
Safe and Stabilizing Distributed Multi-Path Cellular
Flows

Taylor T. Johnson∗, Sayan Mitra

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,Urbana, IL 61801, USA

Abstract

We study the problem of distributed traffic control in the partitioned plane,
where the movement of all entities (robots, vehicles, etc.) within each parti-
tion (cell) is coupled. Establishing liveness in such systems is challenging, but
such analysis will be necessary to apply such distributed traffic control algo-
rithms in applications like coordinating robot swarms and the intelligent high-
way system. We present a formal model of a distributed traffic control protocol
that guarantees minimum separation between entities, even as some cells fail.
Once new failures cease occurring, in the case of a single target, the protocol is
guaranteed to self-stabilize and the entities with feasible paths to the target cell
make progress towards it. For multiple targets, failures may cause deadlocks
in the system, so we identify a class of non-deadlocking failures where all en-
tities are able to make progress to their respective targets. The algorithm relies
on two general principles: temporary blocking for maintenance of safety and
local geographical routing for guaranteeing progress. Our assertional proofs
may serve as a template for the analysis of other distributed traffic control pro-
tocols. We present simulation results that provide estimates of throughput as
a function of entity velocity, safety separation, single-target path complexity,
failure-recovery rates, and multi-target path complexity.

Keywords: distributed systems, swarm robotics, formal methods

1. Introduction

Highway and air traffic flows are nonlinear switched dynamical systems
that give rise to complex phenomena such as abrupt phase transitions from fast
to sluggish flow [1, 2, 3]. Our ability to monitor, predict, and avoid such phe-
nomena can have a significant impact on the reliability and capacity of physical
traffic networks. Traditional traffic protocols, such as those implemented for air

∗Corresponding author
Email addresses: taylor.johnson@acm.org (Taylor T. Johnson), mitras@illinois.edu

(Sayan Mitra)

Preprint submitted to Theoretical Computer Science A June 22, 2021

ar
X

iv
:1

20
9.

20
58

v2
 [

cs
.R

O
]

 1
1

O
ct

 2
01

2

traffic control are centralized [4]—a coordinator periodically collects information
from the vehicles, decides and disseminates waypoints, and subsequently the
vehicles try to blindly follow a path to the waypoint. Wireless vehicular net-
works [5, 6, 7, 8] and autonomous vehicles [9, 10] present new opportunities
for distributed traffic monitoring [11, 12, 13] and control [14, 15, 16, 17, 18, 19].
While these protocols may still rely on some centralized coordination, they
should scale and be less vulnerable to failures compared to their centralized
counterparts. In this paper, we propose a fault-tolerant distributed traffic con-
trol protocol, formally model it, and formally prove its correctness.

A traffic control protocol is a set of rules that determines the routing and
movement of certain physical entities, such as vehicles, robots, or packages,
over an underlying graph, such as a road network, air-traffic network, or ware-
house conveyor system. Any traffic control protocol should guarantee: (a) (safety)
that the entities always maintain some minimum physical separation, and (b) (progress)
that the entities eventually arrive at a given a destination (or target) vertex.
In a distributed traffic control protocol, each entity determines its own next-
waypoint, or each vertex in the underlying graph determines the next-waypoints
for the entities in an appropriately defined neighborhood.

In this paper, we study the problem of distributed traffic control in a parti-
tioned plane where the motions of entities within a partition are coupled. The
problem can be described as follows (refer to Figures 1 and 2). The environ-
ment—the geographical space of interest—is partitioned into regions or cells.
Each entity is assigned a certain type or color. For each color, there is one source
cell and one target cell of the same color. The source cells produce entities of
some color, and the target cells only consume entities of a particular color, so
the goal is to move entities of color c to the target of color c. The motion of all
entities within a cell are coupled, in the sense that they all either move identi-
cally, or they all remain stationary (we discuss the motivation for this below).
If some entities within some cell i touch the boundary of a neighboring cell j,
those entities are transferred to j. Thus, the role of the distributed traffic con-
trol protocol is to control the motion of the cells so that the entities (a) always
have the required safe separation, and (b) reach their respective targets, when
feasible.

The coupling mentioned above that requires entities within a cell to move
identically may appear strong at first sight. After all, under low traffic condi-
tions, individual drivers control the movement of their cars within a particular
region of the highway, somewhat independently of the other drivers in that re-
gion. However, on highways under high-traffic, high-velocity conditions, it is
known that coupling may emerge spontaneously, causing the vehicles to form
a fixed lattice structure and move with near-zero relative speed [1, 20]. In other
scenarios, coupling arises because passive entities are moved around by active
cells. For example, this occurs with packages being routed on a grid of multi-
directional conveyors [21, 22], and molecules moving on a medium according
to some controlled chemical gradient. Finally, even where the entities are ac-
tive and cells are not, the entities can cooperate to emulate a virtual active cell
expressly for the purposes of distributed coordination. This idea has been ex-

2

plored for mobile robot coordination in [23] using a cooperation strategy called
virtual stationary automata [24, 25].

In this paper, we present a distributed traffic control protocol that guar-
antees safety at all times, even when some cells fail permanently by crashing.
The protocol also guarantees eventual progress of entities toward their targets,
provided (a) that there exists a path through non-faulty cells to the entities’ re-
spective targets, and (b) failures have not introduced unrecoverable deadlocks.
Specifically, the protocol is self-stabilizing [26, 27], in that once new failures stop
occurring, the composed system automatically returns to a state from which
progress can be made. The algorithm relies on the following four mechanisms.

(a) There is a routing rule to maintain local routing tables to each target at each
non-faulty cell. This routing protocol is self-stabilizing and allows our pro-
tocol to tolerate crash failures of cells.

(b) There is a mutual exclusion and scheduling mechanism to ensure moving
entities over distinctly colored overlapping paths do not introduce dead-
locks. The locking and scheduling mechanism ensures one-way traffic can
make progress over shared routes (traffic intersections).

(c) There is a signaling rule between neighbors that guarantees safety while
preventing deadlocks. Roughly speaking, the signaling mechanism at some
cell fairly chooses among its neighboring cells that contain entities, indicat-
ing if it is safe for one of these cells to apply a movement in the direction of
the cell doing the signaling. This permission-to-move policy turns out to
be necessary, because movement of neighboring cells may otherwise result
in a violation of safety in the signaling cell, if entity transfers occur.

(d) The movement policy causes all entities on a cell to either move with the
same constant velocity in the direction of their destination, or remain sta-
tionary to ensure safety. This policy abstracts more complex motion mod-
eling.

We establish these safety and progress properties through systematic asser-
tional reasoning. For safety properties, we establish inductive invariants and
for stabilization we use global ranking functions. To show that all entities reach
their destinations (when feasible), we use a combination of ranking functions
and fairness-based reasoning on infinite executions. These proof techniques
may serve as a template for the analysis of other distributed traffic control
protocols. Our analysis is generally independent of the size of the environ-
ment, number of cells, and number of entities. Additionally, only neighbor-
ing cells communicate with one another and the communication topology is
fixed (aside from failures). For these reasons, this problem can serve as a case
study in automatic parameterized verification of distributed cyber-physical
systems [28, 29, 30, 31].

We present simulation results that illustrate the influence (or the lack thereof)
of several factors on throughput. (a) Throughput decreases exponentially with

3

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

1S

2

3

4

5T

6

7

8

9

10

11S

12

13

14

15

16

17

18T

x

y

Figure 1: Source cells (1 and 11) pro-
duce entities that flow toward the target
cell (18 and 5) of the appropriate color.
Source-to-target paths overlap at cells 8
and 13. In this execution, the blue entity
on cell 7 is waiting for the red entities to
leave the overlapping cells.

6T 11

12

13

14

15

16S

20T10S

Figure 2: If cell 10
moved its blue entities
onto the shared one-lane
“bridge” (11, 12, 13,
14, 15), then all entities
would be deadlocked.

path length until saturation, as which point it decreases roughly linearly with
path length. (b) Throughput decreases roughly linearly with required safety
separation and cell velocity. (c) Throughput decreases roughly exponentially
until it saturates as a function of path complexity measured in number of turns
along a path. (d) Throughput decreases roughly exponentially with failure
rate, and increases linearly with recovery rates, under a model where crash
failures are not permanent and cells may recover from crashing. (e) Through-
put decreases roughly exponentially until it saturates as a function of the per-
centage of overlapping cells between different colored targets.

Contributions over Previous Work. In previous work [32], we analyzed a similar
problem, but have significantly generalized our results in this paper.

(A) We consider general tessellations (including triangulations) that define the
partitioning, while we considered uniform square partitions in [32]. We
also present results on partitioning schemes that cannot work for our for-
mulation of the problem.

(B) We allow entities of multiple colors, each flowing to a different target,
while in [32], we only allowed entities of one color, all of which flowed to
the nearest target. This generalization lets source-to-target paths of differ-
ent colors overlap, creating intersections, and requires several changes to
the algorithm, including adding a mutual exclusion and scheduling mech-
anisms used to control traffic intersections. This generalization is signif-
icant because it makes the problem applicable to a much wider class of
systems.

4

(C) We extended our simulation results to allow for these generalizations, and
characterized the cost on throughput due to the extra coordination re-
quired to allow multiple colors.

Paper Organization. The rest of the paper is organized as follows. First, Sec-
tion 2 introduces the model of the physical system. Next in Section 3, we
present the distributed traffic control algorithm. Then in Section 4, we define
and prove the safety and progress properties. Subsection 4.1 establishes safety.
Subsequently, we establish a progress property that shows entities eventually
reach their targets in spite of failures (when possible). First in Subsection 4.2,
it is shown that the routing protocol to find any target from any cell with a
physical path through non-faulty cells to that target is self-stabilizing. Then
in Subsection 4.3, we show how overlapping paths to different targets (traffic
intersections) can be scheduled. Finally, in Subsection 4.4, it is shown that en-
tities on any cell with a feasible physical path to their target eventually reach
their target. Simulation results and interpretation are presented in Section 5,
followed by a brief discussion of related work and further extensions, and a
conclusion in Sections 6, 7, and 8.

2. Physical System Model

We describe the physical system in this section. For a set K, we define
K⊥

4
= K ∪ {⊥} and K∞

4
= K ∪ {∞}. For N ∈ N, let [N]

4
= {1, . . . , N}. The ||·||

brackets are used for the Euclidean norm of a vector.

Partitioning. The system consists of N convex polygonal cells partitioning a
polygonal environment. Let ID 4

= [N] be the set of unique identifiers for all
cells in the system.The planar environment Env is some given simply con-
nected polygon. A partition P of Env is a set of closed, convex polygonal cells
{Pi}i∈ID such that:

(a) the interiors of the cells are pairwise disjoint,

(b) the union of the cells is the original polygonal environment, and

(c) cells only touch one another at a point or along an entire side.

The first two conditions are the standard definition of a partition, while the
third restricts any cell from being adjacent along one of its sides to more than
one other cell. Thus, cell i occupies a convex polygon Pi in the Euclidean
plane. The boundary of cell i is denoted by ∂Pi. We denote the vertices (ex-
treme points) of Pi as Vi. We denote the number of sides of Pi as ns(i). Let
Side(i, j)

4
= ∂Pi ∩ ∂Pj be the common side of adjacent cells i and j—we will

refer to Side(i, j) as both an index and a line segment (set of points).

5

Communications. Cell i is said to be a neighbor of cell j if the boundaries of the
cells share a common side. The set of identifiers of all neighbors of cell i is
denoted by Nbrsi. This definition of neighbors can naturally be represented as
a graph, so let ∆ be the worst-case diameter of such a neighbor communication
graph1. For each cell i ∈ ID and each neighboring cell j ∈ Nbrsi, let the
side normal vector from i to j, denoted n(i, j), be the unit vector orthogonal
to Side(i, j) and pointing into cell j from the common side Side(i, j).

Each cell is controlled by software that implements the distributed traffic
control algorithm described in the next section. We consider synchronous pro-
tocols that operate in rounds. At each round, each cell exchanges messages
bearing state information with its neighbors. Then, each cell updates its soft-
ware state and decides the (possibly zero) velocity with which to move any
entities on it. Until the beginning of the next round, the cells continue to oper-
ate according to this velocity, which may lead to entity transfers.

