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Abstract. In this work we investigate the complexity of some problems related
to the Simultaneous Embedding with Fixed Edges (SEFE) of k planar graphs and
the PARTITIONED k-PAGE BOOK EMBEDDING (PBE-k) problems, which are
known to be equivalent under certain conditions.
While the computational complexity of SEFE for k = 2 is still a central open
question in Graph Drawing, the problem is NP-complete for k ≥ 3 [Gassner et
al., WG ’06], even if the intersection graph is the same for each pair of graphs
(sunflower intersection) [Schaefer, JGAA (2013)].
We improve on these results by proving that SEFE with k ≥ 3 and sunflower
intersection is NP-complete even when the intersection graph is a tree and all
the input graphs are biconnected. Also, we prove NP-completeness for k ≥ 3
of problem PBE-k and of problem PARTITIONED T-COHERENT k-PAGE BOOK

EMBEDDING (PTBE-k) - that is the generalization of PBE-k in which the order-
ing of the vertices on the spine is constrained by a tree T - even when two input
graphs are biconnected. Further, we provide a linear-time algorithm for PTBE-
k when k − 1 pages are assigned a connected graph. Finally, we prove that the
problem of maximizing the number of edges that are drawn the same in a SEFE
of two graphs isNP-complete in several restricted settings (optimization version
of SEFE, Open Problem 9, Chapter 11 of the Handbook of Graph Drawing and
Visualization).

1 Introduction
Let G1, . . . , Gk be k graphs on the same set V of vertices. A simultaneous embedding
with fixed edges (SEFE) of G1, . . . , Gk consists of k planar drawings Γ1, . . . , Γk of
G1, . . . , Gk, respectively, such that each vertex v ∈ V is mapped to the same point in
every drawing Γi and each edge that is common to more than one graph is represented
by the same simple curve in the drawings of all such graphs. The SEFE problem is the
problem of testing whether k input graphs G1, . . . , Gk admit a SEFE [14].

The possibility of drawing together a set of graphs gives the opportunity to represent
at the same time a set of different binary relationships among the same objects, hence
making this topic an fundamental tool in Information Visualization [15]. Motivated by
such applications and by their theoretical appealing, simultaneous graph embeddings
received wide research attention in the last few years. For an up-to-date survey, see [6].

Recently, a new major milestone to assert the importance of SEFE has been pro-
vided by Schaefer [28], who discussed its relationships with some other famous prob-
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lems in Graph Drawing, proving that SEFE generalizes several of them. In particular, he
showed a polynomial-time reduction to SEFE with k = 2 from the clustered planarity
testing problem [12,13], that can be arguably considered as one of the most important
open problems in the field.

The SEFE problem has been provedNP-complete for k ≥ 3 by Gassner et al. [18].
On the other hand, if the embedding of the input graphs is fixed, SEFE becomes polynomial-
time solvable for k = 3, but remains NP-complete for k ≥ 14 [2].

In Chapter 11 of the Handbook of Graph Drawing and Visualization [6], the SEFE
problem with sunflower intersection (SUNFLOWER SEFE) is cited as an open question
(Open Problem 7). In this setting, the intersection graph G∩ (that is, the graph com-
posed of the edges that are common to at least two graphs) is such that, if an edge
belongs to G∩, then it belongs to all the input graphs. Haeupler et al. [19] conjec-
tured that SUNFLOWER SEFE is polynomial-time solvable. However, Schaefer [28]
recently proved that this problem is NP-complete for k ≥ 3. The reduction is from
theNP-complete [21] problem PARTITIONED T-COHERENT k-PAGE BOOK EMBED-
DING (PTBE-k), defined [4] as follows. Given a set V of vertices, a tree T whose leaves
are the elements of V , and a collection of edge-sets Ei ⊆ V × V , for i = 1, . . . , k,
is there a k-page book embedding such that the edges in Ei are placed on the i-th
page and the ordering of the elements of V on the spine is represented by T ? Note
that, theNP-completeness of PTBE-k holds for k unbounded [21], which implies that
the NP-completeness of SUNFLOWER SEFE for k ≥ 3 holds for instances in which
the intersection graph is a spanning forest composed of an unbounded number of star
graphs [28].

In this paper, we improve on this result by proving that SUNFLOWER SEFE is
NP-complete with k ≥ 3 even ifG∩ consists of a single spanning tree and all the input
graphs are biconnected. Note that, for k = 2, having G∩ connected and all the input
graphs biconnected suffices to have a polynomial-time algorithm for the problem [9].

Since SUNFLOWER SEFE when the intersection graph is connected has been proved
equivalent to the PTBE-k problem [4] (where the equivalence sets each graphGi equal
to tree T plus the edge-set Ei), our result implies the NP-completeness of PTBE-k
for k ≥ 3, but with no guarantees on the biconnectivity of the input graphs. We prove
for this problem even stronger results, namely that PTBE-k remainsNP-complete for
k ≥ 3 even if two of the input graphs Gi = T ∪ Ei are biconnected or if T is a star.
This latter setting, in which the tree T basically does not impose any constraint on the
ordering of the vertices on the spine, is also known as PARTITIONED k-PAGE BOOK
EMBEDDING (PBE-k). Note that, for k = 2, PBE-k can be solved in linear time [20].

From the algorithmic point of view, we prove that PTBE-k with k ≥ 2 can be
solved in linear time if k − 1 of the input edge-sets Ei induce connected graphs (a
stronger condition than graph Gi being biconnected), hence improving on a result by
Hoske [21], that was based on all the k input edge-sets having this property. Of course,
relaxing this constraint on one of the k input edge-sets becomes more relevant for small
values of k; in particular, it contributes to extend the class of instances that can be solved
in polynomial time also for k = 2, that is the most studied setting both for PTBE-k
and for SEFE (note that every instance of SEFE with k = 2 obviously has sunflower
intersection).
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Problem G∩ T-Coherent k Biconnected T -Biconnected Complexity
SUNFLOWER tree NO k ≥ 3 k – NPC (Th.1)

PBE-k star YES k ≥ 3 – – NPC (Th. 4)
PBE-2 star YES k = 2 – – O(n) ([20])

PTBE-3 caterpillar YES k = 3 2 – NPC (Th. 2)
PTBE-k tree YES k ≥ 2 k − 1 k − 1 O(n) (Th. 5)

tree YES k = 2 2 – O(n2) ([8])
PTBE-2 binary tree YES k = 2 – – O(n2) ([21])

tree YES k = 2 1 – OPEN (Th. 6)

Table 1: Complexity status for SUNFLOWER SEFE, PTBE-k, and PBE-k.

In fact, even if the complexity of SEFE and of PTBE-k is still unknown for k = 2,
polynomial-time algorithms exist for instances in which: (i) one of G1 and G2 has
a fixed embedding [3]; (ii) the intersection graph G∩ is biconnected [4,19], a star
graph [4], or a subcubic graph [21,28]; (iii) each connected component of G∩ has a
fixed embedding [7]; or (iv) G1 and G2 are biconnected and G∩ is connected [8].

For the setting k = 2, we also prove that, given any instance of PTBE-k (and hence
of SEFE in whichG∩ is connected), it is possible to construct an equivalent instance of
the same problem in which one of the input graphs, say G1, is biconnected and series-
parallel. This implies that it would be sufficient to find a polynomial-time algorithm
for this seemingly restricted case in order to have a polynomial-time algorithm for the
whole problem.

An updated summary of the results on SUNFLOWER SEFE and on PTBE-k is pre-
sented in Table 1.

Still in the setting k = 2, we study the optimization version of SEFE, that we call
MAX SEFE, which is cited as an open question by Haeupler et al. [19] and in Chapter
11 (Open Problem 9) of the Handbook of Graph Drawing and Visualization [6]. In
this problem, one asks for drawings of G1 and G2 such that as many edges of G∩
as possible are drawn the same. We prove that MAX SEFE is NP-complete, even
under some strong constraints. Namely, the problem isNP-complete if G1 and G2 are
triconnected, and G∩ is composed of a triconnected component plus a set of isolated
vertices. This implies that the problem is computationally hard both in the fixed and
in the variable embedding case. In the latter case, however, we can prove that MAX
SEFE is NP-complete even if G∩ has degree at most 2. Observe that any of these
constraints would be sufficient to obtain polynomial-time algorithms for the original
decision problem.

In Sect. 2 we give some preliminary definitions. In Sect. 3 we deal with the sun-
flower intersection scenario; in Sect. 4 we focus on the PTBE-k problem; while in
Sect. 5 we study the MAX SEFE problem. Finally, in Sect. 6 we give concluding re-
marks and discuss some open problems.
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2 Preliminaries
A drawing of a graph is a mapping of each vertex to a point of the plane and of each
edge to a simple curve connecting its endpoints. A drawing is planar if the curves
representing its edges do not cross except, possibly, at common endpoints. A graph is
planar if it admits a planar drawing. A planar drawing Γ determines a subdivision of
the plane into connected regions, called faces, and a clockwise ordering of the edges
incident to each vertex, called rotation scheme. The unique unbounded face is the outer
face. Two drawings are equivalent if they have the same rotation schemes. A planar
embedding is an equivalence class of planar drawings.

The SEFE problem can be studied both in terms of embeddings and in terms of
drawings, since edges can be represented by arbitrary curves without geometric re-
strictions, and since Jünger and Schulz [22] proved that two graphs G1 and G2 with
intersection graph G∩ have a SEFE if and only if there exists a planar embedding Γ1

of G1 and a planar embedding Γ2 of G2 inducing the same embedding of G∩. This
condition extends to more than two graphs in the sunflower intersection setting.

A graph is connected if every pair of vertices is connected by a path. A k-connected
graph G is such that removing any k− 1 vertices leaves G connected; 3-connected and
2-connected graphs are also called triconnected and biconnected, respectively. A tree
is a graph with no cycle. A caterpillar is a tree such that the removal of all the leaves
yields a path. A subgraph H of a graph G is spanning if for each vertex v ∈ G there
exists an edge of H incident to v.

A series-parallel graph (SP-graph) is a graph with no K4-minor. SP-graphs are
inductively defined as follows. An edge (u, v) is an SP-graph with poles u and v. Denote
by ui and vi the poles of an SP-graph graph Gi. A series composition of SP-graphs
G0, . . . , Gk, with k ≥ 1, is an SP-graph with poles u = u0 and v = vk, containing
graphs Gi as subgraphs, and such that vi = ui+1, for each i = 0, 1, . . . , k − 1. A
parallel composition of SP-graphs G0, . . . , Gk, with k ≥ 1, is an SP-graph with poles
u = u0 = u1 = · · · = uk and v = v0 = v1 = · · · = vk and containing graphs Gi as
subgraphs.

The dual of a graph G with respect to an embedding Γ of G is the graph G? having
a vertex vf for each face f of Γ and an edge (vf1 , vf2) if and only if faces f1 and f2 of
Γ have a common edge e in G. We say that edge (vf1 , vf2) is the dual edge of e, and
vice versa.

3 SUNFLOWER SEFE
In this section we study the SUNFLOWER SEFE problem, that is the restriction of SEFE
to instances in which the intersection graph G∩ is the same for each pair of graphs, that
is, G∩ = Gi ∩ Gj for each 1 ≤ i < j ≤ k. We prove that SUNFLOWER SEFE is
NP-complete with k ≥ 3 even if G∩ is a spanning tree and all the input graphs are
biconnected.

