
Abstract

We study a discrete asynchronous dynamical system on hypergraphs that can be regarded as a natural extension of annihilating walks along two directions: first, the interaction topology is a hypergraph; second, the "number of particles" at a vertex of the hypergraph is an element of a finite ring \mathbf{Z}_{p} of integers modulo an odd number $p \geq 3$. Equivalently particles move on a hypergraph, with a moving particle at a vertex being replaced by one indistinguishable copy at each neighbor in a given hyperedge; particles at a vertex collectively annihilate when their number reaches p.

The boolean version of this system arose in earlier work [Ist09] motivated by the statistical physics of social balance [AKR06, AKR05], generalizes certain lights-out games [Sut89] to finite fields and also has applications to the complexity of local search procedures for satisfiability.

Our result shows that under a liberal sufficient condition on the nature of the interaction hypergraph there exists a polynomial time algorithm (based on linear algebra over \mathbf{Z}_{p}) for deciding reachability and recurrence of this dynamical system. Interestingly, we provide a counterexample that shows that this connection does not extend to all graphs.

Reachability and Recurrence in a Modular Generalization of Annihilating Random Walks (and lights-out games) to hypergraphs

Gabriel Istrate

November 20, 2018

1 Introduction

Interacting particle systems [Lig04] are discrete dynamical systems, naturally related to cellular automata [HC97, Gác01], that have seen extensive study in the Statistical Physics of Complex Systems. While they are most naturally studied on lattices, extensions to general graphs are possible. Such extensions have recently found many applications to social dynamics, particularly as opinion formation models (see [CFL09] for a recent survey). In particular, the most popular interacting particle systems, the voter and antivoter model and (by duality) annihilating and coalescing random walks have also been studied on a general graph [DW83, DW84, AF11].

Extensions to hypergraphs are also possible and relevant in a social context. For instance, Lanchier and Neufer [LN12] argue for the naturalness of such an extension and give a spatial version of Galam's majority model [Gal02] via a majority voting rule. Motivated by behavioral voting experiments on networks [KJTW09], Chung and Tsiatas study [CT12] a voter model on hypergraphs. A final example comes from the Statistical Physics of social balance [AKR06, AKR05]. A dynamical adjustment process introduced in these papers naturally leads via duality [Ist09] to an extension of

[^0]annihilating random walks to hypergraphs. This extension can be specified as follows:

Definition 1. [ANNIHILATING RANDOM WALKS ON HYPERGRAPHS:]

Particles live on the vertices of a hypergraph. At each moment:

1. We chose a random vertex v containing a particle.
2. We chose a random hyperedge e that contains vertex v.
3. Vertices in e that contain a particle (including v) become empty. On the other hand empty vertices in e will afterwards contain a particle.

The process specified at Step 3 can be described intuitively in the following way: the particle P at vertex e spawns a number of descendents, one for each vertex $z \in e \backslash v$, then dies. The new particles may meet already a pre-existing particle at vertex z, in which case the two particles "collectively annihilate". This dynamics, studied in [Ist09], is also naturally related as we found out after completing [Ist09], to a classical problem in the area of combinatorial games, the theory of lights-out games [Sut89]. We further discuss this connection in the next section.

The remarkable aspect of the extension (1) of annihilating random walks to hypergraphs lies in its "explosive" nature: on hyperedges one particle may give birth to more than one copy. Thus, unlike the graph case, the total number of particles is generally not a nonincreasing function.

The purpose of this paper is to study a modulo- p version of the dynamical system from [Ist09], specifically, the following system:

Definition 2. Let $p \geq 2$ be an integer. $A \mathbf{Z}_{p}$-annihilating walk on a hypergraph G is defined as follows: each node v of G is initially endowed with a number $w(v) \in \mathbf{Z}_{p}$ (interpreted as number of particles).

The allowed moves are specified as follows: choose a node v such that $w(v) \neq 0$ and a hyperedge e containing v. Change the state of $w(v)$ to $w(v)-1$. Also change the state of every node $u \neq v, u \in e$ to $w(u)+1$.

In other words: a number of indistinguishable particles are initially placed at the vertices of G, each vertex holding from 0 to $p-1$ particles. At each
step we choose a vertex v containing at least one particle and a hyperedge containing v. We delete one particle at v and add one particle at every vertex $w \neq v \in e$. If the number of particles at some w reaches p, these p particles are removed from w (they "collectively annihilate").

We are mainly interested in the complexity of the following two problems:
Definition 3 (REACHABILITY). Given hypergraph $G=(E, V)$ and states $w_{1}, w_{2} \in \mathbf{Z}_{p}^{V}$, decide whether w_{2} is reachable from w_{1}.

Definition 4 (RECURRENCE). Given hypergraph $G=(E, V)$ and states $w_{1}, w_{2} \in \mathbf{Z}_{p}^{V}$, decide whether w_{2} is reachable from any state $w_{3} \in \mathbf{Z}_{p}^{V}$ reachable from w_{1}.

Of course, reachability and recurrence are fundamental prerequisites for studying the random version of this dynamical system as a finite-state Markov chains, the problem that was the original motivation of our research.

There are simple algorithms that put the complexity of these two problems above in the complexity classes PSPACE and EXPSPACE, respectively: for REACHABILITY we simply consider reachability in the (exponentially large) state space directed graph S with vertex set \mathbf{Z}_{p}^{V}. For RECURRENCE we combine enumeration of all vertices w_{3} reachable from w_{1} (via breadth first search) with testing reachability of w_{2} from w_{3}.

The main purpose of this paper is to show that under a quite liberal sufficient condition on the nature of underlying hypergraph reachability and recurrence questions for \mathbf{Z}_{p}-annihilating walks can be decided in polynomial time (actually they belong to the apparently weaker class Mod_{p}-L [BDHM92], but we won't discuss this issue here any further), by solving a certain system of linear equations over Z_{p}.

Of course, the above result is not entirely surprising, as it comes in an established line of applications of linear algebra to reachability problems in lights-out games (see [Sch] for a discussion and list of references). On the other hand, as discussed in the next section, the class of moves we allow is more restricted than that in the models in [Sch], and it was only recently shown [GWW09] that in certain cases this restriction does not matter (we refer to the next section for a full discussion). We provide a counterexample that, interestingly, shows that our result is not generally valid if we eliminate the sufficient condition.

Throughout the paper we will assume that $p \geq 3$ is an odd number.

2 Related Work

As mentioned in the introduction, the dynamics studied in [Ist09] is a generalization to hypergraphs of a variant of the lights out (σ)-game [Sut89], a problem that has seen significant investigation. The version we considered in [Ist09] is the apparently more constrained lit-only σ^{+}-game:

Definition 5. Let $G=(V, E)$ be a finite graph. Each vertex $v \in V$ has a lightbulb (that is either "on" or "off") and a light switch. In the lights out (σ)-game pressing the light switch at any given vertex v changes the state of the lightbulbs at all neighbors of v. In the σ^{+}-game the action also changes the state of the lightbulb at v. The lit-only versions of the σ and σ^{+}games only allow toggling switches of lit vertices.

