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Abstract

Chemical reaction networks are a powerful means of specifying the intended behaviour of 

synthetic biochemical systems. A high-level formal specification, expressed as a chemical reaction 

network, may be compiled into a lower-level encoding, which can be directly implemented in wet 

chemistry and may itself be expressed as a chemical reaction network. Here we present conditions 

under which a lower-level encoding correctly emulates the sequential dynamics of a high-level 

chemical reaction network. We require that encodings are transactional, such that their execution is 

divided by a “commit reaction” that irreversibly separates the reactant-consuming phase of the 

encoding from the product-generating phase. We also impose restrictions on the sharing of species 

between reaction encodings, based on a notion of “extra tolerance”, which defines species that 

may be shared between encodings without enabling unwanted reactions. Our notion of correctness 

is serializability of interleaved reaction encodings, and if all reaction encodings satisfy our 

correctness properties then we can infer that the global dynamics of the system are correct. This 

allows us to infer correctness of any system constructed using verified encodings. As an example, 

we show how this approach may be used to verify two- and four-domain DNA strand displacement 

encodings of chemical reaction networks, and we generalize our result to the limit where the 

populations of helper species are unlimited.
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1. Introduction

Recent successes in DNA nanotechnology have demonstrated the ability of scientists and 

engineers to exert unprecedented control over matter at the nanoscale. This control has been 

used in dynamic DNA logic circuits using a range of molecular architectures [1, 2, 3, 4] as 

well as in the assembly of static structures based on tile assembly [5] or on folding of 

scaffold strands [6]. Recent work has combined the dynamic and static domains by using a 

dynamic DNA circuit to trigger self-assembly reactions [7] or reconfigure existing structures 

*Corresponding authors (mlakin@cs.unm.edu, aphillip@microsoft.com). 

HHS Public Access
Author manuscript
Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

Published in final edited form as:
Theor Comput Sci. 2016 June 13; 632: 21–42. doi:10.1016/j.tcs.2015.06.033.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[8, 9]. Theoretical work has explored the computational power of DNA tile assembly 

processes [10] and of dynamic DNA reactions [11].

In the theory underlying these efforts, chemical reaction networks (CRNs) play a critical 

role. Previous work has shown that stochastic CRNs are Turing-universal, provided that an 

arbitrarily small probability of error is allowed [12], and the fundamental limits of 

deterministic CRN computation have been explored [13]. Therefore, CRNs are a convenient 

and powerful programming language for synthetic biochemical systems, which enable 

researchers to define the desired interactions as a CRN and explore them through simulation 

using established tools and methods. When such a high-level formal CRN has been 

designed, in order to test it in the laboratory the abstract CRN species must be mapped to 

actual chemical species whose interactions correspond to those of the formal CRN. From a 

computer science perspective, this can be thought of as compiling the CRN into another 

CRN that encodes a lower-level behavioral description of the system. Thus, a common 

feature of these encodings is that a single-step reaction in a formal CRN is implemented as a 

multi-step process in its encoding, which comprises a number of individual chemical 

reactions. When an encoding of a multi-reaction system is executed, the executions of the 

individual reaction encodings can, and almost certainly will, be interleaved with each other. 

Thus, there are many possibilities for bugs in the design of CRN encodings due to unwanted 

interleavings of reactions that may, for example, prematurely generate or consume certain 

species. It is therefore desirable to develop proofs of correctness for CRN encodings. 

However, verifying such massive, concurrent systems is non-trivial because a large number 

of interactions may be possible from any given state.

Since the inputs and outputs from this process are both CRNs, this enables the definition of a 

hierarchy of CRNs, each of which encodes the behavior of the CRN above it in the 

hierarchy. In this paper we will focus on the verification of a single encoding step in which a 

formal (higher-level) CRN is translated into an encoding (lower-level) CRN. However, the 

same techniques could be used to verify each step of a multi-step encoding process 

separately.

Here we present a powerful, modular framework for proving correctness of CRN encodings. 

Since CRN encodings are typically defined pointwise by encoding each reaction separately, 

it is natural to exploit this modularity in our proof technique. We will show that if all 

individual reaction encodings in the system satisfy certain properties then the whole system 

may be deduced to be correct in a well-defined sense. Our modular approach to proving 

correctness will allow us to verify the components of large-scale systems individually, 

without being limited by the sizes of the corresponding state spaces.