The proof is based on a polynomial-time reduction from the NP-complete [26]
problem BETWEENNESS, that takes as input a finite set A of n objects and a set C
of m ordered triples of distinct elements of A, and asks whether a linear ordering O
of the elements of A exists such that for each triple 〈α, β, γ〉 of C, we have either
O =< . . . , α, . . . , β, . . . , γ, . . . > or O =< . . . , γ, . . . , β, . . . , α, . . . >.
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In order to simplify the proof, we first give in Lemma 1 anNP-completeness proof
for a less restricted setting of SUNFLOWER SEFE and then describe how the produced
instances can be modified in order to obtain equivalent instances with the desired prop-
erties.

A pseudo-tree is a connected graph containing only one cycle.

Lemma 1. SUNFLOWER SEFE with k = 3 is NP-complete even if two of the input
graphs are biconnected and the intersection graph G∩ is a spanning pseudo-tree.

Proof. The membership inNP has been proved in [18] by reducing SEFE to the Weak
Realizability Problem [23,24].

TheNP-hardness is proved by means of a polynomial-time reduction from problem
BETWEENNESS. Given an instance 〈A,C〉 of BETWEENNESS, we construct an instance
〈G1, G2, G3〉 of SUNFLOWER SEFE that admits a SEFE if and only if 〈A,C〉 is a
positive instance of BETWEENNESS, as follows.

Refer to Fig. 1 for an illustration of the construction of G∩, G1, G2, and G3.

xα2 xβ2 xγ2

u2 v2

T2

yα2 yβ2 yγ2

S2

u1 v1

T1S1 Tm

um vm

Sm

w1 w2 wm

Fig. 1: Illustration of the composition of G∩, G1, G2, and G3 in Lemma 1, focused on
the i-th triple ti = 〈α, β, γ〉 of C with i = 2.

Graph G∩ contains a cycle C = u1, v1, u2, v2, . . . , um, vm, wm, . . . , w1 of 3m
vertices. Also, for each i = 1, . . . ,m, G∩ contains a star Si with n leaves centered at
ui and a star Ti with n leaves centered at vi. For each i = 1, . . . ,m, the leaves of Si are
labeled xji and the leaves of Ti are labeled yji , for j = 1, . . . , n. Graph G1 contains all
the edges ofG∩ plus a set of edges (yji , x

j
i+1), for i = 1, . . . ,m and j = 1, . . . , n. Here

and in the following, i+ 1 is computed modulo m. Graph G2 contains all the edges of
G∩ plus a set of edges (xji , y

j
i ), for i = 1, . . . ,m and j = 1, . . . , n. Graph G3 contains

all the edges of G∩ plus a set of edges defined as follows. For each i = 1, . . . ,m,
consider the i-th triple ti = 〈α, β, γ〉 of C, and the corresponding vertices xαi , xβi , and
xγi of Si; graph G3 contains edges (wi, xαi ), (wi, x

β
i ), (wi, x

γ
i ), (x

α
i , x

β
i ), and (xβi , x

γ
i ).
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First note that, by construction, 〈G1, G2, G3〉 is an instance of SUNFLOWER SEFE,
and graph G∩ is a spanning pseudo-tree. Also, one can easily verify that G1 and G2 are
biconnected. In the following we prove that 〈G1, G2, G3〉 is a positive instance if and
only if 〈A,C〉 is a positive instance of BETWEENNESS.

Suppose that 〈G1, G2, G3〉 is a positive instance, that is, G1, G2, and G3 admit a
SEFE 〈Γ1, Γ2, Γ3〉. Observe that, for each i = 1, . . . ,m, the subgraph of G1 induced
by the vertices of Ti and the vertices of Si+1 is composed of a set of n paths of length
3 between vi and ui+1, where the j-th path contains internal vertices yji and xji+1, for
i = 1, . . . , n. Hence, in any SEFE of 〈G1, G2, G3〉, the ordering of the edges of Ti
around vi is reversed with respect to the ordering of the edges of Si+1 around ui+1,
where the vertices of Ti and Si+1 are identified based on index j. Also observe that, for
each i = 1, . . . ,m, the subgraph of G2 induced by the vertices of Si and the vertices of
Ti is composed of a set of n paths of length 3 between ui and vi, where the j-th path
contains internal vertices xji and yji , for i = 1, . . . , n. Hence, in any SEFE of G1, G2,
and G3, the ordering of the edges of Si around ui is the reverse of the ordering of the
edges of Ti around vi, where the vertices of Si and Ti are identified based on j. The
two observations imply that, in any SEFE ofG1,G2, andG3, for each i = 1, . . . ,m the
ordering of the edges of Si around ui is the same as the ordering of the edges of Si+1

around vi+1, where the vertices of Si and Si+1 are identified based on j.
We construct a linear ordering O of the elements of A from the ordering of the

leaves of S1 in 〈Γ1, Γ2, Γ3〉. Initialize O = ∅; then, starting from the edge of S1 clock-
wise following (u1, w1) around u1, consider all the leaves of S1 in clockwise order.
For each considered leaf xj1, append j as the last element of O. We prove that O is a
solution of 〈A,C〉. For each i = 1, . . . ,m, the subgraph of G3 induced by vertices wi,
ui, xαi , xβi , and xγi is such that adding edge (ui, wi) would make it triconnected. Hence,
it admits two planar embeddings, which differ by a flip. Thus, in any SEFE of G1, G2,
and G3, edges (ui, x

α
i ), (ui, x

β
i ), and (ui, x

γ
i ) appear either in this order or in the re-

verse order around ui. Since for each triple ti = 〈α, β, γ〉 in C there exists vertices wi,
ui, xαi , xβi , and xγi inducing a subgraph of G3 with the above properties, and since the
clockwise ordering of the leaves of Si is the same for every i,O is a solution of 〈A,C〉.

Suppose that 〈A,C〉 is a positive instance, that is, there exists an ordering O of
the elements of A in which for each triple ti of C, the three elements of ti appear in
one of their two admissible orderings. We construct an embedding for G1,G2, and G3.
For each i = 1, . . . ,m, the rotation schemes of ui and vi are constructed as follows.
Initialize first = vi−1 if i > 1, otherwise first = w1. Also, initialize last = ui+1

if i < m, otherwise last = wm. For each element j of O, place (ui, x
j
i ) between

(ui, first) and (ui, vi) in the rotation scheme of ui, and set first = xji . Also, place
(vi, x

j
i ) between (vi, last) and (vi, ui) in the rotation scheme of vi, and set last = xji .

Since all the vertices of G1 and of G2 different from ui and vi (i = 1, . . . ,m) have
degree 2, the embeddings Γ1 and Γ2 of G1 and G2, are completely specified. To ob-
tain the embedding Γ3 of G3, we have to specify the rotation scheme of wi and of the
three leaves of Si adjacent to wi, for i = 1, . . . ,m. Consider a triple ti = 〈α, β, γ〉
of C. Initialize first = wi−1, if i > 1, and first = u1 otherwise. Also, initialize
last = wi+1, if i < m, and last = vm otherwise. Recall that α, β, and γ appear in
O either in this order or in the reverse one. In the former case, the rotation scheme of
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wi is (wi, last), (wi, x
γ
i ), (wi, x

β
i ), (wi, x

α
i ), (wi, first); the rotation scheme of xαi is

(xαi , wi), (x
α
i , x

β
i ), (x

α
i , ui); the rotation scheme of xβi is (xβi , x

α
i ), (x

β
i , wi), (x

β
i , x

γ
i ),

(xβi , ui); and the rotation scheme of xγi is (xγi , x
β
i ), (x

γ
i , wi), (x

γ
i , ui). In the latter

case, the rotation scheme of wi is (wi, last), (wi, xαi ), (wi, x
β
i ), (wi, x

γ
i ), (wi, first);

the rotation scheme of xαi is (xαi , x
β
i ), (x

α
i , wi), (x

α
i , ui); the rotation scheme of xβi

is (xβi , x
γ
i ), (x

β
i , wi), (x

β
i , x

α
i ), (x

β
i , ui); and the rotation scheme of xγi is (xγi , wi),

(xγi , x
β
i ), (x

γ
i , ui). In order to prove that 〈Γ1, Γ2, Γ3〉 is a SEFE, we first observe that

the embeddings of G∩ obtained by restricting Γ1, Γ2, and Γ3 to the edges of G∩, re-
spectively, coincide by construction. The planarity of Γ1 and Γ2 descends from the fact
that the orderings of the edges incident to ui and vi, for i = 1, . . . ,m, is one the reverse
of the other (where vertices are identified based on index j). The planarity of Γ3 is due
to the fact that, by construction, for each i = 1, . . . ,m, the subgraph induced by wi, ui,
xαi , xβi , and xγi is planar in Γ3. This concludes the proof of the theorem.

We are now ready to prove the main result of the section, by showing how to modify
the reduction of Lemma 1 to obtain instances in which all graphs are biconnected and
G∩ is a tree.

Theorem 1. SUNFLOWER SEFE is NP-complete for k ≥ 3 even if all the input
graphs are biconnected and the intersection graph is a spanning tree.

Proof. The membership in NP has been proved in [18].
TheNP-hardness is proved by means of a polynomial-time reduction from problem

BETWEENNESS. Given an instance 〈A,C〉 of BETWEENNESS, we first construct an
instance 〈G∗1, G∗2, G∗3〉 of SUNFLOWER SEFE that admits a SEFE if and only if 〈A,C〉
is a positive instance of BETWEENNESS by applying the reduction shown in Lemma 1.
We show how to modify 〈G∗1, G∗2, G∗3〉 to obtain an equivalent instance 〈G1, G2, G3〉
with the required properties.

Refer to Fig. 2 for an illustration of the construction of G∩, G1, G2, and G3.
GraphG∩ is initialized toG∗∩. For i = 1, . . . ,m, subdivide edge (wu, wi+1) (where

wm+1 = vm) with two vertices si and ti, add a star with 3 leaves αi, βi, and γi with
center ci, and add an edge connecting wi to ci. Graph G1 contains all the edges of G∩
plus a set of edges defined as follows. As in 〈G∗1, G∗2, G∗3〉, for i = 1, . . . ,m, graph G1

contains edges (yji , x
j
i+1), with j = 1, . . . , n, connecting the leaves of Ti to the leaves

of Si+1. Additionally, for i = 1, . . . ,m, G1 contains edges (wi, αi),(αi, βi),(βi, γi),
(γi, wi), and (βi, si). Here and in the following, i+1 is computed modulom. GraphG2

contains all the edges of G∩ plus a set of edges defined as follows. As in 〈G∗1, G∗2, G∗3〉,
for i = 1, . . . ,m, graph G2 contains edges (xji , y

j
i ), with j = 1, . . . , n. Additionally,

for i = 1, . . . ,m, G2 contains edges (αi, ti), (βi, ti), and (γi, ti). Graph G3 contains
all the edges of G∩ plus a set of edges defined as follows. For each i = 1, . . . ,m,
consider the i-th triple ti = 〈α, β, γ〉 of C, and the corresponding vertices xαi , xβi , and
xγi of Si; graph G3 contains edges (αi, xαi ), (βi, x

β
i ), (γi, x

γ
i ), and edges (xji , ci), for

every j /∈ {α, β, γ}. Also, for i = 1, . . . ,m, graph G3 contains edges (yji , ti), with
j = 1, . . . , n.