Entities. Each cell may contain a number of entities. Each entity occupies a cir-
cular area and represents a physical object (or overapproximation of) such as
an aircraft, car, robot, or package. Every entity that may ever be in the system
has a unique identifier drawn from an index set I . This assumption is for pre-
sentation only, and the algorithm does not rely on knowing entity identifiers.
For an entity p ∈ I , we denote the coordinates of its center by p 4

= (px, py) ∈ R2.
The open circular area (disc) centered at p of radius r representing entity p

is denoted B(p, l). The radius of an entity is l , and rs is the minimum required
inter-entity safety gap. We define the total safety spacing radius as d

4
= rs + l .

For simplicity of presentation, we work with uniform entity radii l and safety
gaps rs . If they differ, we would take l and rs to be the maximums over all
entities. We instantiate B(p, l), which represents the physical space occupied
by entity p, and we also instantiate B(p, d), which is entity p’s total safety area.

Entity Colors, Source Cells, and Target Cells. There are |C| types (or colors) of
entities, where C is some finite, ordered set. The color of some entity p ∈ I
is denoted as color(p). For each c ∈ C, there is a source cell sidc and a target
cell tidc. All other cells are ordinary cells. For simplicity of presentation, we
assume there is a unique source and target, but the algorithms and the results
generalize for when sidc and tidc are sets.

Entity p’s color color(p) designates the target cell entity p should eventually
reach. The source sidc produces entities of color c and the target tidc consumes
entities of color c. The sets of target and source identifiers are denoted IDT ⊆
ID and IDS ⊆ ID , respectively.

Entity Movement. All the entities within a cell move identically—either they
remain stationary or they move with some constant velocity 0 < v < l in the

1The diameter of this graph is not static, it may change due to failures, but the worst case is
always a path graph, so ∆ = N .

6

direction of one of the sides of the cell. Thus v is the maximum cell velocity,
or the greatest distance traveled by any entity over one synchronous round.
We require v > 0 to ensure progress. We require that v < l to ensure entities
do not collide when transfers occur. Cell velocity may differ in each cell so
long as each is upper bounded by v . This movement is determined by the
algorithm controlling each cell. When a moving entity touches a side of a cell,
it is instantaneously transferred to the neighboring cell beyond that side, so
that the entity is entirely contained in the new cell.

Safety and Transfer Regions. The safety region on side s of a cell is the area
within the cell where (the centers of) new entities entering the cell from side
s can be placed. For a side s of some cell i, the safety region on side s SRi(s) is
the area on Pi at most 3d distance measured orthogonally from side s. Analo-
gously, the transfer region on side s of a cell is the area within a cell where (the
centers of) entities reside when those entities will be transfered to the neigh-
boring cell on that side. The transfer region on side s TRi(s) is the region in the
partition Pi at most l distance measured orthogonally from side s. For a cell
i, the transfer region TRi and safety region SRi are respectively the unions of
TRi(s) and SRi(s) for each side s of Pi. We refer to the inner side(s) of TRi,
TRi(s), SRi, or SRi(s), as the side(s) touching the inside of the annulus, and
denote them by ITRi, ITRi(s), etc.

For example, in Figure 3, the transfer region for the square cell 3 is the
square annulus between the smaller cyan square and the larger blue square
(the boundary ∂P3 of cell 3). Similarly, for the triangular cell 1 in Figure 3, the
transfer region is the triangular annulus between the smaller cyan triangle and
the larger blue triangle. Thus, the distance measured orthogonally between the
sides of the cyan polygons representing the boundary of the transfer region,
and the sides of the blue polygons is always l . In Figure 3, for the square cell 3,
the safety region is the square annulus between the smaller red square and the
larger blue square.

Geometric Assumptions. We assume that the polygonal environment Env and
its partition P have shapes and sizes such that each cell in the partition is large
enough for an entity to lie completely on it. Particularly, we require for each cell
i ∈ ID that the transfer region TRi is nonempty. We also assume the following
assumptions to ensure transferring entities between cells is well-defined.

Assumption 1. (Projection Property): For each i ∈ ID , for each side s of Pi, there
exists a constant vector field over Pi that drives every point in Pi to some point on side
s without exiting Pi.

By definition, the cells form a partition. However, partially because there
is “empty space” between the transfer regions of the cells, the transfer regions
do not form a partition. Even if we remove this empty space by translating
the transfer regions so the sides of transfer regions of neighboring cells coin-
cide, they still may not form a partition (see Figure 3 for an example where the
transfer regions cannot form a partition). This is because, for the shared side s

7

98 99 100 101 102 103
0

1

2

3

4

5

1T

2S

3 4

5 6

7

8

9 10

11 12

13

14

15 16

17 18

19

20

x

y

Figure 3: Safety regions (areas between red and
blue) and transfer regions (areas between cyan
and blue) for the squares and triangles compos-
ing the snub square tiling tessellation.

95 100 105
0

2

4

6

8

10

1

2

3S

4S

5S 6S
7

8
9 10T

11
12

13

14

15T 16

17
18

19

20

21
22

23T 24T

x

y

Figure 4: Blue and red paths overlap at
cells 2, 3, and 4. Blue entities on cells
7 and 8 have traversed the intersection
and then the red source (4) produces
entities. Red and blue sources pro-
ducing entities simultaneously would
cause a deadlock.

of neighboring cells i and j, the inner sides of the transfer regions on Pi and Pj

may have different lengths, even though the shared side s obviously had the
same length for Pi and Pj .

Assumption 2. (Transfer Feasibility): For any i ∈ ID and any j ∈ Nbrsi, con-
sider their common side Side(i, j). The length of the inner side ITRi(Side(i, j)) line
segment equals the length of the inner side ITRj(Side(i, j)) line segment.

3. Distributed Traffic Control Algorithm

Next, we describe the discrete transition system Celli that specifies the soft-
ware controlling an individual cell Pi of the partition P .

Preliminaries. A variable is a name with an associate type. For a variable x, its
type is denoted by type(x) and it is the set of values that x can take. A valuation
(or state) for a set of variables X is denoted by x, and is a function that maps
each x ∈ X to a point in type(x). Given a valuation x for X , the valuation for a
particular variable v ∈ X , denoted by x.v, is the restriction of x to {v}. The set
of all possible valuations ofX is denoted by val(X). Many variables return cell
identifiers that we use to access variables of other cells using subscripts, and
if the valuation of these variables are restricted to the same state, we will drop
the particular state on the subscripted variables for more concise notation. For
instance, suppose x.next i ∈ ID , then x.nextx.nexti would be written x.nextnexti .

A discrete transition system A is a tuple 〈X,Q0, A,→〉, where:

(i) X is a set of variables and val(X) is called the set of states,

8

1

2S

3

4

5S

6T

7

8S

9

10

11S

12

13T

14T

15T

16

17T

18T

19

20S

21

22

23

24S

25

Figure 5: Example illustrating the computa-
tion of the color-shared cells and shared colors,
stored in the pint [c] and lcsi[c] variables, re-
spectively. The color-shared cells are any cells
on overlapping paths, and lcsi[c] corresponds
to the colors of each disjoint set of color-shared
cells.

1T

2

3

4

5S

6

7

8

9

10

11S

12T

13

14

15

16

17

18

19

20

21S

22

23

24

25T

Figure 6: Example illustrating the two fairness
requirements (Assumption 4) for proving live-
ness. Cells 9, 14, 19, and 20 failed, causing the
original source-target path for blue to change
from cells 5, 10, 15, 20, 25. If source cell 5 does
not place new entities fairly, then entities on
cells 10 and 15 may never reach the target. A
similar situation occurs with paths of multiple
colors in the lower part of the image.

(ii) Q0 ⊆ val(X) is the set of start states,

(iii) A is a set of transition names, and

(iv) →⊆ val(X)×A×val(X) is a set of discrete transitions. For (xk, a,xk+1) ∈→,
we also use the notation xk

a→ xk+1.

An execution fragment of a discrete transition systemA is a (possibly infinite)
sequence of states α = x0,x1, . . ., such that for each index appearing in α,
(xk, a,xk+1) ∈→ for some a ∈ A. An execution is an execution fragment with
x0 ∈ Q0. A state x is said to be reachable if there exists a finite execution that
ends in x. A is said to be safe with respect to a set S ⊆ val(X) if all reachable
states are contained in S. A set S is said to be stable if, for each (x, a,x′) ∈→,
x ∈ S implies that x′ ∈ S. A is said to stabilize to S if S is stable and every
execution fragment eventually enters S.

Cells. We assume messages are delivered within bounded time and computa-
tions are instantaneous. Under these assumptions, the system can be modeled
as a collection of discrete transition systems. The overall system is obtained
by composing the transition systems of the individual cells. We first present
the discrete transition system corresponding to each cell, and then describe the
composition.

The variables associated with each Celli are as follows, with initial values of
the variables shown in Figure 7 using the ‘:=’ notation.

9

(a) Entitiesi is the set of identifiers for entities located on cell i. Cell i is said to
be nonempty if Entitiesi 6= ∅.

(b) color i designates the entity colors on the cell, or ⊥ if there are none2.

(c) failed i indicates whether or not i has failed.

(d) NEPrev i are the nonempty neighbors attempting to move entities (of any
color) toward cell i.

(e) tokeni is a token used for fairness to indicate which neighbor may move
toward i.

(f) signal i is the identifier of a neighbor of Celli that has permission to move
toward Celli.

Additionally, the following variables are defined as arrays for each color c ∈ C.
The notation next i[c] means the cth entry of the next variable of cell i, and so
on for the other variables.

(a) next i[c] is the neighbor towards which i attempts to move entities of color
c.

(b) dist i[c] is the estimated distance—the number of cells—to the nearest target
cell consuming entities of color c.

(c) lock i[c] is a boolean variable for a lock of color c that some cells require to
be able to move entities.

(d) pathi[c] is the set of cell identifiers from any source of color c (and any
nonempty cell with entities of color c) to the target of color c. This vari-
able and the next two are local variables, but they are storing some global
information.

(e) pint i[c] is the set of cell identifiers in traffic intersections with cells of color
c (where pathi[c] and pathi[d] have nonempty intersection for some d 6= c).

(f) lcsi[c] is the set of colors that are involved in traffic intersections with the
color c path.

When clear from context, the subscripts in the names of the variables are dropped.
A state of Celli refers to a valuation of all these variables, i.e., a function that
maps each variable to a value of the corresponding type. The complete system
is an automaton, called System, consisting of the composition of all the cells.
A state of System is a valuation of all the variables for all the cells. We refer to
states of System with bold letters x, x′, etc.

2It will be established that cells contain entities of only a single color, see Invariant 3.

10

1 variables
Entities : Set[P] := {}

3 NEPrev : Set[ID⊥] := {}
signal , token : ID⊥ := ⊥

5 color : C⊥ := ⊥
failed : B := false

7 next : [C → ID⊥], init ∀c ∈ C, next[c] := ⊥
dist : [C → N∞], init ∀c ∈ C, dist[c] :=∞

9 path : [C → Set[ID⊥]], init ∀c ∈ C, path[c] := {}
pint : [C → Set[ID⊥]], init ∀c ∈ C, pint[c] := {}

11 nlock : [C → B], init ∀c ∈ C, nlock := true
lock : [C → B], init ∀c ∈ C, lock := false

13 lcs : [C → Set[C]], init ∀c ∈ C, lcs[c] := {}

14transitions
fail(i)

16eff failed := true
for each c ∈ C

18dist[c] := ∞; next[c] := ⊥

20update
eff Route; Lock ; Signal ; Move

Figure 7: Specification of Celli listing its variables, initial conditions, and transitions. Sub-
scripts are dropped for readability.

Variables tokeni, failed i, lock i, and NEPrev i are private to Celli, while Entitiesi,
dist i, next i, pathi, color i, and signal i can be read by neighboring cells of Celli.
This has the following interpretation for an actual message-passing implemen-
tation. At the beginning of each round, Celli broadcasts messages containing
the values of these variables and receives similar values from its neighbors.
Then, the computation of this round updates the local variables for each cell
based on the values collected from its neighbors.

Variable Entitiesi is a special variable because it can also be written to by
the neighbors of i. This is how we model transfer of entities between cells. For
a state x, for some a ∈ A such that x a→ x′, for some i ∈ ID , for some j ∈ Nbrsi,
for some entity p ∈ x.Entitiesi, then entity p transfers from cell i to j when
p ∈ x′.Entitiesj . We use the notation p′ to denote the state of entity p at x′

where x
a→ x′ for some a ∈ A.

