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Abstract

In this paper, we settle the open complexity status of interval constrained coloring with a fixed
number of colors. We prove that the problem is already NP-complete if the number of different
colors is 3. Previously, it has only been known that it is NP-complete, if the number of colors is
part of the input and that the problem is solvable in polynomial time, if the number of colors is at
most 2. We also show that it is hard to satisfy almost all of the constraints for a feasible instance.

1 Introduction

In the interval constrained 3-coloring problem, we are given a set I of intervals defined on [n] :=
{1, . . . , n} and a requirement function r : I → Z3

≥0, which maps each interval to a triple of non-
negative integers. The objective is to determine a coloring χ : [n]→ {1, 2, 3} such that each interval
gets the proper colors as specified by the requirements, i.e.

∑
i∈I eχ(i) = r(I) where e1, e2, e3 are the

three unit vectors of Z3.
This problem is motivated by an application in biochemistry to investigate the tertiary structure

of proteins as shown in the following illustration. More precisely, in Hydrogen-Deuterium-Exchange

Figure 1: Coloring of the residues of a protein chain according to their exchange rates.

(HDX) experiments proteins are put into a solvent of heavy water (D2O) for a certain time after
which the amount of residual hydrogen atoms, that have exchanged with deuterium atoms, is mea-
sured [1]. Doing this experiment for several timesteps, one can determine the exchange rate of the
∗Supported by the Deutsche Forschungsgemeinschaft (DFG) within Priority Programme 1307 ”Algorithm Engineering”
†Supported by Swiss National Science Foundation within the project ”Robust Network Design”
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residues. These exchange rates indicate the solvent accessibility of the residues and hence they pro-
vide information about the spatial structure of the protein. Mass spectroscopy is one of the methods
for measuring these exchange rates. To this end, the proteins are digested, i.e. cut into parts which
can be considered as intervals of the protein chain, and the mass uptake of each interval is measured.
But thereby only bulk information about each interval can be obtained. Since there is not only one
protein in the solvent but millions and they are not always cut in the same manner, we have this bulk
information on overlapping fragments. That is, we are given the number of slow, medium, and fast ex-
changing residues for each of these intervals and our goal is to find a feasible assignment of these three
exchange rates to residues such that for each interval the numbers match with the bulk information.

Though the interval constrained 3-coloring problem is motivated by a particular application, its
mathematical abstraction appears quite simple and more general. In terms of integer linear program-
ming, the problem can be equivalently formulated as follows. Given a matrix A ∈ {0, 1}m×n with
the row-wise consecutive-ones property and three vectors b1,2,3 ∈ Zm≥0, the constraints

A 0 0
0 A 0
0 0 A
I I I

 ·
x1

x2

x3

 =


b1
b2
b3
1

 (1)

have a binary solution, i.e. x1,2,3 ∈ {0, 1}n, if and only if the corresponding interval constrained 3-
coloring problem has a feasible solution. We may assume w.l.o.g. that the requirements are consistent
with the interval lengths, i.e. A · 1 = b1 + b2 + b3, since otherwise we can easily reject the instance as
infeasible. Hence, we could treat x3 as slack variables and reformulate the constraints as

Ax1 = b1, Ax2 = b2, x1 + x2 ≤ 1. (2)

It is known that if the matrix A has the column-wise consecutive ones property (instead of row-wise),
then there is a reduction from the two-commodity integral flow problem, which has been proven to
be NP-complete in [2]. However, the NP-completeness w.r.t. row-wise consecutive ones matrices has
been an open problem in a series of papers as outlined in the following subsection.