Observe that, graph G∩ is a pseudo-tree and graphs G1, G2, and G3 are bicon-
nected. We first prove that the constructed instance 〈G1, G2, G3〉 of SUNFLOWER SEFE
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is equivalent to instance 〈A,C〉 of BETWEENNESS. Then, we show how to modify
〈G1, G2, G3〉 in such a way that G∩ is a tree, without losing the biconnectivity of the
input graphs.

Suppose that 〈G1, G2, G3〉 is a positive instance, that is, G1, G2, and G3 admit a
SEFE 〈Γ1, Γ2, Γ3〉. Observe that, as proved in Lemma 1 for 〈G∗1, G∗2, G∗3〉, in any SEFE
of G1, G2, and G3, for each i = 1, . . . ,m, the ordering of the edges of Si around ui is
the same as the ordering of the edges of Si+1 around vi+1, where the vertices of Si and
Si+1 are identified based on index j.

We construct a linear ordering O of the elements of A from the ordering of the
leaves of S1 in 〈Γ1, Γ2, Γ3〉 as described in Lemma 1.

We prove thatO is a solution of 〈A,C〉. For each i = 1, . . . ,m, the subgraph of G1

induced by vertices wi, αi, βi, γi, and ci is a triconnected subgraph attached to the rest
of the graph through the split pair {wi, βi}. Hence, in any planar embedding ofG1 (and
hence also in Γ1) the clockwise order of the edges around ci is either (ci, αi), (ci, wi),
(ci, γi), and (ci, βi), or (ci, αi), (ci, βi), (ci, γi), and (ci, wi). Also, the ordering of the
edges of G3 around ci in Γ1 restricted to those belonging to G∩ is the same as in Γ1.
Further, for each i = 1, . . . ,m, consider the subgraph of G3 composed of the paths
connecting ci and ui, and containing a leaf of Si. In any planar embedding of G3 the
ordering of the edges around ci is reversed with respect to the ordering of the edges
around ui, where the edges are identified based on the path they belong to. Hence, the
ordering of the edges of Si around ui (and thusO) is such that edges (ui, xαi ), (ui, x

β
i ),

and (ui, x
γ
i ) appear either in this order or in the reverse order. Since the clockwise

ordering of the edges of Si around ui is the same for every i, O is a solution of 〈A,C〉.
Suppose that 〈A,C〉 is a positive instance, that is, there exists an ordering O of the

elements of A in which for each triple ti of C the three elements of ti appear in one of
their two admissible orderings. We construct embeddings Γ1,Γ2, and Γ3 forG1,G2, and
G3, respectively. For each i = 1, . . . ,m, the rotation schemes of ui and vi in Γ1, in Γ2,
and in Γ3 are constructed based on O as described in the proof of Lemma 1. Note that,
in any SEFE of 〈G1, G2, G3〉 all the vertices not belonging to the only cycle of G∩ lie
on the same side with respect to it, as removing such a cycle from the union graph G∪
results in a connected graph. Hence, the rotation scheme of wi restricted to the edges of
G∩ is determined in Γ1, Γ2, and Γ3. Also, the rotation scheme of si is determined in Γ1.
Consider the i-th triple ti = 〈α, β, γ〉 of C. We set the rotation scheme of ci restricted
to the edges of G∩ in Γ1, Γ2, and Γ3 to be either (ci, wi), (ci, γi), (ci, βi), and (ci, αi),
if α, β, and γ appear in this order inO, or (ci, wi), (ci, αi), (ci, βi), and (ci, γi), if they
appear in the reverse order in O. Note that, given the rotation scheme of ci in Γ1 and
in Γ2, the rotations schemes of wi, αi, βi, and γi in Γ1 and of ti in Γ2 are univocally
determined. Observe that Γ1 and Γ2 are planar by construction. We prove that Γ3 can
be completed to a planar drawing of G3. In order to do that, we need to specify the
rotation schemes of ci and ti in Γ3. We set the rotation schemes of ci and of ti to be the
reverse with respect to the rotation schemes of ui and of vi, respectively, where edges
are identified based on the path they belong to. As for ti, this clearly does not introduce
crossings in Γ3, while for ci this is due to the fact that the ordering of the edges of G∩
incident to ci determined by the i-th triple is consistent with the rotation scheme of ui,
since this has been determined by O.
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In order to prove that 〈Γ1, Γ2, Γ3〉 is a SEFE, we observe that the embeddings of
G∩ obtained by restricting Γ1, Γ2, and Γ3 to the edges of G∩, respectively, coincide by
construction.

Finally, in order to make G∩ a spanning tree, remove edge (u1, w1) from G∩; add
to G∩ two star graphs with 3 leaves, and add to G∩ an edge connecting u1 to the center
of the first star and an edge connecting w1 to the center of the second star. Also, add
edges to G1, to G2, and to G3 among vertices of the two stars so that (i) all graphs
remains biconnected, (ii) there exists an edge of G1, an edge of G2, and an edge of G3

connecting a leaf of the first star to a leaf of the second star, and (iii) no edge is added
to more than one graph. A suitable augmentation is shown in Fig. 2.

T1S1 TmSm

xα2 xβ2 xγ2

u2 v2

T2

yα2 yβ2 yγ2

S2

u1 v1 um vm

α1

w1 w2 wms1 t1 s2 t2 sm tm

γ1

β1

α2 γ2

β2

αm γm

βm

c1 c2 c3

Fig. 2: Illustration of the composition of G∩, G1, G2, and G3 in Theorem 1, focused on
the i-th triple ti = 〈α, β, γ〉 of C with i = 2.

The above discussion proves the statement for k = 3. To extend the theorem to any
value of k observe that, given an instance of SUNFLOWER SEFE with k0 ≥ 3 bicon-
nected graphs whose intersection graph G∩ is a tree, an equivalent instance with k0+1
biconnected graphs whose intersection graph is a tree can be obtained by subdividing
an edge of G∩ with a dummy vertex and by connecting it to all the leaves of G∩ with
edges only belonging to the (k0 + 1)-th graph.

4 PARTITIONED k-PAGE BOOK EMBEDDING

In this section we turn our attention to the problem of computing k-page book embed-
dings in which the assignment of the k sets of edges to the k pages is given as part of the
input. We study this problem both in its original definition [20], called PARTITIONED k-
PAGE BOOK EMBEDDING (PBE-k), and in a generalization of it, called PARTITIONED
T-COHERENT k-PAGE BOOK EMBEDDING (PTBE-k), in which the order of the ver-
tices on the spine must satisfy an additional constraint, namely it must be represented
by a tree T , also given as part of the input. Observe that, problem PTBE-k in which T
is a star is exactly the same problem as PBE-k.
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Problem PTBE-k has been defined in [4] and proved equivalent to the case of
SUNFLOWER SEFE in which the intersection graph G∩ is a spanning tree and all the
edges not belonging to G∩ are incident to two leaves of such tree1. For this reason,
in the following we will indifferently denote an instance 〈T,E1, . . . , Ek〉 of PTBE-
k by the corresponding instance 〈G1, . . . , Gk〉 of SUNFLOWER SEFE, where Gi =
(V (T ), E(T ) ∪ Ei), for each i = 1, . . . , k, and vice versa.

We remark that the instances of SUNFLOWER SEFE constructed in the reduction
performed in Theorem 1 are such that the intersection graph G∩ is a spanning tree, but
there exist edges not belonging to G∩ that are incident to internal vertices of such tree.
In order to obtain equivalent instances of SUNFLOWER SEFE satisfying both prop-
erties, it would be possible to apply a procedure described in [4] that, for each edge
e ∈ ⋃k

i=1Ei incident to an internal vertex v of G∩, adds a new leaf to G∩ attached
to v and replaces v with this leaf as an endvertex of e. Hence, Theorem 1 implies that
PTBE-k is NP-complete for k ≥ 3. However, every time a new leaf is attached to an
internal vertex, such a vertex becomes a cut-vertex for k − 1 of the input graphs; thus,
none of the k graphs Gi can be assumed to be biconnected after the whole procedure
has been applied.

The relevance of this latter observation is motivated by the fact that the biconnec-
tivity of the input graphs Gi, together with the “simplicity” of T , seems to be the key
factor that allows for polynomial-time algorithms for the partitioned book embedding
problems. Indeed, Hoske [21] proved that PBE-k becomes solvable in linear-time if
each graph Gi is T -biconnected, that is, Ei induces a connected graph. Notice that, T -
biconnectivity is a stronger requirement than biconnectivity, since the former implies
the latter, while the converse does not always hold. We observe that the algorithm by
Hoske can be easily generalized from PBE-k to PTBE-k in which T is not necessarily
a star; hence, the same algorithmic result can be stated also for PTBE-k. Furthermore,
to support the importance of the above mentioned key factors, we recall that PTBE-k
is polynomial-time solvable for k = 2 if either both input graphs are biconnected [9],
or T = G∩ is a star [20], or T = G∩ is a binary tree [21,28].

In this section we provide several results that considerably narrow the gap between
the instances of the partitioned book embedding problems that can be solved in polyno-
mial time and those that cannot (unless P = NP ), by studying their complexity with
respect to such factors. Namely, we prove that:

◦ PTBE-k remains NP-complete for k = 3 when T is a caterpillar and 2 of the input
graphs are biconnected (Theorem 2);
◦ PBE-k (with no restriction on the biconnectivity) isNP-complete for k ≥ 3 (Theo-

rem 4), which was known only for k unbounded [28];
◦ PTBE-k is linear-time solvable if k− 1 of the input graphs are T -biconnected (The-

orem 5);
◦ requiring one of the two graphs of an instance 〈T,E1, E2〉 of PTBE-2 to be bicon-

nected (and even series-parallel) does not alter the computational complexity of the
problem (Theorem 6).

1 Although [4] proves the equivalence for k = 2, the result can be naturally extended to any k.
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Due to the equivalence between PTBE-k and SUNFLOWER SEFE in which G∩ is
a spanning tree and all the edges not belonging toG∩ connect two of its leaves, in order
to prove Theorem 2 it suffices to show that the instances produced in the reduction of
Lemma 1 can be modified to obtain equivalent instances satisfying the above properties
in which two of the input graphs are biconnected.

Theorem 2. PTBE-k is NP-complete for k = 3 even if two of the input graphs are
biconnected and T = G∩ is a caterpillar tree.

Proof. Consider an instance 〈G1, G2, G3〉 obtained from the reduction described in
Lemma 1. We describe how to obtain an equivalent instance satisfying the required
properties.