Sutner [Sut89] showed that the all zeros state is reachable from the allones state in the σ^{+}-game. This was generalized to Scherphuis [Sch] to the litonly σ^{+}-game. A recent result ([GWW09] Theorem 3) significantly overlaps with our result in [Ist09], essentially showing that the lit-restriction does not make a difference for reachability on hypergraphs that arise as so-called neighborhood hypergraphs [BDS83] of a given graph:

Definition 6. Given graph $G=(V, E)$, the neighborhood hypergraph of G, denoted $N(G)$, is the hypergraph whose vertices are those of G and whose edges correspond to sets

$$
N^{+}(v)=\{v\} \cup\{w \neq v \in V: v \sim w\}
$$

The result in [GWW09] is incomparable to our result in [Ist09], as it does not require, as we do, that the degree of each hyperedge to be at least three; on the other hand we do not restrict ourselves to neighborhood hypergraphs.

A related operation on graphs called Seidel switching also yield dynamical systems related to the one considered in this paper. Given a graph $G=(V, E)$, a Seidel switching at a node $v \in V$ yields a graph H obtained by deleting from G all edges $(v, w) \in E$ and adding to H all edges $(v, w) \notin H$. Mapping all edges to vertices of a Seidel switching has recently been connected to lights-out games and investigated under random update [Hug12b]. Again, in contrast to such processes, the moves allowed in our systems correspond to "lit only" cases.

Lights out games were considered for finite fields $\mathbf{Z}_{p}, p \neq 2$ as well, e.g. in [GMT03]. Our framework differs from the one in that paper in several
important ways: first we consider the σ^{+}-game (rather than the σ-game). Second our definition differs slightly in the specification of the dynamics, as the value of the scheduled vertex decreases, rather than increases, by one (as it does in [GMT03]). The motivation for this variation is our desired connection with the theory of interacting particle systems [Lig04], particularly with the definition of coalescing/annihilating random walks.

The further connections with this latter theory are also worth mentioning: threshold coalescing and annihilating random walks, where several particles have to be present at a site for interaction with the new particle to occur, have previously been studied (e.g. [Ste01]) in the interacting particle systems literature. Compared to this work our results differ in an important respect: instead of working on a lattice like \mathbf{Z}^{d} our result considers the case of a finite hypergraph. Remarkably few results in this area (e.g. [DW84], [DW83], see also [AF11] Chapter 14) consider the case of a finite graph topology, much less that of a finite hypergraph.

Finally, we briefly discuss the connections between the dynamical model studied in this paper and the Statistical Physics of social dynamics [CFL09]. As stated, a model inspired by the sociological theory of social balance [Hei58] that originated in the Statistical Physics literature [AKR06, AKR05], was the original motivation for our work [Ist09]. The model in this paper shares with the one in [Ist09] a similar relationship to the one between the Potts and Ising models. In our case, however, we do not see how to sensibly extend the model in [AKR06, AKR05] so that it corresponds to our generalization of annihilating random walks. On the other hand such walks correspond via duality (see [AF11] Chapter 14 and [Gri79]) to a fundamental model of opinion dynamics, the antivoter model. "Cyclic" extensions of antivoter models have been investigated as well (e.g. [BG87, BG89]), and we can probably define such a "cyclic" extension that corresponds via duality to our \mathbf{Z}_{p}-generalization of annihilating random walks. This (and a more complete study of our system as a Markov chain) are left for subsequent work.

3 The Main Result

Assume $|V(G)|=n,|E(G)|=m$, and let w_{1} and $w_{2} \in \mathbf{Z}_{p}^{n}$ be states of the system such that w_{2} is reachable from w_{1}. Define variables $X_{e, v}$ denoting the number of times (modulo p) that vertex v and hyperedge e are chosen in the process from Definition 2. The effect of scheduling pair (v, e), given

$$
\begin{gathered}
{[0 ; 1 ; 1] \rightarrow[1 ; 2 ; 2] .} \\
\left\{\begin{array}{l}
x_{1, A}-x_{0, A}+x_{2, B}-x_{0, B}=1, \\
x_{0, A}-x_{1, A}+x_{2, C}-x_{1, C}=1, \\
x_{1, C}-x_{2, C}+x_{0, B}-x_{2, B}=1,
\end{array}\right. \\
\left\{\begin{array}{l}
x_{0, A}=0, x_{0, B}=0, \\
x_{1, A}=2, x_{1, C}=0, \\
x_{2, B}=2, x_{2, C}=0 .
\end{array}\right.
\end{gathered}
$$

Figure 1: (a). The counterexample $G(\mathrm{p}=3)(\mathrm{b})$. The system and its solution
current configuration w, is to modify the value of $w[v[$ by -1 and of all $w[u]$, $u \in e \backslash\{v\}$, by $+1(\bmod p)$. Hence:

$$
\begin{equation*}
\sum_{\substack{v \neq u, v, u \in e}} X_{e, u}-\sum_{v \in e} X_{e, v}=w_{2}[v]-w_{1}[v](\bmod p) \tag{1}
\end{equation*}
$$

We will denote by $H\left(w_{1}, w_{2}, G\right)$ the system of equations (1).
Does the converse hold? I.e. is the solvability of system $H\left(w_{1}, w_{2}, G\right)$ sufficient for the state w_{2} to be reachable from w_{1} ? The answer is easily seen to be negative: for any $p \geq 3$ state $(-1,-1, \ldots,-1)$ is a Garden of Eden state (that is, it has no preimage).

What if add condition that $w_{2} \neq(-1,-1, \ldots,-1)$? The answer to the previous question is still negative: Figure 1 provides a counterexample: from state $w_{1}=[0 ; 1 ; 1]$ one cannot reach state $w_{2}=[1 ; 2 ; 2]$, even though the system has a solution in \mathbf{Z}_{3}. Indeed, the only other configurations that can reach $[1 ; 2 ; 2]$ are easily seen to be $[2 ; 1 ; 2]$ and $[2 ; 2 ; 1]$.

The counterexample in Figure 3 was a graph (had all hyperedges of cardinality 2). Restricting ourselves to hyperedges of size at least three a converse does actually hold:

Definition 7. A connected hypergraph G is good if for every hyperedge $e \in$ $E(G),|e| \geq 3$.

Imposing the conditions in Definition 7 we obtain our main result.

Theorem 1. Let G be a good hypergraph. Let w_{1} be an initial configuration that is not identical to the "all zeros" configuration $\mathbf{0}$, and let w_{2} be a final configuration, $w_{2} \neq[-1 ;-1 ; \ldots ;-1]$.

Then w_{2} is reachable from state w_{1} if and only if system $H\left(w_{1}, w_{2}, G\right)$ has a solution in \mathbf{Z}_{p}.

3.1 A Comment on the Significance of our main result

The reader may wonder did we restrict ourselves in the statement of Theorem 1 to good hypergraphs? After all, we do not expect that the notion of good hypergraphs captures all cases for which a connection such as the one displayed in the theorem holds.

The answer is that good hypergraphs form in some sense a natural maximal class: as shown by the example above, extending the result beyond good hypergraphs is impossible without further complications in the statement.

