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Abstract

For k ≥ 1, we consider the graph dynamical system known as a k-

reversible process. In such process, each vertex in the graph has one of

two possible states at each discrete time. Each vertex changes its state

between the present time and the next if and only if it currently has at least

k neighbors in a state different than its own. Given a k-reversible process

and a configuration of states assigned to the vertices, the Predecessor

Existence problem consists of determining whether this configuration

can be generated by the process from another configuration within exactly

one time step. We can also extend the problem by asking for the number

of configurations from which a given configuration is reachable within one

time step. Predecessor Existence can be solved in polynomial time for

k = 1, but for k > 1 we show that it is NP-complete. When the graph in

question is a tree we show how to solve it in O(n) time and how to count

the number of predecessor configurations in O(n2) time. We also solve

Predecessor Existence efficiently for the specific case of 2-reversible

processes when the maximum degree of a vertex in the graph is no greater

than 3. For this case we present an algorithm that runs in O(n) time.
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1 Introduction

Let G be a simple, undirected, finite graph with n vertices and m edges. The
set of vertices of G is denoted by V (G) = {v1, v2, . . . , vn} and its set of edges is
denoted by E(G). A k-reversible process on G is an iterative process in which,
at each discrete time t, each vertex in G has one of two possible states. A state
of a vertex is represented by an integer belonging to the set Q = {−1,+1} and
each vertex has its state changed from one time to the next if and only if it
currently has at least k neighbors in a state different than its own, where k is a
positive integer.

Let Yt(vi) be the state of vertex vi at time t. A configuration of states at
time t for the vertices in V (G) is denoted by Yt = (Yt(v1), Yt(v2), . . . , Yt(vn)).
The one-step dynamics in a k-reversible process for graph G can be described
by a function F k

G : Qn → Qn such that Yt = F k
G(Yt−1) through a local state

update rule for each vertex vi given by

Yt(vi) =







Yt−1(vi), if vi has fewer than k neighbors in state −Yt−1(vi)
at time t− 1;

−Yt−1(vi), otherwise.

(1)

The motivation to study k-reversible processes is related to the analysis of
opinion dissemination in social networks. For example, suppose that a network is
modeled by a graph, each vertex representing a person and each edge between
two vertices indicating that the corresponding persons are friends. Suppose
further that state −1 represents disagreement on some issue and that the state
+1 means agreement on the same issue. A k-reversible process is an approach to
model opinion dissemination when people are strongly influenced by the opinions
of their friends and the society they are part of. Notice that in this model we are
assuming that all people act in the same manner. A more complex approach
could assume, for example, distinct thresholds for each person or thresholds
based on one’s number of friends.

Note that k-reversible processes are examples of graph dynamical systems ;
more precisely, of synchronous dynamical systems, which extend the notion of a
cellular automaton to arbitrary graph topologies. The study of graph dynamical
systems and cellular automata is multidisciplinary and related to several areas,
like optics [9], neural networks [12], statistical mechanics [1], as well as opinion
[5] and disease dissemination [14]. Also in distributed computing there are
several studies regarding models of graph dynamical systems. An example is
the model of majority processes in which each vertex changes its state if and
only if at least half of its neighbors have a different state [13]. An application
of this model is used for maintaining data consistency [16].

Most of the studies regarding k-reversible processes are related to the Min-
imum Conversion Set problem in such processes. This problem consists of
determining the cardinality of the minimum set of vertices that, if in state +1,
lead all vertices in the graph also to state +1 after a finite number of time steps.
It has been proved that this problem is NP-hard for k > 1 [6]. There are also
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several interesting results about this problem in the work by Dreyer [7], who also
presents some important results regarding the periodic behavior of k-reversible
processes, as well as upper bounds on the transient length that precedes peri-
odicity. Most of the results presented by Dreyer are based on reductions from
the so-called threshold processes, which are broadly studied by Goles and Olivos
[11, 10]. Another approach to study the transient and periodic behavior of k-
reversible processes is the use of a specific energy function that leads to a much
more intuitive proof of the maximum period length and also better bounds on
the transient length [15].

A problem that arises in synchronous dynamical systems on graphs is the
so-called Predecessor Existence problem, defined as follows. Given one
such dynamical system and a configuration of states, the question is whether
this configuration can be generated from another configuration in a single time
step using the system’s update rule. In the affirmative case, such configura-
tion is called a predecessor of the one that was given initially. This problem
was studied by Sutner [17] within the context of cellular automata, where con-
figurations lacking a predecessor configuration are known as garden-of-Eden
configurations, and was proved to be NP-complete for finite cellular automata.
NP-completeness results for related dynamical systems as well as polynomial-
time algorithms for some graph classes can also be found in the literature [3].
An extension of the Predecessor Existence problem is to count the number
of predecessor configurations. This is also a hard problem and has been proved
to be #P-complete [18].

For k-reversible processes, we address these two problems in this paper. We
are interested in determining whether a configuration Yt−1 exists for which Yt =
F k
G(Yt−1). Because only time steps t− 1 and t matter, for simplicity we denote

Yt−1 and Yt by Y ′ and Y , respectively. We henceforth denote this special case of
Predecessor Existence by Pre(k). We also consider the associated counting
problem, #Pre(k), which asks for the number of predecessor configurations.
Our results include an NP-completeness proof for the general case of k-reversible
processes and polynomial-time algorithms for some particular cases.

The remainder of the paper is organized as follows. In Section 2 we show
that Pre(1) is polynomial-time solvable. In Section 3 we provide an NP-
completeness proof of Pre(k) for k > 1. In Section 4 we describe two efficient
algorithms for trees, one for solving Pre(k) and the other for solving #Pre(k).
In Section 5 we show an efficient algorithm to solve Pre(2) for graphs with max-
imum degree no greater than 3. Section 6 contains our conclusions.