Refer to Fig. 1 and to Fig. 3. First, for i = 1, . . . ,m, replace the edges (wi, x
α
i ),

(wi, x
β
i ), and (wi, x

γ
i ) of G3 with length-2 paths composed of a black and of a green

edge and such that the black edge is incident towi. Denote by Φi the star graph centered
at wi induced by the newly inserted black edges. Second, for i = 1, . . . ,m, subdivide
edge (wi, wi+1) of G∩ (where wm+1 = vm) with a dummy vertex di, and add to
G∩ a star graph Ψi centered at di and with 3 leaves. Observe that, at this stage of the
construction, G∩ is a spanning pseudo-caterpillar.

xα2 xβ2 xγ2

u2 v2

T2

yα2 yβ2 yγ2

S2

u1 v1

T1S1 Tm

um vm

Sm

w1 w2 wmd1 d2 dm

Φ1 Φ2 ΦmΨ1 Ψ2 Ψm

Fig. 3: Illustration of how to modify the instance of SUNFLOWER SEFE so that: (i) the
intersection graph G∩ is a spanning caterpillar and (ii) G1 and G2 are biconnected.

It is now possible to obtain an equivalent instance of SUNFLOWER SEFE where G1

and G2 are biconnected and G∩ remains a spanning pseudo-caterpillar, by only adding
edges to G1 and to G2 among the leaves of Φi and Ψi, for i = 1, . . . ,m.

Further, in order to makeG∩ a spanning caterpillar, remove edge (u1, w1) fromG∩;
add to G∩ two star graphs with 3 leaves, and add to G∩ an edge connecting u1 to the
center of the first star and an edge connecting w1 to the center of the second star.

Finally, add edges to G1, to G2, and to G3 among the leaves of the two stars so that
(i) G1 and G2 are biconnected, (ii) there exists an edge of G3 connecting a leaf of the
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first star to a leaf of the second star, and (iii) no edge is added to more than one graph.
A suitable augmentation is shown in Fig. 3.

It is easy to observe that the constructed instance satisfies the required properties.

In the following we prove that dropping the requirement of biconnectivity of the
graphs allows us to prove NP-completeness also for PBE-k when k is bounded by a
constant, thus improving on the result of Hoske [21]. We first prove that theNP-completeness
of PTBE-k for k ≥ 3 proved in Theorem 2 implies the NP-completeness of PBE-k
for k ≥ 4. Then, in Theorem 4 we show that PBE-k is NP-complete even for k = 3.
We recall that a linear-time algorithm for the problem is known when k = 2 [20].

Theorem 3. PTBE-k is polynomial-time reducible to PBE-(k + 1).

Proof. Let 〈T,E1, . . . , Ek〉 be an instance of PTBE-k. We construct an instance 〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉
of PBE-(k + 1) as follows.

Set V ∗ = V (T ) and E∗k+1 = E(T ). Then, for each i = 1, . . . , k, set E∗i = Ei.
Refer to Fig. 4.

r

(a) 〈T,E1, E2〉

r

(b) 〈V ∗, E∗1 , E∗2 , E∗3 〉

Fig. 4: Illustration of the proof of Theorem 3.

We prove that 〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉 is a positive instance of PBE-(k+1) if and
only if 〈T,E1, . . . , Ek〉 is a positive instance of PTBE-k.

Suppose that 〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉 admits a partitioned (k + 1)-page book em-
bedding O∗. Let O be the order obtained by restricting O∗ to the leaves of T . We show
that O is a partitioned T -coherent k-page book embedding of 〈T,E1, . . . , Ek〉.

For each i = 1, . . . , k, no two edges of Ei alternate in O, as otherwise the corre-
sponding two edges of E∗i would alternate in O∗, hence contradicting the hypothesis
that O∗ is a partitioned (k + 1)-page book embedding. Also, we claim that order O
is represented by T . Namely, place the vertices of T on a horizontal line in the same
order as they appear in O∗; since O∗ supports a crossing-free drawing of the edges of
E∗k+1 = E(T ) on a single page and since O∗ restricted to the leaves of T coincides
with O, the claim follows.

Suppose that 〈T,E1, . . . , Ek〉 admits a partitioned T -coherent k-page book embed-
ding O. We show how to construct a partitioned (k + 1)-page book embedding O∗ of
〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉.

Initialize O∗ = O. Root T at an arbitrary internal vertex. Then, consider each
internal vertex w of T according to a bottom-up traversal. Consider the subtree T (w)
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of T rooted at w and consider the vertex z of T (w) appearing in O∗ right before all the
other vertices of T (w). Place w right before z in O∗.

We show thatO∗ is a partitioned (k+1)-page book embedding of 〈V ∗, E∗1 , . . . , E∗k , E∗k+1〉.
For each i = 1, . . . , k, no two edges of E∗i alternate in O∗, as otherwise the corre-

sponding two edges of Ei would alternate inO, hence contradicting the hypothesis that
O is a partitioned T -coherent k-page book embedding. Also, the fact that no two edges
of E∗k+1 alternate in O∗ descends from the fact that, for each vertex w of T , all the ver-
tices belonging to the subtree T (w) of T rooted at w appear consecutively in O∗. We
prove this property by induction. In the base case w is the parent of a set of leaves. In
this case, the statement holds since O is represented by T . Inductively assume that, for
all children ui of w, the vertices of T (ui) are consecutive in O∗. Also, by construction,
w has been placed right before all vertices of T (w). It follows that all vertices of T (w)
(including w) are consecutive in O∗. This concludes the proof of the theorem.

As PBE-k is a special case of PTBE-k, the problem belongs toNP . Hence, putting
together the results of Theorem 3 and of Theorem 2, we obtain the following:

Corollary 1. PBE-k is NP-complete for k ≥ 4.

We strengthen this result by proving that the NP-hardness of PBE-k holds even
for k = 3. As for Theorem 2, we describe the proof in terms of the corresponding
SUNFLOWER SEFE problem, namely in the case in which G∩ is a star graph and all
the edges not belonging to G∩ connect two of its leaves.

Theorem 4. PBE-k is NP-complete for k ≥ 3.

Proof. We prove the statement for k = 3, as for k ≥ 4 it descends from Corollary 1.
The NP-hardness is shown by means of a polynomial-time reduction from problem
BETWEENNESS. Given an instance 〈A,C〉 of BETWEENNESS, we construct an instance
〈V,E1, E2, E3〉 of PBE-3 that admits a partitioned 3-page book embedding if and only
if 〈A,C〉 is a positive instance of BETWEENNESS.

We describe instance 〈V,E1, E2, E3〉 in terms of the corresponding instance 〈G1, G2, G3〉
of SUNFLOWER SEFE in which G∩ is a star. Refer to Fig. 5.

Graph G∩ is initialized to a star graph with center φ, a leaf ω and, for i = 0, . . . ,m,
leaves ai and bi. Also, for i = 1, . . . ,m, G∩ contains n leaves x1i , . . . , x

n
i , n leaves

y1i , . . . , y
n
i , plus two additional leaves x∗i and y∗i . Finally,G∩ contains n leaves y10 , . . . , y

n
0 ,

plus an additional leaf y∗0 .
Graph G1 contains all the edges of G∩ plus a set of edges defined as follows. For

i = 1, . . . ,m, graph G1 contains an edge (ω, ai). Also, for i = 1, . . . ,m, graph G1

contains edges (xji , y
j
i−1), with j = 1, . . . n, and edge (x∗i , y

∗
i−1).

Graph G2 contains all the edges of G∩ plus a set of edges defined as follows. For
i = 0, . . . ,m− 1, graph G2 contains an edge (ω, bi). Also, for i = 1, . . . ,m, graph G2

contains edges (xji , y
j
i ), with j = 1, . . . n, and edge (x∗i , y

∗
i ).

GraphG3 contains all the edges of G∩ plus a set of edges defined as follows. Graph
G3 contains edges (ω, ao) and (ω, bm). Also, for each i = 0, . . . ,m, graph G3 contains
edges (ai, bi), (ai, y∗i ), (bi, y

∗
i ), and edges (y∗i , x

j
i ), with j = 1, . . . , n. Finally, for

i = 1, dots,m, consider the i-th triple ti = 〈α, β, γ〉 of C, and the corresponding
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bma0 ai−1b0 bi−1

φ

. . . . . . . . .

am

yβiyγi
x∗i y

∗
i

ai

xαi xβi x
γ
i yαi

bi

ω

. . .. . . . . .

Fig. 5: Illustration of the composition of G∩, G1, G2, and G3 in Theorem 4, focused on
the i-th triple ti = 〈α, β, γ〉 of C.

vertices xαi , xβi , and xγi ; graph G3 contains edges (ai, xαi ), (ai, x
β
i ), (ai, x

γ
i ), (x

α
i , x

β
i ),

and (xβi , x
γ
i ).

We prove that the constructed instance 〈G1, G2, G3〉 of SUNFLOWER SEFE is
equivalent to instance 〈A,C〉 of BETWEENNESS.

Suppose that 〈G1, G2, G3〉 is a positive instance, that is, G1, G2, and G3 admit
a SEFE 〈Γ1, Γ2, Γ3〉. Observe that, vertices φ, ω, and vertices ai and bi, with i =
1, . . . ,m, induce a wheel with central vertex φ in G3. Hence, in any planar embedding
of G3, edges (ω, φ), (ao, φ), (bo, φ),. . . ,(am, φ), and (bm, φ) appear in this order (or
in the reverse order) around φ. Also, since y∗i is adjacent in G3 to both ai and bi, for
i = 0, . . . ,m, edge (y∗i , φ) appears between edges (ai, φ) and (bi, φ) around φ in any
planar embedding ofG3. Hence, since all vertices yji , with j = 1, . . . , n, are adjacent in
G3 to y∗i , also edges (yji , φ) appear between (ai, φ) and (bi, φ) around φ in any planar
embedding of G3. Furthermore, for i = 1, . . . ,m, edges (xji , φ), with j = 1 . . . , n,
and edge (x∗i , φ) appear between (bi−1, φ) and (ai, φ) around φ in 〈Γ1, Γ2, Γ3〉. This
is due to the following two facts: (1) all vertices xji and vertex x∗i are adjacent in G1

to a vertex yi−1 such that edge (yi−1, φ) appears between edges (ai−1, φ) and (bi1 , φ)
around φ, and in G2 to a vertex yi such that edge (yi, φ) appears between edges (ai, φ)
and (bi, φ) around φ; (2) there exists edges (ω, bi−1) in G2 and (ω, ai) in G1. Refer to
Fig. 5 for a possible ordering of the edges around φ in a SEFE.

Observe that, due to the properties of the ordering of the edges of G∩ around φ
discussed above, for i = 1, . . . ,m, edge (x∗i , φ) and edges (xji , φ), with j = 1, . . . , n,
behave similarly to the edges of the star graph Si used in Lemma 1, and edge (y∗i , φ)
and edges (yji , φ), with j = 1, . . . , n, behave similarly to the edges of the star graph Ti
used in Lemma 1. Namely, in any SEFE of G1, G2, and G3, for each i = 1, . . . ,m− 1,
the ordering of the edges (xji , φ), with j = 1, . . . , n, and edge (x∗i , φ) around φ is the
same as the ordering of the edges (xji+1, φ), with j = 1, . . . , n, and edge (x∗i+1, φ)
around φ, where the vertices are identified based on index j.



Advancements on SEFE and Partitioned Book Embedding Problems 15

We construct a linear ordering O of the elements of A from the ordering of the
leaves of xj1, with j = 1, . . . , n, in 〈Γ1, Γ2, Γ3〉 as described in Lemma 1.