Our approach is inspired by the concept of serializability from database theory [14], which 

requires that interleaved concurrent updates to a database must be equivalent to some serial 

schedule of those updates. We consider a composition of reaction encodings to be correct if 

all possible interleavings of their reactions can be rewritten using a small number of simple 

rules to produce a serial schedule. A serial schedule is one in which there is no interleaving 

between the various reaction encodings, that is, the first reaction encoding runs to 

completion before the second begins, and so on. We propose serializability as a reasonable 
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notion of correctness for CRN encodings because serialized executions of encodings can be 

directly related to executions of the underlying reactions. We will use simple rules to rewrite 

reaction traces in order to serialize them. CRN encodings that are not serializable may 

display erroneous behaviours that do not correspond to possible behaviours of the formal 

CRN, because of unwanted crosstalk between individual reaction encodings. Our correctness 

criteria will allow us to prove that our encodings do not have such problems. We also 

generalize our results to the case where fuel species populations may be assumed to be 

unlimited, either because they are relatively very large or are continually fed from an 

external source. This is of interest in the case of long-running reaction networks such as 

oscillators [15].

As an example, we will apply our technique to the verification of several encodings of the 

approximate majority algorithm of Angluin et al [16] using DNA strand displacement 

reactions. DNA strand displacement is a simple yet powerful framework for molecular 

computation, in which an invading strand displaces an incumbent strand that is bound to a 

template [17, 18]. The applications of DNA strand displacement reactions are numerous and 

varied, including the construction of logic circuits [19, 20] and neural networks [21], control 

of self-assembled nanoscale systems [22, 7] and molecular motors [17, 23, 24, 25]. Here we 

are particularly interested in applications of DNA strand displacement to implement 

dynamic behaviour expressed as chemical reaction networks: Soloveichik et al. showed that 

DNA strand displacement reaction gates [26] provide a general framework for the 

implementation of arbitrary CRNs in wet chemistry. A number of encoding schemes for 

implementing chemical reaction networks using DNA strand displacement have been 

proposed, such as the four-domain [26] and two-domain schemes [27]—these names refer to 

the domain-level structure of the strands which denote encoded species in each scheme. In 

previous work we have explored the use of probabilistic model checking for the verification 

of two-domain DNA strand displacement systems [28]. However, such approaches are 

limited by the explosion in the size of the state space as the various species populations 

increase.

The remainder of this paper is structured as follows. In Section 2 we introduce mathematical 

notation and preliminary definitions, and we formalize modular CRN encodings in Section 

3. In Section 4 we present a (straightforward) completeness proof for reaction encodings, 

and in Section 5 we present a (more involved) soundness proof. We discuss extensions of 

these results to handle unlimited fuel populations in Section 6. We present examples of 

encoding verification in Section 7, and conclude with a discussion and a survey of related 

work in Section 8. This paper is a revised and extended version of a conference paper (M. R. 

Lakin, A. Phillips, D. Stefanovic, Modular verification of DNA strand displacement 

networks via serializability analysis, in: D. Soloveichik, B. Yurke (Eds.), Proceedings of 

DNA19, Vol. 8141 of Lecture Notes in Computer Science, Springer-Verlag, 2013, pp. 133–

146).

2. Preliminaries

We now introduce some preliminary mathematical definitions that will be used throughout 

the paper. Let  denote the set of natural numbers, including zero. Given a set X, we write 
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 for the set of multisets over X, defined as the set of all functions f : X → , as is 

standard. By convention we use upper-case boldface symbols for multisets and upper-case 

italics for sets. We may write multisets explicitly using the notation {x1 = n1, …, xk = nk}, 

where ni > 0 is the count associated with the corresponding xi. We write set(A) for the 

domain of the function underlying the multiset A. For multisets A; B ∈  we write A ⊛ B 
to mean that (A(x)) ⊛ (B(x)) for all x ∈ X, where ⊛ is any binary relational operator, for 

example ≤. Similarly, we define arithmetic operations on multisets so that (A ± B)(x) = 

(A(x)) ± (B(x)) for all x ∈ X. For subtraction we require that B ≤ A to avoid negative 

multiplicities. If x ∈ X and n ∈ , we write n · x for the multiset A ∈  such that A(x) = n 
and such that A(x′) = 0 for x′ ∈ X where x′ ≠ x. Similarly, if X ∈  and n ∈ , we write n · 

X for the multiset A ∈  such that A(x) = n · X(x) for all x ∈ X. Finally, we will use the ⊎ 

symbol for the union of disjoint sets. We now define some key concepts.

Definition 1 (Chemical reaction networks)—A chemical reaction network (CRN) is a 
pair (X, R), where X is a finite set whose elements are referred to as chemical species and R 
is a finite set of chemical reactions over X, which are rewrite rules of the form R → P, 
where R, P ∈  are referred to as the “reactants” and “products” of the reaction, 
respectively. We will typically write chemical reactions using the standard “plus” notation, 

e.g., . If r = (R → P) then we let r−1 = (P → R) and observe that 
(r−1)−1 = r. Note that we do not consider reaction rates at all in this paper. We say that a 
chemical reaction R → P is well-formed if R ≠ P, and that a CRN is well-formed if all 
constituent reactions are well-formed.