2 Polynomial-time solvability of Pre(1)

For k = 1, if Y ′ exists then any pair of neighbors u and v for which Y (u) = Y (v)
also has Y ′(u) = Y ′(v). Based on this observation, we start by partitioning G

into connected subgraphs that are maximal with respect to the property that
each of them contains only vertices whose states in Y are the same. Clearly, all
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vertices in the same subgraph must have equal states also in a predecessor of
Y . Let us call each of such maximal connected subgraphs an MCS.

Let H be an MCS in which a vertex v exists whose neighbors in G all have
the same state as its own. In other words, all of v’s neighbors are also in H .
For this vertex, clearly there is no possibility other than Y ′(v) = Y (v). Because
there is only one choice of state for v in a predecessor configuration, we call
both the vertex and its containing MCS locked. We refer to all other vertices
and MCSs as being unlocked (so there may exist unlocked vertices in a locked
MCS). We also say that any two MCSs are neighbors whenever they contain
vertices that are themselves neighbors.

Theorem 1. Pre(1) is solved affirmatively if and only if the following two

conditions hold:

• No two locked MCSs are neighbors;

• Every vertex in an unlocked MCS has at least one neighbor in another

unlocked MCS.

In this case, Y ′ is obtained from Y by changing the state of all vertices in

unlocked MCSs.

Proof. The case of a single (necessarily locked) MCS is trivial. If, on the other
hand, more than one MCS exists in G, then clearly the two conditions suffice for
Y ′ to exist and be as stated: in one time step from Y ′, the state of every vertex
in a locked MCS remains unchanged and that of every vertex in an unlocked
MCS changes, thus yielding Y .

It remains for necessity to be shown. We do this by noting that, should the
first condition fail and at least two locked MCSs be neighbors, any prospective
Y ′ would have to differ from Y in all vertices of each of these MCSs, but the
presence of locked vertices in them would make it impossible for Y to be obtained
in one time step. Should the second condition be the one to fail and at least
one vertex in an unlocked MCS have neighbors outside its MCS only in locked
MCSs, any prospective Y ′ would have to differ from Y in all vertices of such an
unlocked MCS. Once again it would be impossible to obtain Y in one time step
due to the locked vertices. It follows that both conditions are necessary for Y ′

to exist.

By Theorem 1, we can easily solve Pre(1) in O(n+m) time.

3 NP-completeness of Pre(k) for k > 1

We first note that the NP-completeness proof of Predecessor Existence for
finite cellular automata [17] cannot be directly extended to k-reversible processes
in graphs for k > 1. Sutner’s proof only shows that there exist finite cellular
automata for which Predecessor Existence is NP-complete. In other words,
it depends on the vertex update rule being used in the cellular automaton. A
different approach is then needed.
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We present a reduction from a satisfiability problem known as 3Sat Exact-
ly-Two. This problem is the variation of the 3Sat problem in which each clause
must be satisfied by exactly two positive literals. We start by proving that 3Sat
Exactly-Two is NP-complete.

Lemma 2. 3Sat Exactly-Two is NP-complete.

Proof. The problem is trivially in NP. We proceed with the reduction from an-
other variation of the 3Sat problem, known as 3Sat Exactly-One [8], which is
NP-complete and asks whether there exists an assignment of variables satisfying
each clause by exactly one positive literal.

The reduction is simple and consists of inverting all literals in all clauses
of an instance S of 3Sat Exactly-One, resulting in an instance S′ of 3Sat
Exactly-Two. It is easy to check that a solution for S directly gives a solution
for S′, and conversely, a solution for S′ directly gives a solution for S.

Theorem 3. Pre(k) is NP-complete for k > 1.

Proof. Given two configurations Y and Y ′, verifying whether Y ′ is a predecessor
configuration of Y is straightforward and can be done by simulating one step of
the k-reversible process starting with configuration Y ′. Simulating one step of
the process takes O(n+m) time and the final comparison between the resulting
configuration and Y takes O(n) time; thus, Pre(k) is in NP. The remainder
of the proof is a reduction from 3Sat Exactly-Two, which by Lemma 2 is
NP-complete.

Let S be an arbitrary instance of 3Sat Exactly-Two with the M clauses
c1, c2, . . . , cM and the N variables x1, x2, . . . , xN . We construct an instance
(G, Y ) of Pre(k) from S as follows.

Vertex set V (G) is the union of:

• {xi,¬xi}, for each variable xi in S;

• {zi, z′i}, for each variable xi in S;

• {ui,1, . . . , ui,2k−3}, for each variable xi in S;

• {pi,1, . . . , pi,2k−3}, for each variable xi in S;

• {wi,1, . . . , wi,k−2}, for each variable xi in S, provided k > 2;

• {w′
i,1, . . . , w

′
i,k−2}, for each variable xi in S, provided k > 2;

• {ci, c′i}, for each clause ci in S;

• {bi,1, . . . , bi,k−2}, for each clause ci in S, provided k > 2;

• {b′i,1, . . . , b
′
i,k−1}, for each clause ci in S.
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Vertices xi and ¬xi are called literal vertices and vertices ci and c′i are called
clause vertices. If x is a neighbor of u and x is a literal vertex, then we say that
x is a literal neighbor of u. Similarly, if x is a neighbor of u and x is a clause
vertex, then x is a clause neighbor of u.

Edge set E(G) is the union of:

• {(xi, zi), (xi, z
′
i), (¬xi, zi), (¬xi, z

′
i)}, for each variable xi in S;

• {(xi, ui,1), . . . , (xi, ui,2k−3)}, for each variable xi in S;

• {(¬xi, pi,1), . . . , (¬xi, pi,2k−3)}, for each variable xi in S;

• {(zi, wi,1), . . . , (zi, wi,k−2)}, for each variable xi in S, provided k > 2;

• {(z′i, w
′
i,1), . . . , (z

′
i, w

′
i,k−2)}, for each variable xi in S, provided k > 2;

• {(c′j , b
′
j,1), . . . , (c

′
j , b

′
j,k−1)}, for each clause cj in S;

• {(cj , bj,1), . . . , (cj , bj,k−2)}, for each clause cj in S, provided k > 2;

• {(cj , xi), (c
′
j , xi)}, for each literal xi occurring in clause cj ;

• {(cj ,¬xi), (c
′
j ,¬xi)}, for each literal ¬xi occurring in clause cj .

