, we assume
that Eve can access all the environment of cha@igethe channel to the environ-
ment is denoted b§e. In the rest of this paper, we omit the subscriptandE if
they are obvious from the context.

It should be noted that can be any qubit channel throughout the paper, unless
we specify the channel to be a Pauli channel or a unital channe

2.1 Stokes parameterization and Choi Operator

For convenience, we introduce the Stokes parameterizatidrthe Choi operator
for the qubit channel. The qubit chann@lcan be described by thefime map
parameterized by 12 real parametérs [16, 17] as follows:

0, Rz Rex Ry 0, t;
O || Re Rx Ry O |+] & |, (1)
ey Ryz Ryx Ryy ey ty

where 0,, 6, 6,) describes a vector in the Bloch spherel[18]. The fit)(of the
matrix and the vector in EJ.J(1) is called the Stokes paranzet@n of the channel
&. In the rest of this paper, we identify the chan8ednd its Stokes parameteriza-
tion, and occasionally writ& = (R, t).

For the channef and each pair of bases, b) € {z, x, y}?, define the biases of
the outputs as

Qabo
Qab1

(06E8(102)(0a))I0b) — (15|E8(10a)(0al)I1p),
(LlEs(11a)(1al)l1o) — (OplEr(11a)(1al)I0p),



where|0,), |1,) are eigenstates of the Pauli operatgrfor a € {x, y, z} respectively.
Then, a straight forward calculation shows the relations

1 1
Roa = E(Qabo + Qap1), tp = E(Qabo — Qap1). 2

A unital channel is a channel that maps the completely mitae s/ 2 to itself.
For a unital channel, the vector paty, (., ty) of the Stokes parameterization is the
zero vector. Furthermore, the channel is called a Paulirelahthe matrix part
R of the Stokes parameterization is a diagonal matrix in @mdib that the vector
part is the zero vector.

We can also describe the qubit chan&dly the Choi operator

paB = (id ® E) (W)Y,

wherey) = wc»% is a maximally entangled state. For the unital channel, the
Choi operator satisfies Afioas] = | /2. Furthermore, the channel is a Pauli channel
if and only if the Choi operator is a Bell diagonal operatag, i

prs= ), GaltraXtral
aeli,z,x,y}
for Bell statedy,) = (I ® oa)ly) and the probability distributiongy, d., d, dy) on
{i,z,x,y}, whereo is the identity operator. Throughout this paper, we omit the
subscriptAB if it is obvious from the context.

2.2 Six-state protocol

As the preparation phase of the six-state protocol, AlickBob conduct the fol-
lowing axis compensation procedure. Alice randomly sentd8 br 1 to Bob by
modulating it into a transmission basis that is randomlyseimofrom thez-basis
{102),112)}, the x-basis{|0y), |1)}, or they-basis{|0), |1,)}. Then Bob randomly
chooses one of measurement observablgsry, ando,, and converts a measure-
ment result+1 or —1 into a bit 0 or 1 respectively. After a Sicient number of
transmissions, Alice and Bob publicly announce their tnaission bases and mea-
surement observables. They also announce all of their duiteseces for estimating
channel€. Note that Alice and Bob do not discard mismatched measurems-
comes, which are transmitted and received Iffedént bases, and they also use the
mismatched measurement outcomes to estimate the chanowl Hey. [2), we find
that Alice and Bob can estimate all paramet&g) of the channel in the six-state
protocol [19/20]. Note that the use of the mismatched measent outcomes for
channel estimation is also known as the process tomography.

We consider two kinds of compensations:

(i) Only Bob is allowed to compensate his axis, i.e., the dehafter the com-
pensation is

8;3 = (L(B o 85, (3)

whereUsy is a unitary channel that represents Bob’s compensation.
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(i) Both Alice and Bob are allowed to compensate their akes, the channel
after the compensation is

&g =UgoEpoUn, 4)

wherelU s andUpg are unitary channels that represent Alice and Bob’s com-
pensations.

Based on the estimate of the paramet&s$)( Bob (or both Alice and Bob) decides
Up (or Ux andUp), and he compensates the channel. The choidd@tor Ua
and,) can be decided according to Theorgm 2 and Cordllary 3 oi@H8i].

Remark 1 Throughout this paper, the prime represents that it is gf'ecompen-
sation.

After the compensation procedure, Alice and Bob conducatiwve bit trans-
mission and reception procedure again. This time, they anlyounce a part of
their bit sequence for estimating the chanfigland they conduct the postprocess-
ing to generate a secret key from the remaining (unannojfesequences.