Henceforth, we assume that all CRNs are well-formed.

Definition 2 (CRN states and reactions)—A state S of a CRN  = (X, R) is just a 
multiset drawn from . A reaction r = (R → P) ∈ R is enabled in state S if R ≤ S, written S 

 r. (The CRN  is included here so we have access to the set of possible reactions.) 

Furthermore, if S′ = S − R + P then we write  to indicate that applying the reaction r 
to S results in S′.

Definition 3 (CRN traces)—Given a CRN  = (X, R), a trace τ is an ordered list [r1, …, 
ri, …] of reactions from R. Traces may be finite or infinite, and we write length(τ) for the 
length of the finite trace τ. We write Traces( ) for the set of all traces that may be generated 
using reactions from R. We write τ1 : τ2 for the trace obtained by concatenating τ1 and τ2, 
and ε to denote the empty trace (i.e., length(ε) = 0).

Definition 4 (Valid traces)—A trace τ is a valid trace, starting from S and under a CRN 

, written S  τ, if τ ∈ Traces( ) and either (i) τ = ε or (ii) τ = [r]: τ′ and  such that 
S′  τ′ also holds. If τ is finite, we write (S, τ) for the state that is produced when all 

reactions in the trace have been executed, and say that  if S′ = (S, τ).

Example 2.1 (Examples of valid and invalid traces)—For example, given a CRN 

with species {a, b, c} and reactions {a → b, a + b + b → c} the trace τ = [a → b, a → b, a + 

b + b → c] is valid from the initial state S = {a = 3}, i.e., S  τ holds, whereas the trace τ′ = 
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[a → b, a + b + b → c, a → b] is not valid from the same initial state because the second 
reaction cannot be executed, i.e., S  τ′ does not hold.

Definition 5 (Reachable states)—A state S′ is reachable from a state S under a CRN 

= (X, R) if  holds for some τ ∈ Traces( ). Furthermore, we say that a state S′ is 
universally reachable from S under  if S′ is reachable from every state that is reachable 
from S.

We note that the definition of universal reachability is related to that of confluence from 

term rewriting [30], with the difference that (universal) reachability is defined in terms of the 

state being reached, whereas confluence is defined in terms of the state from which the 

reduction starts.

Definition 6 (Terminal states and traces)—A state S is terminal under a CRN  = (X, 
R) if no reaction r ∈ R is enabled in S. A terminal trace from a state S is any finite trace τ ∈ 

Traces( ) such that (S, τ) is a terminal state under .

Definition 7 (Reversible and committed reactions)—Given a CRN  = (X, R), a 
reaction r ∈ R is reversible if the inverse reaction r−1 also appears in R, and r is committed 

if, for all S and S′,  implies that S is not reachable from S′ under .

Note that, in general, it is not the case that every reaction is necessarily either reversible or 

committed in the above sense: for example, consider the CRN with reactions a → b, b → c 
and c → a. None of these reactions are reversible, but none of the reactions are committed 

either, because there is always a route back to the previous state via the other two 

irreversible reactions. In practice, such reactions would violate conservation laws: similar 

reaction cycles in natural biochemical systems typically require the consumption of some 

fuel species that provides the chemical potential energy to drive the system round the cycle, 

e.g., the hydrolysis of ATP powers the chemomechanical cycles of motor proteins such as 

myosin and kinesin. Furthermore, wet chemistry implementations of reaction encodings, 

e.g., using DNA strand displacement reactions, will also have this property, as the resulting 

reactions are either directly reversible “toehold exchange” reactions [31], or committed 

reactions that produce one or more inert “waste” species, which prevent that strand 

displacement reaction from ever being undone. For this reason, we will only consider 

encodings in which all reactions are either reversible or committed.

3. Chemical reaction network encodings

In this paper, we consider CRN encodings that are constructed in a pointwise, modular 

fashion by generating a separate encoding of each formal reaction and combining these to 

produce an encoding of the entire formal CRN. We will assume the existence of a formal 

CRN  = ( , ), along with an encoding CRN  = ( , ) that is intended to provide an 

implementation of . The first step in this process is to define the encoding of species from 

a formal CRN into the encoding CRN.
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Definition 8 (Species encodings)—A species encoding is a function :  →  such 
that (x1) ∩ (x2) = ø for x1 ≠ x2 ∈ . We write  for the “inverse” mapping, which is 
defined as follows:

To motivate the above definition, the ability to use a family of species to encode a single 

formal species will enable us to model a range of practical DNA implementations of CRN 

encodings, as will be seen below. The intuition here is that a formal state S, in which S(x) = 

nx for each x ∈ , can be represented by any encoding state S′ in which  S′(x′) = nx 

for each x ∈ , i.e., the sum of the populations of all encoding species that represent a 

given formal species x yields the encoded population of that formal species. Since the sets 

returned by  are disjoint for distinct input values, one can tell exactly which species from 

 (if any) is encoded by a given species from  (this criterion is related to injectivity). 