1.1 Related Work

The problem of assigning exchange rates to single residues has first been considered in [3]. In that
paper, the authors presented a branch-and-bound framework for solving the corresponding coloring
problem with k color classes. They showed that there is a combinatorial polynomial time algorithm
for the case of k = 2. Moreover, they asked the question about the complexity for k > 2. In [4], the
problem has been called interval constrained coloring. It has been shown that the problem is NP-hard
if the parameter k is part of the input. Moreover, approximation algorithms have been presented that
allow violations of the requirements. Most notable with respect to our own results is their rounding
scheme based on a technique introduced in [5]. It implies that if the LP relaxation of (1) is feasible,
then there is a coloring satisfying at least 5

16 of the requirements. But still, the question about the
complexity for fixed k ≥ 3 has been left open. In [6], several fixed parameter tractability results have
been given. However, the authors state that they do not know whether the problem is tractable for
fixed k.

1.2 Our contribution

In this paper, we prove the hardness of the interval constrained k-coloring problem for fixed parameter
k. In fact, we completely settle the complexity status of the problem, since we show that already the
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interval constrained 3-coloring problem is NP-hard by a reduction from 3-SAT. This hardness result
holds more generally for any problem that can be formulated like (1). Moreover, we even show the
stronger result, that it is still difficult to satisfy almost all of the constraints for a feasible instance.
More precisely, we prove that there is a constant ε > 0 such that it is NP-hard to distinguish between
instances where all constraints can be satisfied and those where only a (1− ε) fraction of constraints
can be simultaneously satisfied. To this end, we extend our reduction using expander graphs. This
gap hardness result implies APX-hardness of the problem of maximizing the number of satisfied
constraints.

2 NP-hardness

Theorem 1. It is NP-hard to decide whether there exists a feasible coloring χ for an instance (I, r) of
the interval constrained 3-coloring problem.

Proof. The proof is by reduction from the 3-SAT problem.

Suppose to be given an instance of the 3-SAT problem, defined by q clausesC1, . . . , Cq and p variables
x1, . . . , xp. Each clause Ci (i = 1, . . . , q) contains 3 literals, namely y1(i), y2(i), y3(i). Each literal
yh(i) (i = 1, . . . , q and h = 1, 2, 3) refers to a variable xj , that means, it is equal to either xj or x̄j
for some j in 1, . . . , p. A truth assignment for the variables x1, . . . , xp satisfies the 3-SAT instance if
and only if, for each clause, at least one literal takes the value true.

We now construct an instance of the interval constrained 3-coloring problem. For each clause Ci
we introduce a sequence of consecutive nodes. This sequence is, in its turn, the union of three subse-
quences, one for each of the three literals (see Fig. 2). In the following, for the clarity of presentation,

. . .   . . .   . . .   . . .   . . .   

C1
 C2
 C3
 Cq


n


. . .   .   .   .   . . .   

y1(i)
 y2(i)
 y3(i)


Ci


Figure 2: The sequence of nodes in an instance of the interval constrained 3-coloring problem.

we drop the index i, if it is clear from the context. We denote color 1 by RED, color 2 by BLACK and
color 3 by WHITE.
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Literal y1(i). The subsequence representing literal y1 is composed of 8 nodes. Among them, there
are three special nodes, namely t1, f1 and a1, that play a key role since they encode the information
about the truth value of the literal and of the variable xj it refers to. The basic idea is to achieve the
following two goals: 1) given a feasible coloring, if χ(t1) is BLACK, we want to be able to construct
a truth assignment setting xj to true, while if χ(f1) is BLACK, we want to be able to construct a truth
assignment setting the variable xj to false; 2) given a feasible coloring, if χ(a1) is RED, we want to
be able to construct a truth assignment where y1 is true.

To achieve the first goal, we will impose the following property:

Property 1. In any feasible coloring, exactly one among t1 and f1 will be BLACK.

To achieve the second goal, and being consistent with the first one, we must have the property that:

Property 2. In any feasible coloring, if χ(a1) = RED, then χ(t1) = BLACK if y1 = xj , while
χ(f1) = BLACK if y1 = x̄j .

To guarantee properties (1) and (2), we introduce a suitable set I(y1) of six intervals1, shown in
Fig. 3a.

I1

I2 I3

I5

I4

I6

t1 a1 f1

y1

(a)

(1)

(2)

(3)

t1 a1 f1

t1 a1 f1

t1 a1 f1

(b)

Figure 3: Literal y1. The picture on the right shows the three feasible colorings. On a black and white
printout red color appears as grey.