4 Proof of the Main Theorem

We will need the following definitions:
Definition 8. When system $H\left(w_{1}, w_{2}, G\right)$ is solvable we define the norm of the system $H\left(w_{1}, w_{2}, G\right)$ as the quantity

$$
\left|H\left(w_{1}, w_{2}, G\right)\right|=\min \left\{y_{1}+y_{2}+\ldots+y_{n m}\right\}
$$

where $y=\left(y_{1}, \ldots, y_{n m}\right)$ ranges over the (finite set) of all solutions in \mathbf{Z}_{p} of the system, but when taking the sum above the y_{i} 's are interpreted as integers in $\{0, \ldots, p-1\}$, rather than in \mathbf{Z}_{p}.
Definition 9. Also, define the width of the system $H\left(w_{1}, w_{2}, G\right)$ to be the minimum (over all solutions x of the system) of

$$
\left|\left\{e \in E(G): \exists v \in e \mid x_{v, e} \neq 0\right\}\right|
$$

Definition 10. Let $G=(V, E)$ be a hypergraph, $l \in E$ be a hyperedge in G, and $v \in l$ a vertex. We define state vector $a_{v, l} \in \mathbf{Z}_{p}^{n}$ by

$$
a_{v, l}[z]= \begin{cases}+1 & , \text { if } z=v \\ -1 & , \text { if } z \neq v, z \in l \\ 0 & , \text { otherwise }\end{cases}
$$

Definition 11. Let $G=(V, E)$ be a hypergraph, $l \in E$ be a hyperedge in G, $w \in \mathbf{Z}_{p}^{n}$ be a state and $b \in \mathbf{Z}_{p}^{n}$. We denote by $w^{[b, l]}$ the following state:

$$
w^{[b, l]}[v]= \begin{cases}w[v] & , \text { if } v \notin l, \\ w[v]+b(v) & , \text { otherwise } .\end{cases}
$$

Also, with the conventions in the previous definition, we will write $w^{[v, l]}$ instead of $w^{\left[a_{v, l}, l\right]}$ and, for $k \geq 1$, $w^{[k, v, l]}$ instead of $w^{\left[k \cdot a_{v, l}, l\right]}$. Vector $w^{[k, v, l]}$ can be interpreted as applying k moves at vertex v on edge l.

Definition 12. A pair of vertices $\left(v_{1}, v_{2}\right)$ is good in state w if $\left(w\left[v_{1}\right], w\left[v_{2}\right]\right) \notin$ $\{(0,0),(-1,-1)\}$.

We first make the following simple
Observation 1. Let C be a configuration on hypergraph G and $v_{1} \neq v_{2}$ two vertices of G in the same hyperedge e such that pair $\left(v_{1}, v_{2}\right)$ is good in C. Then one can change configuration C into configuration D that has the same number of particles at v_{1}, v_{2} but the number of particles at any other vertex v of e increases by one $(\bmod p)$. The move only involves edge e and some of its vertices. A similar statement holds for decreasing labels by one $(\bmod p)$, instead of increasing them.
Proof. If $\operatorname{label}\left(v_{1}\right) \neq 0$ and $\operatorname{label}\left(v_{2}\right) \neq p-1$ first make a move at vertex v_{1} then make a move at vertex v_{2}. The number of particles at v_{1}, v_{2} stays the same, whereas it increases by two $(\bmod p)$ at any other vertex. Since $p \geq 3$ is odd, p is relatively prime to 2 . We repeat this process λ times, where λ is chosen such that $2 \lambda=1(\bmod p)$. If $\operatorname{label}\left(v_{2}\right)=-1$ then $\operatorname{label}\left(v_{1}\right) \neq-1$ $(\bmod \mathrm{p})$, so we may repeat the above scheme with moves first made at v_{2} then at v_{1}.

The proof for the second case is identical, with $2 \lambda=-1(\bmod p)$.
Proof. We prove Theorem 1 by induction on m, the width of system $H\left(w_{1}, w_{2}, G\right)$. The proof, although simple, is somewhat cumbersome, comprising a large number of cases with several subcases of their own. For ease of comprehension, a visual outline of the proof and the various dependencies between the intermediate results is presented in Figure 2.

- Case 1: $m=1$. Suppose system $H\left(w_{1}, w_{2}, G\right)$ has a solution of width one, thus involving a single edge e of G. We infer that $w_{2}[v]=w_{1}[v]$

Figure 2: Logical flow of the proof.
for all vertices $v \notin e$ (otherwise the system would contain an equation $0=\lambda$, with $\left.0 \neq \lambda=w_{2}[v]-w_{1}[v] \in \mathbf{Z}_{p} \backslash\{0\}\right)$.
We will prove this case using two subcases, depending whether the restriction of state w_{1} to hyperedge e, denoted by $\left.w_{1}\right|_{e}$, is identically zero or not.

- Subcase 1.1: $\left.w_{1}\right|_{e} \neq 0$ and $\left.w_{2}\right|_{e} \neq[-1 ;-1 ; \ldots-1]$.

We will give a solution involving only vertices of edge e. Since $w_{1}=w_{2}$ outside e we can assume that G consists of exactly those vertices $v_{1}, v_{2}, \ldots, v_{k}$ connected by edge e. Denote \bar{w} the vector $w_{2}-w_{1}$ and, for simplicity, let $\overline{w_{1}}, \overline{w_{2}}, \ldots, \overline{w_{k}}$ be shorthands for $\bar{w}\left[v_{1}\right], \bar{w}\left[v_{2}\right], \ldots, \bar{w}\left[v_{k}\right]$. Similarly, let $w_{a, i}$ stand for $w_{a}\left[v_{i}\right]$, where $i=1, \ldots, k, a=1,2$. Also define $w=\overline{w_{1}}+\overline{w_{2}}+\ldots+\overline{w_{k}}$. System $H\left(w_{1}, w_{2}, G\right)$ reads:

$$
\left\{\begin{array}{c}
-x_{1}+x_{2}+\ldots+x_{k}=\overline{w_{1}} \\
x_{1}-x_{2}+\ldots+x_{k}=\overline{w_{2}} \\
\ldots \\
x_{1}+x_{2}+\ldots-x_{k}=\overline{w_{k}}
\end{array}\right.
$$

The solvability (and solutions) of system $H\left(w_{1}, w_{2}, G\right)$ can easily be characterized in this case, and depends on whether p divides or not $(k-2)$. In the latter case one can easily check
that for any w_{1}, w_{2} system $H\left(w_{1}, w_{2}, G\right)$ has an unique solution $x_{i}=2^{-1}\left[(k-2)^{-1} w-\overline{w_{i}}\right], i=1, \ldots, k$. In the former case, the system $H\left(w_{1}, w_{2}, G\right)$ has a solution if and only if $w=0(\bmod$ p). Indeed, the condition follows immediately from summing the equations of the system. On the other hand if $w=0$ holds one can easily verify that the following family

$$
\left\{\begin{array}{l}
x_{1}=\lambda \\
x_{2}=\lambda+2^{-1}\left(\overline{w_{1}}-\overline{w_{2}}\right) \\
x_{3}=\lambda+2^{-1}\left(\overline{w_{1}}-\overline{w_{3}}\right) \\
\cdots \\
x_{k}=\lambda+2^{-1}\left(\overline{w_{1}}-\overline{w_{k}}\right)
\end{array}\right.
$$

with λ arbitrary in \mathbf{Z}_{p}, represents the family of solutions of system $H\left(w_{1}, w_{2}, G\right)$.
In what follows we will not refer to this case dichotomy, but will simply prove the result by induction over $v=\left|H\left(w_{1}, w_{2}, G\right)\right|$. We will also denote $x=\left(x_{1}, \ldots, x_{n m}\right)$ a solution of $H\left(w_{1}, w_{2}, G\right)$ that witnesses the fact that the minimum in the definition of $\left|H\left(w_{1}, w_{2}, G\right)\right|$ is equal to v.

* Case 1.1.1: $v=1$.