We finish the construction by defining the target configuration Y :

• Y (xi) = Y (¬xi) = +1, for 1 ≤ i ≤ N ;

• Y (zi) = +1, Y (z′i) = −1, for 1 ≤ i ≤ N ;

• Y (ui,j) = Y (pi,j) = +1, for 1 ≤ i ≤ N and 1 ≤ j ≤ k − 1;

• Y (ui,j) = Y (pi,j) = −1, for 1 ≤ i ≤ N and k ≤ j ≤ 2k − 3, provided
k > 2;

• Y (wi,j) = −1, Y (w′
i,j) = +1, for 1 ≤ i ≤ N and 1 ≤ j ≤ k − 2, provided

k > 2;

• Y (ci) = +1, Y (c′i) = −1, for 1 ≤ i ≤M ;

• Y (bi,j) = −1, for 1 ≤ i ≤M and 1 ≤ j ≤ k − 2, provided k > 2;

• Y (b′i,j) = −1, for 1 ≤ i ≤M and 1 ≤ j ≤ k − 1, provided k > 2.

Figure 1 illustrates the case of k = 3, M = 1, and N = 3, the single clause
being c1 = x1 ∨ ¬x2 ∨ ¬x3.

For each variable in S, at most 6k−6 vertices are created, and for each clause
at most 2k−1 vertices, resulting in at most n = N(6k−6)+M(2k−1) vertices.
Likewise, the total number of edges is at most m = N(6k − 6) + M(2k + 3).
Since k is a constant, we have a polynomial-time reduction.

We proceed by showing that if S is satisfiable then Y has at least one pre-
decessor configuration. In fact, given any satisfying truth assignment for S, we
can construct a predecessor configuration Y ′ of Y in the following manner:
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x1 ¬x1 x2 ¬x2 x3 ¬x3

c1 c′1

b′1,1 b′1,2b1,1

u1,1

u1,2

u1,3

p1,1

p1,2

p1,3

u2,1

u2,2

u2,3

p2,1

p2,2

p2,3

u3,1

u3,2

u3,3

p3,1

p3,2

p3,3

z1 z′1 z2 z′2 z3 z′3

w1,1 w2,1 w3,1w′
1,1 w′

2,1 w′
3,1

Figure 1: Graph G in the instance of Pre(3) having M = 1 and N = 3 for
which c1 = x1 ∨¬x2 ∨¬x3. Shaded circles indicate state +1 in configuration Y ;
empty circles indicate state −1.

• Y ′(xi) = +1, if variable xi is true in the given assignment;

• Y ′(xi) = −1, if variable xi is false in the given assignment;

• Y ′(¬xi) = −Y ′(xi);

• Y ′(zi) = +1, Y ′(z′i) = −1, for 1 ≤ i ≤ N ;

• Y ′(ui,j) = Y ′(pi,j) = +1, for 1 ≤ i ≤ N and 1 ≤ j ≤ k − 1;

• Y ′(ui,j) = Y ′(pi,j) = −1, for 1 ≤ i ≤ N and k ≤ j ≤ 2k − 3;

• Y ′(wi,j) = −1, Y ′(w′
i,j) = +1, for 1 ≤ i ≤ N and 1 ≤ j ≤ k − 2, provided

k > 2;

• Y ′(ci) = Y ′(c′i) = +1, for 1 ≤ i ≤M ;

• Y ′(bi,j) = −1, for 1 ≤ i ≤M and 1 ≤ j ≤ k − 2, provided k > 2;

• Y ′(b′i,j) = −1, for 1 ≤ i ≤M and 1 ≤ j ≤ k − 1.
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Figure 2 shows predecessor configuration Y ′ for the Y given in Figure 1.
As an example, we have let all of x1, ¬x2, and x3 be true in the satisfying
assignment.

By construction, and considering configuration Y ′ as described above, each
vertex xi or ¬xi has at least k neighbors in state +1 in Y ′ and exactly k − 1
neighbors in state −1. This condition is sufficient to guarantee that every literal
vertex reaches state +1 in one time step, regardless of its state in configuration
Y ′.

Each of vertices ui,j , pi,j , wi,j , w
′
i,j , bi,j , and b′i,j has only one neighbor, and

will obviously keep its state in the next configuration. Each of vertices zi and
z′i has at most k − 1 neighbors in the opposite state, since vertices xi and ¬xi

have mutually opposite states. So zi and z′i remain unchanged as well.
In order for configuration Y to be obtained after one time step, in configura-

tion Y ′ no vertex ci can have more than one literal neighbor in state −1, which
would lead to state −1 for ci in the next configuration. Since S is satisfiable,
there are exactly two positive literals for each clause in S, and by construction of
Y ′, each vertex ci has exactly one literal neighbor in state −1. Similarly, every
vertex c′i needs at least one literal neighbor in state −1, and as the construction
guarantees, c′i has exactly one literal neighbor in state −1.

Hence, given the configuration Y ′ as constructed, we see that the next con-
figuration is precisely configuration Y . We then conclude that whenever S is
satisfiable, Y has at least one predecessor configuration.

Conversely, we now show that if Y has at least one predecessor configuration
then S is satisfiable.

In any predecessor configuration of Y , vertices ui,j, pi,j , wi,j , w
′
i,j , bi,j , and

b′i,j should all be in the same states as in configuration Y , since they all have
only one neighbor each.