Actions for the Composed System. System is a discrete transition system model-
ing the composition of all the cells, and has two types actions: fails and updates.
A fail(i) transition models the crash failure of the ith cell and sets failed i to true ,
dist i[c] to ∞ for each c ∈ C, and next i[c] to ⊥ for each c ∈ C. Cell i is called
faulty if failed i is true , otherwise it is called non-faulty. The set of identifiers
of all faulty and non-faulty cells at a state x is denoted by F (x) and NF (x),
respectively. A faulty cell does nothing—it never moves and it never commu-
nicates3.

An update transition models the evolution of all non-faulty cells over one
synchronous round. For readability, we describe the state-change caused by an
update transition as a sequence of four functions (subroutines), where for each
non-faulty i,

(a) Route computes the variables dist i and next i,

3disti =∞ can be interpreted as i’s neighbors not receiving a timely response from i.

11

1 if ¬failedi then
colori := {c ∈ C : ∃p ∈ Entitiesi ∧ color(p) = c}

3 if i /∈ IDT then
for each c ∈ C

5 disti[c] :=
(

min
j∈Nbrsi

distj [c]

)
+ 1

if disti[c] =∞ then nexti[c] := ⊥
7 else nexti[c] := argmin

j∈Nbrsi

〈distj [c], j〉

Figure 8: Route function for Celli. This function computes a minimum distance vector routing
spanning tree rooted composed of non-faulty cells for each color, rooted at each target.

(b) Lock computes the variables pathi, pint i, lcsi, and lock i,

(c) Signal computes (primarily) the variable signal i, and

(d) Move computes the new positions of entities.

We note that in the single-color case considered in [32], the Lock subroutine is
unnecessary.

The entire update transition is atomic, so there is no possibility to interleave
fail transitions between the subroutines of update. Thus, the state of System at
(the beginning of) round k + 1 is obtained by applying these four functions to
the state at round k. Now we proceed to describe the distributed traffic control
algorithm that is implemented through these functions.

Route . For each cell and each color, the Route function (Figure 8) constructs
a distance-based routing table to the target cell of that color. This relies only
on neighbors’ estimates of distance to the target. Recall that failed cells have
dist [c] set to∞ for every color c ∈ C. From a state x, for each i ∈ NF (x), the
variable dist i[c] is updated as 1 plus the minimum value of distj [c] for each
neighbor j of i. If this results in dist i[c] being infinity, then next i[c] is set to ⊥,
but otherwise it is set to be the identifier with the minimum dist [c] where ties
are broken with neighbor identifiers.

Next, we introduce some definitions used to relate the system state to the
variables used in the algorithm. For a state x, we inductively define the color
c target distance ρc of a cell i ∈ ID as the smallest number of non-faulty cells
between i and tidc:

ρc(x, i)
4
=

∞ if x.failed i,

0 if i = tidc ∧ ¬x.failed i,

1 + min
j∈x.Nbrsi

ρc(x, j) otherwise.

A cell is said to be target-connected to color c if ρc is finite. We define

TC (x, c)
4
= {i ∈ NF (x) | ρc(x, i) <∞}

12

as the set of cells that are target-connected to tidc.
For a state x and a color c ∈ C, we define the routing graph as GR(x, c) =

(VR(x, c),ER(x, c)), where the vertices and directed edges are, respectively,

VR(x, c)
4
= NF (x) and

ER(x, c)
4
= {(i, j) ∈ VR(x, c) : ρc(x, j) = ρc(x, i) + 1}.

Under this definition, GR(x, c) is a spanning tree rooted at tidc. We will show
that the graph induced by the next i[c] variables stabilizes to the routing graph
GR(x, c) at some state x (). We previously introduced ∆ as the worst-case diam-
eter of the communication graph, and will refer to ∆(x) as the exact diameter
at some state x.

Lock . The Lock function (Figure 9) executes after Route, and schedules traf-
fic over intersections (the cells where source-to-target paths of different colors
overlap). To avoid deadlock scenarios, Lock maintains an invariant that entities
of at most one color are on these intersections.

Moving entities over intersections requires some global coordination as il-
lustrated by the following analogy. Consider the policy used to coordinate cars
going in opposite directions over a one-lane bridge (see Figure 2), where there
is a traffic signal on each side of the bridge. The algorithm chooses one traf-
fic light, allowing some cars to safely travel over the bridge in one direction.
After some time, the algorithm switches the lights (first turning green to red,
and after the road is clear, turning red to green) allowing traffic to flow in the
opposite direction. Then this process repeats.

Two parts of the previous example require global coordination and are in-
cluded in the Lock function. The first is how to chose the direction in which
cars are allowed to travel—this is accomplished through the use of a mutual
exclusion algorithm. The second is when to allow cars to travel in the opposite
direction—this is accomplished by determining when the intersection is empty.
We now describe this global coordination more formally.

For defining the locking algorithm, we first define intersections. For this we
introduce the notion of an entity graph. Cell i is said to be in the entity graph of
some color c at state x if one of the following conditions hold: (a) i is sidc, (b) in
state x, i has entities of color c, or (c) in state x, i is the neighbor closest to tidc

of a cell already in the entity graph. Formally, we define the color c entity graph
at state x as GE (x, c) = (VE (x, c),EE (x, c)), which is the following subgraph
of the color c routing graph GR(x, c). The vertices of GE (x, c) are inductively
defined as

VE (x, c)
4
= {i ∈ NF (x) : i = sidc ∨ x.color i = c ∨ (∃j ∈ VE (x, c).(i, j) ∈ ER(x, c))}.

The edges of GE (x, c) are EE (x, c)
4
= {(i, j) ∈ VE (x, c) × VE (x, c) : (i, j) ∈

ER(x, c)}. For example, if all cells are empty, then VE (x, c) is the sequence of
cell identifiers defined by following the minimum distance (as defined by ρc)

13

1 if ¬failedi
for each c ∈ C

3 if i = sidc ∨ colori = c ∨ i ∈ pathi[c] then
pathi[c] := pathi[c] ∪ {i} ∪ {nexti[c]}

5 // gossip the entity graph
for each j ∈ Nbrsi, pathi[c] := pathi[c] ∪ pathj [c]

7 // compute the set of color-shared cells
pinti[c] := {j ∈ pathi[c] ∩ pathi[d] : ∃c 6= d ∈ C}

9 if pinti[c] 6= ∅
lcsi[c] :=

11 {d ∈ C : c 6= d ∧ pathi[c] ∩ pathi[d] 6= ∅}
// graphs stabilized and i needs a lock for color c

13 if round > 2∆ ∧ i ∈ pinti[c] ∧ ¬locki[c]
Initiate mutual exclusion algorithm between all

15 color-shared cells in pinti[c] using lcsi as input
Eventually, a color d is returned.

17 On return, if d = c then locki[c] := true
// detect if color-shared cells are empty

19 if round > 2∆ ∧ i ∈ pinti[c] ∧ locki[c]
Initiate distributed snapshot algorithm to decide

21 if all color-shared cells are empty after previously
being nonempty with entities of color c.

23 On return, if all cells are empty then
locki[c] := false

Figure 9: Lock function for Celli. This function computes the color-shared cells—the cells in
intersections—for each color, and then ensures liveness by giving a lock to only one color on
each intersection.

from the source to the target of color c. That is, each GE (x, c) is a simple path
graph from source to target4.

Now we describe how the entity graph of each color c is computed by each
cell i as the pathi[c] variable. If i is on the entity graph of color c, then we add i
and i’s next variable for color c to the entity graph (see Figure 9, lines 3 and 4).
Once the next i[c] variables stabilize () and after an additional order of diameter
rounds, the variable pathi[c] contains all the entity graphs since we gossip these
graphs (line 6). That is, the graph formed by the pathi[c] variables stabilizes to
equal GE (x, c), and contains the sequence of identifiers from any source or
nonempty cell of color c to the target of color c ().

Next, the variable pint i[c] is computed to be the set of cell identifiers on the
color c entity graph that overlaps with any other colored entity graph (line 8).
The cells involved in such non-empty intersections represent physical traffic
intersections, and are called color-shared cells. These cells require coordinated
locking for traffic flow to progress. Cell i is in pint i[c] if and only if it will need
a lock for color c.

Formally, we define the c color-shared cells, for a state x, for any c ∈ C, as

CSC (x, c) = {VE (x, c) : ∃d ∈ C.c 6= d ∧VE (x, c) ∩VE (x, d) 6= ∅}.

4Once cells have failed, this may stabilize to be a tree from any cell with entities of color c to the
target of color c.

14

if ¬failedi ∧ round > 2∆ then
2 cn := {d ∈ C : ∃j ∈ Nbrsi s.t. nextj [d] = i

∧colorj = d}
4

if colori = ⊥ then c := choose from cn
6 else c := colori

8 NEPrevi :=
{j ∈Nbrsi : nextj [c] = i ∧Entitiesj 6= ∅}

if tokeni =⊥ then
12tokeni := choose from NEPrevi

14let j = tokeni

if ∀ p ∈ Entitiesi : p /∈ SR(i, j)
16∧ (colori 6= ⊥ ⇒ colori = colorj)

∧ (j ∈ pinti[c]⇒ lockj [c])
18then

signali := j
20if |NEPrevi|> 1 then

tokeni := choose from NEPrevi \ {j}
22elseif |NEPrevi|= 1 then

tokeni := choose from NEPrevi

24else tokeni := ⊥
else signali := ⊥; tokeni := j

Figure 10: Signal function for Celli. Cell i signals fairly to some neighbor j if it is safe for j to
move its entities toward i.

In Figure 1, these are cells 8 and 12. The pint i[c] variables stabilize to equal
CSC (x, c), at some state x, for any color c ().

Next, we need to determine the colors that will need to coordinate to sched-
ule traffic through the color-shared cells. Then, a mutual exclusion algorithm is
initiated between all cells for each disjoint set of cell colors in pint i[c]. Formally,
we define the c shared colors, for a state x, for any c ∈ C, as

SC (x, c) = {d ∈ C : c 6= d ∧ CSC (x, d) = CSC (x, c)}.

The lcsi[c] variables stabilize at some state x to equal SC (x, c), for any color c.
In general, up to |C| colors could be involved in intersections, as well as all

the smaller permutations. For instance, consider Figure 5 with 6 colors at some
state x. Here, the blue and red entity graphs overlap, green and blue entity
graphs overlap, but red and green do not, and independently, the purple and
yellow entity graphs overlap (that is, not with blue, red, nor green), but no
colors overlap with brown. Then SC (x, c) is {blue, red, green} for c equal to
blue, red, or green, SC (x, c) is {yellow, purple} for c equal to yellow or purple,
and SC (x, c) is empty for c equal to brown. Two mutual exclusion algorithms
would be initiated, one with blue, red, and green as the input set of values,
and another with yellow and purple as the input set. Upon these two instances
terminating, one element of the first set, say green, would be chosen and given
a lock, and one element, say yellow, of the second set would also be given a
lock. The entities of these colors progress over the color-shared cells toward
their intended targets. Finally, once the color-shared cells are empty again,
green and yellow would each be removed from the respective input sets for
fairness, and another mutual exclusion algorithm is initiated.

Signal . The Signal function (Figure 10) executes after Lock . It is the key part of
the protocol for maintaining safe entity separations, guaranteeing each cell has
entities of only a single color, and ensuring progress of entities to the target.
Roughly, each cell implements this through the following policies: (a) only

15

accept entities from a neighbor when it is safe to do so, (b) only accept entities
with the same color as the entities currently on the cell (or an arbitrary color
if the cell is empty), (c) if a lock is needed, then only let entities move if it is
acquired, and (d) ensure fairness by providing opportunities infinitely often
for each nonempty neighbor to make progress.

First i computes a temporary variable cn, which is the set of colors for any
neighbor that has entities of some color, with the corresponding next variable
set to cell i. Next, cell i picks a color c from this set if it is empty, or the color of
its own entities if it is nonempty, and will attempt to allow some cell with this
chosen color to move toward itself. Then, cell i sets NEPrev i to be the subset
of Nbrsi for which next has been set to i and Entities is nonempty. If tokeni

is ⊥, then it is set to some arbitrary value in NEPrev i, but it continues to be
⊥ if NEPrev i is empty. Otherwise, tokeni = j for some neighbor j of i with
nonempty Entitiesj . This is accomplished through the conditional in line 6 as
a step in guaranteeing fairness.