This property also ensures that  is a function.

Furthermore, this definition requires that  ⊇ (  (x)), i.e., there are sufficient species 

in  to handle all possible encodings of the species from  under the species encoding . 

Any species present in  that do not correspond directly to encoded species from  will 

mediate the transitions between encoded species, as specified by the formal CRN. Note, 

also, that  is undefined on any encoding species that does not encode a formal species. 

Examples of species encodings used in practical systems are the four-domain DNA strand 

displacement encoding introduced in [26] (see Section 7.3) and the two-domain DNA strand 

displacement encoding introduced in [27] (see Section 7.4).

Now, to simplify the presentation of the theorems and their proofs, we will overload the 

notation for species encodings to apply directly to sets and multisets of species. We will use 

 to also represent its pointwise application to states, which are just multisets of formal 

species, as follows.

Definition 9 (Species encodings applied to states)—For a state S = {x1 = n1, …, xk 

= nk} of formal species, we write (S) to stand for some multiset 

{ } where, for all i ∈ {1, …, k}, 

 and .

For a state  of encoding species, we let (S′) = {x1 = n1, …, xj = 

nj} (for some j ≤ k) where, for all i ∈ {1, …, j}, xi ∈ (S′) iff xi = (x′) for some x′ ∈ S
′, and ni =  S′(x″).

The above definition is not deterministic because a species encoding  may offer a range of 

possibilities for encoding a given formal species. Having defined species encodings, we now 

present a formal definition of individual reaction encodings, which will be subsequently 

composed to produce encodings of entire formal CRNs, in a modular fashion.
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Definition 10 (Reaction encodings)—The reaction encoding of a formal reaction α = 

(Rα → Pα) using a species encoding  is ⟦α⟧ = ( , Fα). The encoding CRN  = ( , ) 

is such that:

1.  = (⨄x∈(set(Rα∪Pα)) (x)) ⊎ Oα, where Oα contains all species involved in 
the encoding that are not encodings of formal species, and

2. Fα is a multiset of species from Oα such that, for any possible initial state 

 (recall that there are multiple possible results of (Rα), as 

defined in Definition 8), there exists a terminal state  that is universally 

reachable from  using the chemical reactions from , and where 

 and .

We also require that no F < Fα has the above properties, meaning that Fα is the minimal 
amount of fuel needed for a trace that reaches the terminal state, as described above. If 

 we say that the trace τ is an execution of ⟦α⟧.

In Section 7 we present several examples of different reaction encodings, all applied to the 

same abstract CRN, the approximate majority voting system originally introduced in [16].

Intuitively, a reaction encoding ⟦α⟧ comprises a CRN  that describes the possible 

interactions within the reaction encoding and a multiset Fα containing the minimal amount 

of fuel which, when placed with the encoded reactants (Rα), allows a single execution of 

⟦α⟧ to run to completion from any initial state . We also require that the 

encoding always finishes in the same terminal state , in which the only encoded formal 

species are the products of α. Furthermore, the encoding should never get stuck in a state 

from which  is not reachable.

We assume that the minimal fuel multiset is unique, as is the case in all existing published 

reaction encodings. The fuel minimality condition could only be violated if there were two 

independent reaction pathways in the encoding, each requiring different fuel species. Note 

that we refer to the species from Fα from Definition 10 as fuels, a term we use to mean any 
species that must be present initially in order for the chemical reactions in the encoding to 

run to completion. In addition to these fuel species, and the species that directly encode 

formal species, the encoding CRNs will, in general, contain other species that are 

intermediaries produced during the execution of the encoding, and waste species. At this 

stage, these other categories are not critical to the exposition, as they are most relevant to 

restricting crosstalk to ensure soundness of encodings, so we will defer further discussion of 

them until Section 5. Furthermore, note that the requirement of a terminal state that is 

universally reachable implies that there can only be a single terminal state: if there were a 

second terminal state, then by definition the first would not be reachable from the second 

and hence would not be universally reachable.