Let i_{0} be the unique index such that $x_{i} \neq 0$. Then $w_{2, i_{0}}=$ $w_{1, i_{0}}-1$ and $w_{2, j}=w_{1, j}+1$ for $j \neq i_{0}$, the equalities being interpreted in \mathbf{Z}_{p}. In other words, we need to show how to change state vector $\left[w_{1,1} ; w_{1,2} ; \ldots ; w_{1, k}\right]$ into state vector $\left[\left(w_{1,1}+1\right) ;\left(w_{1,2}+1\right) ; \ldots\left(w_{1, i_{0}}-1\right) ; \ldots ;\left(w_{1, k}+1\right)\right]$.
If $w_{1, i_{0}} \neq 0$ a simple move at $v_{i_{0}}$ changes state w_{1} into w_{2} directly. So the only case that needs a proof is $w_{1, i_{0}}=0$.
Let $j \neq i_{0}$ such that $w_{1, j} \neq 0$. Such an index exists since $w_{1} \neq 0$. Furthermore, by reassigning indices we may assume without loss of generality that $i_{0}=1$ and $j=2$. Thus target state vector is $\left[(p-1) ;\left(w_{1,2}+1\right) ; \ldots ;\left(w_{1, k}+1\right)\right]$

1. First, using r times the trick from Observation 1 at vertices v_{1} and v_{2} changes state $w_{1}=\left[0 ; w_{1,2} ; \ldots ; w_{1, k}\right]$ into state $\left.\left[0 ; w_{1,2} ; w_{1,3}+r\right) ; \ldots ;\left(w_{1, k}+r\right)\right]$. We choose $r \in\{0,1\}$ $(\bmod \mathrm{p})$ in such a way so that $w_{1,3}+r \neq 0,(p-1)(\bmod$ p). Next, apply (p-2) times the trick in Observation 1 between vertices v_{2} and v_{3} to turn the state vector into $\left[-2 ; w_{1,2} ;\left(w_{1,3}+r\right) ; \ldots ;\left(w_{1, k}+r-2\right)\right]$.

Apply now a move at v_{3} to turn the state vector into $\left[(p-1) ;\left(w_{1,2}+1\right) ;\left(w_{1,3}+r-1\right) ; \ldots ;\left(w_{1, k}+r-1\right)\right]$.
2. If $w_{1,2}+1 \neq(p-1)(\bmod \mathrm{p})$ then by applying $2-r$ times $(\bmod \mathrm{p})$ the trick in Observation 1 to vertices v_{1} and v_{2} we reach the desired final state.
3. Suppose we cannot reach alternative 2 for any choice of j with $w_{1, j} \neq 0$. Therefore, vector w_{1} contains only zeros and $(p-2)^{\prime} s$, with at least one $(p-2)$. Rearranging indices, we may assume that $w_{1}=\left[0 ;(p-2) ; 0^{r-1} ;(p-\right.$ $\left.2)^{k-r-1}\right]$, for some $1 \leq r \leq k-1$, and that the target vector is $w_{2}=\left[(p-1) ;(p-1) ; 1^{r-1} ;(p-1)^{k-r-1}\right]$.
It is easy to see that alternative $r=1$ is impossible, given the hypotheses of Subcase 1.1: assuming otherwise, we would have $\left.w_{2}\right|_{e}=[-1 ;-1 ; \ldots ;-1]$, contradicting the second hypothesis.
On the other hand for $r \geq 2$ moving from w_{1} to w_{2} is easy: first use Observation 1 between the first two vertices to turn w_{1} into vector $w_{3}=\left[0 ;(p-2) ; 2 ; 2^{r-2} ; 0^{k-r-1}\right]$. Then hold vertices v_{2} and v_{3} and use Observation 1 again to turn vector w_{3} into $w_{4}=\left[-2 ;-2 ; 2 ; 0^{r-2} ;(-2)^{k-r-1}\right]$. Finally, a single move at the third vertex yields final state w_{2}.
Note that the assumptions $w_{2} \neq(-1)^{k}$ and $k \geq 3$ are the properties that allowed us to conclude that $r \geq 2$, ultimately enabling the construction above. This is the step of the proof that critically employs these assumptions.

* Case 1.1.2: $v \geq 2$. If one of the following two conditions hold
- there exist two indices i with $w_{1, i} \neq 0$, or
- only one such index exists, but a single move at v_{i} moves the configuration to $w_{3} \neq \mathbf{0}$
then we first make one available move that brings the system to w_{3}. Now it is easily checked that system $H\left(w_{3}, w_{2}, G\right)$ is solvable and has norm v-1; we apply the induction hypothesis. The only remaining case is $w_{1}=[1 ;-1 ; \ldots ;-1]$ and $w_{2}=$ $[(1-v) ;(v-1) ; \ldots ;(v-1)]$. This is easily solved: First apply $2 v$ times the trick in Observation 1 to vertices v_{1} and v_{2} in order to change the state of the system to $[1 ;-1 ;(2 v-$
$1) ; \ldots ;(2 v-1)]$. Then make a move $p-v(\bmod \mathrm{p})$ times at v_{2}.
This concludes the proof of the case 1.1.2 and, with it, of Subcase 1.1.
Before continuing with the remaining subcases of Case 1, we give two applications of Subcase 1.1, namely Lemmas 1 and 2 below, that will be useful in the sequel:
Lemma 1. Assume that w_{1}, w_{2} are states differing only on hyperedge e whose restrictions to this edge are different from both $(0 ; 0 ; \ldots ; 0)$ and $(-1 ;-1 ; \ldots ;-1)$.
Further assume that w_{2} is reachable from w_{1} via moves of edge e only. Then w_{1} is reachable in this way from w_{2} as well. That is, we can "undo" a sequence of moves on a given edge as long as the initial and the final states are both nonzero and different from $(-1 ;-1 ; \ldots ;-1)$.

Proof. We can simply reason in the hypergraph G_{2} containing edge e only. Since w_{2} is reachable from w_{1}, system $H\left(w_{1}, w_{2}, G_{2}\right)$ has a solution u. It is easy to see that $-u$ is a solution to $H\left(w_{2}, w_{1}, G_{2}\right)$ and we apply the result proved in Subcase 1.1.
We next generalize the preceding lemma to the case when the hypergraph does not consist of a single edge anymore. To do so we need the following:
Definition 13. Given a hypergraph $H=\left(V_{H}, E_{H}\right)$, a simple path is a sequence of edges $Q=\left(q_{1}, q_{2}, \ldots q_{m}\right)$ such that for all $1 \leq i \neq$ $j \leq m q_{i} \cap q_{j}=\emptyset$ unless $j=i \pm 1$, in which case $q_{i} \cap q_{j} \neq \emptyset$.
The desired generalization is:
Lemma 2. Let $P=\left(e_{1}, e_{2}, \ldots, e_{k}\right), k \geq 3$ be a simple path in hypergraph G. Let s_{1} be a state such that there exists $s_{1}\left|e_{e_{1} \backslash e_{2}}\right| \not \equiv \mathbf{0}$. For $i=1, \ldots, k-1$ let $V_{i+1}=e_{i} \cap e_{i+1}$, let $v_{i+1} \in V_{i+1}$, and assume that $s_{1}[z]=0$ for all $z \in e_{2}, e_{3}, \ldots, e_{k-1}$. Then there exists vertex
$v_{1} \in e_{1} \backslash e_{2}$ with $s_{1}\left(v_{1}\right) \neq 0$ such that configuration s_{2}, specified by
$s_{2}[v]=\left\{\begin{array}{cc}s_{1}[v]-1, & \text { if } v=v_{1}, \\ s_{1}[v]+1, & \text { if } v \in e_{1}, v \neq v_{1}, v \notin e_{2} \\ 0, & \text { if } v \in\left\{v_{2}, \ldots, v_{k-1}\right\} \\ 2, & \text { if } v \text { is a vertex in } V_{i} \backslash\left\{v_{i}\right\}, 2 \leq i \leq k-1, \\ 1, & \text { if } v \text { is another vertex in one of } e_{2}, \ldots, e_{k-1} \\ 1, & \text { if } v \in V_{k}, \\ s_{1}[v], & \text { otherwise. }\end{array}\right.$
is reachable from s_{1} (and viceversa) by making moves only along path P.