We prove thatO is a solution of 〈A,C〉. For each i = 1, . . . ,m, the subgraph of G3

induced by vertices φi, xαi , xβi , xγi , and ai is a triconnected subgraph attached to the rest
of the graph through the split pair {φ, ai}. Hence, in any planar embedding of G3 (and
hence also in Γ3) edges (φ, xαi ), (φ, x

β
i ), (φ, x

γ
i ) appear either in this order or in the

reverse order around φ. Since the ordering of the edges (xji+1, φ), with j = 1, . . . , n,
around φ is the same for every i, O is a solution of 〈A,C〉.

Suppose that 〈A,C〉 is a positive instance, that is, there exists an ordering O of the
elements of A in which for each triple ti of C the three elements of ti appear in one
of their two admissible orderings. In order to construct embeddings Γ1,Γ2, and Γ3 for
G1,G2, and G3, respectively, we describe the order of the edges of G∩ around φ. Ini-
tialize the rotation scheme of φ to (ω, φ),(ao, φ), (y∗0 , φ), (bo, φ), and, for i = 1, . . . ,m,
(x∗i , φ), (ai, φ), (y

∗
i , φ), and (bi, φ). Then, for i = 1, . . . ,m, initialize firsti = ai and

lasti = x∗i . For each element j of O, place (xji , φ) between (firsti, φ) and (lasti, φ)

in the rotation scheme of φ, and set firsti = xji . Also, for i = 0, . . . ,m, initialize
firsti = y∗i and lasti = bi. For each element j ofO, place (yji , φ) between (firsti, φ)

and (lasti, φ) in the rotation scheme of φ, and set lasti = yji . Refer to Fig. 5 for an
illustration of the construction of the rotation scheme of φ.

The rest of the construction of Γ1, Γ2, and Γ3 and the proof that such embeddings
determine a SEFE of 〈G1, G2, G3〉 works as in the proof of Lemma 1. In particular, the
fact that the rotation scheme of φ determines a planar embedding of the triconnected
subgraphs of G3 induced by vertices φ, ai, xαi , xβi , xγi , for i = 1, . . . ,m, derives from
the fact that O is a solution of instance 〈A,C〉 of BETWEENNESS. This concludes the
proof of the theorem.

Although PTBE-k has been shown NP-complete for k ≥ 3 even when two of
the input graphs are biconnected in Theorem 2, we show that stronger conditions on
the connectivity of the graphs allow for a polynomial-time solution of the problem. As
observed before, the linear-time algorithm by Hoske [21] for PBE-k when each graph
is T -biconnected can be easily extended to solve PTBE-k under the same conditions.
In the following theorem we prove that for k ≥ 2 this is true even if only k − 1 graphs
are T -biconnected.

At this aim, we describe an algorithm that we call ALGO-(k − 1)-T -BICO to
decide whether an instance 〈T,E1, . . . , Ek〉 of PTBE-k is positive in the case in which
k − 1 graphs Gi are T -biconnected. In the description of the algorithm we assume,
without loss of generality, that graphs G1, . . . , Gk−1 are T -biconnected.

STEP 1. For i = 1, . . . , k−1, we construct an auxiliary graphHi as follows. Initialize
Hi to Gi; remove from Hi the internal vertices of T and their incident edges; and
add to Hi a vertex wi and connect it to all vertices of Hi (that is, to all leaves of T ).

STEP 2. For i = 1, . . . , k − 1, we construct a PQ-tree Ti representing all possible or-
ders of the edges around wi in a planar embedding of Hi by applying the planarity
testing algorithm of Booth and Lueker [11]. Since, by construction, all vertices of
Hi different from wi are adjacent to wi, the leaves of Ti are in one-to-one corre-
spondence with the leaves of T . Hence, all PQ-trees Ti have the same leaves.
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STEP 3. We intersect all PQ-trees T1, . . . , Tk−1 to obtain a PQ-tree T ∗ representing all
the possible partitioned book embeddings of graphs Hi \ wi, for i = 1, . . . , k − 1.
We remark that the procedure described so far is analogous to the one described
in [21] to compute a PBE-k of k T -biconnected graphs.

STEP 4. We intersect T ∗ with T to obtain a PQ-tree T representing all the possible
partitioned T -coherent book embeddings of instance 〈T,E1, . . . , Ek−1〉.

STEP 5. We construct a representative graph GT from T , as described in [16], com-
posed of wheel graphs (that is, graphs consisting of a central vertex and of a cycle,
called the rim of the wheel, such that the central vertex is connected to every vertex
of the rim), edges connecting vertices of the rims of different wheels not creating
simple cycles containing vertices belonging to more than one wheel, and vertices
of degree 1, which are in one-to-one correspondence with the leaves of T , each
connected to a vertex of the rim of some wheel.

STEP 6. We extend graph GT by adding an edge between two degree-1 vertices if and
only if the two leaves of T corresponding to such vertices are connected by an edge
of Ek; hence obtaining graph H .

STEP 7. We return YES if H is planar, otherwise we return NO.
In the following theorem we prove the correctness and the time complexity of

ALGO-(k − 1)-T -BICO,

Theorem 5. Let 〈T,E1, . . . , Ek〉 be an instance of PTBE-k with k ≥ 2 in which k−1
graphs are T -biconnected. There exists an O(k · n)-time algorithm to decide whether
〈T,E1, . . . , Ek〉 admits a PARTITIONED T-COHERENT k-PAGE BOOK EMBEDDING,
where n is the number of vertices of T .

Proof. The algorithm that decides PTBE-k for 〈T,E1, . . . , Ek〉 is ALGO-(k − 1)-T -
BICO.

We prove the correctness. First, observe that, as proved in [21], the PQ-tree T ∗ con-
structed at STEP 3 encodes all and only the partitioned (k− 1)-page book embeddings
of instance 〈L(T ), E1, . . . , Ek−1〉. Thus, intersecting T ∗ with tree T yields a PQ-tree
T (see STEP 4) encoding all and only the partitioned T -coherent (k − 1)-page book
embeddings2 of instance 〈T,E1, . . . , Ek−1〉.

Also, as proved in [16], there exists a one-to-one correspondence between the pos-
sible orderings of the leaves of T and the possible orderings obtained by restricting the
order of the vertices in an Eulerian tour of the outer face in a planar embedding of GT
to the degree-1 vertices.

Given a planar embedding Γ of H (see Fig. 6(a)), we construct a partitioned T -
coherent k-page book embedding O of 〈T,E1, . . . , Ek〉. We claim that Γ can be mod-
ified in order to obtain a planar embedding Γ ′ of H (see Fig. 6(c)) such that all the
degree-1 vertices of GT lie on the outer face of the embedding ΓT of GT obtained by
restricting Γ ′ to the vertices and edges of GT .

The claim implies that the order O of the degree-1 vertices in a Eulerian tour of the
outer face of ΓT is a partitioned T -coherent k-page book embedding of 〈T,E1, . . . , Ek〉
since (i) O is represented by T and (ii) no two edges of Ek alternate in O, given that
Γ ′ is planar.

2 This is the extension of the algorithm by Hoske to instances of PTBE-k mentioned before.
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We prove the claim. First, we show that starting from Γ we can obtain a planar
drawing Γ ∗ of H such that every wheel of GT is drawn canonically (see Fig. 6(b)),
namely, with its central vertex lying in the interior of its rim. Consider any wheel W
of GT with central vertex ω that is not drawn canonically in Γ . This implies that there
exist two vertices a and b of the rim of W such that all the vertices of W different from
a, b, and ω lie in the interior of cycle 〈a, b, ω〉. Since, by construction of GT and of
H , vertex ω is not adjacent to any vertex not belonging to W , it is possible to reroute
edge (a, b) as a curve arbitrarily close to path (a, ω, b) so that cycle 〈a, b, ω〉 does not
enclose any vertex of H . Observe that, such an operation might determine a change in
the rotation scheme of a or b. Applying such a procedure to all non-canonically drawn
wheels, eventually results in a planar drawing Γ ∗ of H such that all wheels of GT are
drawn canonically. Second, we show how to obtain Γ ′ starting from Γ ∗ (see Fig. 6(c)).
Consider any wheel W of GT , with central vertex ω. For each two adjacent vertices a
and b of the rim of W , if there exist vertices of H in the interior of cycle 〈a, b, ω〉, then
we reroute edge (a, b) as a curve arbitrarily close to path (a, ω, b) so that cycle 〈a, b, ω〉
does not enclose any vertex of H . Since ω is not connected to vertices of H other than
those belonging to the rim of W , this operation does not introduce any crossing. After
this operation has been performed for every two adjacent edges of the rim of W , there
exists no vertex of H not belonging to W in the interior of the rim of W , since W is
drawn canonically. This concludes the proof of the claim, since GT does not contain
any simple cycle containing vertices belonging to more than one wheel and no wheel
of GT contains in its interior vertices of H not belonging to it.

(a) (b) (c)

Fig. 6: Illustration for the proof of Theorem 5. Edges of GT are black solid curves.
Edges of Ek are blue dotted curves. Edges of H which have been redrawn with respect
to the previous drawing are red dashed curves. Central vertices of the wheels are white
squares. Degree-1 vertices of GT are white circles. (a) Planar drawing Γ of H . (b)
Planar drawing Γ ∗ of H in which every wheel of GT is drawn canonically. (c) Planar
drawing Γ ′ of H in which all the degree-1 vertices of GT lie in the outer face of Γ ′

restricted to GT .

Given a partitioned T -coherent k-page book embedding O of 〈T,E1, . . . , Ek〉, we
construct a planar embedding Γ ofH . To obtain Γ , we first augmentGT to an auxiliary
graph U by adding a dummy edge between two degree-1 vertices of GT if and only
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if the corresponding leaves of T are either adjacent in O or appear as the first and
last element in O. Since O is a partitioned T -coherent k-page book embedding O of
〈T,E1, . . . , Ek〉, it is possible to find a planar embedding of GT in which the degree-1
vertices appear along the Eulerian tour of the outer face in the same order as O. Hence,
graph U is planar. Produce a planar drawing Γ ∗ of H whose outer face is the cycle
composed of all the dummy edges. Since O is a partitioned T -coherent k-page book
embedding, no two edges of Ek alternate in O. Hence they can be drawn in the outer
face of Γ ∗ without introducing crossings. Removing all dummy edges yields a planar
embedding Γ of H .

We prove the time complexity. STEP 1 and STEP 2 take O(k · n) time, since the
time-complexity of constructing a PQ-tree on a ground set of n elements is linear in
the size of the ground set [10,11]. STEP 3 and STEP 4 take O((k − 2) · n) and O(n)
time, respectively, since the intersection of two PQ-trees can be performed in amortized
linear time in their size [10] and the size of the obtained PQ-tree stays linear in the size
of the ground set. STEP 5 takes linear time in the size of T , since it corresponds to
replacing each Q-node with a wheel and each P-node with a cut vertex connecting the
wheels [16]. Observe that, graph GT has size linear in n, since each vertex of the rim
of a wheel corresponds to exactly one edge of T . STEP 6 takes O(|Ek|) = O(n) time
and produces a graph H with O(n) vertices. Finally, testing the planarity of H takes
linear time in the size of H [11].

This concludes the proof of the theorem.