Note that the definition of reaction encodings from Definition 10 specifies the behaviour of 

the system from any initial state . This is because if the species encoding  maps any of 

the reactants of the formal reaction to more than one different encoding species then there 
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will be more than one possible corresponding initial state. We require that every reaction 

encoding must respect the species encoding in the sense that all possible patterns of encoded 

reactants should produce the desired result from the reaction encoding. In making this 

definition, we rely on the fact that (x) returns the set of all possible encodings of the 

formal species x. Thus, we can check all possible patterns of encoded reactants for correct 

behaviour under the reactant encoding. This issue disappears in the special case where 

maps each formal species into precisely one encoding species, as is the case in encodings 

based on two-domain DNA strand displacement [27].

Now, individually defined reaction encodings can be combined to produce an encoding of a 

full CRN, which we define as follows.

Definition 11 (CRN encodings)—Consider a formal CRN  = ( , ) and a species 
encoding , where  = {α1, …, αn} and ⟦αi⟧ = ( , Fαi), for i ∈ {1, …, n}, where  = 

( , ). Then, the CRN encoding of  comprises:

1. an encoding CRN  = ( , ), where  = (  ∪ ··· ∪ ) and  = (  ∪ ··· 

∪ ), and

2. the list Fα1, …, Fαn of fuel multisets from the individual reaction encodings.

Note that the set of possible reactions in  is just the union of the possible sets of reactions 

from the CRNs that encode the individual formal reactions from . If a particular species is 

shared between two reaction encodings, then it may react with other species from either 

encoding according to the rules of the corresponding CRNs from the individual encodings.

4. Completeness of CRN encodings

We now consider correctness properties of an encoding CRN  with respect to the formal 

CRN . The most basic correctness property of CRN encodings is that they are capable of 

emulating any valid trace of formal reactions, which we define as follows.

Definition 12 (Serial executions)—For a formal trace τ ∈ Traces( ), we say that a 
trace τ′ ∈ Traces( ) in the encoding CRN  is a serial execution of τ = [r1, …, rn] if τ′ can 
be decomposed into a concatenation τ1:…: τn of subtraces such that the ith subtrace τi is an 
execution of ri.

Since reaction encodings require fuel species to be present, any statement about the 

correctness of reaction encodings must be predicated on the amount of fuel available in the 

system. Thus it is important to identify the minimal amount of fuel needed to emulate a 

given trace of formal reactions.

Lemma 4.1 (Fuel required for emulation)—Let τ = [α1, …, αn] ∈ Traces( ) be a 
finite trace of formal reactions, let S be a formal state such that S  τ, and let τser ∈ 

Traces( ) be a serial execution of τ using the encoding CRN . Then, for any (S), it is the 
case that ( (S) + F)  τser iff F ≥ reqfuel (τ), where the required fuel, reqfuel (τ), is defined 
as the sum of the fuel required by the encoding of each reaction in the formal trace, i.e., 
reqfuel(τ) ≜ Fα1 + ··· + Fαn.
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Proof: This result follows from the definitions of reaction encodings and CRN encodings 

from Definition 10 and Definition 11, respectively. (Given that traces are sequences of 

reactions, they are inherently sequential). The “only if” direction of this proof uses the 

assumption that all reactions are either reversible or committed, in the sense of Definition 7.

We can now state and prove a straightforward completeness theorem for the emulation of 

formal traces by serial executions.

Theorem 4.2 (Completeness)—Let τ ∈ Traces( ) be a finite formal trace and let S be a 
formal state. If S  τ and F ≥ reqfuel (τ) both hold then, for any (S), it is the case that ( 
(S) + F)  τser holds for some τser ∈ Traces( ) that is a serial execution of τ using the 
encoding CRN .

Proof: This result follows from Lemma 4.1, because we can emulate any finite formal trace 

by creating an initial state with sufficient encoded species (S) and fuels F so that the 

corresponding serial execution can be run.

5. Soundness of CRN encodings

The completeness result above only concerns one possible trace of the encoding. In this 

section we prove a more involved soundness result, which shows that all possible traces of 

the encoding are equivalent to a serial execution of some valid formal trace. This is a 

reasonable notion of correctness because this implies that every possible trace of the 

encoding can be causally related to some valid formal trace. To make this connection, we 

define a notion of rewriting on valid reaction traces, which allows reactions to be moved 

around and deleted from the trace if doing so preserves the causal relationships between 

reactions in the trace.

Definition 13 (Trace rewriting)—The trace rewriting relation is indexed by a CRN  and 
the starting state S. We write S  τ ⇝ τ′ to mean that, for a CRN  and starting state S, the 
trace τ can be rewritten to produce the trace τ′. These judgments are derived by constructing 
a proof tree using the following inference rules.