We generalize the forward process in Lemma 2 to a forwardbackward process as follows:
Lemma 3. It is possible to perform a set of forward moves on path P, similar to that described in Lemma 2, such that if we subsequently we perform the following transformation:

1. We change the values of nodes $v \in e_{k} \backslash e_{k-1}$ to $\mu[v]$, and of those in $e_{k} \cap e_{k-1}$ to $1+\mu[v]$, where $\mu[v] \in \mathbf{Z}_{p}$ (denote by s_{3} the resulting state). We assume that these changes are performed without modifying the values of any node in $P \backslash e_{k}$.
then we can perform restoring moves on edges in $P \backslash e_{k}$ to bring back all values of this path P to their values in w_{1}, except for nodes $v \in V_{k}$ for which the final value will be $\mu[v]$.

Lemma 3 informally states that one can "propagate a one" along the path from v_{1} to v_{k} as long as vertices between the two are initially zero, and then restore the configuration (see Figures 3 and 4 , in which $\lambda=0$ and all sets V_{i} have cardinality 1).

Proof. The forward moves are easy: just choose v_{1} arbitrarily in $e_{1} \backslash e_{2}$ with $s_{1}\left[v_{1}\right] \neq 0$. Then schedule, in turn, vertices v_{1}, v_{2}, \ldots, \ldots, v_{k-1}, on edges e_{1}, \ldots, e_{k-1} respectively in this order. We use the fact that labels of v_{2}, \ldots, v_{k-1} are initially zero, hence scheduling them in turn increases the label of the next node (v_{k}, in case of the last one) by one. The new nodes (except maybe the last) get values equal to one, so they can be scheduled in turn. Vertices
that are "internal" to one of the edges e_{2}, \ldots, e_{k-1} get value 1 ; vertices in $V_{i} \backslash v_{i}$ (if any) get value 2.
Suppose now that values of vertices in V_{k} have been altered in the way specified by Step 2 of the multi-level process, resulting in state s_{3}.
The analysis of the backward schedule is only a little more complicated, and comprises three cases:

* Case I: $\left.s_{3}\right|_{e_{k-1}} \neq \mathbf{0}$.

In this case we can also choose v_{1} arbitrarily with the above constraints. First we "undo" in succession the forward moves on sets $e_{k-1} \backslash V_{k}, e_{k-2}, \ldots, e_{2} \backslash V_{2}$, turning nodes on in these sets to zero, and nodes in V_{2} to 1 . To do so we use Case 1 of the Theorem and the fact that each $e_{i}, 2 \leq i \leq k-2$ contains at least one "internal" node (whose label is 1), or a node in V_{i}, whose label is nonzero. The proof of this last claim crucially uses the conditions in the definition of good hypergraphs. For edge e_{k-1} the argument uses the fact that $s_{3}\left(v_{k-1}\right)=0$ and $\left.s_{3}\right|_{V_{k}} \neq 0$.
We are left with vertices of V_{2} with a label of 1 . We can use it to restore the correct values on edge e_{1} as well.

* Case II: $k \geq 4,\left.s_{3}\right|_{e_{k-1}} \equiv \mathbf{0}$. The argument is almost similar. First, e_{k-1} is already in the state we want to obtain, since $\left.s_{1}\right|_{e_{k-1}}=\left.s_{3}\right|_{e_{k-1}}=\mathbf{0}$.
Furthemore, as $\left.s_{3}\right|_{e_{k-1}} \equiv \mathbf{0}$ we infer the following things:

1. $V\left(e_{k-1}\right) \subseteq V_{k-1} \cup V_{k}$ (otherwise any node in $e_{k-1} \backslash\left(V_{k-1} \cup\right.$ V_{k}) would have value 1 in s_{3}).
2. $\left|V_{k-1}\right|=1$ (otherwise any vertex in $V_{k-1} \backslash\left\{v_{k-1}\right\}$ would have label 2 in s_{3}).
Because of this second condition and $k \geq 4$, edge e_{k-2} must have a node with nonzero value in s_{3} : as $\left|e_{k-2}\right| \geq 3$, either V_{k-2} has cardinality greater than one (and thus contains a vertex whose label is 2) or there exists a node "internal to e_{k-2} ", that is in $e_{k-2} \backslash\left(V_{k-2} \cup V_{k-1}\right)$, whose label i s_{3} is 1 .
In this case we can start the changing back process from e_{k-2}.

* Case III: $k=3,\left.s_{3}\right|_{e_{2}} \equiv \mathbf{0}$.

The strategy will be to carefully choose v_{1} in $e_{1} \backslash e_{2}$ and perform a modified forward schedule that will schedule edge e_{1}
twice, nd make vertex v_{2} subsequently assume value 2 instead of 1 . Then when propagating on e_{2} the label of v_{2} will become 1 instead of zero. Hence propagation on edge e_{2} can be undone in the backward phase.
As in Case II by reasoning about the regular forward process we infer the following things:

1. $V\left(e_{2}\right) \subseteq V_{2} \cup V_{3}$ (otherwise any node in $e_{2} \backslash\left(V_{2} \cup V_{3}\right)$ would have value 1 in s_{3}).
2. $\left|V_{2}\right|=1$, i.e. $V_{2}=\left\{v_{2}\right\}$, otherwise any vertex in $V_{2} \backslash\left\{v_{2}\right\}$ would have label 2 in s_{3}.
However, in this case, as $\left|V\left(e_{1}\right)\right| \geq 3$ we also infer the following extra fact:

$$
\begin{equation*}
\left|e_{1} \backslash e_{2}\right|>1 \tag{2}
\end{equation*}
$$

The modified forward process is specified as follows:

- If there exists a vertex $v_{1} \in e_{1} \backslash e_{2}$ with $s_{1}\left[v_{1}\right] \neq 0,1$ we choose such a vertex and make two moves from v_{1} (instead of one) on the forward schedule. This will ensure the desired label for v_{2} in the modified forward process.
- If there exists no such v_{1} it means that s_{1} only assumes values 0,1 on $e_{1} \backslash e_{2}$. Then the modified process proceeds by first choosing v_{1} with $s_{1}\left[v_{1}\right]=1$ and make a move on e_{1} at v_{1}. Because of condition (2) there now exists a vertex $v_{1}^{\prime} \in e_{1} \backslash e_{2}$ whose label is 1 or 2 (hence nonzero). We make the move on e_{1} at v_{1}^{\prime}, bringing the label of v_{2} to 2 as needed, and then continue with the forward process on e_{2}.