Henceforth, we focus on the postprocessing procedure foeAlbit sequence
x € F) that is transmitted irz-basis and corresponding Bob’s bit sequepceF)
that is received inr, measurement, whei®, is the finite field of order 2. We
employ the standard postprocessing procedure that censigte information rec-
onciliation procedure and the privacy amplification pragede.g. see 11, Section
2]). Note that we do not use the so-called noisy preprocg4&/13] nor the post-
processing with two-way classical communication [14, 15].

Let

He (XIE) := Hloxe) — H(og)

be the conditional von Neumann entropy with respect to tmsitdeoperator

1
Pxe = D, 50l ® E(% )%

XeFo

on the joint systenHyx ® Hg , whereH(p) is the von Neumann entropy [18] for
a density matrixp, and we take the base of the logarithm to be 2 throughout the
paper. For the compensated char&ielwe define the joint probability distribution

1
P;(Y(Xa y) = §<y2|8,5(|XZ><XZ|)|yZ>
of the joint random variableX, Y) onF, x Fo. Then, let

He (XIY) i= = > Phy(xy) log Py (Xy) )
X,yelF2

be the conditional Shannon entropyXftjiven.
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In the six-state protocol, since Alice and Bob can estimiagechanneE’ ex-
actly if they use the accurate channel estimation, they sgmatotically share a
secure key if the length of the key satisfies

4
ﬁ < HS/(X|E) — HS/(XlY)

(seel[l21/-11]). Therefore, we consider the following twamjation problems:

() Find a closed-form expression of
Fi(€) = %MHS' (XIE) — He (XIY)], (6)
B

and also findi/g that achieves the maximum in Efl (6).

(i) Find a closed-form expression of

F2(6) = ax [He (XIE) — He (XIY)] (")

and also find U, Ug) that achieve the maximum in EqJ (7).

Egs. [6) and[{7) are the key generation rates optimized nvitheé one-side com-
pensation and the two-side compensation respectively.

Next, we consider the case in which Alice and Bob use the cdior@al chan-
nel estimation (seé [11] for the detail of the conventiorsdineation). From Eq[{2),
we find that Alice and Bob can only estimate the parametérs (R, R, R),),
and they cannot estimate the parameters (R, R, R,,, Ry, R);, Ry, 7, t},
t;). Since we have to consider the worst case with respect tpatsneters’ that
cannot be estimated, we consider the following two quastiti

Fi1(&) := n;gxéenyjsir;)[Hg(XlE) — Hz(X|Y)] (8)
and
F2(€) := max _min [Hz(XIE) - Hz(XIY)], 9)

UnUp EeP4(y")
whereP(y’) is the set of all channel for giveyt, i.e.,
P() =1E=FR: ¥=v}

Since the definition oF (&) andF»(&) involve the minimization, we havé: (€) >
F1(E) andF,(E) > F»(&) [A1].



2.3 BB84 protocol
2.3.1 Compensation within z-x Plane

The BB84 protocol is almost the same as the six-state prbtétowever in the
BB84 protocol with the axis compensation within the plane, Alice uses only
z basis and basis to transmit the bit sequence, and Bob uses only oliderwa
and o to receive the bit sequence. Therefore, from Ef. (2), we firad Alice
and Bob can only estimate the parameters (R,;, Ry, Rz, Rux» 2, tx), and that
they cannot estimate the parameters (R.y, Ry, Ryz, Ryx, Ry, ty). We consider
the following two kinds of compensations:

(i) Only Bob is allowed to compensate his axis within the plane, i.e., the
channel after the compensation is given by Eg. (3), wHeégeis a unitary
channel that rotate the Bloch sphere within th& plane.

(i) Both Alice and Bob are allowed to compensate their ax@hin the z—x
plane, i.e., the channel after the compensation is given dy(d), where
U andUp are unitary channels that rotate the Bloch sphere withirztie
plane.

Based on the estimate of the parameter®8ob (or both Alice and Bob) decides
Upg (or U andUp), and he compensates the channel. The choicdgfor Ua
andUg) can be decided according to Theoriem 7 and Cordllary 8 oi@d8{2.1.