Vertices zi and z′i should also have the same states as in configuration Y

in any predecessor configuration. For suppose that, in a predecessor configura-
tion, zi is in state −1; then necessarily xi and ¬xi should be in state +1, and
consequently vertex z′i would reach state +1 in the next configuration, which
is different from its state in configuration Y . An analogous argument holds for
vertex z′i. This condition also forces xi to have a state different than ¬xi in any
predecessor configuration of Y , since if both have the same state then in the
next configuration zi and z′i will also have the same state.

Each vertex ci must have state +1 in a predecessor configuration of Y , other-
wise every literal neighbor of ci would need to have state −1 in the predecessor
configuration and consequently vertex ci would not change to state +1, which is
its state in Y . Also, it must be the case that at least two of the literal neighbors
of ci have state +1, otherwise ci would have state −1 in the next configuration,
thus not matching configuration Y .

Each vertex c′i has the same literal neighbors as vertex ci. As we know that
some of these neighbors have state +1 in a predecessor configuration, c′i must
have state +1, otherwise all of these neighbors would need to have state −1
in the predecessor configuration, contradicting the fact that some of them have
state +1. Along with the restriction imposed by ci, we have that exactly two
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x1 ¬x1 x2 ¬x2 x3 ¬x3

c1 c′1

b′1,1 b′1,2b1,1

u1,1

u1,2

u1,3

p1,1

p1,2

p1,3

u2,1

u2,2

u2,3

p2,1

p2,2

p2,3

u3,1

u3,2

u3,3

p3,1

p3,2

p3,3

z1 z′1 z2 z′2 z3 z′3

w1,1 w2,1 w3,1w′
1,1 w′

2,1 w′
3,1

Figure 2: Predecessor configuration Y ′ for the G and Y of Figure 1 when all of
x1,¬x2 and x3 are true. Shaded circles indicate state +1 in Y ′; empty circles
indicate state −1.

of the three literal vertices associated with clause ci must have state +1 in a
predecessor configuration.

Hence, given any predecessor configuration of Y , we can associate with any
literal the value true if its vertex has state +1, and value false otherwise. The
construction guarantees that this will satisfy every clause with exactly two pos-
itive literals and that no opposite literals will have the same assignment.

We conclude that if Y has a predecessor configuration then S is satisfiable.

Corollary 4. Pre(k) on bipartite graphs is NP-complete for k > 1.

Proof. The graph constructed in the proof of Theorem 3 is bipartite for the
node sets

⋃

i,j{xi,¬xi, bi,j , b
′
i,j, wi,j , w

′
i,j} and

⋃

i,j{ci, c
′
i, ui,j , pi,j, zi, z

′
i}.
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4 Polynomial-time algorithms for trees

In this section, we consider a tree T rooted at an arbitrary vertex called root .
For each vertex v in T , parentv denotes the parent of v, and childrenv denotes
the set of children of v. A subtree of T will be denoted by Tu, where u is the
root of the subtree.

It will be helpful to adopt a notation for a configuration of a subtree of T .
Denote by Yv,t = (Yt(w1), Yt(w2), . . . , Yt(w|Tv |)) the configuration of states of
the vertices in subtree Tv at time t, where each wi is one of the |Tv| vertices of
Tv. Notice that Yv,t is a subsequence of Yt and its purpose is to refer to states
of vertices in subtree Tv only; thus, if v = root , Yv,t = Yt.

The one-step dynamics in a k-reversible process in subtree Tv can be de-
scribed using the function F k

G,v : Q|Tv| → Q|Tv| such that

Yv,t = F k
G,v(Yv,t−1) = (Yt(w1), Yt(w2), . . . , Yt(w|Tv |)). (2)

As in Section 1, we omit, for simplicity, the subscript referring to time, using
notation Y ′ to refer to the configuration at time t − 1 and Y to refer to the
configuration at time t. Hence, Yv = Yv,t and Y ′

v = Yv,t−1.
So long as we take into account the influence of parentv on the dynamics

of Tv, then it is easy to see that the following holds. If a configuration Y ′

exists for which Y = F k
G(Y

′), then we have Yv = F k
G,v(Y

′
v) as well. That is, the

subsequence of Y ′ that corresponds to Tv is a predecessor configuration of the
subsequence of Y that corresponds to Tv.

Section 4.1 presents an algorithm that solves Pre(k) in polynomial time for
any k when the graph is a tree. Section 4.2 presents an algorithm that solves
the associated counting problem #Pre(k), also in polynomial time, for any k

when the graph is a tree.

4.1 Polynomial-time algorithm for Pre(k)

We start by defining the function vstate(target , current, p, k) that determines
whether a vertex in state current can reach state target in one time step assum-
ing that it has p neighbors in the state different than current in a k-reversible
process. This is a simple Boolean function that only checks whether a given
state transition is possible. It can be calculated in O(1) time, since

vstate(target , current , p, k) =







false , if current = target and p ≥ k,

or current 6= target and p < k;
true, otherwise.

(3)

The algorithm tries to build a predecessor configuration Y ′ of Y by determin-
ing possible configurations for its subtrees and testing states on vertices. Sup-
pose we traverse the tree in a top-down fashion attaching states to each vertex
we visit. Let v be the vertex of T that the algorithm is visiting. Suppose that for
parentv the algorithm attached state c. We define the function fstate(v, c) that
returns the state that v must have in a configuration Y ′

v such that F (Y ′
v) = Yv

10



or returns∞ if there is no such configuration Y ′
v when Y ′(parentv) = c. If both

states are possible for v, the function simply returns Y (parentv) or +1 when v

is the root.
We assume that function fstate will be called with parameters v and 0 when

v is the root of the tree. Hence, fstate(root , 0) is simply the state that root must
have in a predecessor configuration of Y . If fstate(root , 0) is different than ∞,
configuration Y has a predecessor configuration; otherwise, it does not.