4.1 PARTITIONED T-COHERENT 2-PAGE BOOK EMBEDDING

In this subsection we restrict our attention to instances 〈T,E1, E2〉 of PTBE-k with
k = 2. We remark that this problem has been proved [4] equivalent to SEFE for k = 2
when the intersection graph G∩ is connected. This problem was only known to be
polynomial-time solvable if (i) T is a star [20], (ii) G1 = (V (T ), E(T ) ∪ E1) and
G2 = (V (T ), E(T ) ∪ E2) are biconnected [9], or (iii) T is binary [21,28]. Theorem 5
extends the class of polynomially-solvable instances by showing that PTBE-2 is linear-
time solvable if either G1 or G2 is T -biconnected.

In the following we prove that, in order to find a polynomial-time algorithm for the
general setting of PTBE-2, it suffices to focus on instances of PTBE-2 in which only
one of the two graphs is biconnected (not T -biconnected) and series-parallel.

Theorem 6. Let 〈T,E1, E2〉 be an instance of PTBE-2. There exists an equivalent
instance 〈T ∗, E∗1 , E∗2 〉 of PTBE-2 such that one of the two graphs is biconnected and
series-parallel.

Proof. We describe how to construct instance 〈T ∗, E∗1 , E∗2 〉 starting from 〈T,E1, E2〉.
Refer to Fig 7.

Let r be any internal vertex of T . Tree T ∗ is constructed as follows. Initialize tree
T ∗ to the union of two copies T ′ and T ′′ of T . For each vertex v ∈ T , let v′ and v′′

be the two copies of v in T ′ and in T ′′, respectively. Add a vertex r∗ to T ∗ and edges
(r∗, r′) and (r∗, r′′). Sets E∗1 and E∗2 are defined as follows. Set E∗1 = {(v′i, v′j) :
(vi, vj) ∈ E1} ∪ {(v′′i , v′′j ) : (vi, vj) ∈ E2}. Also, set E∗2 = {(v′i, v′′i ) : vi ∈ L(T )},
where L(T ) denotes the set of leaves of T .
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r
T

(a) 〈T,E1, E2〉

r′

r′′

T ′

T ′′

r∗

(b) 〈T ∗, E∗1 , E∗2 〉

Fig. 7: Illustration of the proof of Theorem 6.

It is straightforward to observe that, by construction, the graph G∗2 composed of T ∗
plus the edges in E∗2 is biconnected and series-parallel. We prove that 〈T ∗, E∗1 , E∗2 〉 is
equivalent to 〈T,E1, E2〉.

Suppose that 〈T,E1, E2〉 admits a partitioned T -coherent 2-page book embedding
O. We construct an order O∗ for 〈T ∗, E∗1 , E∗2 〉 as follows. For each i = 1, . . . , |L(T )|,
consider the vertex vj at position i in O. Place vertices v′j and v′′j at positions i and
2 · |L(T )| − i+ 1 in O∗, respectively.

We prove thatO∗ is a partitioned T -coherent 2-page book embedding of 〈T ∗, E∗1 , E∗2 〉.
First, we observe that O∗ is represented by T ∗, as (i) T ∗ is composed of two copies of
T connected through r∗, (ii) O∗ is composed of two suborders of which the first coin-
cides with O and the second coincides with the reverse of O, where each element vj of
O is identified with elements v′j and v′′j of O∗, and (iii) O is represented by T . Second,
we prove that the endvertices of edges in E∗1 and E∗2 do not alternate in O∗. As for the
edges in E∗2 , we observe that for every two edges (v′i, v

′′
i ) and (v′j , v

′′
j ) with i < j, both

vertices v′j and v′′j lie between v′i and v′′i inO∗. As for the edges in E∗1 , we first observe
that no alternation occurs between the endvertices of edges (v′i, v

′
j) and (v′′h, v

′′
k ) as both

v′i and v′j appear in O∗ before v′′h and v′′k , by construction. Also, no two edges (v′i, v
′
j)

and (v′h, v
′
k) alternate in O∗ as otherwise edges (vi, vj) and (vh, vk) would alternate in

O. For the same reason, no two edges (v′′i , v
′′
j ) and (v′′h, v

′′
k ) alternate in O∗.

Suppose that 〈T ∗, E∗1 , E∗2 〉 admits a partitioned T -coherent 2-page book embedding
O∗. We first observe that in O∗ either all vertices v′i ∈ T ′ appear consecutively or all
vertices v′′i ∈ T ′′ do, as O∗ is represented by T ∗ and T ∗ consists of the two copies
T ′ and T ′′ of T . Also, given a partitioned T -coherent 2-page book embedding O1,
it is possible to obtain a new one O2 by performing a circular shift on the elements
of O1, that is, by setting the first element of O1 as the last element of O2 and by
setting the element at position i in O1 as the element at position i − 1 in O2, for each
i = 2, . . . , |O1|. Hence, in the following, we will assume that O∗ is such that all the
vertices v′i ∈ T ′ appear before all the vertices v′′j ∈ T ′′.
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We construct an order O for 〈T,E1, E2〉 as follows. For each i = 1, . . . , |L(T ′)|,
consider the vertex v′j at position i in O∗ and place vertex vj at position i in O.

We prove thatO is a partitioned T -coherent 2-page book embedding of 〈T,E1, E2〉.
First, we observe that O is represented by T , as the suborder of O∗ restricted to its first
|L(T )| elements (that corresponds to a copy of O) is represented by T ′ (that is a copy
of T , where vertex v′i ∈ T ′ is identified with vertex vi ∈ T ). Second, we prove that
the endvertices of edges in E1 and E2 do not alternate in O. In order to prove that,
first observe that the suborder O′ of O∗ restricted to its first |L(T )| elements is the
reverse of the suborder O′′ of O∗ restricted to its last |L(T )| elements, where vertex
v′i ∈ T ′ is identified with vertex v′′i ∈ T ′′. This is due to the fact that (i) for every
i = 1, . . . , |L(T )|, there exists edge (v′i, v

′′
i ) and (ii) all the vertices v′i ∈ T ′ appear

before all the vertices v′′j ∈ T ′′. This implies that if the endvertices of two edges (vi, vj)
and (vh, vk) belonging to E1 (to E2) alternate in O, then the corresponding copies v′i,
v′j , v

′
h, and v′k (the corresponding copies v′′i , v′′j , v′′h , and v′′k ) alternate in O∗. However,

this contradicts the fact that O∗ is a partitioned T -coherent 2-page book embedding of
〈T,E1, E2〉, since edges (v′i, v

′
j) and (v′h, v

′
k) (edges (v′′i , v

′′
j ) and (v′′h, v

′′
k )) exist in E∗1

by construction. This concludes the proof of the theorem.

5 MAX SEFE
In this section we study the optimization version of the SEFE problem, in which two
embeddings of the input graphs G1 and G2 are searched so that as many edges of G∩
as possible are drawn the same. We study the problem in its decision version and call
it MAX SEFE. Namely, given a triple 〈G1, G2, k

∗〉 composed of two planar graphs G1

and G2, and an integer k∗, the MAX SEFE problem asks whether G1 and G2 admit
a simultaneous embedding 〈Γ1, Γ2〉 in which at most k∗ edges of G∩ have a different
drawing in Γ1 and in Γ2. First, in Lemma 2, we state the membership of MAX SEFE
to NP , which descends from the fact that SEFE belongs to NP . Then, in Theorem 7
we prove the NP-completeness in the general case. Finally, in Theorem 8, we prove
that the problem remainsNP-complete even if stronger restrictions are imposed on the
intersection graph G∩ of G1 and G2.

Lemma 2. MAX SEFE is in NP .

Proof. The statement descends from the fact that the SEFE problem belongs toNP [18].
Namely, let 〈G1, G2, k

∗〉 be an instance of MAX SEFE. Non-deterministically con-
struct in polynomial time all the sets of at most k∗ edges of G∩. Then, for each of the
constructed sets, replace every edge in the set with a path of length 2 in one of the two
graphs, say G1, hence obtaining a graph G′1, and test whether a SEFE of G′1 and G2

exists in polynomial time with a non-deterministic Turing machine [18]. If at least one
of the performed tests succeeds, then 〈G1, G2, k

∗〉 is a positive instance.

In order to prove that MAX SEFE is NP-complete, we show a reduction from a
variant of the NP-complete problem PLANAR STEINER TREE (PST) [17], defined as
follows: Given an instance 〈G(V,E), S, k〉 of PST, where G(V,E) is a planar graph
whose edges have weights ω : E → N, S ⊂ V is a set of terminals, and k > 0 is
an integer; does a tree T ∗(V ∗, E∗) exist such that (1) V ∗ ⊆ V , (2) E∗ ⊆ E, (3) S ⊆
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V ∗, and (4)
∑
e∈E∗ ω(e) ≤ k? The edge weights in ω are bounded by a polynomial

function p(n) (see [17]). In our variant, that we call UNIFORM TRICONNECTED PST
(UTPST), graph G is a triconnected planar graph and all the edge weights are equal
to 1. We remark that a variant of PST in which all the edge weights are equal to 1
and in which G is a subdivision of a triconnected planar graph (and no subdivision
vertex is a terminal) is known to be NP-complete [1]. However, using this variant
of the problemwould create multiple edges in our reduction. Actually, the presence of
multiple edges might be handled by replacing them in the constructed instance with a
set of length-2 paths. However, we think that an NP-completeness proof for the PST
problem withG triconnected and uniform edge weights may be of independent interest.

Lemma 3. UNIFORM TRICONNECTED PST is NP-complete.

Proof. The membership in NP follows from the fact that an instance of UTPST is
also an instance of PST. The NP-hardness is proved by means of a polynomial-time

(a) (b)

Fig. 8: (a) Gadget added inside a face to make G∗ triconnected. (b) Gadget replacing a
vertex of degree greater than 3 to make G∩ subcubic.

reduction from PST. Let 〈G,S, k〉 be any instance of PST. We construct an equivalent
instance 〈G′, S′, k′〉 of UTPST as follows. Initialize G′ = G. Let w =

∑
e∈G′ w(e).

Since the weights in ω are bounded by a polynomial function p(n), the value of w is
also bounded by a polynomial function n · p(n). Augment G′ to a triconnected planar
graph by adding dummy edges and set ω(ed) = w for each dummy edge ed. Then,
replace each edge e in G′ with a path P (e) of ω(e) weight-1 edges. Further, for each
face f of the unique planar embedding of G′, consider the vertices v1, . . . , vh of f as
they appear on the boundary of f . Add to G′ a set Vf of h vertices u1, . . . , uh and,
for i = 1, . . . , h, add to G′ a weight-1 edge (ui, vi) and a weight-1 edge (ui, ui+1),
where h + 1 = 1 (see Fig. 8(a)). Note that, G′ is triconnected. Finally, set S′ = S and
k′ = k. Since w is bounded by a polynomial function, 〈G′, S′, k′〉 can be constructed
in polynomial time.

We prove that 〈G,S, k〉 is a positive instance of PST if and only if 〈G′, S′, k′〉 is a
positive instance of UTPST.