Observation 2. Lemma 3 assumed that path P has length at least three. In fact we can extend the Lemma (in a slightly modified form) so that it applies to paths P has length two if we are allowed to carefully choose vertex v_{1}.
Specifically we need to chose it so that scheduling it will produce at least one nonzero vertex in $e_{1} \backslash e_{2}$. The only problematic case is when there exists an unique vertex in $e_{1} \backslash e_{2}$ having label 1 in s_{1} and all other vertices have label 0 . In this case $\left|V_{2}\right| \geq 2$. Let $u_{2} \neq v_{2}$ be such a vertex. Performing the trick of Observation 1
on vertices v_{1} and u_{2} is enough to turn the label of all vertices of V_{2}, other than u_{2} to 1 , while preserving the label of v_{1}. This makes backward restoration unnecessary, as the label of v_{1} was not affected.

We now return to the proof of the Case 1 of Theorem 1, specifically to the remaining subcase:

- Subcase 1.2: $\left.w_{1}\right|_{e} \equiv 0$ but $\left.w_{2}\right|_{e} \neq[-1 ;-1 ; \ldots-1]$.

In this case we apply Lemma 3 to reduce the problem to Subcase 1.1 as follows: let v be a vertex with $w_{1}(v) \neq 0$ at minimal distance from e. Let P be a path of minimal length connecting v to a set of vertices U of e. Path P is simple by minimality.
We use the forward trick in Lemma 2 to propagate a 1 value to vertices of U, thus making the resulting state nonzero on edge e. Then we use the case $\left.w_{1}\right|_{e} \not \equiv \mathbf{0}$ and the solvability of the resulting associated system to change the state of the system to w_{3}, where w_{3} has the value prescribed above on $P \backslash e$ and $w_{3}=w_{2}$ on e except at vertices $v \in U$, for which $w_{3}[v]=w_{2}[v]+1$.
If $\left.w_{3}\right|_{U} \neq \mathbf{0}$ or $\left.w_{3}\right|_{U} \equiv \mathbf{0}$ but the last edge f of P, the one that intersects e on U, contains a vertex with label 1 or 2 then $\left.w_{3}\right|_{f} \neq \mathbf{0}$. Thus we may perform the multi-stage trick of Lemma 3, where the vertices $v \in U$ have been modified by the amount $\left(w_{2}[v]+1\right)-1=$ $w_{2}[v]$ to restore the state w_{1} along P except on U, where it will be $w_{1}+\left.w_{2}\right|_{U}$, that is $\left.w_{2}\right|_{U}$, since $\left.w_{1}\right|_{U} \equiv \mathbf{0}$.

- Subcase 1.3: $\left.w_{1}\right|_{e} \equiv[0 ; 0 ; \ldots 0]$ and $\left.w_{2}\right|_{e} \equiv[-1 ;-1 ; \ldots-1]$.

Let v be a vertex (necessarily not in e) with $w_{1}(v)=w_{2}(v) \neq 0$ and let P be a minimal path connecting v to e. We use forward propagation to change the state of vertices in $e \cap P \neq \emptyset$ to 1 . Then we use Subcase 1.1 to change the labels to state w_{3}, whose restriction to edge e is as follows: -1 on $e \backslash P$, and 0 on $e \cap P$. Finally, we change the state to -1 on $e \backslash P$ and restore the state on path $P \backslash e$ by using backward propagation.

- Case 2: $m \geq 2$

Let x be a solution of $H\left(w_{1}, w_{2}, G\right)$ of minimal width m, and $e_{1}, e_{2}, \ldots, e_{m}$ the edges of x for which there exists a vertex $v \in e$ with $x_{v, e} \neq 0$.

Figure 3: Forward propagation of nonzero values. Initially node v_{1} has value a and target node v_{k} has value b (with edge e_{k} being dashed). On each row the node scheduled at that stage is circled, with the scheduled edge being darkened. Scheduling a node has the effect of decreasing its label by one $(\bmod p)$ and increasing the label of all other nodes in the edge by one (mod $\mathrm{p})$. For simplicity we pictured the situation when no two hyperedges intersect at a set of cardinality larger than one. Thus no label 2 is created and all hyperedges have "internal" nodes (whose new state is 1). Last row represents the resulting state.

Let $w_{3, i}$ be the state of the system specified in the following way: $w_{3, i}(v)=w_{1}(v)+U_{i, v}$, with $U_{i}=\left(U_{i, v}\right)_{v \in V}$ specified as follows:
$-U_{i, v}=0$ for $v \notin e_{i}$.

- For vertices v of $e_{i}, U_{i, v}=-x_{v, e_{i}}+\sum_{w \neq v, w \in e_{i}} x_{w, e_{i}}$.

Intuitively $w_{3, i}$ is the state that would be reached from w_{1} when "making the moves specified by solution x on edge e_{i} only" (if possible).
There are two alternatives:

1. Case 2.1: There exists $1 \leq i \leq m$ such that $w_{3, i} \neq 0$ and $w_{3, i} \neq(-1 ;-1 ; \ldots ;-1)$.
In this case system $H\left(w_{1}, w_{3, i}, G\right)$ has a solution \bar{x} of width one,

Figure 4: Backward restoration. Each pictured "step" applies Observation 1 on one edge, starting from e_{k-1} down to e_{1}. On each row the the scheduled edge is darkened. For simplicity we pictured the particular situation when no two hyperedges intersect at a set of cardinality larger than one, hence all hyperedges have "internal" nodes (whose state is 1 after the forward moves). The scheduled nodes are these internal nodes. Last row represents the resulting state.
in fact zero outside edge e_{i} : it is simply x with values outside of e_{i} replaced by zeros.
Applying Case $m=1$ of the theorem we infer that $w_{3, i}$ is reachable from w_{1}. Then it is easy to see that System $H\left(w_{3, i}, w_{2}, G\right)$ has width at most $m-1$, and we apply the induction hypothesis.
2. Case 2.2: $\quad w_{3, i} \equiv \mathbf{0}$ or $w_{3, i} \equiv(-1 ;-1 ; \ldots ;-1)$ for all $1 \leq i \leq m$. There are three alternatives:
(a) Case 2.2.1: $w_{3, j} \equiv 0$ for all j.
(b) Case 2.2.2: $w_{3, j} \equiv(-1 ;-1 ; \ldots ;-1)$ for all j.
(c) Case 2.2.3: there exist $k \neq l$ such that $w_{3, k} \equiv \mathbf{0}$ and $w_{3, l} \equiv(-1 ;-1 ; \ldots ;-1)$.
In case 2.2.3, the two relations above imply the fact that edges e_{k} and e_{l} cover all vertices in G (otherwise there would be a vertex v outside $e_{k} \cup e_{l}$, which is constrained to mutually incompatible values by the two relations).

Since G is connected, we may chose edges e_{k}, e_{l} to intersect (otherwise we would have two connected components induced by vertices in edges that intersect e_{k}, e_{l}, respectively).
Finally, state w_{1} is determined, except on $e_{k} \cap e_{l}: w_{1}(v)=0$ if $v \in e_{l} \backslash e_{k}, w_{1}(v)=-1$ if $v \in e_{k} \backslash e_{l}$.
In cases 2.2.1 and 2.2.2 the value of w_{1} is determined on all vertices v with the possible exception of vertices (if any) that are parts of all edges: $w_{1}(v)=0$ (Case 2.2.1), respectively $w_{1}(v)=-1$ (Case 2.2.2).