The inference rules from Definition 13 follow a standard format from structural operational 

semantics and can be interpreted either top-down (if the premises from the top line hold, 

then the conclusion from the bottom line holds also) or bottom-up (to prove that the 

conclusion holds, we must prove that the premises hold). We note that, by the definition of 

the inference rules from Definition 13, the trace rewriting rules can only be applied to valid 
traces. The (REFL) rule ensures that the trace rewriting relation is reflexive, i.e., any valid 

trace can be trivially rewritten to itself, and the (TRANS) rule means that the rewriting 
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relation is transitive, i.e., multiple rewrite steps can be combined into a single rewriting 

judgment using this rule. The (CANCEL) rule allows the subtrace τ2 to be removed if its net 

effect is no change, which allows a cycle of a reaction and its inverse to be canceled if they 

appear next to each other in the trace. The (SWAP) rule allows two neighbouring subtraces 

τ2 and τ3 to be swapped if they may occur in either order, when preceded by τ1 and followed 

by τ4, i.e., subtraces that are causally independent can occur in either order. In the (SWAP) 

rule, since executing a reaction trace is essentially a series of addition and subtraction 

operations on the species populations, which are commutative, it follows that τ1: τ2: τ3 and 

τ1: τ3 : τ2 both produce the same final state. Finally, we note that the prefix and suffix traces 

τ1 and τ3 from (CANCEL), and τ1 and τ4 from (SWAP) may be empty, so these rules can 

also be applied at the very beginning or the very end of a trace without the need for 

additional contextual rules.

Example 5.1 (Trace rewriting)—Consider a CRN  = ({x1, x2, x3}, {r1, r2, r3}), where

and an initial state S = {x1 = 3}. Note that S  [r1, r2, r3] holds, by the following sequence 
of reactions:

Since there are sufficient copies of x1 in the initial state, r3 can be executed independently of 
the other two reactions. Therefore, we could execute r3 first, i.e., the trace rewriting 
judgment S  [r1, r2, r3] ⇝ [r3, r1, r2] also holds. This can be derived by constructing a 
proof tree as follows.

Note, however, that S  [r1, r2, r3] ⇝ [r2, r1, r3] does not hold. This is because the (SWAP) 

rule cannot be applied to the first two reactions in this judgment, due to the absence of x2 in 
the initial state.

It is important to show that trace rewriting preserves validity and the final states produced by 

executing the traces. This can be done as follows.

Lemma 5.2—If S  τ ⇝ τ′ then S  τ′ and (S, τ) = (S, τ′).

Proof: Assume that S  τ ⇝ τ′. By definition of the inference rules from Definition 13 it 

follows that S  τ. If (CANCEL) was used to derive S  τ ⇝ τ′ then τ has the form τ1 : τ2 : 

τ3 and τ′ has the form τ1 : τ3, and furthermore we know that . It follows 

immediately that S  τ1 : τ3, and hence that S  τ′ and (S, τ) = (S, τ′), as required. 
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On the other hand, if (SWAP) was used to derive S  τ ⇝ τ′ then τ has the form τ1 : τ2 : τ3 : 

τ4 and τ′ has the form τ1 : τ3 : τ2 : τ4. Furthermore, we know that S  τ1 : τ3 : τ2, and 

(S, τ1 : τ3 : τ2) = (S, τ1 : τ2 : τ3). Thus it follows that S  τ1 : τ3 : τ2 : τ4, and hence that 

S  τ′ and (S, τ) = (S, τ′), as required. The cases for the remaining rules, (REFL) 

and (TRANS), are straightforward.

Note that it is not the case that any two valid traces from a given starting state can be 

interconverted using these trace rewriting rules—indeed, this is the crux of our analysis. 

Proving soundness is challenging because we must show that all possible interleavings of the 

various reaction encodings in a given system can be rewritten to produce a serial execution 

of a valid formal trace. In particular, sharing of species between reaction encodings may lead 

to non-serializable behaviour, e.g., if a species generated during the execution of one 

reaction encoding can erroneously trigger part of a second reaction encoding. Therefore, to 

obtain a soundness result, we must place several additional constraints on the reaction 

encodings which we will consider.

Definition 14 (Stratified CRNs)—If a state S′ is reachable from S under , we write Λ(S, 

S′) for the length of the shortest trace τ ∈ Traces( ) such that . Then, we say that the 
CRN  is stratified if, for any starting state S0 and any states S and S′ which are reachable 

from S0 under , it is the case that  implies Λ(S0, S′) = Λ(S0, S) ± 1.