As in the six-state protocol, we also employ the standardpposessing. We
first consider the case in which Alice and Bob use the accetatanel estimation.
Note that Alice and Bob can only estimate the parametées (R,,, R,,, R/XZ, R t,, 1),
and that they cannot estimate the paramezt’eﬁs(R;y, ey R;Z, Ryx, R;y,

Let Ppa(w’) be the set of all channels for givesi, i.e.,

Pra(w’) = {E = (@,7): & =)

In the BB84 protocol, Alice and Bob can asymptotically shasecure key if the
length¢ of the key satisfies

¢
— < _min [Hz(X|E) = Hz(X|Y
< e min’ [HE(XE) ~ He(XY)]

(seel[l21]-11]). Therefore, we consider the following twamation problems:

() Find a closed-form expression of

G1(&) = maxé3 gmg [Ha(XIE) — Ha(XIY)], (10)

and also findl{g that achieves the maximum in Eq.110), whdi#g is a
unitary channel that rotates the Bloch sphere withinztheplane.



(i) Find a closed-form expression of

G2(&) := max _ min [Hz(X|E) — XY 11
26) 1= max . min [H5(XIE) ~ Ha(XIY)] (1D
and also findUa, Ug) that achieve the maximum in EQ.{11), whéeig and
Up are unitary channels that rotate the Bloch sphere withirztikeglane.

Next, we consider the case in which Alice and Bob use the ctioreal chan-
nel estimation. From Eq[}2), we find that Alice and Bob carycm%timate the
parameterg’ = (R’ZZ,R’X) and they cannot estimate the parametérs (R, R;,,
Rz Ry Rz Rix Ry, 1, 1, 1) Since we have to consider the worst case with
respect to the parametersthat cannot be estimated, we consider the following

two quantities:

Gi(&) —max min [H8(X|E)—H8(X|Y)] (12)
U EcPpc(i’)
and
Go(E) = nax Seryr)llcl(wﬂ [Hz(XIE) — Hz(XIY)], (13)

where®Pyc(u’) is the set of all channel for givedt, i.e.,
Pocl) = (€= (@.7): i = p').

§ince the range of the minimizations in the defin~ition§@¢8), Go(&), ?1(8), and
Go(8) satisfyPpa(w’) € Puc(i’), we haveGi(8) > G1(E) andGx(E) > G,(8) [A1].

2.3.2 Compensation within Any Direction

In this section, we consider the BB84 protocol with the axispensation within
any direction. We consider this problem because severaarelsers employ the
compensation within any direction in the literatures 3546, 7 /8 9].

When we employ the one-side compensation, Alice randomigls® or 1
to Bob by modulating it into a transmission basis that is cenly chosen from
the z-basis or thex-basis. Then Bob measures received qubits by randomly us-
ing observablesr,, o or oy. Note that Bob can usey in addition too, and
oy because he is allowed to rotate the axis of the receiver imxieecompensa-
tion phase. In this case, from E@l (2), we find that Alice andb Ban estimate
the parametersR;;, Ryz, Ryz, Rox, Rux, Ryx, 1z, tx, ty), and they cannot estimate the
parametersRy, Ry, Ryy). Since Bob can usery, Alice and Bob can estimate
(Ryz, Ryx. ty) in addition to &z, Rxz, Rex, Rux 1z, tx), Which can be estimated in the
compensation scheme of Sectlon 2.3.1. Based on the estohtie parameters
(Rzz, Ruzs Ryz, Rox, Rux, Ry tz, 1, ty), Bob decidel{g and compensate the channel.
The choice ofl/g can be decided according to Theorlemh 12 of Se¢fion]3.2.2.



On the other hand, when we employ the two-side compensati®a)low both
Alice and Bob to use-basis x-basis, ang-basis in the axis compensation phase.
In this case, from Eql{2), we find that Alice and Bob can esténadl of the param-
eters R t). Based on the estimate of the paramet&g)( Alice and Bob decide
Ux andUg, and they compensate the channel. The choicH gand U can be
decided according to Theordml11 of Secfion 3.2.2.

In the bit transmission phase (after the axis compensati@sg), we allow
Alice and Bob to use only-basis anck-basis. The channel estimation phase and
the postprocessing phase are exactly the same as in 9edidin [Mote that Alice
and Bob can estimat&{,, R,,, R, R.,, t,, t), but they cannot estimate the other
parameters, because we do not allow neither Alice nor Bolséy-basis in the
bit transmission phase. Therefore, we consider the foligwtivo optimization
problems:

() Find a closed-form expression of

J1(E) _max min [HS(X|E)—H8(X|Y)] (14)

EePpa(w’)

and also findl/g that achieve the maximum in Eq.{14), whetg; is any
unitary channel.

(i) Find a closed-form expression of

J(E) == max _ min [Hg(XIE) — Hz (XY 15
2(6) = max _min [H(XIE) - H(XY)] (15)

and also find Ua, Ug) that achieve the maximum in Eq._{15), whet&,
andUp are any unitary channels.