It is then checked if there is any entity p with center p in the safety region
of Celli on the side corresponding to tokeni. If there is such an entity, then
signal i is set to⊥, which blocks the neighboring cell with identifier tokeni from
moving its entities in the direction of i, thus preventing entity transfers and
ensuring safety. Otherwise, if there is no entity with center in the safety region
on side tokeni, then signal i is set to tokeni to allow tokeni to move its entities
toward i. Subsequently, tokeni is updated to a value in NEPrev i that is different
from its previous value, if that is possible according to the rules just described
(lines 20–22).

Move . Finally, the Move function (Figure 11) models the physical movement of
all the entities on cell i over a given round. For cell i, let j be next i[c], where c is
color i (which may be⊥ if cell i has no entities). Every entity in Entitiesi moves
in the direction of j if and only if signal j is set to i. The direction followed
from cell i to j is u(i, j), which is any vector satisfying Assumption 1. For
example, for a square (or rectangular) cell i, one choice for u(i, j) is the unit
vector orthogonal to Side(i, j) and pointing into j. In the case of an equilateral
triangular cell i, one choice for u(i, j) is also any orthogonal vector pointing
into j.

The movement toward cell j may lead to some entities crossing the bound-
ary of Celli into Cellj , in which case, they are removed from Entitiesi. If j is not
the target matching the transferred entities’ color, then the removed entities
are added to Entitiesj . In this case (line 9), any transferred entity p is placed
so that Dl(p) touches a single point of (is tangent to) Side(i, j), the shared side
of cells i and j, and lies on the inner side of the transfer region of cell j on side
Side(i, j). Resetting entity positions is a conservative approximation to the ac-
tual physical movement of entities. If j is the target matching the transferred
entities’ color, then the removed entities are not added to any cell and thus no
longer exist in System.

The source cells i ∈ IDS , in addition to the above, add a finite number of
entities in each round to Entitiesi, such that the addition of these entities does

16

1 let c = colori

let j = nexti[c]
3 if ¬failedi ∧ signalj = i then

for each p ∈ Entitiesi
5 p := p + vu(i, j)

if p ∈ TRi then
7 Entitiesi := Entitiesi \ {p}

if j 6= tidc then
9 Entitiesj := Entitiesj ∪ {p}

// point on shared side along movement vector
11 p := (p + vu(i, j)) ∩ Side(i, j)

// inner transfer region along orthogonal line
13 p := (p + n(i, j)) ∩ ITRj(Side(i, j))

Figure 11: Move function for Celli. If i has received a signal to move from j, it updates
the positions of all entities on it to move in j’s direction, which may lead to some entities
transferring from cell i to j.

not violate the minimum gap between entities at Celli. In the remainder of the
paper, we will analyze System to show that in spite of failures, it maintains
safety and liveness properties to be introduced in the next section.

4. Analysis of Distributed Traffic Control

In this section, we present an analysis of the safety and liveness properties
of System. Roughly, the safety property requires that there is a minimum gap
between entities on any cell, and the liveness property requires that all entities
that reside on cells with feasible paths to the corresponding target eventually
reach that target.

4.1. Safety and Collision Avoidance
A state is safe if, for every cell, the boundaries of all entities in the cell are

separated by a distance of rs . For any state x of System, we define:

Safei(x)
4
= ∀p, q ∈ x.Entitiesi.p 6= q ⇒ ||p− q|| ≥ 2l + rs , and

Safe(x)
4
= ∀i ∈ ID ,Safei(x).

This definition allows entities in different cells to be closer than 2l + rs apart,
but their centers will be spaced by at least 2l . We proceed by proving some pre-
liminary properties of System that will be used for proving Safe is an invariant.

The first property asserts that entities’ cannot come close enough to the
sides of cells to reside on multiple cells. This is because any entity whose
boundary touches the side of a cell is transferred to the neighboring cell on
that side (if one exists), and then the entity’s position is reset to be completely
within the new cell. Assumption 2 restricts the allowed partitions to ensure en-
tity transfers are well-defined. For instance, some of the cells in the snub square

17

tiling in Figure 3 do not satisfy Assumption 2. Consider an entity transfer from
cell 3 to cell 5. There is no constant vector connecting the transfer regions of
cell 3 to those of cell 5. This is because the side length of the transfer region of
the triangular cell 5 is shorter than the side length of the transfer region of the
square cell 3. However, in a transfer from cell 1 to cell 2 or vice-versa, the side
lengths are the same. We also note that the assumption is only necessary for
entity transfers from a cell with a longer transfer side length to a neighboring
cell with smaller corresponding transfer side length. For example, a transfer
from cell 5 to cell 3 is feasible.

Under Assumption 2, we have the following invariant, which states that
the l -ball around each entity in a cell is completely contained within the cell.

Invariant 1. In any reachable state x, ∀i ∈ ID , ∀p ∈ x.Entitiesi, Dl(p) \ Pi = ∅.

The next invariant states that cells’ Entities sets are disjoint. This is imme-
diate from the Move function since entities are only added to one cell’s Entities
upon being removed from a different cell’s Entities .

Invariant 2. In any reachable state x, for any i, j ∈ ID , if i 6= j, then x.Entitiesi ∩
x.Entitiesj = ∅.

The following invariant states that cells contain entities of a single color
in spite of failures. This follows from the Signal routine in Figure 10, where
line 16 requires that if some neighbor j is attempting to move entities toward
cell i, then the color of i is either ⊥ or equal to the color of j.

Invariant 3. In any reachable state x, for all i ∈ ID , for all p, q ∈ x.Entitiesi,
color(p) = color(q).

Next, we define a predicate that states that if signal i is set to the identifier of
some neighbor j ∈ Nbrsi, then there is a large enough area from the common
side between i and j where no entities reside in Celli. Recall that Side(i, j) is the
line segment shared between neighboring cells i and j. For a state x, H(x)

4
=

∀i ∈ ID , ∀j ∈ Nbrsi, if x.signal i = j, then the following holds:

∀p ∈ x.Entitiesi, min
x∈Side(i,j)

||p− x|| ≥ 3d.

H(x) is not an invariant property because once entities move the property may
be violated. However, for proving safety, all that needs to be established is that
at the point of computation of the signal variable this property holds. The next key
lemma states this.

Lemma 4. For all reachable states x, H(x)⇒ H(xS) where xS is the state obtained
by applying the Route , Lock , and Signal functions to x.

Proof. Fix a reachable state x, an i ∈ ID , and an j ∈ Nbrsi such that x.signal i =
j. Let xR be the state obtained by applying the Route function to x, xL be
the state obtained by applying the Lock function to xR, and xS be the state
obtained by applying the Signal function to xL.

18

First, observe that both H(xR) and H(xL) hold. This is because the Route
and Lock functions do not change any of the variables involved in the defini-
tion of H(·). Next, we show that H(xL) implies H(xS). If xS .signal i 6= j then
the statement holds vacuously. Otherwise, xS .signal i = j, then since (a)H(xL)
holds, and (b) Figure 10, line 6 is satisfied, we have that H(xS).

The following lemma asserts that if there is a cycle of length two formed by
the signal variables—which could occur due to failures—then entity transfers
cannot occur between the involved cells in that round.

Lemma 5. Let x be any reachable state and x′ be a state that is reached from x af-
ter a single update transition (round). If x.signal i = j and x.signal j = i, then
x.Entitiesi = x′.Entitiesi and x.Entitiesj = x′.Entitiesj .

Proof. No entities enter either x′.Entitiesi or x′.Entitiesj from any other m ∈
Nbrsi or n ∈ Nbrsj since x.signal i = j and x.signal j = i. It remains to be es-
tablished that @p ∈ x.Entitiesj such that p′ ∈ x′.Entitiesi where p = p′ or vice-
versa. Suppose such a transfer occurs. For the transfer to have occurred, pmust
be such that p′ = (px, py) + vu(i, j) by Figure 11, line 5. But for x.signal i = j to
be satisfied, it must have been the case that Dl(p) ∩ Pi = ∅ by Figure 10, line 6
and since v < l , a contradiction is reached.

Using the previous results, we now prove that System preserves safety even
when some cells fail.

Theorem 1. In any reachable state x of System, Safe(x).

Proof. The proof is by standard induction over the length of any execution of
System. The base case is satisfied by the assumption that initial states x ∈ Q0

satisfy Safe(x). For the inductive step, consider any reachable states x, x′ and
an action a ∈ A such that x a→ x′. Fix i ∈ ID and assuming Safei(x), we show
that Safei(x′). If a = faili, then Safei(x

′) since no entities move.
For a = update, there are two cases to consider by Invariant 2. First, x′.Entitiesi ⊆

x.Entitiesi, that is, no new entities were added to i, but some may have trans-
fered off i. There are two sub-cases: if x′.Entitiesi = x.Entitiesi, then all entities
in x.Entities move identically and the spacing between two distinct entities p,
q ∈ x′.Entitiesi is unchanged. Let j = next i[c] where c = color i by Invariant 3.
That is, ∀p, q ∈ x.Entitiesi, ∀p′, q′ ∈ x′.Entitiesi such that p′ = p and q′ = q
and where p 6= q,

∣∣∣∣(p′x, p′y)− (q′x, q
′
y)
∣∣∣∣ = ||(px, py) + vu(i, j), (qx, qy) + vu(i, j)||

(Figure 11, line 5). It follows by the inductive hypothesis that
∣∣∣∣(p′x, p′y)− (q′x, q

′
y)
∣∣∣∣ ≥

d. The second sub-case arises if x′.Entitiesi (x.Entitiesi, then Safei(x
′) is ei-

ther vacuously satisfied or it is satisfied by the same argument just stated.
The second case is when x′.Entitiesi * x.Entitiesi, that is, there was at least

one entity transfered to i. Consider any such transferred entity p′ ∈ x′.Entitiesi
where p′ /∈ x.Entitiesi. There are two sub-cases. The first sub-case is when
p′ was added to x′.Entitiesi because i is a source, that is, i ∈ IDS . In this
case, the specification of the source cells states that the entity p′ was added to
x′.Entitiesi without violating Safei(x

′), and the proof is complete. Otherwise,

19

p′ was added to x′.Entitiesi by some neighbor j ∈ x.Nbrsi, so p′ ∈ x.Entitiesj
but p′ /∈ x.Entitiesi, and p′ ∈ x′.Entitiesi but p′ /∈ x′.Entitiesj . From line 9
of Figure 11, we have that that (p′x, p

′
y) = ResetEntity(p, i, j). The fact that p′

transferred from Cellj in x to Celli in x′ implies that x.nextj = i and x.signal i =
j—these are necessary conditions for the transfer by Figure 10, line 15. Thus,
applying the predicate H(x) at state x and by Lemma 4, it follows that for ev-
ery q ∈ x.Entitiesi, (qx, qy) /∈ FR(i, j). It must now be established that if p′ is
transfered to x′.Entitiesi, then every q′ ∈ x′.Entitiesi, where q′ 6= p′ satisfies
(q′x, q

′
y) /∈ FR(i, j), which means that any entity q already on i did not move

toward the transfered entity p that is now on i. This follows by application
of Lemma 5, which states that if entities on adjacent cells move towards one
another simultaneously, then a transfer of entities cannot occur. This implies
that the discs of all entities q′ in x′.Entitiesi are farther than rs of the borders
of any transfered entity p′, implying Safei(x

′). Finally, since i was chosen arbi-
trarily, Safe(x′).

Theorem 1 shows that System is safe in spite of failures.

4.2. Stabilization of Spanning Routing Trees
Next, we show under some additional assumptions, that once new failures

cease to occur, System recovers to a state where each non-faulty cell with a fea-
sible path to its target computes a route toward it. This route stabilization is
then used in showing that any entity on a non-faulty cell with a feasible path
to its target makes progress toward it. Our analysis relies on the following as-
sumptions on cell failures and the placement of new entities on source cells.
The first assumption states that no target cells fail, and is reasonable and nec-
essary because if any target cell did fail, entities of that color obviously cannot
make progress.

Assumption 3. No target cells t ∈ IDT may fail.