Example 5.3 (Example of stratified and non-stratified CRNs)—As a simple 
example, a CRN containing species {x1, x2, x3} and reactions {x1 → x2, x2 → x3} is 

stratified, whereas a CRN containing the same species and reactions {x1 → x2, x2 → x3, x1 

→ x3} is not stratified, because x1 can be converted to x3 either via the intermediate species 
x2 (with a trace of length 2) or directly (with a trace of length 1).

We consider it reasonable to restrict our attention to stratified CRNs. In particular, CRNs 

comprising the form of reactions typical to chemical implementation frameworks such as 

DNA strand displacement [17, 18] give rise to stratified CRNs (when considered at a fixed 

level of abstraction [15]), as the type of “shortcircuit” reaction mentioned above is not 

possible. This can be seen in the state spaces from our examples encoded using four-domain 

and two-domain strand displacement schemes, which are illustrated in Figures 6 and 9.

In the context of reaction encodings, the knowledge that the encoding CRN is stratified 

enables us to impose similar directionality on the individual reactions that execute the 

encoding, as follows.

Definition 15 (Forward and backward reactions in reaction encodings)—
Consider a reaction encoding ⟦α⟧ that uses a stratified encoding CRN . Recall the initial 

state  of the encoding, as defined in Definition 10, and construct the state space of the 

encoding, that is, the graph of reachable states starting from  and using the reaction rules 

from  to make state transitions. Then, we say that a transition  in the state space is a 

forward step if , i.e., the reaction takes us farther from the initial 
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state. Similarly, we say that the transition is a reverse step if , i.e., 
the reaction moves us back towards the initial state.

In the state spaces from our example reaction encodings, shown in Figures 2, 6, and 9, the 

distances from the initial state to any given state in the state space can be easily calculated: 

thus, it is clear which reactions are forward steps and which are backward steps. All of these 

examples yield stratified CRNs. Indeed, it would be meaningless to apply Definition 15 to a 

reaction encoding that did not yield a stratified CRN, as the distance from the initial state 

would be ill-defined.

Henceforth, we will assume that all CRNs are stratified. Furthermore, to simplify the 

presentation, we will also categorize the species involved in each reaction encoding 

according to their role. Hence we require that the set  of all species involved in the 

reaction encoding ⟦α⟧, which we will also write as species (⟦α⟧), can be partitioned into:

1. formals(⟦α⟧)—those species in the image of ;

2. waste(⟦α⟧)—those species which are unreactive, i.e., never appear as a reactant 

in any reaction in ;

3. fuels(⟦α⟧)—those species which appear in Fα; and

4. intermediates(⟦α⟧)—the remaining species.

Now, to determine if two reaction encodings can be safely used with each other, we must test 

whether the presence of any extra copies of a particular species will cause an encoding to 

function incorrectly. To this end, we define a notion of extra tolerance, as follows.

Definition 16 (Extra tolerance)—A reaction encoding ⟦α⟧ is extra tolerant with respect 
to a species x if

for any n ∈ , where  is the CRN from the encoding ⟦α⟧ (extended to include x if 

necessary) and  is any initial state of ⟦α⟧.

Thus,  contains an encoding of the reactant species and the necessary fuel species. We 

can decide extra tolerance for a reaction encoding by checking whether the set of traces 

produced from any initial state of the encoding is identical in the presence or absence of the 

species x. If the sets of traces are the same, it follows that the state spaces have the same 

structure, but with n additional copies of x in each state.

For example, in a four-domain DNA strand displacement reaction encoding, of the kind 

described in Section 7.3, including additional copies of the gate complexes does not enable 

any additional reactions, so the encoding is extra tolerant with respect to these species. 

However, the encoding is not extra tolerant with respect to the intermediate strand that is 

released from the reactant-binding gate to activate the product-generating gate. If this 
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intermediate strand is present in the initial state then the products can be released straight 

away, which produces a different state space than for the correct execution of the encoding.

We now use the above notion of extra tolerance to state the restrictions on individual 

reaction encodings that we will impose so that a soundness result can be proved.

Definition 17 (Transactional reaction encodings)—Consider a formal reaction α = 

(Rα → Pα), encoded as ⟦α⟧ = ( , Fα). Let  denote an initial state 
consisting of just the required reactants and fuels, and let τ = [r1, …, rn] ∈ Traces( ) be a 
terminal trace of the encoding starting from S0, where ri = (Ri → Pi) for i ∈ {1, …, n}. 

Labeling the corresponding sequence of states as , we 
say that rj is a commit reaction if the following criteria are all satisfied:

1. rj is the first committed reaction in τ;

2. if x ∈ formals(⟦α⟧) occurs in r1, …, rj−1 or Rj then x ∈ (Rα), and these 
occurrences are all either reactants of forward steps or products of backward 
steps;

3. if x ∈ formals(⟦α⟧) occurs in Pj or rj+1, …, rn then x ∈ (Pα), and these 
occurrences are all either products of forward steps or reactants of backward 
steps;

4. (Sj−1 − Rj) = Ø.