Case 2.2.1. This conclusion implies the fact that $w_{1} \equiv \mathbf{0}$, a contradiction, except in one case: that when all edges $e_{1}, e_{2}, \ldots, e_{m}$ intersect at vertices in some set S.
We have to show that $m \geq 2$ is not possible even in this remaining case. Indeed, we further infer the fact that $w_{1}=w_{2} \equiv 0$ everywhere except S. On the other hand for every $v \in S$, any edge from e_{1}, \ldots, e_{m} turns the state of v from $w_{1}(v)$ to zero. Their combined effect (represented by the system $H\left(w_{1}, w_{2}, G\right)$) is therefore such that then $w_{2}[v]=w_{1}[v](1-m)$.
In this case we show that system $H\left(w_{1}, w_{2}, G\right)$ has width one. We will be using a single edge, say e_{1}. Indeed, since $w_{3,1} \equiv 0$ it follows that $y_{v, e_{1}}=-(p-m(\bmod p)) x_{v, e_{1}}$ for all $v \in e_{1}, y_{w, e}=0$, otherwise, is a solution of the system $H\left(w_{1}, w_{2}, G\right)$.

Case 2.2.2. Similarly to case 2.2 .1 , this conclusion implies the fact that $w_{1} \equiv(-1 ;-1 ; \ldots ;-1)$, except in the case when all edges $e_{1}, e_{2}, \ldots, e_{m}$ intersect at vertices in some set S, in which case $w_{1}[v]=w_{2}[v]=-1$ for every $v \notin S$.
In this case we show that the case $m \geq 2$ is not possible either. The argument is similar to that of Case 2.2.1. The effect of every edge e_{1}, \ldots, e_{m} is determined by the condition $w_{3, i} \equiv(-1 ;-1 ; \ldots ;-1)$: it leaves unchanged values on vertices outside S; for nodes $v \in S$ it changes value $w_{1}(v)$ to -1 . The combined effect of all such edges (on vertices in S) is, therefore, to leave $w_{1}[v]$ unchanged outside S. On the other hand, on vertices $v \in S$ it change the value $w_{1}(v)$ to $w_{2}[v]=w_{1}[v]-m\left(w_{1}[v]+1\right)$.
In this case again system $H\left(w_{1}, w_{2}, G\right)$ has width one: $y_{v, e_{1}}=$
$-(p-m(\bmod p)) x_{v, e_{1}}$ for all $v \in e_{1}, y_{w, e}=0$, otherwise, is a solution.

Case 2.2.3. Let $a, b \geq 1$ be the number of edges e_{i} such that $w_{3, i} \equiv \mathbf{0}, w_{3, i} \equiv(-1 ;-1 ; \ldots ;-1)$ respectively.
We claim that the system $H\left(w_{1}, w_{2}, G\right)$ has a solution of width at most two, equal to $a \cdot U_{k}+b \cdot U_{l}$. This follows easily from using an idea similar to that of Cases 2.2.1 and 2.2.2: a of the edges have a similar effect as making the move according to vector U_{k}. Their combined effect is therefore identical to that of $a \cdot U_{k}$. We reason similarly for the b edges whose effect is equal to changing state by vector U_{l}. The combined effect of all edges e_{1}, \ldots, e_{m} is thus equal to $a \cdot U_{k}+b \cdot U_{l}$, which means that this value is a solution to system $H\left(w_{1}, w_{2}, G\right)$.
These considerations also uniquely determine state w_{2}, given w_{1} :

$$
w_{2}[v]=\left\{\begin{array}{cl}
a-1, & \text { if } v \in e_{k} \backslash e_{l}, \\
-b, & \text { if } v \in e_{l} \backslash e_{k}, \\
w_{1}[v]-a w_{1}[v]-b\left(p-1-w_{1}[v]\right), & \text { if } v \in e_{k} \cap e_{l}
\end{array}\right.
$$

This relation simply rewrites equality $w_{2}=w_{1}+a \cdot U_{k}+b \cdot U_{l}$.
To conclude, we have to show that state w_{2} is reachable from w_{1} in graph G restricted to edges $\{k, l\}$, where $w_{1} \neq \mathbf{0}, w_{2} \neq$ $(-1 ;-1 ; \ldots ;-1)$,

$$
\begin{gathered}
w_{1}[v]=\left\{\begin{array}{cl}
-1, & \text { if } v \in e_{k} \backslash e_{l}, \\
0, & \text { if } v \in e_{l} \backslash e_{k}, \\
\text { arbitrary, } & \text { if } v \in e_{k} \cap e_{l} .
\end{array}\right. \\
w_{2}[v]=\left\{\begin{array}{cl}
a-1, & \text { if } v \in e_{k} \backslash e_{l}, \\
-b, & \text { if } v \in e_{l} \backslash e_{k}, \\
w_{1}[v](b+1-a)+b, & \text { if } v \in e_{k} \cap e_{l} .
\end{array}\right.
\end{gathered}
$$

and $w_{1}+U_{k} \equiv \mathbf{0}, w_{1}+U_{l} \equiv(-1 ;-1 ; \ldots ;-1)$.
We will chose $z \in e_{k} \cap e_{l}$ and define state W as follows: W is specified by sum $w_{1}+a \cdot Z_{k}$, where Z_{k} is a vector that coincides with $a \cdot U_{k}$ except at vertex z, where it is equal to $a \cdot U_{k}(z)-\lambda(\bmod \mathrm{p})$, with $\lambda \in \mathbf{Z}_{p}$ to be chosen later.

We have chosen state W in this particular way to allow us to apply the induction hypothesis $m=1$ and conclude that W is reachable from W_{1} (by making moves on e_{k} only). We also want to argue using Case 1 that state Λ is reachable from W (by making moves on e_{l} only), where Λ is defined by vector $W+b \cdot U_{l}$. Finally, we want to use again the induction hypothesis with $m=1$ to argue that w_{2} is reachable from Λ (by making moves on e_{k} only).
To be able to accomplish all of these we need to satisfy (by the statement of Case 1) the following conditions:
(a) $W \neq \mathbf{0}$.
(b) $\Lambda \neq(-1 ;-1 ; \ldots ;-1)$.
(c) $\Lambda \neq 0$.

One can satisfy each condition by eliminating from consideration one possible value of λ for each condition (a),(b),(c), and setting λ to a remaining value that enforces (a),(b),(c) on vertex z. This already proves our claim in all cases but the one when $p=3$. In fact we can extend this argument to the case $p=3$ as well: condition $W \equiv \mathbf{0}$ uniquely identifies one value $\lambda_{0} \in \mathbf{Z}_{p}$. Then both choices $\lambda_{0}-1, \lambda_{0}+1$ lead to a state W that satisfies (a). At least one of these two choices satisfies (b) and (c) as well. Indeed, the two resulting states $W_{\lambda=\lambda_{0}-1}$ and $W_{\lambda=\lambda_{0}+1}$ differ by $2(\bmod \mathrm{p})$ at vertex z and $-2(\bmod \mathrm{p})$ at other vertices v of e_{k}. It is not possible then that $W_{\lambda=\lambda_{0}-1}, W_{\lambda=\lambda_{0}+1} \in\{\mathbf{0},(-1 ;-1 ; \ldots ;-1)\}$. Hence at least one of the two choices satisfies all of (a), (b) and (c).