The requirement function for such intervals changes whether y1 = xj or y1 = x̄j . If y1 = xj ,
we let r(I1) = (1, 1, 1); r(I2) = (1, 1, 1); r(I3) = (1, 0, 1); r(I4) = (1, 1, 2); r(I5) = (0, 1, 0);
r(I6) = (2, 3, 3). For any feasible coloring there are only three possible outcomes for such sequence,
reported in Fig. 3b. Observe that the properties (1) and (2) are enforced.

Now suppose that y1 = x̄j : then we switch the requirement function with respect to WHITE and
BLACK, i.e. define it as follows: r(I1) = (1, 1, 1); r(I2) = (1, 1, 1); r(I3) = (1, 1, 0); r(I4) =
(1, 2, 1); r(I5) = (0, 0, 1); r(I6) = (2, 3, 3). Trivially, the possible outcomes for such sequence are
exactly the ones in Fig. 3b but exchanging the BLACK and WHITE colors.

1In principle, interval I5 and the node it contains are not needed. However, this allows to have the same number of
WHITE and BLACK colored nodes for the sake of exposition.
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Literal y3(i). The sequence of nodes representing literal y3 is similar to the one representing y1.
We still have a sequence of 8 nodes, and three special nodes t3, f3 and a3. As before, we let t3 and f3

encode the truth value of the variable xj that is referred to by y3, while a3 encodes the truth value of
the literal y3 itself. Therefore, we introduce a set I(y3) of intervals in order to enforce the following
properties:

Property 3. In any feasible coloring, exactly one among t3 and f3 will receive color BLACK.

Property 4. In any feasible coloring, if χ(a3) = RED, then χ(t3) = BLACK if y3 = xj , while
χ(f3) = BLACK if y3 = x̄j .

Fig. 4a shows the nodes and the six intervals that belong to I(y3): observe that the sequence is similar
to the one representing y1, but the position of node a3 and the intervals are now ”mirrored”. If y3 = x̄j ,
we let r(I1) = (1, 1, 1); r(I2) = (1, 1, 1); r(I3) = (1, 0, 1); r(I4) = (1, 1, 2); r(I5) = (0, 1, 0);
r(I6) = (2, 3, 3). Fig. 4b reports the three possible outcomes for such sequence in a feasible coloring.
Note that properties (3) and (4) hold.

Now suppose that y3 = xj : once again, we switch the requirement function with respect to
WHITE and BLACK.

t3 a3 f3

I1

I2I3

I5

I4

I6

y3

(a)

(1)

(2)

(3)

t3 a3 f3

t3 a3 f3

t3 a3 f3

(b)

Figure 4: Literal y3

Literal y2(i). The sequence of nodes representing literal y2 is slightly more complicated. It is
composed of 36 nodes, and among them there are 4 special nodes, namely t2, f2, a

`
2 and ar2 (see

Fig. 5). Still, we let t2 and f2 encode the truth value of the variable xj that is referred to by y2, while
a`2 and ar2 encode the truth value of the literal.

Similarly to the previous cases, we want to achieve the following goals: 1) given a feasible color-
ing, if χ(t2) is BLACK, we want to be able to construct a truth assignment setting the variable xj to
true, while if χ(f2) is BLACK, we want to be able to construct a truth assignment setting the variable
xj to false; 2) given a feasible coloring, if χ(a`2) = χ(ar2) = RED, we want to be able to construct a
truth assignment where the literal y2 is true. We are therefore interested in the following properties:

5



. . .   . . .   
t2
 f2
a2l a2r


13 nodes
 15 nodes


I1


I3
 I2


I4

I5


I6


I7


I8
 I9


I10

I11


I12


I13


I14


18 nodes


Figure 5: Literal y2

Property 5. In any feasible coloring, exactly one among t2 and f2 will receive color BLACK.