Given the function fstate(v, c) one can easily test whether the state c at-
tached during the algorithm is possible or not in a predecessor configuration of
Y . When visiting vertex parentv, the algorithm calls the function fstate(w, c)
for each child w of parentv, and then by using function vstate it decides whether
a transition is possible from state c to state Y (parentv).

Notice that when it is possible for both states to be returned by fstate(v, c),
we define the function to return state Y (parentv). This choice is always correct
in this case, since it is not important for the state to be actually assigned to
parentv in the predecessor configuration. What it does is to increase the number
of neighbors that can help parentv to reach state Y (parentv) in the next time
step. We maximize the number of neighbors in state Y (parentv), and if this
maximum number is not enough to make parentv reach state Y (parentv), then
a lower number of neighbors would certainly not be either.

Now, the problem is to calculate fstate(root , 0) in a correct and efficient way.
Assume that for each child f of v the values of fstate(f,+1) and fstate(f,−1)
are correctly calculated. In other words, we know the states of every child of v
when v has state +1 or state −1 in a predecessor configuration. Let l be the
number of children of v with state other than the Y ′(v) calculated by the fstate

function. As we set the state of parentv we can update l if parentv also has a
state different than Y ′(v), meaning that l represents the number of vertices in
a state different than v in the configuration we are trying to construct. Then
we can verify vstate(Y (v), st, l, k) to check whether st is a valid state for v in a
predecessor configuration Y ′ such that F k

G,v(Y
′
v) = Yv.

An important observation to have in mind is that, for the case in which there
is at least one child f of v that does not have a possible state (which means
that fstate(f, st) = ∞), then the state st is not valid for v.

Given that we already know all the valid states for v when Y ′(parentv) = c,
function fstate can be calculated like this:

fstate(v, c) =















Y (parentv), if both states are valid for v;
+1, if only state +1 is valid for v;
−1, if only state −1 is valid for v;
∞, otherwise.

(4)

Since we already know which the valid states are, fstate(v, c) is easily deter-
mined in O(1) time. To check whether a given state is valid or not we simply
need to count the number of neighbors with state opposite to the one being
checked using function fstate, and then call function vstate to verify whether
the state is valid. This can be done in O(d(v)) time.
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It is possible to calculate fstate for all vertices in T using a recursive al-
gorithm similar to depth-first search. The algorithm, when visiting vertex v

with parentv in state c, recursively calculates fstate(f,+1) and fstate(f,−1) for
each child f of v, and once the algorithm returns from the recursion, all values
needed to calculate fstate(v, c) are available. Hence, we simply need to calculate
fstate(root , 0) recursively and check whether the returned value is ∞ or not.

This is what Algorithm 1 does. The algorithm maintains a table fstate that
contains all the function values. This table is initialized with the null value for
all vertices and states.

For each vertex v, the algorithm tries to assign state Y (parentv), and in case
this is a valid state, this value is stored in the table and returned. Otherwise,
the algorithm tries to assign the opposite state to Y (parentv) and does assign
it in case it is a valid state. If none of the states is valid then the algorithm
stores ∞ in the table and returns. Notice that when the algorithm accesses a
position in the table it increments the c value by 1, so it does not try to access
a negative position when c has value −1. Table handling is very important to
make the algorithm run in polynomial time. Without verification in line 2, it
would be a simple backtracking algorithm with time complexity O(2n). We can
verify this by analyzing the case in which T is the graph Pn containing a single
path with n vertices and k = 2. Let H(n) be the worst-case time complexity of
the algorithm in this case, without using the table. Suppose we choose the root
to be one of the vertices with degree 1. H(n) is easily verified to be

H(n) = 2H(n− 1) +O(1), (5)

considering that the algorithm tries both states for each vertex, which happens
when the given input configuration does not have a predecessor configuration.
Additionally, the structure of Pn allows us to calculate the number of steps as
a function of the number of steps to solve the problem on the subtree Pn−1.
By solving the above recurrence relation from H(1) = O(1) we obtain H(n) =
O(2n). Using the table amounts to employing memoization [4] to avoid the
exponential running time.

Suppose that the last function call is calcfstate(v, c) and that this is the
first time the function is called with these parameters. In the worst case, the
algorithm calls calcfstate(f,+1) and calcfstate(f,−1) for each child f of v and
calculates fstate[v, c+1]. For each child f of v, the algorithm makes two visits,
and any other call to calcfstate(v, c) will not result in any other visit to v’s
children since the algorithm returns fstate[v, c+1] in line 3. When the algorithm
calls calcfstate(v,−c), again in the worst case it will call calcfstate(f,+1) and
calcfstate(f,−1) for each child f of v, incrementing to four the number of visits
to each child of v. After this call to calcfstate(v,−c), any other visit to vertex
v will not produce any other visit to any child of v since both fstate(v, c) and
fstate(v,−c) will be stored in the table and the algorithm will return in line
3. We conclude that each vertex will be visited at most four times. We also
conclude that each edge will be traversed at most four times, twice for each state
being tested. Thus, the time complexity of Algorithm 1 is O(n + m). Using
m = n− 1 yields a time complexity of O(n).
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Algorithm 1: calcfstate(v, c)

1 begin

2 if fstate[v, c+ 1] 6= NIL then

3 return fstate[v, c+ 1];

4 count ← 0;
5 state ← Y (parentv);
6 while count 6= 2 do

7 count ← count + 1;
8 l← 0;
9 ret ← true;

10 if c = −state then

11 l← l + 1;

12 foreach f ∈ childrenv do

13 if calcfstate(f, state) = −state then

14 l← l + 1;

15 if calcfstate(f, state) =∞ then

16 ret ← false ;

17 if vstate(Y (v), state, l, k) = true and ret 6= false then

18 fstate[v, c+ 1]← state;
19 return state;

20 state ← −state;

21 fstate[v, c+ 1]←∞;
22 return ∞;
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Algorithm 2: buildstate(v, c)

1 begin

2 y[v] = fstate[v, c+ 1];
3 foreach f ∈ childrenv do

4 buildstate(f, y[v]);

Algorithm 2 implements the recursive idea to recover a predecessor config-
uration Y ′ once we know that one exists. It traverses the tree accessing values
in table fstate according to the vertex being visited and to the state assigned
to its parent. Once a state is assigned to a vertex, the algorithm looks at the
table to check the only option of recursive call to make. Algorithm 2 traverses
the tree exactly once, assigning states; thus, its time complexity is O(n).