We also treat the case in which Alice and Bob use the convaaitichannel
estimation. In this case, we consider the following two dili@s:

VIGES nglasx&rgblcr(lﬂ [Ha(XIE) — Ha(XI)], (16)
and
Jo(8) = nax 86?’1':(1# [Hz(XIE) — Hz(XIY)], (17)

whereU , andUpg are any unitary channels. Since the range of the minimizatio
in the definitions 0fJ1(&), J2(E), J1(E), and Jx(E) satisfy Ppa(w’) C Prc(i’), we
haveJ;(&) > J1(&) and (&) > Jo(E) [11].

3 Optimal Compensation for Unital Channels

In this section, we solve the problems formulated in Ses{@2[2.3.11, and 2.3.2
respectively for unital channels.
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3.1 Six-state protocol

For any channet = (R t), by the singular value decomposition, we can decom-
pos@ the matrixR as

R = Bdiagle,e.g] A
[ (B,] e 0 O
= <Bx| 0 & O |Az> |Ax> |Ay>
[ By ]l O 0 ¢

[ (BJA) (BJA) (BA)
= <Bx|"i\z> <BX|A~\X> <Bx|'6y>
| (ByIA) (BJIA) (BIA)

whereA andB are the rotation matricEsleZL lex], and|ey| are the singular values
of R and we setA;| = (6,A1, 6Ax §Ay), (A = (€A, &xAxx» §Ay), and
<Ay| = (eszL exAyx, eyAyy)-

Henceforth, we identify Alice’s compensatidii, and Bob’s compensatioi(g
with the 3x 3 rotation matrice®Oa andOg. Then, the matrix part of the Stokes
parameterization of the compensated chaéhel (R, t") is given byR" = OgROA.

The following theorem gives a closed-form expression ofkéy generation
rate optimized by the two-side compensation.

, (18)

Theorem 2 Suppose that is a unital channel. Led; = A~ andOj = B™*, and
let U, and Uy be the unitary channels correspondingXp and O respectively.
Then, the compensated chanégl= U} o & o U, is the Pauli channel such that
the matrix part of the Stokes parameterization is giveRby diagle;, e, /], and
& satisfies

Fa(E) = 75‘:% [He (XIE) — Hg/ (X]Y)] (19)
= Hg (X|E) = Hg:(X]Y) (20)
= 1- H[Qth,QmQy]’ (21)

whereH[q, 0, ox, gy] is the Shannon entropy [22] of the distribution

l+e, +e+¢g

a = 7 (22)
q = 278 23)
g = 228 (24)
g = 28 (25)

1The decomposition is not unique because we can change teeafré,, e, g) or the sign of
them by adjusting the rotation matricAsand B. However, the result in this paper does not depends
on a choice of the decomposition.

2The rotation matrix is the real orthogonal matrix with det@rant 1.
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Furthermore, the maximum in Eq.(19) is achieved without@mypensation, i.e.,
He(XIE) — He(XIY) = He: (XIE) — Hg:(XIY)
if and only if the vectorsA,) and|B,) are scalar multiple of each other.

The first statement implies that an optimal compensatioogatore is to compen-
sate the channel to a Pauli channel. The second statemeligsrtipat /s, Up)
achieving the maximum are not unique.

The following corollary gives a closed-form expression 't key generation
rate optimized by the one-side compensation.

Corollary 3 Suppose that is a unital channel. Let

(Og,l
Oy = | (O
(O,

be a rotation matrix such thaog’z| is a scalar multiple ofR;,, Rz, Ryz), where
(O x| and(OE’y| can be arbitrary as long as they constitute a rotation matrig
let U the unitary channel corresponding®@3. Then, the compensated channel
& = Ug o & satisfies

F1(&) He: (XIE) — He: (XIY)

F2(8).

Note that Corollary 13 follows from the second statement cédreni2.

Surprisingly, we do not lose any optimality even if we onlioal Bob to com-
pensate his axis (one-side compensation). This fact isiusesimplify the imple-
mentation of the optimal compensation procedure.

SinceHg(X|Y) = h((1 + R,;)/2) for any unital channel ang,, = (B,|A,),
we find that an optimal one-side compensation procedure mapensate the
channel so that Bob can detect Alice’s transmitted statd retiably, i.e.,Hg (X]Y)
is minimized, wheré(-) is the binary entropy function. Note that the fact thgb
and|B)) is scalar multiple of each other does not necessarily mesacdimpensated
channelg’ is a Pauli channel.