Property 6. In any feasible coloring, if χ(a`2) = RED and χ(ar2) = RED, then χ(t2) = BLACK
if y2 = xj , and χ(f2) = BLACK if y2 = x̄j .

In this case, we introduce a set I(y2) of 14 suitable intervals, shown in Fig. 5. The requirements for
the case y2 = x̄j are given in the following table.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

RED 1 1 1 1 0 2 1 1 1 1 0 2 0 4
BLACK 1 1 0 1 1 3 1 1 0 1 1 3 2 7
WHITE 1 1 1 2 0 3 1 1 1 2 0 3 1 7

Observe that the set of intervals {I1, . . . , I6} is defined exactly as the set I(y3), therefore the possible
outcomes for the sequence of 8 nodes covered by such intervals are as in Fig. 4b. Similarly, the set
of intervals {I7, . . . , I12} is defined exactly as the set I(y1), therefore the possible outcomes for the
sequence of 8 nodes covered by such intervals are as in Fig. 3b.

One checks that properties (5) and (6) hold. In case y2 = xj , once again we switch the requirement
function with respect to WHITE and BLACK.

It remains to describe the role played by the first 13 nodes and the last 15 nodes of the sequence, that
so far we did not consider. We are going to do it in the next paragraph.

Intervals encoding truth values of literals. For each clause Ci, we add another set I(Ci) of inter-
vals, in order to link the nodes encoding the truth values of its three literals. The main goal we pursue
is the following: given a feasible coloring, we want to be able to construct a truth assignment such
that at least one of the three literals is true. To achieve this, already having properties (2), (4) and (6),
we only need the following property:

Property 7. For any feasible coloring, if χ(a1) 6= RED and χ(a3) 6= RED , then χ(a`2) = χ(ar2) =
RED.
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Fig. 6 shows the six intervals that belong to I(Ci). The requirement function is: r(I1) = (1, 2, 2);
r(I2) = (1, 2, 2); r(I3) = (1, 6, 6); r(I4) = (1, 3, 3); r(I5) = (1, 2, 2); r(I6) = (1, 7, 7). We now
show that Property (7) holds. Suppose χ is a feasible coloring, and let v1, . . . , v13 be the first 13 nodes
of the sequence introduced for literal y2. By construction, if χ(a1) 6= RED, then there is a node
vj : χ(vj) = RED and j ∈ {1, 2, 3} , otherwise r(I1) is violated. Similarly, if χ(a`2) 6= RED,
then there is a node vj : χ(vj) = RED and j ∈ {11, 12, 13} , otherwise r(I2) is violated. On the
other hand, this subsequence contains exactly one node with RED color, otherwise r(I3) is violated.
It follows that at least one among a1 and a`2 has RED color. The same conclusions can be stated for
nodes ar2 and a3. Putting all together, it follows that the property (7) holds.

y1(i)


Ci


. . .   

13 nodes


a1
 t1

 


I1


. . .   . . .   
a2

l 


I2


a2
r
     f2


. . .   

I3


15 nodes


I4
 I5


. . .   

I6


y2(i)
 y3(i)


Figure 6: Set of intervals I(Ci).

Intervals encoding truth value of variables (later also called: variable intervals). Our last set of
intervals will force different nodes to take the same color, if they encode the truth value of the same
variable. In particular, we aim at having the following property:

Property 8. In any feasible coloring, χ(th(i)) = χ(tk(i′)) if both literals yh(i) and yk(i′) refer to the
same variable xj .

To achieve this, for each pair of such literals we add a big interval I(yh(i), yk(i′)) from fk(i′) to th(i)
(assuming i′ < i without loss of generality). Note that, by construction, there is a subset of intervals
that partitions all the internal nodes covered by the interval. That means, we know exactly the number
of such nodes that must be colored with color RED, BLACK and WHITE (say z1, z2, z3 respectively).
Then, we let the requirement function be r(I(yh(i), yk(i′))) = (z1, z2 + 1, z3 + 1). Under these
assumptions, if χ is a feasible coloring then χ(th(i)) 6= χ(fk(i′)), and in particular one node will
have WHITE color and the other one BLACK color. Combining this with properties (1),(3) and (5),
the result follows.