5 From Reachability to Recurrence

We have seen that reachability is easy to test. In the next result we show that recurrence essentially reduces to two reachability tests:

Theorem 2. In conditions of Theorem 1, given hypergraph $G=(E, V)$ and states $w_{1}, w_{2} \in \mathbf{Z}_{p}^{n}, w_{1} \neq \mathbf{0}$, state w_{2} is a recurrent state for the dynamics started at w_{1} if and only if:
(1) w_{2} is reachable from w_{1}.
(2) State $\mathbf{0}$ is not reachable from w_{1}.

Proof. Necessity of the two conditions is trivial. Suppose therefore that conditions (1) and (2) are satisfied, and let $w_{3} \in \mathbf{Z}_{p}^{n}$ be a state reachable from w_{1}. State $w_{3} \neq \mathbf{0}$ because of condition (2). On the other hand let Y_{1} be a solution of the system $H\left(G, w_{1}, w_{3}\right)$ and Y_{2} be a solution of the system $H\left(G, w_{1}, w_{2}\right)$. One can immediately verify that $Y=Y_{2}-Y_{1}$ (where the difference is taken component-wise in \mathbf{Z}_{p}) is a solution of the system $H\left(G, w_{3}, w_{2}\right)$. Applying Theorem 1 we infer that w_{2} is reachable from w_{3}.

Corollary 1. Consider the Markov Chain specified by running the \mathbf{Z}_{p}-annihilating random walk on a good hypergraph G.

1. Transient states for the dynamics are those states $0 \neq w \in \mathbf{Z}_{p}^{n}$ such that system $H(G, w, 0)$ is solvable.
2. All other states are either recurrent or inaccessible, depending on the starting point for the dynamics.

6 Further Comments

It would be interesting to extend the results on reachability and recurrence to general hypergraphs. Clearly some changes have to be made to the final result; we believe, though, that a connection with linear algebra ultimately exists.

The other issue for further study raised by this paper, more interesting in light of the connection with annihilating random walks) is the dynamics of modular lights-out games under random update, seen as finite state Markov chains (see [AF11] Chapter 14 and [Ist09] for related results). Recent related results considers random lights-out games [Hug12a] and random Seidel switching [Hug12b] on graphs. It would be interesting to complete the analysis in this paper with one of the convergence time of the associated Markov chain.

Finally, not that the antivoter model was used in the analysis of a randomized algorithm for 2-coloring a graph [DW84]. This was later extended to colorings with more than two colors or other restrictions (e.g. [PD89, McD93], see also [FV07]) and 2-colorings of hypergraphs. Whether cyclic antivoter models and related concepts are useful for analyzing randomized coloring algorithms is an interesting issue.

7 Acknowledgment

This work has been supported by CNCS IDEI Grant PN-II-ID-PCE-2011-30981 "Structure and computational difficulty in combinatorial optimization: an interdisciplinary approach".

References

[AF11] D. Aldous and A. Fill. Reversible Markov Chains and Random Walks on Graphs. (manuscript in preparation), Available from http://www.stat.berkeley.edu/~aldous/RWG/book.html, 2011.
[AKR05] T. Antal, P.L. Krapivsky, and S. Redner. Dynamics of social balance on networks. Physical Review E, 72(3):36121, 2005.
[AKR06] T. Antal, P. L. Krapivsky, and S. Redner. Social balance on networks: The dynamics of friendship and enmity. Physica D, 224(130), 2006.
[BDHM92] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and importance of logspace-MOD-classes. Mathematical Systems Theory, 25(3):223-237, 1992.
[BDS83] A.E. Brouwer, P. Duchet, and A. Schrijver. Graphs whose neighborhoods have no special cycles. Discrete Mathematics, 47:177182, 1983.
[BG87] M. Bramson and D. Griffeath. Survival of Cyclical Particle Systems. In H. Kesten, editor, Percolation theory and ergodic theory of infinite particle systems. Springer Verlag, 1987.
[BG89] M. Bramson and D. Griffeath. Flux and fixation in cyclic particle systems. The Annals of Probability, 17(1):26-45, 1989.
[CFL09] C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynamics. Reviews of modern physics, 81(2):591-646, 2009.
[CT12] F. Chung and A. Tsiatas. Hypergraph coloring games and voter models. Algorithms and Models for the Web Graph, pages 1-16, 2012.
[DW83] P. Donnelly and D. Welsh. Finite particle systems and infection models. Math.Proc. Cambridge Philos.Soc., 94:167-182, 1983.
[DW84] P. Donnelly and D. Welsh. The antivoter problem: Random 2colorings of graphs. In B. Bollobás, editor, Graph Theory and Combinatorics, pages 133-144. Academic Press, 1984.
[FV07] A. Frieze and E. Vigoda. A survey on the use of Markov chains to randomly sample colourings. Oxford Lecture Series in Mathematics and its Applications, 34:53, 2007.
[Gác01] Peter Gács. Reliable cellular automata with self-organization. Journal of Statistical Physics, 103(1-2):45-267, 2001.
[Gal02] S. Galam. Minority opinion spreading in random geometry. The European Physical Journal B, 25(4):403-406, 2002.
[GMT03] S. Gravier, M. Mhalla, and E. Tannier. On a modular domination game. Theoretical Computer Science, 306(1-3):291-303, 2003.
[Gri79] D. Griffeath. Additive and Cancellative Interactive Particle Systems. Springer Verlag, 1979.
[GWW09] J. Goldwasser, X. Wang, and Y. Wu. Does the lit-only restriction make any difference for the σ-game and the σ^{+}-game? European Journal of Combinatorics, 30:774-787, 2009.
[HC97] James E Hanson and James P Crutchfield. Computational mechanics of cellular automata: An example. Physica D: Nonlinear Phenomena, 103(1):169-189, 1997.
[Hei58] F. Heider. The psychology of interpersonal relations. John Wiley \& Sons, 1958.
[Hug12a] J.T. Hughes. Random lights-out processes on graphs. Preprint Submitted to Advances in Applied Mathematics, 2012.
[Hug12b] J.T. Hughes. Random Seidel switching on graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 2012. (to appear).
[Ist09] G. Istrate. On the dynamics of social balance on general networks (with an application to XOR-SAT). Fundamenta Informaticae, 91(2):341-356, 2009.
[KJTW09] M. Kearns, S. Judd, J. Tan, and J. Wortman. Behavioral experiments on biased voting in networks. Proceedings of the National Academy of Sciences, 106(5):1347-1352, 2009.
[Lig04] T. Liggett. Interacting Particle Systems. Springer, 2004.
[LN12] N. Lanchier and J. Neufer. Stochastic dynamics on hypergraphs and the spatial majority rule model. Journal of Statistical Physics, pages 1-25, 2012.
[McD93] C. McDiarmid. A random recolouring method for graphs and hypergraphs. Combinatorics, Probability and Computing, 2(03):363-365, 1993.
[PD89] A. Petford and Welsh D. A randomised 3-colouring algorithm. Discrete Mathematics, 74(1-2):253-261, 1989.
[Sch] J. Scherphuis. The mathematics of lights out. http://www.jaapsch.net/puzzles/lomath.htm.
[Ste01] D. Stephenson. Asymptotic density in a threshold coalescing and annihilating random walk. The Annals of Probability, 29(1):137175, 2001.
[Sut89] K. Sutner. Linear cellular automata and the Garden-of-Eden. The Mathematical Intelligencer, 11:49-53, 1989.

[^0]: *Department of Computer Science, West University of Timişoara and -Austria Research Institute, Bd. V. Pârvan 4, cam. 045 B, Timişoara, RO-300223, Romania. email: gabrielistrate@acm.org