Proof of Theorem[2) The equality between Eqd._(20) arid](21) is well known
(e.g. seel[12] o [11, Eq. (20)]). Since EQ.119) is obviodalger than or equals

to Eq. [20), it stfices to show that Eg[_(119) is smaller than or equals to[Eq. (21)
for any U andUp. For any fixedlp andUg, by using [11, Eq. (20)] and the
discussions right before it, E4.{19) can be rewritten as

1+ A _ [ 1+(ByIA)
2 2 '

1 Hlg. 6 o)
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From the form ofh(-), Cauchy’s inequality(B|A,)| < [IIA,)| implies that Eq.[(19)
is smaller than or equals to Eq.{21). The equality holds & anly if the vec-
tors |A;> and|B.) are scalar multiple of each other, which is exactly the sdcon
statement of the theorem. O
Next, we consider the case in which Alice and Bob use the atiormal chan-
nel estimation. The following theorem states that the ojatich key generation
rate with the accurate channel estimation coincides wahulith the conventional
channel estimation if we use the two-side compensation. fall@ving theorem
also gives the necessary andfgient condition such that the optimized key gen-
eration rates with the accurate channel estimation and dheeational channel
estimation coincide when we use the one-side compensation.

Theorem 4 Suppose that is a unital channel. Then, we have
F2(8) = F2(8),

whereF,(&) is achieved byO; andOj specified in Theoreil 2. Furthermore, we
have

F1(&) = F1(&)

if and only if |,5:z>, IAs), and|A,) are orthogonal to each other. If this condition is
satisfied, ther1(E) is achieved byOp such thatOg | and(Og,| and(Og | are
scalar multiple of Rzz, Rez, Ryz), (Rexs Ruxs Ryx), and Ry, Ry, Ryy) respectively.

Corollary 5 Suppose that is a unital channel. Then, we have
F1(&) = F2(&)
if and only if |A,), |Ac), and|A,) are orthogonal to each other. O

Proof of Theorem[d) Let&* be the Pauli channel defined in Theorlem 2. Then, we
have

F2(E)

> _min [Ha(XIE) — Hz(X|Y)]
EePs(y*)

= 1-H[G, 9, % q]
= F2(8),

F2(E)

v

which implies the first statement of the theorem.

To prove the “if” part of the second statement, assume [fhat |A.), and
|Ay> are orthogonal to each other. Then, we can take a rotationxn@t so that
(O*B’Z| and(O*B’Xl and(O*B’yl are scalar multiple ofR;z, Rz, Ryz), (Rex, Ruxs Ryx)s
and Ry, Ry, Ryy) respectively, and we haw = OgR = diag[e;, &, g]. Thus, we
have

F1(&) > F1(&) > 1 - H[q;, . G, Gy] = F1(&).

13



Next, we show the “only if” part of the second statement. Siggthat at least
one pair oflA,), |A,), and|A,) is not orthogonal to each other. Then, for arbitrarily
fixed Ug, the compensated chani&lis not a Pauli channel, i.e., the Choi operator
o’ is not a Bell diagonal state. Lef := (0a ® 0a)p’(0a ® 0a) for a € {i,z,x,y},
whereo, is the complex conjugate eof,. Sincep’ is not Bell diagonal state, at
least one opy, p}, andpy is different fromp!. Let

1,
ptW = Z Zpa
asfi,z,x,y}

be the partially twirled staté [23]. Then, since the von Nanmentropy is a strict
concave function [18], we have

F1(&) ma{1 - H(p™)]

A

mafl- Y ZHEL
B asl{i,z,x,y}

n(z(%ﬁl—H(p’)]

F1(&).

3.2 BB84 protocol
3.2.1 Compensation within z-x Plane

For any channet = (R, t), by the singular value decomposition, we can decompose
the left upper 2< 2 sub-matrixS of the matrixR as

S = Vdiag[d,,d] U

Vol ][ dz O

[le H 0 OIX][|uz> U |
(V|Uy) <vz|ij>]

(Vxl0z) (W) |

whereU andV are the rotation matricef,| and|dy| are the singular values &,
and we setU,| = (dzUZL dezx) and(U,| = (dzsz, dXUXX)-

Henceforth, we identify Alice’s compensatidiia and Bob’s compensation
Upg with the 2x 2 rotation matriceQa and Qg, because their compensation are
restricted within thez-x plane. Note that the left upper22 sub-matrixS’ of the
matrix R’ of the compensated channel is given3fy= QgSQa.

The following lemma provides a closed-form expression efkly generation
rate with the accurate channel estimation for unital chisnrad it will be used
several times in the rest of this paper.