Notice that such an interval constrained 3-coloring instance can clearly be constructed in polyno-
mial time. Now we discuss the following claim in more details.

Claim 2. There exists a truth assignment satisfying the 3-SAT instance if and only if there exists a
feasible coloring χ for the interval constrained 3-coloring instance.

First, suppose there exists a feasible coloring. We construct a truth assignment as follows. We
set a variable xj to true if χ(th(i)) = BLACK, and to false otherwise, where yh(i) is any literal

7



referring to xj . Note that, by Property (8), the resulting truth value does not depend on the literal we
take. Still, combining Property (7) with properties (2),(4) and (6), we conclude that, for each clause, at
least one literal will be true. By construction, we therefore end up with a truth assignment satisfying
the 3-SAT instance. The result follows.

Now suppose that there is a truth assignment satisfying the 3-SAT instance. The basic idea, is to
construct a coloring χ such that the following property holds for all literals:

Property 9. χ(th(i)) = BLACK (resp. WHITE) if and only if yh(i) refers to a true-variable (resp.
false-variable).

Consider the sequence of nodes representing literal y1(i), and suppose y1(i) = xj for some j. We
color such nodes as in Fig. 3b-(1) if the literal is true in the truth assignment, and as in Fig. 3b-(3)
otherwise. If y1(i) = x̄j , switch BLACK and WHITE colors, in both previous cases. Now focus on
the sequence of nodes representing literal y3(i). If y3(i) = x̄j for some j, we color such nodes as in
Fig. 4b-(1) if the literal is true, and as in Fig. 4b-(3) otherwise. If y3(i) = xj , switch BLACK and
WHITE colors, in both previous cases. Finally, consider the sequence of nodes representing literal
y2(i). Suppose y2(i) = x̄j . We color the 18 nodes in the middle of the sequence as in Fig. 7-(1)
if y2(i) is true, as in Fig. 7-(2) if both y2(i) and y1(i) are false, and as in Fig. 7-(3) otherwise.
Once again, if y2(i) = xj , we switch BLACK and WHITE colors, in all the previous three cases.
Notice that, by construction, Property (9) holds, and all requirements for the intervals in I(yh(i))
(i = 1, . . . , q and h = 1, 2, 3) are not violated.

. . .   . . .   
t2
 f2
a2l a2r


13 nodes
 15 nodes
18 nodes


. . .   . . .   
t2
 f2
a2l a2r


13 nodes
 15 nodes
18 nodes


. . .   . . .   
t2
 f2
a2l a2r


13 nodes
 15 nodes
18 nodes


(1) 

(2) 

(3) 

Figure 7: Coloring of nodes representing literal y2
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Now we show how to color the first 13 nodes (v1, . . . , v13) and the last 15 nodes (w1, . . . , w15) of
the sequence representing literal y2(i), in such a way that the requirements of the intervals I1, . . . , I6
in I(Ci) are not violated (i = 1, . . . , q). Note that, by construction, at least one node among a1 and
a`2 is colored with RED. In fact, if y1(i) is true then χ(a1) = RED, while if y1(i) = false then
a`2 is colored with RED. Similarly, at least one node among a3 and ar2 is colored with RED, since
χ(ar2) 6= RED only if both literals y1(i) and y2(i) are false: then, necessarily y3(i) is true, and
therefore χ(a3) = RED. Let us focus on the nodes v1, . . . , v13, and let u be the node in between v13

and a`2. In the following, we refer to WHITE as the opposite color of BLACK and vice versa. As we
already discuss, we can have only two cases:

Case 1: χ(a1) = χ(a`2) = RED. We color v1 with the opposite color of f1, and the nodes v2
and v3 with BLACK and WHITE. Note that r(I1) is not violated. We then color v4, v5, v6 with the
opposite color of v1, v2, v3 respectively. Similarly, we color v13 with the opposite color of u. Then,
we color v12 and v11 with BLACK and WHITE, so that r(I2) is not violated. Once again, we assign
to v10, v9, v8 the opposite color of v13, v12, v11 respectively. Finally, we let χ(v7) = RED. Note that
r(I3) is not violated.