The next assumption ensures source cells place entities fairly so that they
may not perpetually prevent any neighboring cell or any color-shared cell from
making progress. The assumption is needed because it provides a specification
of how the source cells behave, which has not been done so far. The assumption
is reasonable because it essentially says that traffic is not produced perpetually
without any break.

Assumption 4. (Fairness): Source cells place new entities without perpetually block-
ing either (i) any of their nonempty non-faulty neighbors, or (ii) any cell i ∈ CSC (x, c),
where c is the color of source s.

Formally, the first fairness condition states, for any execution α of System,
for any color c ∈ C, for any source cell sidc, if there exists an i ∈ Nbrss, such
that for every state x in α after a certain round, i ∈ x.NEPrevs, then eventually
signals becomes equal to i in some round of α. The second fairness condition
states, for any execution α of System, for any state x ∈ α, for any color c ∈ C,

20

for any source cell sidc, if there exists an i ∈ NF (x) such that i ∈ CSC (x, c), and
for every state x in α after a certain round, if cell i is nonempty, then eventually
signal j becomes equal to i in some round of α, where j is a neighbor of i. Such
conditions can be ensured if we suppose some oracle placing entities on source
cells follows the same round-robin like scheme defined in the Signal subrou-
tine in Figure 10. Scenarios where each of these cases can arise are illustrated
in Figure 6.

A fault-free execution fragment α be a sequence of states starting from x
and along which no fail(i) transitions occur. That is, a fault-free execution frag-
ment is an execution fragment with no new failure actions, although there may
be existing failures at the first state x of α, so F (x) need not be empty. Through-
out the remainder of this section, we will consider fault-free executions that
satisfy Assumptions 3 and 4.

Lemma 6. Consider any reachable state x of System, any color c ∈ C, and any
i ∈ TC (x, c) \ {tidc}. Let h = ρc(x, i). Any fault-free execution fragment α starting
from x stabilizes within h rounds to a set of states S with all elements satisfying:

dist i[c] = h, and
next i[c] = in, where ρc(x, in) = h− 1.

Proof. Fix an arbitrary state x, a fault-free execution fragment α starting from
x, a color c ∈ C, and i ∈ TC (x, c) \ {tidc}. We have to show that (a) the set of
states S is closed under update transitions and (b) after h rounds, the execution
fragment α enters S.

First, by induction on h we show that S is stable. Consider any state y ∈ S
and a state y′ that is obtained by applying an update transition to y. We have
to show that y′ ∈ S. For the base case, h = 1, so y.dist i[c] = 1 and y.next i[c] =
tidc. From lines 5 and 7 of the Route function in Figure 8, and that there is a
unique tidc for each color c, it follows that y′.dist i[c] remains 1 and y′.next i[c]
remains tidc. For the inductive step, the inductive hypothesis is, for any given
h, if for any j ∈ NF (x), y.distj [c] = h and y.nextj [c] = m, for some m ∈ ID
with ρc(x,m) = h− 1, then

y′.distj [c] = h and y′.nextj [c] = m.

Now consider i such that ρc(y, i) = ρc(y
′, i) = h+ 1. In order to show that S is

closed, we have to assume that y.dist i[c] = h+1 and y.next i[c] = m, and show
that the same holds for y′. Since ρc(y′, i) = h + 1, i does not have a neighbor
with target distance smaller than h. The required result follows from applying
the inductive hypothesis to m and from lines 5 and 7 of Figure 8.

Second, we have to show that starting from x, α enters S within h rounds.
Once again, this is established by induction on h, which is ρc(x, i). Consider
any state y such that ρc(x, i) = ρc(y, i). The base case only includes the target
distances satisfying h = ρc(y, i) = 1 and follows by instantiating in = tidc.
For the inductive case, assume for the inductive hypothesis that at some state
y, y.distj [c] = h and y.nextj [c] = in such that ρc(y, in) = h − 1, where in is

21

the minimum identifier among all such cells (since we used cell identifiers to
break ties). Observe that there is one such j ∈ y.Nbrsi by the definition of TC .
Then at state y′, by the inductive hypothesis and lines 5 and 7 of Figure 8,
y′.dist i[c] = y′.distj [c] + 1 = h+ 1.

The following corollary of Lemma 6 states that, after new failures cease
occurring, for all target-connected cells, the graph induced by the next [c] vari-
ables stabilizes to the color c routing graph, GR(x, c), within at most the di-
ameter of the communication graph number of rounds, which is bounded by
∆(x).

Corollary 7. Consider any execution α of System with an arbitrary but finite se-
quence of fail transitions. For any state x ∈ α at least 2∆(x) rounds after the last fail
transition, for any c ∈ C, every cell i target-connected to color c has x.next i[c] equal
to the identifier of the next cell along such a route.

The following corollary of Lemma 6 and states that within 2∆(x) rounds
after routes stabilize, for each color c ∈ C, the identifiers in the pathi[c] vari-
ables equal the vertices of the color c entity graph GE (x, c). The result follows
since routes stabilize and that Lock is a function of next and path variables only,
and that pathi variables are gossiped in Figure 9, line 6.

Corollary 8. Consider any execution α of System with an arbitrary but finite se-
quence of fail transitions. For any state x ∈ α at least 2∆(x) rounds after the last
fail transition, for every c ∈ C, every cell i target-connected to color c has pathi[c] =
VE (x, c).

The next corollary of Lemma 6 states that eventually the values of the pint [c]
variables equal the set of color-shared cells CSC (x, c) for any cell i and color c.
This is important because the mutual exclusion algorithm is initiated between
the cells in pint [c] (Figure 9, line 13).

Corollary 9. Consider any execution α of System with an arbitrary but finite se-
quence of fail transitions. For any state x ∈ α at least 2∆(x) rounds after the last fail
transition, for every c ∈ C, every cell i target-connected to color c has x.pint [c] =
CSC (x, c).

4.3. Scheduling Entities through Color-Shared Cells
In this section, we show that there is at most a single color on the set of

color-shared cells if there are no failures. We then show that any cell that re-
quests a lock eventually gets one, under an additional assumption that failures
do not cause entities of more than one color to reside on the set of color-shared
cells. Because failures cause the routing graphs and entity graphs to change,
the color-shared cells that could previously be scheduled may now be dead-
locked. Additionally, because we separately lock each disjoint set of color-
shared cells to allow entities of some color to flow toward their target, it could
be the case that the intermediate states between when the failure occurred and

22

when routes have stabilized allowed entities to move in such a way that dead-
locks the system. Such deadlocks could be avoided if a centralized coordinator
informs every non-faulty cell to disable their signals when a failure is detected.
The assumption states that with failures, the color-shared cells either all have
the same-colored entities, or have no entities (and combinations thereof).

Assumption 5. Feasibility of Locking after Failures: For any reachable state x,
for any color c ∈ C, consider the color-shared cells CSC (x, c). For all distinct cells
i, j ∈ CSC (x, c) either x.color i = x.color j or x.color i = ⊥.

The next lemma states that without failures, there are entities of at most a
single color on the set of color-shared cells. The result is not an invariant be-
cause failures may cause the set of color-shared cells to change, resulting in
deadlocks, which is why we need Assumption 5. By Invariant 3, we know that
there are entities of at most a single color in each cell, so the following invariant
is stated in terms of the color color i of each cell. We emphasize that Assump-
tion 5 is unnecessary if there are no failures, as the algorithm ensures there
are entities of at most a single color on the color-shared cells by the following
lemma.

Lemma 10. If there are no failures, for any reachable state x, for any c ∈ C, for any
i ∈ CSC (x, c), if ¬x.lock i[c], then for all j ∈ CSC (x, c), we have x.color j 6= c.

Proof. The proof is showing an inductive invariant, supposing no failures oc-
cur. For the initial state, all cells are empty, so we have x.color i = ⊥ for any
i ∈ ID . For the inductive step, we are only considering update actions by as-
sumption. In the pre-state, we have ¬x.lock i[c] and ∀j ∈ CSC (x, c), we have
x.color j 6= c. Fix some c ∈ C and some i ∈ CSC (x, c). For any subsequent state
x′, if x′.lock i[c], the result follows vacuously. If ¬x′.lock i[c], we must show
∀j ∈ CSC (x, c) that x.color j 6= c, so fix some j ∈ CSC (x, c). If j ∈ CSC (x′, c),
the result follows, since by the inductive hypothesis, x.color j = x′.color j 6= c.
If j /∈ CSC (x′, c), the condition in Signal (Figure 10, line 17) cannot be satisfied
since ¬x′.lock i[c]. Thus, no cell with entities of color c could move toward any
cell in CSC (x′, c), and we have x′.color j 6= c.

The next lemma states that without failures, or with “nice” failures as de-
scribed by Assumption 5, that any cell requesting a lock of some color will
eventually get it, and thus it may move entities onto the color-shared cells.

Lemma 11. For any reachable state x satisfying Assumption 5, for any c ∈ C, for
any i ∈ NF (x), if i ∈ x.pint [c] and all cells in CSC (x, c) are empty, then eventually
a state x′ is reached where x′.lock i[c].

Proof. By correctness of the mutual exclusion algorithm, eventually a color d ∈
SC (x′, c) is returned and x′.lock i[d] = true (Figure 9, line 13). If c = d, then
the result follows. If c 6= d, by Lemma 10 and Assumption 5, we know that no
other color aside from c has entities on any cell j ∈ CSC (x′, c). The next time
the mutual exclusion algorithm is initiated, d is excluded from the input set to
the mutual exclusion algorithm (Figure 9, line 19), and by repeated argument,
eventually lock i[c].

23

4.4. Progress of Entities towards their Targets
Using the results from the previous sections, we show that once new fail-

ures cease occurring, for every color c ∈ C, every entity of color c on a cell
that is target-connected eventually gets to the target of color c. The result (The-
orem 2) uses two lemmas which establish that, along every infinite execution
with a finite number of failures, every nonempty target-connected cell gets per-
mission to move infinitely often (Lemma 13), and a permission to move allows
the entities on a cell to make progress towards the target (Lemma 12).

For the remainder of this section, we fix an arbitrary infinite execution α of
System with a finite number of failures, satisfying Assumption 5. Let xf be any
state of System at least 2∆(x) rounds after the last failure, and α′ be the infinite
failure-free execution fragment xf , xf+1, . . . of α starting from xf . For any c ∈
C, observe that the number of target-connected cells remains constant starting
from xf for the remainder of the execution. That is, TC (xf , c) = TC (xf+1, c) =
TC (. . . , c), so we fix TC (c) = TC (xf , c).

Lemma 12. For any c ∈ C, for any i ∈ TC (c), for some j ∈ xf .Nbrsi, if k > f ,
xk.signal j = i, and xk.next i[c] = j, for any entity p ∈ xk.Entitiesi, let the distance
function be defined by the lexicographically ordered tuple

R(x, p) = 〈ρc(x, i), ds− p〉 ,

where ds is the point on the shared side Side(i, j) defined by the line passing through
p with direction u(i, j). Then, R(xk+1, p) < R(xk, p).

Proof. The first case is when no entity transfers from i to j in the k+ 1th round:
if p′ ∈ xk+1.Entitiesi such that p′ = p, then ||ds− p′|| < ||ds− p||. In this case,
the result follows since a velocity v > 0 is applied towards cell j by Move
in Figure 11, line 5. The second case is when some entity p transfers from i to
j, so p′ ∈ xk+1.Entitiesj such that p′ = p. In this case, we have ρc(xk, j) <
ρc(xk, i), since the distance between j and tidc is smaller than the distance
between i and tidc since routes have stabilized by Lemma 6. In either case,
R(xk+1, p) < R(xk, p), so entity p is closer to the appropriate target.

The following lemma states that all cells with a path to the target receive a
signal to move infinitely often, so Lemma 12 applies infinitely often.

Lemma 13. For any c ∈ C, consider any i ∈ TC (c) \ tidc, such that for all k > f , if
xk.Entitiesi 6= ∅, then ∃k′ > k such that xk′ .signalnexti[c] = i.

Proof. Fix some c ∈ C. Since i ∈ TC (c), there exists h < ∞ such that for
all k > f , ρc(xk, i) = h. We prove the lemma by inducting on h. The base
case is h = 1. Fix i and instantiate k′ = f + ns(tidc). By Lemma 6, for any
t ∈ IDT , for all non-faulty i ∈ Nbrst, xf .next i[c] = t since k > f . For all
k > f , if xk.Entitiesi 6= ∅, then signal tidc

changes to a different neighbor with
entities every round. It is thus the case that |xk.NEPrev tidc

| ≤ ns(tidc) and
since Entitiestidc

= ∅ always, exactly one neighbor satisfies the conditional
of Figure 10, line 6 in any round, then within ns(tidc) rounds, signal tidc

= i.