14



Lemma6 For any unital channel = (w, 1), we have

_min [Hz(X[E) - Hg(X|Y)]

EePpa(w)
1+dz)_h(l+dx)+h 1+ R, + R, _h(l+RZZ)

2 2 2 2

=

Proof of Lemma[@) This lemma follows from[[111, Proposition 2] and the fact
He(X]Y) = h((1 + R,,)/2) for any unital channel. O

The following theorem gives a closed-form expression ofkég generation
rate optimized by the two-side compensation.

Theorem 7 Suppose tha is a unital channel. Le®; = U™t andQj = V1, and
let ¢, and Uy be the unitary channels correspondingQp and Qg respectively.
Then, the compensated chanfiél o € o U, =: & = (w*, 7*) satisfies

Go(E) = Jhax éegﬂ? ,)[Hg(XIE) - Hs(XIY)] (26)
= _min [Ha(X|E) - Hz(XIY)] (27)
EePra(w*)
1+d, 1+ dy
= 1—h( > )—h( > ) (28)

Furthermore, the maximum is achieved without any comp@nsate.,

_min [Hs(X|E) = Hz(XIY)] = _ min  [Hg(X|E) — Hs(XY)]

E€Ppa(w) E€Ppa(w*)

if and only if the vectorsU,) and|V,) are scalar multiple of each other.

The first statement implies that an optimal compensationquiore is to compen-
sate the channel to a channel such that the left upper sulxngatof the Stokes
parameterization of the compensated channel is a diagaatakmT he latter state-
ment implies that?/a, Ug) achieving the maximum is not unique.

By using Theorenmi]7, we can derive the following corollary,icthgives the
key generation rate optimized by the one-side compensation

Corollary 8 Suppose that is a unital channel. Let

Q| ]

=\ Q.

be a rotation matrix such thdQy | is a scalar multiple of R, szﬁ and let
Uy be the unitary channel correspondingQg. Then, the compensated channel

3Note tha Qg,| is uniquely determined frorQg | because they constitute a rotation matrix.
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UG o & =: & = (v, 77) satisfies

Gi(&) = ée;pi?w*)[Hé(XlE)—Hé(XIY)] (29)
= Gy(8). (30)
O

Note that CorollaryB follows from the latter statement oE®hen{Y.

Surprisingly, we do not lose any optimality even if we onlioal Bob to com-
pensate his axis (one-side compensation). This fact isiuwesimplify the imple-
mentation of the optimal compensation procedure.

SinceHg(X|Y) = h((1 + R,;)/2) for any unital channel an@,, = (V,|U,), we
find that an optimal one-side compensation procedure istipeasate the channel
so that Bob can detect Alice’s transmitted state most rigliab., Hg (X[Y) is mini-
mized. Note that the fact thid,) and|V,) is scalar multiple of each other does not
necessarily mean that the left upper sub-ma®iof the Stokes parameterization
of the compensated channel is a diagonal matrix.

Proof of Theorem[7) By using Lemma&l6, we have the equality between Hgs. (27)
and [28). Since EqL(26) is obviously larger than or equasta27), it siffices to
show that Eq.[(26) is smaller than or equals to Eql (28). Feifiard U/ s andUs,

by using Lemmal6 again, Ed.(26) can be rewritten as

1+d, 1+ dy 1+ 10 1+(V3U;
) {52 ) o f12)

From the form oh(-), Cauchy’s inequality(V|U2)| < |||U2)|| implies that Eq.[(Z6)
is smaller than or equals to E.{28). The equality holds & anly if the vec-
tors |L~J;> and|V,) are scalar multiple of each other, which is exactly the sdcon
statement of the theorem. O
Next, we consider the case in which Alice and Bob use the cdior@al chan-
nel estimation. The following theorem states that the ojatich key generation
rate with the accurate channel estimation coincides wahulith the conventional
channel estimation if we use the two-side compensation. fall@ving theorem
also gives the necessary andigient condition such that the optimized key gen-
eration rates with the accurate channel estimation and dheeational channel
estimation coincide when we use the one-side compensation.

Theorem 9 Suppose thaf is a unital channel. Then, we have
G2(E) = Gx(8),

whereG,(€) is achieved byQ, andQj specified in Theorerl 7. Furthermore, we
have

G1(€) = G1(&)

16



if and qnly if |U,) and|Uy) are orthogonal to each other. If this condition is sat-
isfied, G1(&) is achieved byQg such that(Q’é’Z| and(QE’X| are scalar multiple of
(Rzz, Riz) and Ry«, Rix) respectively.