Case 2: χ(a1) 6= RED and χ(a`2) = RED, or vice versa. Suppose χ(a1) 6= RED (the other
case is similar). Both nodes a1 and f1 can have only BLACK or WHITE colors. Then, we can color
v1 and v2 with the opposite color of a1 and f1 respectively, and v3 with color RED, so that r(I1) is
not violated. Still, we color v4 and v5 with the opposite color of v1 and v2. Finally, we color v6 and v7
with BLACK and WHITE. To the remaining nodes v8, . . . , v13 we assign the same colors as in Case
1. One checks that requirements of intervals I2 and I3 are not violated.

Finally, since Property (9) holds, it is easy to see that, for each couple of literals yh(i), yk(i′), the
requirement r(I(yh(i), yk(i′)) is also not violated. The result then follows.

3 Gap hardness

We will now argue that not only the interval constrained 3-coloring problem but also its gap version
is NP-hard, i.e. it is hard to distinguish between satisfiable instances and instances where only up to
1− ε fraction of the constraints may be simultaneously satisfied.

For the purpose of our argument we will use the following, rather restricted, definition of gap
hardness. We will only talk about maximization versions of constraint satisfaction problems. Think
of an instance of the problem as being equipped with an additional parameter t called threshold. We
ask for a polynomial time algorithm which given the instance answers:

• “YES” if all the constraints can be satisfied,

• “NO” if there is no solution satisfying more than t constraints.

Note that for instances, where more then t but not all constraints can be simultaneously satisfied, any
answer is acceptable. We will now restrict our attention to the case where the threshold is a fixed
fraction of the total amount of constraints in the instance. We call problem A to be gap NP-hard if
there exists a positive ε such that the existence of a polynomial time algorithm to separate feasible
instances from those where only at most (1 − ε) fraction of the constraint can be simultaneously
satisfied would imply P = NP .

Observe that gap NP-hardness implies APX-hardness, but not vice versa. For example the linear
ordering problem (also known as max-subdag) is APX-hard [7], but is not gap NP-hard, since feasible
instances may be found by topological sorting.
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Let us first note that the 3-SAT problem, which we used in the reduction from the previous section,
has the gap hardness property. It is the essence of the famous PCP theorems that problems with such
gap hardness exist. For a proof of the gap hardness of 3-SAT see [8].

Before we show how to modify our reduction to prove gap hardness of the interval constraint
coloring problem, we need to introduce the notion of expander graphs. For brevity we will only give
the following extract from [8].

Definition 3. Let G = (V,E) be a d-regular graph. Let E(S, S) = |(S × S) ∩ E| equal the number
of edges from a subset S ⊆ V to its complement. The edge expansion of G is defined as

h(G) = min
S:|S|≤|V |/2

E(S, S)
|S|

.

Lemma 1. There exists d0 ∈ Z and h0 > 0, such that there is a polynomial-time constructible
family {Xn}n∈Z of d0-regular graphs Xn on n vertices with h(Xn) ≥ h0. (Such graphs are called
expanders).

Let us now give a “gap preserving” reduction from gap 3-SAT to gap interval constrained 3-
coloring. Consider the reduction from the previous section. Observe that the amount of intervals in
each literal gadget, and therefore also in each clause gadget, is constant. The remaining intervals are
the variable intervals. While it is sufficient for the NP-hardness proof to connect occurrences of the
same variable in a “clique” fashion with variable intervals, it produces a potentially quadratic number
of intervals. Alternatively, one could connect these occurrences in a “path” fashion, but it would give
too little connectivity for the gap reduction. The path-like connection has the desired property of using
only linear amount of intervals, since each occurrence of a variable is linked with at most two other
ones. We aim at providing more connectivity while not increasing the amount of intervals too much.
A perfect tool to achieve this goal is a family of expander graphs.