24

For the inductive case, let ks = k + h be the step in α after which all non-
faulty a ∈ Nbrsi have xks .nexta[c] = i by Lemma 6. Also by Lemma 6, ∃m ∈
Nbrsi such that xks

.distm < xks
.dist i, implying that after ks, |xks

.NEPrev i| ≤
ns(i) since xks

.next i = m and xks
.nextm 6= i. By the inductive hypothesis,

xks
.signalnexti[c] = i infinitely often. If i ∈ IDS , then entity initialization

does not prevent xk.signal i = a from being satisfied infinitely often by the
second assumption introduced in Subsection 4.2. It remains to be established
that signal i = a infinitely often. Let a ∈ xks

.NEPrev i where ρc(xks
, a) = h+ 1.

In any of the following cases, if i ∈ xks
.pint [c] and all cells j ∈ CSC (xks

, c)
are empty, then by Lemma 11, eventually lock i[c]. If |xks

.NEPrev i| = 1, then
since the inductive hypothesis satisfies signalnexti[c] = i infinitely often, then Lemma 12
applies infinitely often, and thus Entitiesi = ∅ infinitely often, finally implying
that signal i = a infinitely often.

If |xks
.NEPrev i| > 1, there are two sub-cases. The first sub-case is when

no entity enters i from some d 6= a ∈ xks
.NEPrev i, which follows by the same

reasoning used in the |xks
.NEPrev i| = 1 case. The second sub-case is when

a entity enters i from d, in which case it must be established that signal i =
a infinitely often. This follows since if xk′ .tokeni = a where k′ > kt > ks
and kt is the round at which an entity entered i from d, and the appropriate
case of Lemma 4 is not satisfied, then xk′+1.signal i = ⊥ and xk′+1.tokeni = a
by Figure 10, line 25. This implies that no more entities enter i from either cell d
satisfying d 6= a. Thus tokeni = a infinitely often follows by the same reasoning
|xks .NEPrev i| = 1 case.

The final theorem establishes that entities on any cell in TC (c) eventually
reach the target in α′.

Theorem 2. For any c ∈ C, consider any i ∈ TC (c), ∀k > f , ∀p ∈ xk.Entitiesi,
∃k′ > k such that p ∈ xk′ .Entitiesnexti[c].

Proof. Fix c ∈ C, i ∈ TC (c), a round k > f and p ∈ xk.Entitiesi. Let h =
maxi∈TC (c) ρc(xf , i) which is finite. By Lemma 6, at every round after ks = k+h
for any i ∈ TC (c), the sequence of identifiers β = i, xks .next i[c], xks .nextnexti[c][c],
. . . forms a fixed path to tidc. Applying Lemma 13 to i ∈ TC (c) shows that
there exists km ≥ ks such that xkm

.signalnexti[c] = i. Now applying Lemma 12
to xkm

establishes movement of p towards xks
.next i[c], which is also xkm

.next i[c].
Lemma 13 further establishes that this occurs infinitely often, thus there is a
round k′ > km such that p gets transferred to xkm .Entitiesnexti[c].

By an induction on the sequence of identifiers in the path β, it follows that
entities on any cell in TC (c) eventually get consumed by the target.

Summary of Results
In this section, we establish several invariant properties culminating in prov-

ing safety of the system, which meant that entities never collide, in spite of
failures. Next, we proved that the routing algorithm used to construct paths to
the destinations is self-stabilizing in spite of arbitrary crash failures. We next

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

rs

th
ro

ug
hp

ut

v=0.05
v=0.1
v=0.2
v=0.25

Figure 12: Throughput versus safety spacing
rs for several values of v , for K = 2500,
l = 0.25 for System with an 8 × 8 unit square
tessellation.

0 1 2 3 4 5 6 7
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

number of turns along path

th
ro

ug
hp

ut

rs=0.05, v=0.2, l=0.2

rs=0.05, v=0.1, l=0.2

rs=0.05, v=0.1, l=0.1

rs=0.05, v=0.05, l=0.1

Figure 13: Throughput versus number of turns
along a path, for a path of length 8, where
K = 2500, rs = 0.05, and each of l and v
are varied for System with an 8×8 unit square
tessellation.

showed under an assumption that failures do not introduce deadlock scenarios
that the locking algorithm allows multi-color flows to mutual exclusively take
control of intersections (color-shared cells). Finally, under a fairness assump-
tion, we established the main progress property through two results, that any
cell gets permission to move infinitely often, and that any cell with a permis-
sion to move decreases the distance of any entities on it from its destination.

5. Simulation Experiments

We have performed several simulation studies of the algorithm for evaluat-
ing its throughput performance. In this section, we discuss the main findings
with illustrative examples taken from the simulation results. We implemented
the simulator in Matlab, and all the partition figures displayed in the paper are
created using it.

Let theK-round throughput of System be the total number of entities arriving
at the target over K rounds, divided by K. We define the average throughput
(henceforth throughput) as the limit of K-round throughput for large K. All
simulations start at a state where all cells are empty and subsequently entities
are added to the source cells.

Single-color throughput without failures as a function of rs , l , v . Rough calcula-
tions show that throughput should be proportional to cell velocity v , and in-
versely proportional to safety distance rs and entity radius l . Figure 12 shows
throughput versus rs for several choices of v for an 8 × 8 unit square tessel-
lation instance of System with a single entity color. The parameters are set to
l = 0.25 and K = 2500. The entities move along a line path where the source
is the bottom left corner cell and the target is the top left corner cell. For the
most part, the inverse relationship with v holds as expected: all other factors

26

remaining the same, a lower velocity makes each entity take longer to move
away from the boundary, which causes the predecessor cell to be blocked more
frequently, and thus fewer entities reach tid from any element of IDS in the
same number of rounds. In cases with low velocity (for example v = 0.1) and
for very small rs , however, the throughput can actually be greater than that at
a slightly higher velocity. We conjecture that this somewhat surprising effect
appears because at very small safety spacing, the potential for safety violation
is higher with faster speeds, and therefore there are many more blocked cells
per round. We also observe that the throughput saturates at a certain value of
rs (≈ 0.55). This situation arises when there is roughly only one entity in each
cell.

Single-color throughput without failures as a function of the path. For a sufficiently
large number of rounds K, throughput is independent of the length of the
path. This of course varies based on the particular path and instance of System
considered, but all other variables fixed, this relationship is observed. More in-
teresting however, is the relationship between throughput and path complex-
ity, measured in the number of turns along a path. Figure 13 shows through-
put versus the number of turns along paths of length 8. This illustrates that
throughput decreases as the number of turns increases, up to a point at which
the decrease in throughput saturates. This saturation is due to signaling and
indicates that there is only one entity per cell.

Single-color throughput under failure and recovery of cells. Finally, we considered
a random failure and recovery model in which at each round each non-faulty
cell fails with some probability pf and each faulty cell recovers with some prob-
ability pr [33]. A recovery sets failed i = false and in the case of tid also resets
dist tid = 0, so that eventually Route will correct nextj and distj for any j ∈ TC .
Intuitively, we expect that throughput will decrease as pf increases and in-
crease as pr increases. Figure 14 demonstrates this result for 0.01 ≤ pf ≤ 0.05
and 0.05 ≤ pr ≤ 0.2. There is a diminishing return on increasing pr for a fixed
pf , in that for a fixed pf increasing pr results in smaller throughput gains.

Multi-color throughput as a function of the number of intersecting cells. Now we
discuss the influence of multi-color throughput. In the case where the paths
between different sources and targets do not overlap, all the results from the
single-color simulation results apply. In the case where the paths do overlap,
the mutual exclusion algorithm runs to ensure no deadlocks occur. This addi-
tional control logic will have an influence on the throughput. For the multi-
color cases, we consider the summed throughput, which is the sum of the
throughputs for each color.

Figure 16 shows the roughly exponential decrease in throughput as the frac-
tion of overlapping paths increases for two colors with path length 8 and no
turns. The fraction of overlapping paths is defined as the number of vertices in
the color-shared cells CSC (x, c). As the fraction increases, the paths lie com-
pletely on top of one another, so in this case with path length 8, we have no
overlap, 1 cell overlap, etc.

27

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

pf

th
ro

ug
hp

ut

pr=0.05

pr=0.1

pr=0.15

pr=0.2

Figure 14: Throughput versus failure rate pf
for several recovery rates pr with an initial
path of length 8, where K = 20000, rs = 0.05,
l = 0.2, and v = 0.2 for System with an 8 × 8
unit square tessellation.

0 5 10 15
0.05

0.1

0.15

0.2

0.25

path length

th
ro

ug
hp

ut

square
triangular

Figure 15: Throughput versus increasing path
length of square (blue) and equilateral triangu-
lar (red) partitions.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

fraction of overlapping paths

th
ro

ug
hp

ut

Figure 16: Throughput versus fraction of path
overlap for two colors on a 1 × 16 unit square
tessellation.

0 2 4 6 8
0

0.05

0.1

0.15

0.2

number of overlapping colors

th
ro

ug
hp

ut

Figure 17: Throughput versus number of over-
lapping colors on a 1 × 3 unit square tessella-
tion.

Multi-color throughput as a function of the number of intersecting colors. Intersec-
tions (that is, having at least one color-shared cell) have a fixed cost on through-
put. Specifically, the summed throughput of there being two overlapping col-
ors on a cell is the same as the summed throughput of three or more. Figure 17
shows this fixed decrease in throughput as the number of overlapping col-
ors increases for a fixed path of length 3 with 3 color-shared cells, where the
decrease in throughput from having no overlaps to having one color overlap-
ping is about 4.5 times. Once there are two colors, all additional colors do not
decrease throughput. This observation agrees with intuition—the decrease in
throughput due to an intersection is independent of the number of destinations
for the entities that must pass through that intersection.

28

6. Related Work

There is a large amount of work on traffic control in transportation systems
(see, e.g., [4, 34]) and robotics (see, e.g., [35]). We briefly summarize some of the
more related work, but highlight that we are presenting a formal model of an
example of such systems. Distributed air and automotive traffic control have
been studied in many contexts. Human-factors issues are considered in [36, 37]
to ensure collision avoidance between the coordination of numerous pilots and
a supervisory controller modeling the semi-centralized air traffic control com-
ponents. The Small Aircraft Transportation Protocol (SATS) is semi-distributed
air traffic control protocol designed for small airports without radar, so pilots
and their aircraft coordinate among themselves to land after being assigned a
landing sequence order by an automated system at the airport [16]. SATS has
been formally modeled and analyzed using a combination of model checking
and automated theorem proving [38]. SATS and this paper share an abstrac-
tion: the physical environment is a priori partitioned into a set of regions of
interest, and properties about the whole system are proved using composi-
tional analysis. Safe conflict resolution maneuvers for distributed air traffic
control are designed in [39]. A formal model of the traffic collision avoidance
system (TCAS) is developed and analyzed for safety in [40]. TCAS is a system
deployed on aircraft that alerts pilots when other aircraft are in close proximity
and guides them along safe trajectories.

A distributed algorithm (executed by entities, vehicles in this case) for con-
trolling automotive intersections without any stop signs is presented in [18].
Some methods for ensuring liveness for automotive intersections are presented
in [41]. A method to detect the mode of a hybrid system control model of an
autonomous vehicle in intersections is developed in [42], and is used to reduce
conservatism of the maximally controlled invariant set (the set of collision-
free controls). Efficient distributed intersection control algorithms are devel-
oped in [43]. There is a large amount of work on flocking [44] and platoon-
ing [45, 46, 47, 48]. Only a few works consider failures in such systems, like the
arbitrary failures considered in [49, 50], the actuator failures considered in [48],
or in synchronization of swarm robot systems in [51].

Distributed robot coordination on discrete abstractions like [52, 23, 53, 54,
55, 56, 57] can be viewed as traffic control. For instance, [23] establishes a for-
mal connection between the continuous and the discrete parts of these proto-
cols, and also presents a self-stabilizing algorithm with similar analysis to the
analysis in this paper. These works also decompose the continuous problem
into a discrete abstraction by partitioning the environment, but all these works
allow at most a single entity (robot) in each partition, while our framework
allows numerous entities in each partition. If several entities are to visit some
destination in [53, 56, 57], like our targets here, that destination is represented
as the union of a set of partitions and each entity must reside in one of these
partitions.