Corollary 10 Suppose thag is a unital channel. Then, we have
G1(8) = G2(8)
if and only if |U,) and|Uy) are orthogonal to each other. O

Proof of Theorem[@) Let&* be the channel defined in Theoréin 7. Then, we have

Gy(E) > Gy(&)
* odRi 0RO
1+d, 1+ dx
= 1[5 n(5
= Gy(&),

which implies the first statement of the theorem.

To prove the “if” part of the second statement, assume|thatand|U,) are
orthogonal to each other. Then, we can take a rotation m@fiso that(Qg,|
and(QE’X| are scalar multiple off,,, Ry;) and R.x, R«) respectively, and we have
S’ = QS = diag[d;, dy]. Then, we have

1+d, h 1+ dy
2 2

G1(E) =G1(&) > 1- h( ) = G1(8).

Next, we show the “only if” part. Suppose thai,) and|~UX) are not ort~hogonal
to each other. Then, for an arbitrarily fixédg, either(\V,|Ux) # 0 or (Vx|U;) # 0

17



holds. Then, we have

(L) e

< 1o h( I2 ) ( +IIIUx>||)

Gi(&)

1+ 4/d2U2, + d2U2, 1+ /d2U2, + d2UZ,
= 1-h —h
2 2
1+ 4/d? 1+ \/dE
< 1-UZh >— |- U2, 5
1+ Jd? 1+ Jd?
ST R L T @

= 1-(U3 +uxz)h(lzdz)-(ufx+uX2X)h(1+2dX)

1+d, 1+ dy
- 155

G1(6),

where we used the concavity of the function

5%

S (32)

in the inequality of Eq.[{31). We can show the concavity of &) by showing
that the second derivative is non-positive. O

3.2.2 Compensation within Any Direction

In this section, we consider the case in which either Alic&ob are allowed to
compensate their axes within any direction([3] 4, 15,16, 7,]8,Fr any channel
& = (R 1), by the singular value decomposition, we can decomposentitex
R as in Eq.[(IB). Furthermore, we identify Alice’s compermati{s and Bob’s
compensatiori{g with the 3x 3 rotation matrice®Da andOg as in Section 3]1.
When we consider the compensation within any directiorhaigd be noted that
we can estimate all the parameters in the two-side compensatd only a part of
the parameters in the one-side compensation (see alsoH23i2).

The following theorem gives the key generation rate optaaiky the two-side
compensation.

18



Theorem 11 Suppose tha& is a unital channel.  Let/, and U be unitary
channels such that the compensated chafifigb & o U, = & = (w*,77) is
a Pauli channel and the singular values, |&], and|gj| of R* = diag[e}, €, €]
satisfy

€| > |6 = |e]].
Then, we have
Jb(E) = max min [Hz(X|E) - Hz(X|Y 33
2(E) Jhax éewbl(m[ E(XIE) — Hg(XIY)] (33)
= _min [Hg(X[E) = Hg(X[Y)] (34)
EePpa(w”)
3 ~ 1+¢€ ~ 1+¢€
1R n(hE) @

Proof of Theorem[I1) By using Lemm&l, we have the equality between HQs. (34)
and [3%). Since EqL_(B3) is obviously larger than or equasta(33), it siffices to
show that Eq.[{33) is smaller than or equals to Eqgl (35).

For any fixedl{a andUpg, Theoreni ] implies

. min [Hg(X|E) - Hg(XY)]

EEPpa(w’)
< Gy(&)
1+d, 1+d;
= 1—h( > )—h( 5 ) (36)

wherel|d,| and|d;| are the singular values of the left uppex 2 sub-matrice$s’ of
R’ of the compensated chanr&l

Note that the singular values & are equal to those dR*. By using the
interlacing inequalities for singular values of sub-ns [24], we have

€] > max]d;|, d]]
and
€] > min[|d,], [dy]].

These inequalities imply that Ed._(36) is smaller than oraésjto Eq.[(3b), which
completes the proof. O

The following theorem gives the key generation rate optiaiby the one-side
compensation.

Theorem 12 SupposeS be a unital channel. Let

(Og,|
(Ogl
(O,

Op =

19



be a rotation matrix such th40g | and(Og,| span the same subspace as that
spanned byR,;, Ry, Ryz) and Rqx, R, Ryx), and thaKOE’Zl is a scalar multiple of
(Rzz, Rez, Ryzﬂ and letUg be the unitary channel correspondingQg. Then, the
compensated chann@él} o & =: & = (w*, 7*) satisfies

Ji(&) = max, gﬂ? ,)[HS(XIE) — Ha(X|Y)] (37)
= _min [Ha(X|E) - Hz(X|Y)] (38)
EEPpa(w*)
B 1+ s’; 1+ S;
= 1—h( 5 )—h( 5 ) (39)

wheres; ands; are the singular values of the upper lefk 2 sub-matrix matrix

o _| BIA)Y BIA) ]

(BxlAz)  (ByA)

of R* = OgRsuch thats] > s.