4.2 Polynomial-time algorithm for #Pre(k)

Suppose a class of trees constructed in the following manner:

• A vertex v1 connected to p > 1 vetices v2, v3, . . . , vp+1;

• Each vertex vi, with 2 ≤ i ≤ p + 1, connected to two other vertices,
denoted by di−1 and ei−1.

Each tree in this class has 3p+1 vertices. Assume a 2-reversible process and
a configuration Y in which all states are +1. In this case, any configuration in
which vertex v1 has state −1 and at least two vertices out of v2, v3, . . . , vp+1

have state +1 is a predecessor configuration of Y . Notice that all vertices di
and ei must have state +1 in a predecessor configuration of Y , since they have
degree 1. A lower bound on the number of predecessor configurations of Y for
this class of trees is given by

p
∑

i=2

(

p

i

)

= 2p − p− 1. (6)

Figure 3 illustrates the construction of a tree in this class for p = 3 and the
respective configuration Y . We also illustrate some of the possible predecessor
configurations for a 2-reversible process.

Given this lower bound on the number of predecessor configurations, it turns
out that modifying the previous algorithm in order to store all possible prede-
cessor configurations and then reconstruct them is an exponential-time task.
However, solving the associated counting problem can be done in time O(n2)
for every k.

In order to do this, we use a function similar to fstate. However, a more
robust function must be used, one that will contain not only the state that a
vertex must have in a predecessor configuration, but also the number of prede-
cessor configurations of the subtree for the cases in which the vertex has states
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Figure 3: Configuration Y with a possibly exponential number of predecessor
configurations. Shaded circles indicate state +1; empty circles indicate state
−1. (a) Configuration Y ; (b) Predecessor configuration Y ′; (c) Predecessor
configuration Y ′′.

+1 and −1. We define the function cfstate(v, c) as an ordered pair whose first
element is the number of predecessor configurations of subtree Tv when parentv
has state c and v has state +1, the second element being the number of pre-
decessor configurations of subtree Tv when parentv has state c and v has state
−1.

Similarly to function fstate, when v is the root of the tree, function cfstate is
called with parameters v and 0. Thus, the total number of predecessor configu-
rations of subtree Tv, when parentv has state c, is the sum of the two elements
in the ordered pair cfstate(v, c), and in case v is the root, the sum of the two
elements in the ordered pair cfstate(v, 0).

The natural way to calculate cfstate(v, c) is quite simple. Without loss of
generality, suppose that we are calculating the first element of pair cfstate(v, c)
and that, in this case, at least l children of v must have an arbitrary state
st in a predecessor configuration. For simplicity, the first element in the pair
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cfstate(v, c) will be denoted by cfstate(v, c)+1, whereas the second element will
be denoted by cfstate(v, c)−1. Then

cfstate(v, c)+1 =
∑

X∈Cl
v

calc(X, st), (7)

where Cl
v is the set of all subsets of children of v with at least l elements and

calc(X, st) =







1, if X = ∅;
∏

f∈X

cfstate(f,+1)st
∏

f∈V (G)\X

cfstate(f,+1)−st
, otherwise.

(8)
In other words, we simply test all possibilities of state assignment to all

children of v such that at least l of them have state +1. For each one of
these possibilities we calculate the total number of predecessor configurations,
multiplying the number of predecessor configurations for each subtree. The
value cfstate(v, c)+1 is the sum obtained in each possibility.

Notice that it is possible to calculate cfstate(v, c)−1 likewise, again assuming
that in each predecessor configuration at least l children of v have state st . We
just need to redefine calc(X, st) to be

calc(X, st) =







1, if X = ∅;
∏

f∈X

cfstate(f,−1)st
∏

f∈V (G)\X

cfstate(f,−1)−st
, otherwise.

(9)
A point to note in this approach is that the total number of configurations

to iterate through is O(2d(v)−1). For example, for l = 1,

|C1
v | =

d(v)−1
∑

i=1

(

d(v) − 1

i

)

= 2d(v)−1 − 1. (10)

We can, however, use dynamic programming [4] to calculate cfstate(v, c) in
polynomial time without needing to iterate through all possible configurations.

Assume that the children of v are ordered as in childv,0, . . . , childv,d(v)−2,
where v is an internal vertex of the tree. If v is the root, the order is: childv,0, . . . ,

childv,d(v)−1. For simplicity, denote the number of children of v by d′(v).
Define the function grtv (i, j) as the total number of predecessor configurations

for subtree Tv in which v has state rt and, moreover, exactly j of the vertices
childv,0, child v,1, . . . , child v,i−1 have state +1. Similarly, define hrt

v (i, j) as the
total number of predecessor configurations for subtree Tv in which v has state
rt and, moreover, exactly j of the vertices childv,0, childv,1, . . . , childv,i−1 have
state −1. Then we can calculate cfstate(v, c)rt in the following way.