Suppose that 〈G,S, k〉 is a positive instance of PST. Starting from the solution T of
〈G,S, k〉, we construct a solution T ′ of 〈G′, S′, k′〉 by replacing each edge e of T with
path P (e). By construction, T ′ is a tree, each terminal vertex in S′ belongs to T ′, and∑
e∈T ′ 1 =

∑
e∈T ω(e) ≤ k = k′.
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Suppose that 〈G′, S′, k′〉 is a positive instance of UTPST. Let T ′ be the solution
of 〈G′, S′, k′〉. Assume that T ′ is the optimal solution of 〈G′, S′, k′〉, i.e., there exists
no solution T ] of 〈G′, S′, k′〉 such that

∑
e∈T ] ω(e) <

∑
e∈T ′ ω(e). Observe that, if an

edge of a path P (e) belongs to T ′, then all the edges of P (e) belong to T ′, as the internal
vertices of P (e) do not belong to S′, by construction. Moreover, no edge of a path P (ed)
such that ed is a dummy edge belongs to T ′, since the total weight of the edges of P (ed)
is w. Finally, no edge incident to a vertex ui ∈ Vf , for some face f , belongs to T ′, as
S′ ∩ Vf = ∅ and every path vi, ui, . . . , ul, . . . , uj , vj connecting two vertices vi and vj
of f and passing through vertices of Vf is two units longer than path vi, . . . , vl, . . . , vj
only passing through vertices of f . Hence, we construct a solution T of 〈G,S, k〉 by
replacing in T ′ all the edges of each path P (e) with an edge e. By construction, T is a
tree, each terminal vertex in S belongs to T , and

∑
e∈T ω(e) =

∑
e∈T ′ 1 ≤ k′ = k.

This concludes the proof of the lemma.

Then, based on the previous lemma, we prove the main result of this section.

Theorem 7. MAX SEFE is NP-complete.

Proof. The membership in NP follows from Lemma 2.
TheNP-hardness is proved by means of a polynomial-time reduction from problem

UTPST. Let 〈G,S, k〉 be an instance of UTPST. We construct an instance 〈G1, G2, k
∗〉

of MAX SEFE as follows (refer to Fig. 9).
Since G is triconnected, it admits a unique planar embedding ΓG, up to a flip. We

now constructG∩,G1, andG2. InitializeG∩ =G1 ∩G2 as the dual ofGwith respect to
ΓG. SinceG is triconnected, its dual is triconnected. Consider a terminal vertex s∗ ∈ S,
the set EG(s∗) of the edges incident to s∗ in G, and the face fs∗ of G∩ composed of
the edges that are dual to the edges in EG(s∗). Let v∗ be any vertex incident to fs∗ ,
and let v∗1 and v∗2 be the neighbors of v∗ on fs∗ . Subdivide edges (v∗, v∗1) and (v∗, v∗2)
with dummy vertices u∗1 and u∗2, respectively. Add to G∩ vertex s∗ and edges (s∗, u∗1),
(s∗, u∗2), and (s∗, v∗). Since v∗ has at least a neighbor not incident to fs∗ , vertices u∗1
and u∗2 do not create a separation pair. Hence, G∩ remains triconnected. See Fig. 9(a).

Graph G1 contains all the vertices and edges of G∩ plus a set of vertices and edges
defined as follows. For each terminal s ∈ S, consider the set EG(s) of edges incident
to s in G and the face fs of G∩ composed of the edges dual to the edges in EG(s). Add
to G1 vertex s and an edge (s, vi) for each vertex vi incident to fs, without introducing
multiple edges. Note that, graph G1 is triconnected. Hence, the rotation scheme of each
vertex is the one induced by the unique planar embedding of G1. See Fig. 9(b).

Graph G2 contains all the vertices and edges of G∩ plus a set of vertices and edges
defined as follows. Rename the terminal vertices in S as x1, . . . , x|S|, in such a way
that s∗ = x1. For i = 1, . . . , |S|−1, add edge (xi, xi+1) to G2. The rotation scheme of
the vertices of G2 different from x1, . . . , x|S| is induced by the embedding of G∩. The
rotation scheme of vertices x2, . . . , x|S| is unique, as they have degree less or equal to 2.
Finally, the rotation scheme of s∗ is obtained by extending the rotation scheme induced
by the planar embedding of G∩, in such a way that edges (s∗, v∗) and (s∗, x2) are not
consecutive. In order to obtain an instance of MAX SEFE in which both graphs are
triconnected, we can augment G2 to triconnected by only adding edges among vertices
{u∗1, u∗2} ∪ {x1, . . . , x|S|}. See Fig. 9(b). Finally, set k∗ = k.
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Fig. 9: Illustration for the proof of Theorem 7. Black lines are edges of G∩; grey lines are edges
of G; dashed red and solid blue lines are edges of G1 and G2, respectively; green edges compose
the Steiner tree T ; white squares and white circles are terminal vertices and non-terminal vertices
of G, respectively. (a) G∩, G and T ; (b) G1 ∪ G2; (c) a drawing of G∩ where 4 edges have two
different drawings; and (d) a solution 〈Γ1, Γ2〉 of 〈G1, G2, 4〉.

We show that 〈G1, G2, k
∗〉 admits a solution if and only if 〈G,S, k〉 does.

Suppose that 〈G,S, k〉 admits a solution T . Construct a planar drawing Γ1 of G1.
The drawing Γ2 of G2 is constructed as follows. The edges of G∩ that are not dual to
edges of T are drawn in Γ2 with the same curve as in Γ1. Observe that, in the current
drawing Γ2 all the terminal vertices in S lie inside the same face f (see Fig. 9(c)).
Hence, all the remaining edges of G2 can be drawn [27] inside f without intersections,
as the subgraph of G2 induced by the vertices incident to f and by the vertices of S is
planar (see Fig. 9(d)). Since the only edges of G∩ that have a different drawing in Γ1

and Γ2 are those that are dual to edges of T , 〈Γ1, Γ2〉 is a solution for 〈G1, G2, k
∗〉.

Suppose that 〈G1, G2, k
∗〉 admits a solution 〈Γ1, Γ2〉 and assume that 〈Γ1, Γ2〉 is

optimal (that is, there exists no solution with fewer edges of G∩ not drawn the same).
Consider the graph T composed of the dual edges of the edges ofG∩ that are not drawn
the same. We claim that T has at least one edge incident to each terminal in S and
that T is connected. The claim implies that T is a solution to the instance 〈G,S, k〉 of
UTPST, since T has at most k edges and since 〈Γ1, Γ2〉 is optimal.
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Suppose for a contradiction that there exist two connected components T1 and T2 of
T (possibly composed of a single vertex). Consider the edges of G incident to vertices
of T1 and not belonging to T1, and consider the face f1 composed of their dual edges.
Note that, f1 is a cycle of G∩. By definition of T , all the edges incident to f1 have
the same drawing in Γ1 and in Γ2. Finally, there exists at least one vertex of S that
lies inside f1 and at least one that lies outside f1. Since all the vertices in S belong
to a connected subgraph of G2 not containing any vertex incident to f1, there exist
two terminal vertices s′ and s′′ such that s′ lies inside f1, s′′ lies outside f1, and edge
(s′, s′′) belongs to G2. This implies that (s′, s′′) crosses an edge incident to f1 in Γ2, a
contradiction. This concludes the proof of the theorem.

We note from Theorem 7 that MAX SEFE is NP-complete even if the two input
graphs G1 and G2 are triconnected, and if the intersection graph G∩ is composed of
a triconnected component and of a set of isolated vertices (those corresponding to ter-
minal vertices). We remark that, under these conditions, the original SEFE problem is
polynomial-time solvable (actually, it is polynomial-time solvable even if only one of
the input graphs has a unique embedding [3]). Further, it is possible to transform the
constructed instances so that all the vertices of G∩ have degree at most 3, by replacing
each vertex v of degree d(v) > 3 in G∩ with a gadget as in Fig. 8(b). Such a gadget
is composed of a cycle of 2d(v) vertices and of an internal grid with degree-3 vertices
whose size depends on d(v). Edges incident to v are assigned to non-adjacent vertices
of the cycle, in the order defined by the rotation scheme of v. Hence, the MAX SEFE
problem remains NP-complete even for instances in which G∩ is subcubic, that is
another sufficient condition to make SEFE polynomial-time solvable [28].

In the following we go farther in this direction and prove that MAX SEFE remains
NP-complete even if the degree of the vertices in G∩ is at most 2. The proof is based
on a reduction from the NP-complete problem MAX 2-XORSAT [25], which takes
as input (i) a set of Boolean variables B = {x1, ..., xl}, (ii) a 2-XorSat formula F =∧
xi,xj∈B(li⊕ lj), where li is either xi or xi and lj is either xj or xj , and (iii) an integer

k > 0, and asks whether there exists a truth assignment A for the variables in B such
that at most k of the clauses in F are not satisfied by A.

Theorem 8. MAX SEFE isNP-complete even if the intersection graph G∩ of the two
input graphs G1 and G2 is composed of a set of cycles of length 3.

Proof. The membership in NP follows from Lemma 2.
TheNP-hardness is proved by means of a polynomial-time reduction from problem

MAX 2-XORSAT. Let 〈B,F, k〉 be an instance of MAX 2-XORSAT. We construct an
instance 〈G1, G2, k

∗〉 of MAX SEFE as follows. Refer to Fig. 10(a).
GraphG1 is composed of a cycle C with 2l vertices v1, v2, . . . , vl, ul, ul−1, . . . , u1.

Also, for each variable xi ∈ B, with i = 1, . . . , l,G1 contains a set of vertices and edges
defined as follows. First,G1 contains a 4-cycle Vi = (ai, bi, ci, di), that we call variable
gadget, connected to C through edge (ai, vi). Further, for each clause (li ⊕ lj) ∈ F (or
(lj ⊕ li) ∈ F ) such that li ∈ {xi, xi}, G1 contains (i) a 3-cycle Vi,j = (ai,j , bi,j , ci,j),
that we call clause-variable gadget, (ii) an edge (bi,j , w), where either w = bi, if
li = xi, or w = di, if li = xi, and (iii) an edge (ai,j , ci,h), where (li⊕ lh) (or (lh⊕ li))
is the last considered clause to which li participates; if (li ⊕ lj) (or (lj ⊕ li)) is the first



Advancements on SEFE and Partitioned Book Embedding Problems 25

ui

bi

ci

bi,j

vjvi

uj

ai

ai,j

ci,j

aj
bj

cj

aj,i

cj,i

di dj

C

Vi,j Vj,iGi,j
2

bj,i

Vi Vj

Gi
1 Gj

1

(a)

ui

bi

vi

diVi

ui

di

vi

biVi

bi,j

ai,j

ci,j

Vi,j
bi,j

ai,j

ci,j

Vi,j

(b)

Fig. 10: (a) Illustration of the construction of instance 〈G1, G2, k
∗〉 of MAX SEFE. (b)

Illustration of the two cases in which li evaluates to true in A.

considered clause containing li, then ci,h = ci. When the last clause (li⊕lq) (or (lq⊕li))
has been considered, an edge (ci,q, ui) is added toG1. Note that, the subgraphGi1 ofG1

induced by the vertices of the variable gadget Vi and of all the clause-variable gadgets
Vi,j to which li participates would result in a subdivision of a triconnected planar graph
by adding edge (ci,q, ai), and hence it has a unique planar embedding (up to a flip).
Graph G2 is composed as follows. For each clause (li⊕ lj) ∈ F , with li ∈ {xi, xi} and
lj ∈ {xj , xj}, graph G2 contains a triconnected graph Gi,j2 , that we call clause gadget,
composed of all the vertices and edges of the clause-variable gadgets Vi,j and Vj,i, plus
three edges (ai,j , aj,i), (bi,j , bj,i), and (ci,j , cj,i). Finally, set k∗ = k.