The Kiva Systems robotic warehouse [52] is a robotic traffic control system
on square partitions, and can be described in our framework by allowing a

29

single entity per cell. In these warehouse systems, there is a central coordinator
scheduling tasks, but the robots are responsible for path planning using an A∗-
like search algorithm [52]. However, several deadlock scenarios are identified
when performing such path planning [54]. The Adaptive Highways Algorithm
presented in [54] for scheduling entities relies on using the tentative trajectories
of other robots collected by the central controller. Deadlocks are also observed
in other distributed robotics path-planning algorithms on discrete partitions
in [58]. Deadlock scenarios can also arise without a discrete abstraction, such
as in the doorways considered in [59], the path formation algorithms of [60], or
the warehouse automation system of [61].

Lastly, we mention that most of these works on traffic control from aviation,
automotive, swarm robotics, and warehouse automation applications can be
modeled within the framework of spatial computing [62, 63, 64].

7. Discussion

In this section, we discuss some ways to generalize assumptions used in
the paper and some alternative methods. In this paper, we presented a dis-
tributed traffic control algorithm for the partitioned plane, which moves en-
tities without collision to their destinations, in spite of failures. While our
algorithm is presented for two-dimensional partitions, an extension to some
three-dimensional partitions (e.g., cubes and tetrahedra) follows in an obvious
way. An extension to the more general case where there are multiple sources
and multiple targets of each color—and entities of each color move toward the
nearest target of that color—is straightforward, but complicates notation.

Self-Stabilizing Mutual Exclusion and Distributed Snapshot Algorithms. There are
a variety of mutual exclusion algorithms that could be used to determine locks
(Figure 9, line 13). For this paper, we require the overall system to be stabi-
lizing and therefore the locking algorithm itself should be stabilizing. To this
end, any of the following algorithms could be adapted to our framework: the
token circulation algorithm [65], mutual exclusion [66], group mutual exclu-
sion [67], snap-stabilizing propagation of information with feedback (PIF) al-
gorithm [68], or k-out-of-l mutual exclusion [69]. A self-stabilizing distributed
snapshot algorithm (see [27, Ch. 5]) can be used to determine if all c color-
shared cells are empty, after having had some entity of color c (Figure 9, line 19).
If all cells are empty, then another round of mutual exclusion commences, ex-
cluding color c from the input set.

General Triangulations and Affine Dynamics. We assumed in Section 2 that the
partitions satisfy several geometric assumptions for feasibility of entity trans-
fers. We considered using vector fields generated by a discrete abstraction like
those presented in [70, 71, 72, 73]. The affine vector fields generated on sim-
plices in [70, 73] can be used to move an entity (with potentially nonholo-
nomic or nonlinear dynamics) through any side of a cell in a triangulation
(simplex) [70, 72] or rectangle [71]. However, it turns out that it is impossible to

30

maintain our notion of safety for such vector fields without additional collision
avoidance mechanisms implemented on each entity. This is due to a simple ge-
ometric observation—moving entities through a shorter side than the side they
entered through may require the entities to come closer together. For example,
if a cell in the triangulation has an obtuse angle, then the vector field gener-
ated by [70] flowing from the longest edge to the shortest edge has negative
divergence. Furthermore, a vector field having negative divergence implies
the flow corresponding to any two distinct points starting in that field come
closer together, hence safety cannot be maintained. The distributed problems
using these discrete abstractions [53, 56, 57] avoid this by requiring at most one
entity in any (triangular) partition at a time.

We also mention a simple condition to ensure that triangulations have the
required geometric partition properties (Assumptions 1 and 2). If all the trian-
gles in the triangulation are non-obtuse, then the triangulation satisfies these
assumptions. We also note that restricting allowable triangulations of an en-
vironment to ones without obtuse angles is not restrictive, since any polygon
can be efficiently partitioned into a triangulation with non-obtuse [74, 75] or
acute [76] angles.

Insufficiency of Disjoint Paths. Finding disjoint paths, such as by using the al-
gorithms from [77, 78, 79, 80], could be another approach to solving the multi-
color problem, but the locking mechanism used here solves a more general
problem. Even without failures, there are many environments and choices of
sources and targets for which there are no disjoint paths between sources and
targets. One such environment is shown in Figure 4, where for two distinct
colors c and d, the paths between the respective sources and targets necessar-
ily overlap, so an algorithm for finding disjoint paths cannot be used as there
are no disjoint paths between sources and targets. However, there are disjoint
paths in some cases, so no scheduling would be necessary if these are found,
but our routing algorithm does not necessarily find these, as the disjoint paths
may not be shortest distance. A self-stabilizing algorithm for finding disjoint
paths on planar graphs would be an enhancement to our algorithm, as it would
increase throughput in the case that paths need not overlap.

Back-Pressure and Wormhole Routing. Back-pressure routing [81, 82] is an al-
gorithm for dynamically routing traffic over an underlying graph using con-
gestion gradients. If we view the color of each entity as its intended address
and consider this problem from the perspective of queuing theory, one might
think back-pressure routing could provide a throughput-optimal solution for
the problem. However, our physical motion model is incompatible with back-
pressure routing. For a given cell, our model does not allow arbitrary choice
of the next neighbor for each entity on that cell. In particular, when one cell
moves its entities toward a neighboring cell, all entities sufficiently near the
shared side between the two neighbors would transfer.

Wormhole routing [83] is a flow control policy over a fixed underlying
graph for determining when packets move to the node on the graph. Ad-

31

6 7 8 9 10 11 12 13
5

6

7

8

2

3

46

7

810

11

x

y

Figure 18: Hexagonal partition that does not satisfy
the projection property (Assumption 1). An exten-
sion to allow such partitions would require enlarg-
ing the transfer region and receiving a signal from
all of the potential next neighbors, which would re-
quire cells 3 and 7 both to signal cell 4 to move.

1T 2 3 4S

5 6 7 8

9 10 11 12

13 14 15 16

Figure 19: Example system on a parallel-
ogram partition with failed cells in black.
The several turns along the path from
the source to the target cause a satura-
tion of entities on cells 6, 10, and 14.
The movement vector u(i, j) is defined as
the unit vector parallel to the x axis for
movement between horizontal neighbors,
and the unit vector parallel to the vertical
sides of the parallelograms between ver-
tical neighbors.

dresses in wormhole routing are very short and come at the beginning of a
packet, so a packet can be subdivided into pieces or flits and begin being for-
warded after the address is received, yielding a snake-like sequence of flits in
transfer. One could also view the sequence of entities on a path toward the
appropriately-colored target (see Figure 19) sequence of flits flowing to a des-
tination in wormhole routing. While similar deadlock scenarios can arise in
our system and wormhole routing, wormhole routing is incompatible with our
system due to the motion model just like back-pressure routing.

8. Conclusion

We presented a self-stabilizing distributed traffic control protocol for the
partitioned plane, where each partition controls the motion of all entities within
that partition. The algorithm guarantees separation between entities in the
face of crash failures of the software controlling a partition. Once new failures
cease occurring, it guarantees progress of all entities that are neither isolated
by (a) failed partitions, nor (b) cells with entities of other colors that become
deadlocked due to failures, to the respective targets. Through simulations, we
presented estimates of throughput as a function of velocity, minimum sepa-
ration, single-target path complexity, failure-recovery rates, and multi-target
path complexity.

It would be interesting to develop strategies allowing entities of different
colors on a single cell. Our strategy of preventing entities of different colors
from residing on a single cell simplified some analysis, but it also complicated
some analysis, by making it harder to prove progress because deadlock sce-
narios may frequently arise. It would be interesting to develop algorithms al-
lowing mixing and sorting of colors using different types of motion coupling.

32

It would also be interesting to design algorithms that can allow relaxing the
assumption on what failures may occur to ensure liveness. We believe this
would require a more complex routing algorithm to temporarily move entities
of some colors off the color shared cells, thus allowing some other color on the
color shared cells to make progress.

9. Acknowledgments

The authors thank Zhongdong Zhu for helping develop the current version
of the simulator, Karthik Manamcheri for helping develop an earlier version
of the simulator, and Nitin Vaidya for helpful feedback. We also thank the
anonymous reviewers who helped improve the earlier version of this paper.

References

[1] D. Helbing, M. Treiber, Jams, waves, and clusters, Science

[2] B. S. Kerner, Experimental features of self-organization in traffic flow,
Phys. Rev. Lett.

[3] C. Daganzo, M. Cassidy, R. Bertini, Possible explanations of phase transi-
tions in highway traffic, Transportation Research A

[4] M. Nolan, Fundamentals of air traffic control,

[5] F. Borgonovo, L. Campelli, M. Cesana, L. Coletti, Mac for ad hoc inter-
vehicle network: services and performance, in: IEEE Vehicular Technol-
ogy Conf., Vol. 5, 2003,

[6] M. Karpiriski, A. Senart, V. Cahill, Sensor networks for smart roads, in:
Pervasive Computing and Communications Workshops, 2006. PerCom
Workshops 2006. Fourth Annual IEEE International Conference on, 2006,

[7] S. S. Manvi, M. S. Kakkasageri, J. Pitt, Multiagent based information dis-
semination in vehicular ad hoc networks, Mob. Inf. Syst.

[8] S. R. Azimi, G. Bhatia, R. R. Rajkumar, P. Mudalige, Vehicular networks
for collision avoidance at intersections, SAE International Journal of Pas-
senger Cars - Mechanical Systems

[9] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek,
C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen, P. Alessan-
drini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, P. Ma-
honey, Stanley: The Robot That Won the DARPA Grand Challenge, in:
M. Buehler, K. Iagnemma, S. Singh (Eds.), The 2005 DARPA Grand Chal-
lenge, Vol. 36 of Springer Tracts in Advanced Robotics, Springer Berlin /
Heidelberg, 2007,

33

[10] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. Mc-
Naughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski,
B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. R. Whittaker,
Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi,
J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, D. Fer-
guson, Autonomous driving in urban environments: Boss and the urban
challenge, Journal of Field Robotics

[11] X. Yang, L. Liu, N. Vaidya, F. Zhao, A vehicle-to-vehicle communication
protocol for cooperative collision warning, in: Mobile and Ubiquitous
Systems: Networking and Services. MOBIQUITOUS. The First Annual
International Conference on, 2004,

[12] J. Misener, R. Sengupta, H. Krishnan, Cooperative collision warning: En-
abling crash avoidance with wireless technology, in: 12th World Congress
on Intelligent Transportation Systems, 2005,

[13] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera, A. M.
Bayen, M. Annavaram, Q. Jacobson, Virtual trip lines for distributed
privacy-preserving traffic monitoring, in: MobiSys ’08: Proceeding of the
6th International Conference on Mobile Systems, Applications, and Ser-
vices, ACM, New York, NY, USA, 2008,

[14] A. Girard, J. de Sousa, J. Misener, J. Hedrick, A control architecture for
integrated cooperative cruise control and collision warning systems, in:
Decision and Control. Proceedings of the 40th IEEE Conference on, Vol. 2,
2001,

[15] M. Mamei, F. Zambonelli, L. Leonardi, Distributed motion coordination
with co-fields: a case study in urban traffic management, in: Autonomous
Decentralized Systems. ISADS. The Sixth International Symposium on,
2003,

[16] T. S. Abbott, K. M. Jones, M. C. Consiglio, D. M. Williams, C. A. Adams,
Small aircraft transportation system, higher volume operations concept:
Normal operations, Tech. Rep. NASA/TM-2004-213022, NASA

[17] M. Kelly, G. Di Marzo Serugendo, A decentralised car traffic control sys-
tem simulation using local message propagation optimised with a genetic
algorithm, in: S. Brueckner, S. Hassas, M. Jelasity, D. Yamins (Eds.), Engi-
neering Self-Organising Systems, Vol. 4335 of Lecture Notes in Computer
Science, Springer, 2007,

[18] H. Kowshik, D. Caveney, P. R. Kumar, Safety and liveness in intelligent in-
tersections, in: Hybrid Systems: Computation and Control (HSCC), 11th
International Workshop, Vol. 4981 of LNCS, 2008,

34

[19] K. Dresner, P. Stone, A multiagent approach to autonomous intersection
management, Journal of Artificial Intelligence Research

[20] P. Weiss, Stop-and-go science, Science News

[21] Kornylak, Omniwheel brochure
URL http://www.kornylak.com/images/pdf/omni-wheel.pdf.