Proof of Theorem[I2) The second statement of Theorem 7 implies that the equality
between Eqs[(38) and (39). Since Hq.l(37) is obviously fattg@n or equals to
Eq. (38), we show that EJ. (B7) is smaller than or equals ta(ES).
For arbitrarily fixedOg, let s; ands, be the singular values of the upper left
2 x 2 matrix
o [ (BJIA,) (ByIAO ]
(BiAz)  (BIAK)

of R = OgRsuch thats; > s,. Then, by using Corollaryl8, we have

. min [Hg(X|E) - Hg(XY)]

E€Ppa(w’)

< Gy(&)

B l+s 1+,

= aon(EE)n(1) @

By using the minimax principle for singular values [25, Resb 3.6.1], we

“Note that(Og,| is uniquely determined fronOg,| and(Og,| because they constitute a rotation
matrix.
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have

s, = max ||S’X||

xeR2:||x||=1

= maX
aBeR
02+ﬁ2:1

(BjIA,) <B;|/§X>Ha]
(BilA:) (BJAO || B

[ (Bl(alA,) + BIAY) ]H

= max
a BeR
02+ﬁ2:1

(Bil(alA) + BIALY)

= max \/<B;|raﬁ>2 + (By[Ty )2

a2+4p2=1

max \/<B;|raﬁ>2+<B;IFa,ﬁ>2 (41)
a2+[32=1

= S (42)

where we seil,z) = alA;) + BIA,), and the equality in EqL{#1) holds iB,)
and|B;) span the same subspace as that spannéd,byand|A;). By using the
minimax principle for singular values in a similar mannee also have

IA

= min [S'X|<S,. 43

% xeR2:||x||=1” < (43)
Combining Egs.[{40)[(42), and_(43), we have shown that [Ed). smaller
than or equals to EJ.(B9). m|

Remark 13 The equality
J1(E) = &(E)

does not hold in general. For exampl(E) # J»(E) if R = diag[e;, &, g,] and
lez| < lexl < eyl

Next, we consider the case in which Alice and Bob use the atiormal chan-
nel estimation. The following theorem states that the ojgtith key generation
rate with the accurate channel estimation coincides wahulith the conventional
channel estimation if we use the two-side compensation. fall@ving theorem
also gives the necessary andigient condition such that the optimized key gen-
eration rates with the accurate channel estimation and dheeational channel
estimation coincide.

Theorem 14 Suppose that is a unital channel. Then, we have
J(E) = 5(8),

whereJ,(&) is achieved byO;, andOj specified in Theoref11. Furthermore, we
have

J(E) = (&)
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if and only if IA,) and|A,) are orthogonal to each other. If this condition is satisfied,
then J,(€) is achieved byOg such that(Og,| and(Og,| are scalar multiple of
(Rzz, Rz, Ryz) and Rex, Rux, Ryx) respectively.

Corollary 15 Suppose that is a unital channel. Then, we have
J1(©) < J(&)
if |A,) and|A,) are not orthogonal to each other. O

Proof of Theorem[14) This theorem can be proved almost in a similar manner to
Theoreni®. Therefore, we omit the proof. ]

4 Conclusion

In this paper, we investigated the axis compensation in B Qrotocols in var-
ious settings. We clarified optimal compensation procesloxer unital channels
for one-side compensation with the accurate channel estimand for two-side
compensation with both estimation, while we could not idgran optimal com-
pensation procedure for one-side compensation with theecional channel es-
timation. Although our proposed compensation procedure®ptimal for unital
channels, itis not clear whether those compensation puvesdre optimal or not
for general channels. We also clarified that the optimized deneration rates
with the conventional channel estimation are strictly demahan the optimized
key generation rates with the accurate channel estimaticihé one-side compen-
sation. Our results imply that we should use the accurateregiastimation when
we employ the one-side compensation. On the other hand, wetdwave to use
the accurate channel estimation when we employ the twoesidgensation.

Although we clarified the optimal compensation proceduresttie standard
postprocessing, itis an important future research agenclarify the optimal com-
pensation procedures when we employ more complicated npostgsing (e.g. the
postprocessing with the noisy preprocessing[[12, 13] otvileeway classical com-
munication [14] 15]).
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