Note that, with this construction, graph G∩ is composed of a set of 2|F | cycles of
length 3, namely the two clause-variable gadgets Vi,j and Vj,i for each clause (li ⊕ lj).

We show that 〈G1, G2, k
∗〉 admits a solution if and only if 〈B,F, k〉 does.

Suppose that 〈B,F, k〉 admits a solution, that is, an assignment A of truth values
for the variables of B not satisfying at most k clauses of F . We construct a solution
〈Γ1, Γ2〉 of 〈G1, G2, k

∗〉. First, we construct Γ1. Let the face composed only of the
edges of C be the outer face. For each variable xi, with i = 1, . . . , l, if xi is true in
A, then the rotation scheme of ai in Γ1 is (ai, vi), (ai, bi), (ai, di) (as in Fig. 10(a)).
Otherwise, xi is false in A, and the rotation scheme of ai is the reverse (as for aj
in Fig. 10(a)). Since Gi1 has a unique planar embedding, the rotation scheme of all
its vertices is univocally determined. Second, we construct Γ2. Consider each clause
(li⊕lj) ∈ F , with li ∈ {xi, xi} and lj ∈ {xj , xj}. If li evaluates to true inA, then the
embedding ofGi,j2 is such that the rotation scheme of ai,j in Γ2 is (ai,j , bi,j), (ai,j , ci,j),
(ai,j , aj,i) (as in Fig. 10(a)). Otherwise, li is false in A and the rotation scheme of
ai,j is the reverse (as for aj,i in Fig. 10(a)). Since Gi,j2 is triconnected, this determines
the rotation scheme of all its vertices. To obtain Γ2, compose the embeddings of all the
clause gadgets in such a way that each clause gadget lies on the outer face of all the
others.
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We prove that 〈Γ1, Γ2〉 is a solution of the MAX SEFE instance, namely that at
most k∗ edges of G∩ have a different drawing in Γ1 and in Γ2. Since G∩ is composed
of 3-cycles, this corresponds to saying that at most k∗ of such 3-cycles have a different
embedding in Γ1 and in Γ2 (where the embedding of a 3-cycle is defined by the clock-
wise order of the vertices on its boundary). In fact, a 3-cycle with a different embedding
in Γ1 and in Γ2 can always be realized by drawing only one of its edges with a different
curve in the two drawings. By this observation and by the fact that at most k = k∗

clauses are not satisifed by A, the following claim is sufficient to prove the statement.

Claim 1 For each clause (li ⊕ lj) ∈ F , if (li ⊕ lj) is satisifed by A, then both Vi,j and
Vj,i have the same embedding in Γ1 and in Γ2, while if (li ⊕ lj) is not satisifed by A,
then exactly one of them has the same embedding in Γ1 and in Γ2.

Proof. Consider a clause (li ⊕ lj) ∈ F , where li ∈ {xi, xi} and lj ∈ {xj , xj}. First,
we prove that Vi,j has the same embedding in Γ1 and in Γ2, independently of whether
(li ⊕ lj) is satisfied or not. Namely, the flip of Gi1 selected in the construction of Γ1

is such that the rotation scheme of ai,j in Γ1 is (ai,j , bi,j), (ai,j , ci,j), (ai,j , cx) if and
only if li evaluates to true inA (where cx = ci if (li⊕ lj) is the first considered clause
involving either xi or xi in the construction of G1, otherwise cx = ci,h where (li ⊕ lh)
(or (lh ⊕ li)) is the clause involving either xi or xi considered before (li ⊕ lj) in the
construction of G1). This can be easily verified by considering the flip of Gi1 in Γ1 in
the two cases in which li evaluates to true in A, namely when either xi = true and
li = xi or when xi = false and li = xi, that are depicted in Fig. 10(b). Recall that, by
construction, the rotation scheme of ai,j in Γ2 is (ai,j , bi,j), (ai,j , ci,j), and (ai,j , aj,i)
if and only if li evaluates to true in A. Since cx lies outside Vi,j in Γ1 and aj,i lies
outside Vi,j in Γ2, the embedding of Vi,j is determined by the evaluation of li in A in
the same way in Γ1 as in Γ2.

Hence, it remains to prove that, if (li ⊕ lj) is satisifed by A, then also Vj,i has
the same embedding in Γ1 and in Γ2. Suppose that lj evaluates to false in A. By
construction, the flip of Gj1 selected in the construction of Γ1 is such that the rotation
scheme of aj,i in Γ1 is (aj,i, cj,i), (aj,i, bj,i), (aj,i, cx) (where cx is defined as above).
This can be easily verified by considering the flip of Gi1 in Γ1 in the two cases in which
lj evaluates to false in A, namely when either xj = false and lj = xj or when
xj = true and lj = xj . Further, since (li ⊕ lj) is satisifed by A and lj evaluates to
false, li evaluates to true. Hence, by construction, the rotation scheme of ai,j in
Γ2 is (ai,j , bi,j), (ai,j , ci,j), (ai,j , aj,i). Since Gi,j2 is triconnected, the rotation scheme
of aj,i in Γ2 is (aj,i, cj,i), (aj,i, bj,i), (aj,i, ai,j). Since cx lies outside Vj,i in Γ1 and
ai,j lies outside Vj,i in Γ2, the embedding of Vj,i is the same in Γ1 and in Γ2 when lj
evaluates to false in A.

The fact that the embedding of Vj,i be the same in Γ1 and in Γ2 when lj evaluates
to true in A (and hence li evaluates to false) can be proved analogously.

Suppose that 〈G1, G2, k
∗〉 admits a solution 〈Γ1, Γ2〉. Assume that 〈Γ1, Γ2〉 is op-

timal, that is, there exists no solution of 〈G1, G2, k
∗〉 with fewer edges of G∩ drawn

differently. We construct a truth assignmentA that is a solution of 〈B,F, k〉, as follows.
For each variable xi, with i = 1, . . . , l, assign true to xi if the rotation scheme of ai
in Γ1 is (ai, vi), (ai, bi), (ai, di). Otherwise, assign false to xi.



Advancements on SEFE and Partitioned Book Embedding Problems 27

We prove thatA is a solution of the MAX 2-XORSAT instance, namely that at most
k clauses of B are not satisfied by A. Since 〈Γ1, Γ2〉 is optimal, for any 3-cycle Vi,j
of G∩, at most one edge has a different drawing in Γ1 and in Γ2. Also, for any clause
(li ⊕ lj), at most one of Vi,j and Vj,i has an edge drawn differently in Γ1 and in Γ2, as
otherwise one could flip Gi,j2 in Γ2 (that is, revert the rotation scheme of all its vertices)
and draw all the edges of Vi,j and Vj,i with the same curves as in Γ1. Since k = k∗, the
following claim is sufficient to prove the statement.

Claim 2 For each clause gadget Gi,j2 such that Vi,j and Vj,i have the same drawing in
Γ1 and in Γ2, the corresponding clause (li ⊕ lj) is satisfied by A.

Proof. Consider a clause gadget Gi,j2 and the drawing of the corresponding clause-
variable gadgets Vi,j and Vj,i in Γ2. Note that, since Gi,j2 is triconnected, if the rotation
scheme of ai,j is (ai,j , bi,j), (ai,j , ci,j), (ai,j , aj,i), then the rotation scheme of aj,i is
(aj,i, cj,i), (aj,i, bj,i), (aj,i, ai,j). Otherwise, both the rotation schemes are reversed.
Also, consider the clause-variable gadget Vi,j corresponding to any clause (li ⊕ lj)
or (lj ⊕ li) involving a variable xi. Note that, if the rotation scheme of ai,j in Γ1 is
(ai,j , bi,j), (ai,j , ci,j), (ai,j , cx) (where cx is defined as in the proof of Claim 1), then
either edge (bi,j , bi) exists in G1 and the rotation scheme of ai is (ai, vi), (ai, bi),
(ai, di), or edge (bi,j , di) exists in G1 and the rotation scheme of ai is (ai, vi), (ai, di),
(ai, bi). In both cases, literal li evaluates to true in A. In fact, in the former case
li = xi and xi is true in A, while in the latter case li = xi and xi is false in A, by
the construction of 〈G1, G2, k

∗〉 and by the assignment chosen for A. Analogously, if
the rotation scheme of ai,j is the opposite, then li evaluates to false in A.

Consider any clause gadget Gi,j2 such that Vi,j and Vj,i have the same drawing in
Γ1 and in Γ2. By combining the observations on the relationships among the rotation
schemes of the vertices belonging to the clause gadget Gi,j2 , to the clause-variable gad-
gets Vi,j and Vj,i, and to the variable gadgets Vi and Vj , it is possible to conclude that
li evaluates to true in A if and only if lj evaluates to false in A, that is, (li ⊕ lj) is
satisfied by A.

This concludes the proof of the theorem.

6 Conclusions
In this paper we proved several results concerning the computational complexity of
some problems related to the SEFE and the PARTITIONED T-COHERENT k-PAGE
BOOK EMBEDDING problems. We showed that the version of SEFE in which all graphs
share the same intersection graph G∩ (SUNFLOWER SEFE) isNP-complete for k ≥ 3
even when G∩ is a tree and all the input graphs are biconnected. This improves on the
result by Schaefer [28] who provedNP-completeness when G∩ is a forest of stars and
two of the input graphs consist of disjoint biconnected components. Further, we prove
NP-completeness of problem PTBE-k for k ≥ 3 when T is a caterpillar and two of the
input graphs are biconnected, and of problem PBE-k for k ≥ 3. These results improve
on the previously known NP-completeness for k unbounded by Hoske [21]. Also, we
provided a linear-time algorithm to decide PTBE-k for k ≥ 2 when k − 1 of the in-
put graphs are T -biconnected. Most notably, this result enlarges the set of instances of
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PTBE-2, and hence of the long-standing open problem SEFE when G∩ is connected,
for which a polynomially-time algorithm is known. For this problem, we also proved
that all the instances can be encoded by equivalent instances in which one of the two
graphs is biconnected and series-parallel. It is also known that the biconnectivity of
both the input graphs suffices to make the problem polynomial-time solvable [7]. On
one hand, our results push PTBE-2 closer to the boundary of polynomiality. On the
other hand, since we proved that for k ≥ 3 the biconnectivity of all the input graphs
does not avoid NP-completeness, it is natural to wonder whether dropping the bicon-
nectivy condition on one of the two graphs in the case k = 2 would make it possible to
simulate the degrees of freedom that are given by the fact of having more graphs.

Moreover, we considered the optimization version MAX SEFE of SEFE with k =
2, in which one wants to draw as many common edges as possible with the same curve
in the drawings of the two input graphs. We showedNP-completeness of this problem
even under strong restrictions on the embedding of the input graphs and on the degree
of the intersection graph that are sufficient to obtain polynomial-time algorithms for the
original decision version of the problem.
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