Consider the instance of the interval coloring problem obtained by the reduction from the previous
section, but without any variable intervals yet. Consider literal gadgets corresponding to occurrences
of a particular variable x. Think of these occurrences as of vertices of a graph G. Take an expander
graph X|V (G)| and connect two occurrences of x if the corresponding vertices in the expander are
connected. For each such connection use a pair of intervals. These intervals should be the original
variable interval and an interval that is one element shorter on each of the sides. We will call this pair
of intervals a variable link. Repeat this procedure for each of the variables.

Observe that the number of variable links that we added is linear since all the used expander
graphs are d0 regular. By contrast to the simple path-like connection, we now have the property, that
different occurrences of the same variable have high edge connectivity. This can be turned into high
penalty for inconsistent valuations of literals in an imperfect solution.

Theorem 4. Constrained interval 3-coloring is gap NP-hard.

Proof. We will argue that the above described reduction is a gap-preserving reduction from the gap
3-SAT problem to the gap interval 3-coloring problem. We need to prove that there exists a positive ε
such that feasible instances are hard to separate from those less then (1− ε) satisfiable.

Let ε0 be the constant in the gap hardness of gap 3-SAT. We need to show two properties: that
the “yes” instances of the gap 3-SAT problem are transferred to “YES” instances of our problem, and
also that the “NO” instances are mapped into “NO” instances. There is no need to care about almost
satisfiable instances of 3-SAT.

10



The first property is simple, already in the NP-hardness proof in the previous section it was shown
that feasible instances are mapped by our reduction into feasible ones. To show the second property,
we will take the reverse direction and argue that an almost feasible solution to the coloring instance
can be transformed into an almost feasible solution to the SAT instance.

Suppose we are given a coloring χ that violates at most ε fraction of the constraints. Suppose the
original 3-SAT instance has q clauses, then our interval coloring instance has at most c · q intervals for
some constant c. The number of unsatisfied intervals in the coloring χ is then at most εqc.

We will say that a clause is broken if at least one of the intervals encoding it is not satisfied by χ.
We will say that a variable link is broken if one of its intervals is not satisfied or one of the clauses it
connects is broken. An unsatisfied variable link interval contributes a single broken link; an unsatisfied
interval within a clause breaks at most 3d0 intervals connected to the clause. Therefore, there is at
most 3d0εqc broken variable links in total.

Recall that each variable link that is not broken connects occurrences of the same variable in two
different not broken clauses. Moreover, by the construction of the variable link, these two occurrences
display the same logical value of the variable.

Consider the truth assignment φ obtained as follows. For each variable consider its occurrences
in the not broken clauses. Each occurrence associates a logical value to the variable. Take for this
variable the value that is displayed in the bigger set of not broken clauses, brake ties arbitrarily.

We will now argue, that φ satisfies a big fraction of clauses. Call a clause bad if it is not broken,
but it contains a literal such that in the coloring χ this literal was active, but φ evaluates this literal to
false. Observe that if a clause is neither broken nor bad, then it is satisfied by φ. It remains to bound
the amount of bad clauses.

Consider the clauses that become bad from the choice of a value that φ assigns to a particular
variable x. Let bx be the number of such clauses. By the connectivity property of expanders, the
amount of variable links connecting these occurrences of x with other occurrences is at least h0bx. As
we observed above, all these variable links are broken. Since there is in total at most 3d0εqc broken
links, we obtain that there is at most 3

h0
d0εqc bad clauses. Hence, there is at most ( 3

h0
d0 + 1)εqc

clauses that are either bad or broken and they cover all the clauses not satisfied by φ.
It remains to fix ε = h0

(3d0+h0)cε0 to obtain the property, that more than ε0 unsatisfiable instances
of 3-SAT are mapped to more than ε unsatisfiable instances of the constrained interval 3-coloring
problem.

Note that the above theorem implies APX-hardness of the studied problem.
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