[22] K. An, A. Trewyn, A. Gokhale, S. Sastry, Model-driven performance analy-
sis of reconfigurable conveyor systems used in material handling applica-
tions, in: Cyber-Physical Systems (ICCPS), 2011 IEEE/ACM International
Conference on, Vol. 2, IEEE, 2011,

[23] S. Gilbert, N. Lynch, S. Mitra, T. Nolte, Self-stabilizing robot formations
over unreliable networks, ACM Trans. Auton. Adapt. Syst.

[24] S. Dolev, L. Lahiani, S. Gilbert, N. Lynch, T. Nolte, Virtual stationary au-
tomata for mobile networks, in: PODC ’05: Proceedings of the twenty-
fourth annual ACM symposium on Principles of distributed computing,
ACM, New York, NY, USA, 2005,

[25] T. Nolte, N. Lynch, A virtual node-based tracking algorithm for mobile
networks, in: Distributed Computing Systems, International Conference
on (ICDCS), IEEE Computer Society, Los Alamitos, CA, USA, 2007,

[26] A. Arora, M. Gouda, Closure and convergence: A foundation of fault-
tolerant computing, IEEE Trans. Softw. Eng.

[27] S. Dolev, Self-stabilization,

[28] S. M. Loos, A. Platzer, L. Nistor, Adaptive cruise control: Hybrid, dis-
tributed, and now formally verified, in: M. Butler, W. Schulte (Eds.), For-
mal Methods, LNCS,

[29] A. Platzer, Quantified differential invariants, in: Proc. of the 14th ACM
Intl. Conf. on Hybrid Systems: Computation and Control, ACM, 2011,

[30] T. T. Johnson, S. Mitra, Parameterized verification of distributed cyber-
physical systems: An aircraft landing protocol case study, in: ACM/IEEE
3rd International Conference on Cyber-Physical Systems,

[31] T. T. Johnson, S. Mitra, A small model theorem for rectangular hybrid
automata networks, in: Proceedings of the IFIP International Conference
on Formal Techniques for Distributed Systems, Joint 14th Formal Methods
for Open Object-Based Distributed Systems and 32nd Formal Techniques
for Networked and Distributed Systems (FORTE-FMOODS), Vol. 7273 of
LNCS,

[32] T. T. Johnson, S. Mitra, K. Manamcheri, Safe and stabilizing distributed
cellular flows, in: Proceedings of the 30th IEEE International Conference
on Distributed Computing Systems (ICDCS),

35

http://www.kornylak.com/images/pdf/omni-wheel.pdf.
http://www.kornylak.com/images/pdf/omni-wheel.pdf.

[33] R. E. L. DeVille, S. Mitra, Stability of distributed algorithms in the face
of incessant faults, in: Proceedings of 11th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), Springer,
2009,

[34] P. A. Ioannou, Automated Highway Systems,

[35] F. Bullo, J. Cortés, S. Martı́nez, Distributed Control of Robotic Networks,
Applied Mathematics Series, Princeton University Press, 2009,

[36] N. Leveson, M. de Villepin, J. Srinivasan, M. Daouk, N. Neogi,
E. Bachelder, J. Bellingham, N. Pilon, G. Flynn, A safety and human-
centered approach to developing new air traffic management tools, in:
Proceedings Fourth USA/Europe Air Traffic Management R&D Seminar,
2001,

[37] T. Prevot, Exploring the many perspectives of distributed air traffic man-
agement: The multi aircraft control system (macs), in: Proceedings of the
HCI-Aero, 2002,

[38] C. Muñoz, V. Carreño, G. Dowek, Formal analysis of the operational con-
cept for the small aircraft transportation system, in: M. Butler, C. Jones,
A. Romanovsky, E. Troubitsyna (Eds.), Rigorous Development of Com-
plex Fault-Tolerant Systems, Vol. 4157 of LNCS, Springer Berlin / Heidel-
berg, 2006,

[39] C. Tomlin, G. Pappas, S. Sastry, Conflict resolution for air traffic manage-
ment: a study in multiagent hybrid systems, IEEE Trans. Autom. Control

[40] C. Livadas, J. Lygeros, N. A. Lynch, High-level modeling and analysis of
TCAS, in: Proceedings of the 20th IEEE Real-Time Systems Symposium
(RTSS’99), 1999,

[41] T.-C. Au, N. Shahidi, P. Stone, Enforcing liveness in autonomous traffic
management, in: Proceedings of the Twenty-Fifth Conference on Artificial
Intelligence,

[42] R. Verma, D. Vecchio, Semiautonomous multivehicle safety, Robotics Au-
tomation Magazine, IEEE

[43] A. Colombo, D. D. Vecchio, Efficient algorithms for collision avoidance at
intersections, in: Hybrid Systems: Computation and Control (HSCC),

[44] R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms
and theory, IEEE Trans. Autom. Control

[45] P. Varaiya, Smart cars on smart roads: Problems of control, IEEE Trans.
Autom. Control

36

[46] E. Dolginova, N. Lynch, Safety verification for automated platoon maneu-
vers: A case study, in: HART’97 (International Workshop on Hybrid and
Real-Time Systems), Vol. 1201 of LNCS,

[47] D. Swaroop, J. K. Hedrick, Constant spacing strategies for platooning in
automated highway systems, Journal of Dynamic Systems, Measurement,
and Control

[48] T. T. Johnson, S. Mitra, Safe flocking in spite of actuator faults using direc-
tional failure detectors, Journal of Nonlinear Systems and Applications

[49] V. Gupta, C. Langbort, R. Murray, On the robustness of distributed algo-
rithms, in: Decision and Control. 45th IEEE Conference on, 2006,

[50] M. Franceschelli, M. Egerstedt, A. Giua, Motion probes for fault detection
and recovery in networked control systems, in: American Control Confer-
ence, 2008, 2008,

[51] A. Christensen, R. O’Grady, M. Dorigo, From fireflies to fault tolerant
swarms of robots, IEEE Transactions on Evolutionary Computation

[52] P. R. Wurman, R. D’Andrea, M. Mountz, Coordinating hundreds of coop-
erative, autonomous vehicles in warehouses, AI Magazine

[53] M. Kloetzer, C. Belta, Automatic deployment of distributed teams of
robots from temporal logic motion specifications, Robotics, IEEE Trans-
actions on

[54] H. Roozbehani, R. D’Andrea, Adaptive highways on a grid, in:
C. Pradalier, R. Siegwart, G. Hirzinger (Eds.), Robotics Research, Vol. 70
of Springer Tracts in Advanced Robotics, Springer, 2011,

[55] J. W. Durham, R. Carli, P. Frasca, F. Bullo, Discrete partitioning and cover-
age control for gossiping robots, Robotics, IEEE Transactions on

[56] X. C. Ding, M. Kloetzer, Y. Chen, C. Belta, Automatic deployment of
robotic teams, Robotics Automation Magazine, IEEE

[57] Y. Chen, X. C. Ding, A. Stefanescu, C. Belta, Formal approach to the de-
ployment of distributed robotic teams, Robotics, IEEE Transactions on

[58] R. Luna, K. Bekris, Network-guided multi-robot path planning in discrete
representations, in: Intelligent Robots and Systems (IROS). IEEE/RSJ In-
ternational Conference on, 2010,

[59] D. Herrero-Perez, H. Matinez-Barbera, Decentralized coordination of au-
tonomous agvs in flexible manufacturing systems, in: Intelligent Robots
and Systems. IROS. IEEE/RSJ International Conference on, 2008,

[60] S. Nouyan, A. Campo, M. Dorigo, Path formation in a robot swarm: Self-
organized strategies to find your way home, Swarm Intelligence

37

[61] A. Kamagaew, J. Stenzel, A. Nettstrater, M. ten Hompel, Concept of cel-
lular transport systems in facility logistics, in: Automation, Robotics and
Applications (ICARA). 5th International Conference on, 2011,

[62] F. Zambonelli, M. Mamei, Spatial computing: An emerging paradigm for
autonomic computing and communication, in: M. Smirnov (Ed.), Auto-
nomic Communication, Vol. 3457 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2005,

[63] J. Beal, J. Bachrach, Infrastructure for engineered emergence on sensor/ac-
tuator networks, Intelligent Systems, IEEE

[64] J. Bachrach, J. Beal, J. McLurkin, Composable continuous-space programs
for robotic swarms, Neural Computing & Applications

[65] C. Johnen, G. Alari, J. Beauquier, A. Datta, Self-stabilizing depth-first to-
ken passing on rooted networks, in: M. Mavronicolas, P. Tsigas (Eds.),
Distributed Algorithms, Vol. 1320 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 1997, pp. 260–274,

[66] A. K. Datta, C. Johnen, F. Petit, V. Villain, Self-stabilizing depth-first token
circulation in arbitrary rooted networks, Distributed Computing

[67] J. Beauquier, S. Cantarell, A. Datta, F. Petit, Group mutual exclusion in tree
networks, in: Parallel and Distributed Systems, 2002. Proceedings. Ninth
International Conference on, IEEE Computer Society, 2002,

[68] A. Bui, A. Datta, F. Petit, V. Villain, Snap-stabilization and pif in tree net-
works, Distributed Computing

[69] A. Datta, S. Devismes, F. Horn, L. Larmore, Self-stabilizing k-out-of-l ex-
clusion on tree networks, in: Parallel Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, 2009,

[70] C. Belta, V. Isler, G. Pappas, Discrete abstractions for robot motion plan-
ning and control in polygonal environments, Robotics, IEEE Transactions
on

[71] C. Belta, L. Habets, Controlling a class of nonlinear systems on rectangles,
Automatic Control, IEEE Transactions on

[72] L. Habets, P. Collins, J. van Schuppen, Reachability and control synthe-
sis for piecewise-affine hybrid systems on simplices, Automatic Control,
IEEE Transactions on

[73] M. Kloetzer, C. Belta, A fully automated framework for control of lin-
ear systems from temporal logic specifications, Automatic Control, IEEE
Transactions on

[74] B. Baker, E. Grosse, C. Rafferty, Nonobtuse triangulation of polygons, Dis-
crete & Computational Geometry

38

[75] M. Bern, S. Michell, J. Ruppert, Linear-size nonobtuse triangulation of
polygons, Discrete & Computational Geometry

[76] H. Maehara, Acute triangulations of polygons, European Journal of Com-
binatorics

[77] H. Mohanty, G. P. Bhattacharjee, A distributed algorithm for edge-disjoint
path problem, in: Proceedings of the Sixth Conference on Foundations of
Software Technology and Theoretical Computer Science, Springer-Verlag,
London, UK, UK, 1986,

[78] R. Ogier, V. Rutenburg, N. Shacham, Distributed algorithms for comput-
ing shortest pairs of disjoint paths, Information Theory, IEEE Transactions
on

[79] S.-J. Lee, M. Gerla, Split multipath routing with maximally disjoint paths
in ad hoc networks, in: Communications. ICC. IEEE International Confer-
ence on, Vol. 10, 2001,

[80] M. Marina, S. Das, On-demand multipath distance vector routing in ad
hoc networks, in: Network Protocols. Ninth International Conference on,
2001,

[81] L. Tassiulas, A. Ephremides, Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop
radio networks, Automatic Control, IEEE Transactions on

[82] B. Awerbuch, T. Leighton, A simple local-control approximation algo-
rithm for multicommodity flow, in: Foundations of Computer Science.
Proceedings., 34th Annual Symposium on, IEEE, 1993,

[83] L. Ni, P. McKinley, A survey of wormhole routing techniques in direct
networks, Computer

39

	1 Introduction
	2 Physical System Model
	3 Distributed Traffic Control Algorithm
	4 Analysis of Distributed Traffic Control
	4.1 Safety and Collision Avoidance
	4.2 Stabilization of Spanning Routing Trees
	4.3 Scheduling Entities through Color-Shared Cells
	4.4 Progress of Entities towards their Targets

	5 Simulation Experiments
	6 Related Work
	7 Discussion
	8 Conclusion
	9 Acknowledgments