If at least l children of v are required to have state +1 in a predecessor
configuration of Tv, then

cfstate(v, c)rt =

d′(v)
∑

i=l

grtv (d′(v), i), (11)
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where grtv (i, j) is defined recursively, as in

grtv (i, j) =















0, if i = 0 and j > 0;
1, if i = 0 and j = 0;

grtv (i − 1, j)ai + grtv (i− 1, j − 1)bi, if i > 0 and j > 0;
grtv (i − 1, j)ai, if i > 0 and j = 0,

(12)

with ai = cfstate(childv,i, rt)−1 and bi = cfstate(child v,i, rt)+1.
If, instead, at least l children of v are required to have state −1 in a prede-

cessor configuration of Tv, then

cfstate(v, c)rt =

d′(v)
∑

i=l

hrt

v (d′(v), i), (13)

where hrt
v (i, j) is such that

hrt

v (i, j) =















0, if i = 0 and j > 0;
1, if i = 0 and j = 0;

hrt
v (i− 1, j)bi + hrt

v (i − 1, j − 1)ai, if i > 0 and j > 0;
hrt
v (i − 1, j)bi, if i > 0 and j = 0.

(14)

As given above, the calculation of grtv (i, j) involves four cases that depend on
both state possibilities for vertex child v,i−1. They are the following (the cases
for hrt

v (i, j) are analogous):

• i = 0 and j > 0: In this case there is no vertex to be considered and
there should exist j > 0 vertices in state +1. Hence, no predecessor
configuration exists.

• i = 0 and j = 0: This is the only case in which a predecessor configuration
exists with i = 0, since there is no need to have a vertex in state +1. Hence,
there exists exactly one predecessor configuration.

• i > 0 and j > 0: In this case we add the number of predecessor configu-
rations for the first i subtrees, considering that vertex childv,i−1 has state
+1, to the total number of predecessor configurations when this vertex
has state −1. Notice that if we assume that childv,i−1 has state +1, then
exactly j−1 of vertices child v,0, . . . , child v,i−2 must have state +1 as well.
Otherwise, if we assume child v,i−1 to have state −1, then j of the first
i− 1 children of v must have state +1.

• i > 0 and j = 0: In this case none of vertices childv,0, . . . , childv,i−1 is
required to have state +1. We calculate the total number of predecessor
configurations of the subtrees rooted at vertices childv,0, . . . , childv,i−2

with all of them having state −1, which is given by grtv (i − 1, j), and
multiply it by the total number of predecessor configurations of sub-
tree Tchildv,i−1

with vertex childv,i−1 having state −1, which is given by
cfstate(child v,i−1, rt)−1.
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Algorithm 3: countfstate(v, c)

1 begin

2 if cfstate[v , c + 1 ] 6= NIL then

3 return cfstate [v, c+ 1];

4 d′(v)← d(v)− 2;
5 if v = root then

6 d′(v)← d(v)− 1;

7 count ← 0; state ← +1;
8 while count 6= 2 do

9 i← 0; count ← count + 1;
10 foreach f ∈ parent

v
do

11 par [i]← countfstate(f, state); i← i+ 1;

12 l← thresholdv(state , c, k);
13 if v = root then

14 l← threshold v(state ,∞, k);

15 tab[0, 0]← 1;
16 for i← 1 to d′(v) do

17 tab[0, j]← 0;

18 for i← 1 to d′(v) do

19 for j ← 0 to d′(v) do

20 if Y (v) = +1 then

21 tab[i, j]← tab[i− 1, j]par [i]−;

22 if j > 0 then

23 tab[i, j]← tab[i, j] + tab[i− 1, j − 1]par [i]+;

24 else

25 tab[i, j]← tab[i− 1, j]par [i]+;

26 if j > 0 then

27 tab[i, j]← tab[i, j] + tab[i− 1, j − 1]par [i]−;

28 cfstate [v, c+ 1]state ←
∑

d
′(v)

i=l
tab[d′(v), i];

29 state ← −state ;

30 return cfstate [v, c+ 1];
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Applying the recursion directly results in an algorithm whose number of
operations grows very fast. Thus, once again we resort to dynamic programming
to calculate grtv and hrt

v .
Algorithm 3 implements the recursive scheme given above. Similarly to

Algorithm 1, we keep cfstate values in a table to avoid exponential times. The
algorithm does not use the functions grtv and hrt

v explicitly, but instead a table
tab for checking the value of Y (v) to decide which multiplication to perform in
lines 23 and 27. We use grtv if Y (v) = +1 and hrt

v if Y (v) = −1. Suppose that
Y (v) = +1. If in a predecessor configuration of Y vertex v has state −1, then,
depending on the state of parentv, vertex v will need k or k − 1 children with
state +1 in that configuration. If v has state +1 in the predecessor configuration,
then, depending on the state of parentv, vertex v will need d(v)−k+1 or d(v)−k
children with state +1. The analysis for the case of Y (v) = −1 is analogous.

Besides choosing which function to use, we also need to calculate the value of
l. Given a vertex v and that parentv has state c in the predecessor configuration,
we define the function thresholdv(current , c, k) as the least number of children of
v in state Y (v) in the predecessor configuration such that in the next step v has
state Y (v), assuming that v has state current in the predecessor configuration.
Thus,

thresholdv(current , c, k) =















































min{d(v)− k + 1, 0}, if Y (v) = current

and c 6= Y (v);
min{d(v)− k, 0}, if Y (v) = current

and c = Y (v);
k, if Y (v) 6= current

and c 6= Y (v);
k − 1, if Y (v) 6= current

and c = Y (v).

(15)

The time spent for each vertex v in the double loop of line 18 is O(d′(v)2).
Summing up over all vertices we get an O(n2) time complexity.

5 Polynomial-time algorithm for Pre(2)
on graphs with maximum degree no greater

than 3

In this section, we show that Pre(2) is in P when ∆(G) ≤ 3, where ∆(G) is the
maximum degree in G. Hence, this result covers the case of cubic graphs.

We show how to reduce the problem to 2Sat, solvable in O(N+M) time; as
before, N is the number of variables and M is the number of clauses [2]. That
is, given a configuration Y we want to create a 2Sat instance S such that S is
satisfiable if and only if Y has a predecessor configuration.

We start creating S by adding literals xv and ¬xv for each vertex v in the
graph. We will construct the clauses of S in such a way that whenever Y has a
predecessor configuration Y ′, S is satisfied by letting each xv with Y ′(v) = +1 be
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true and each xv with Y ′(v) = −1 be false. Similarly, from any satisfying truth
assignment for S we construct a predecessor configuration of Y by assigning
state +1 to v whenever xv is true and assigning state −1 whenever xv is false.
Because ∆(G) ≤ 3, we can construct a set of clauses in the following way.

For each vertex v such that Y (v) = +1:

• If d(v) = 1: In the predecessor configuration Y ′, v must have the same
state as in configuration Y , since the process is 2-reversible. Thus, we add
the clause:

◦ xv.

Clearly, this clause is satisfied whenever Y has a predecessor configuration.

• If d(v) = 2 with neighbors u and w: If in the predecessor configuration Y ′

vertex v has state +1, then in Y ′ at least one of its neighbors must also
have state +1. If in the predecessor configuration Y ′ vertex v has state
−1, then both its neighbors must have state +1. We can encode these
conditions by adding the following clauses:

◦ ¬xv → xu ≡ xv ∨ xu;

◦ ¬xv → xw ≡ xv ∨ xw ;

◦ xv → xu ∨ xw ≡ ¬xv ∨ xu ∨ xw.

Analyzing these three clauses reveals that when xv is true then xu or xw is
also true in order to make all three clauses satisfiable. In case xv is false,
we force xu and xw to have value true. We simplify the clauses as follows:

◦ xv ∨ xu;

◦ xv ∨ xw;

◦ xu ∨ xw.

• If d(v) = 3 with neighbors u, w, and z: If in the predecessor configuration
Y ′ vertex v has state +1, then at least two of its neighbors must have
state +1 in Y ′. If in Y ′ vertex v has state −1, then again at least two of
its neighbors must have state +1 in Y ′. Therefore, we add the following
clauses:

◦ ¬xv → xu ∨ xw ≡ xv ∨ xu ∨ xw;

◦ ¬xv → xu ∨ xz ≡ xv ∨ xu ∨ xz ;

◦ ¬xv → xw ∨ xz ≡ xv ∨ xw ∨ xz;

◦ xv → xu ∨ xw ≡ ¬xv ∨ xu ∨ xw;

◦ xv → xu ∨ xz ≡ ¬xv ∨ xu ∨ xz ;

◦ xv → xw ∨ xz ≡ ¬xv ∨ xw ∨ xz.

As the value assigned to xv is not important in this subset of clauses, we
can easily simplify them:
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◦ xu ∨ xw;

◦ xu ∨ xz ;

◦ xw ∨ xz .

For each vertex v such that Y (v) = −1, the cases are analogous:

• If d(v) = 1, create the clause:

◦ ¬xv.

• If d(v) = 2 with neighbors u and w, create the clauses:

◦ ¬xv ∨ ¬xu;

◦ ¬xv ∨ ¬xw ;

◦ ¬xu ∨ ¬xw .

• If d(v) = 3 with neighbors u, w, and z, create the clauses:

◦ ¬xu ∨ ¬xw ;

◦ ¬xu ∨ ¬xz ;

◦ ¬xw ∨ ¬xz .

We have constructed the set of clauses for S in such a way that it is directly
satisfiable if Y has at least one predecessor configuration. It now remains for us
to argue that the configuration Y ′ obtained from a satisfying truth assignment
as explained above is indeed a predecessor of Y .

Suppose, to the contrary, that such a Y ′ is not a predecessor of Y . In other
words, at least one vertex v exists that does not reach state Y (v) within one
time step. Analyzing the case of Y (v) = +1 we have the following possibilities:

• Y ′(v) = +1: In order to force v to change its state v must have at least
two neighbors in state −1. Hence, v is necessarily a vertex with degree at
least 2.

If d(v) = 2, then both neighbors of v have state −1 and we have clause
xu ∨ xw not satisfied, which is a contradiction.

If d(v) = 3, then in a similar way there is an unsatisfied clause.

• Y ′(v) = −1: In order to force v to remain in state −1 in the next time
step, there must be at most one neighbor in state +1. Notice that we
must have d(v) 6= 1, since Y (v) = +1, and then the satisfied clause xv

forces Y ′(v) = +1.

If d(v) = 2 with neighbors u and w, then at least one of these two vertices
must have state −1; hence v does not change its state to +1, but this
implies that one of the clauses xv ∨ xw or xv ∨ xu it not satisfied.

If d(v) = 3, then since we have clauses with two literals involving all the
three neighbors of v, at least one of them is not satisfied.
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The case of Y (v) = −1 is analogous. We conclude that if S is satisfiable
then configuration Y ′ is a predecessor configuration of Y .

To summarize, given a graph with n vertices, we create n variables and in
the worst case 3n clauses. Each clause has at most two literals. Thus, S is
indeed a 2Sat instance and we can solve Pre(2) in O(n) time when ∆(G) ≤ 3.

6 Conclusions

In this paper we have dealt with Pre(k) and #Pre(k), our denominations
for the Predecessor Existence problem and its counting variation for k-
reversible processes. We have shown that Pre(1) is solvable in polynomial
time, that Pre(k) is NP-complete for k > 1 even for bipartite graphs, and that
it can be solved in polynomial time for trees. For trees we have also shown
that #Pre(k) is polynomial-time solvable. We have also demonstrated the
polynomial-time solvability of Pre(2) if ∆(G) ≤ 3.

We identify two problems worth investigating:

• Identify other cases in which Pre(k) can be solved in polynomial time.

• Study the complexity properties of #Pre(2) for ∆(G) ≤ 3.
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