We say that ⟦α⟧ is transactional if, for every possible initial state S0, every terminal trace 
from S0 has a commit reaction satisfying the above criteria and if every terminal trace visits 
the same set of states prior to the commit reaction. We also require that ⟦α⟧ is extra tolerant 
with respect to all formal and fuel species involved in the encoding, and that the terminal 
state has the form (Pα) + Lα, where ⟦α⟧ is extra tolerant with respect to every species in 
the multiset Lα of leftover species.

In Definition 17, criterion 1 requires that the trace can be partitioned into two disjoint 

subtraces by the first committed reaction. Criteria 2 and 3 require that only input formal 

species can engage in reactions before the commit reaction, and only output formal species 

can engage in reactions after, and furthermore that the consumption of input formal species 

before the commit reaction and the production of output formal species after the commit 

reaction always drive the system forwards. Criterion 4 ensures that all necessary reactants 

are in fact consumed by the time the commit reaction is reached: this is needed in case the 

reactants and products have some species in common. These criteria correctly handle those 

cases where the commit reaction itself may consume encoded formal species as reactants 

and/or release encoded formal species as products. The restrictions on extra tolerance ensure 

that the behaviour of the encoding is identical in the presence of additional copies of fuels or 

formal species: note that any encoding is extra tolerant with respect to waste species, but that 

the encoding may not be extra tolerant with respect to certain intermediate species. We 

require that every terminal trace visits the same set of states prior to the commit reaction so 

that there is a single binding pathway for the reactants: this is necessary to show that 

backward reactions in pre-commit traces can always be eliminated using the trace rewriting 

Lakin et al. Page 13

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rules. Finally, the restrictions on leftover species in the terminal state delimit those species 

which may be safely left behind by a reaction encoding that does not fully garbage-collect 

its intermediate species to produce unreactive waste. The correctness arguments for our three 

example encodings from Section 7 (Propositions 1, 2, and 3) illustrate the reasoning required 

to show that encodings are transactional, and the following example illustrates the problems 

that may arise due to the use of a non-transactional encoding.

Example 5.4 (Problems caused by a non-transactional reaction encoding)—
Following [32], we now present a concrete example of the kind of bug that may occur in a 
CRN encoding when using a non-transactional reaction encoding. Consider the following set 
of formal reactions: {x → y, y + a → y + b}, and suppose that our encoding of x → y is not 
transactional because the output y can be released before the first committed reaction in the 
execution of the encoding. Then, from an initial state corresponding to the formal state {x = 

1, a = 1} the following sequence of operations is possible:

1. Run the encoding of x → y until y is produced, but without executing any 
committed reactions. This produces a new state corresponding to {y = 1, a = 

1}.

2. Completely execute the encoding of y + a→y + b, which results in a state 
corresponding to {y = 1, b = 1}.

3. Unwind the partial execution of x → y, which is possible because no 
committed reactions have been executed in this encoding. The final state 
corresponds to the formal state {x = 1, b = 1}.

Note that the formal state {x = 1, b = 1} is not reachable from the initial formal state {x = 1, 

a = 1} using the above set of formal reactions. The only formal reaction that can be executed 
from the initial state ({x = 1, a = 1}) is x→y, therefore, any serial execution must begin with 
an execution of ⟦x → y⟧. Similarly, the next execution must be ⟦y + a → y + b⟧. However, 
this results in a state corresponding to {y = 1, b = 1}, not {x = 1, b = 1} as obtained above. 
The specific problem with this example is that the set of reactions outlined above relies on 
the fact that the y produced by the partial execution of ⟦x → y⟧ reaction is available before 
the encoding has executed a committed reaction to commit to its production. Thus the y 
species can be used to catalyse the conversion of a to b before being reclaimed and 
converted back to x. However, in transactional encodings this cannot occur, because the 
commit reaction must be executed before any products can be released.

However, requiring that the reaction encodings are individually transactional is not sufficient 

for correctness because of the possibility of unwanted behaviour caused by crosstalk 

between reaction encodings. In general, this could occur either via unwanted direct sharing 

of species, or via crosstalk reactions between species from different reaction encodings. 

Therefore, we now define compatible reaction encodings, in which direct sharing of species 

between the encodings is only permitted in certain circumstances.

Definition 18 (Compatible reaction encodings)—We say that two reaction 
encodings, ⟦α⟧ and ⟦β⟧, are compatible if every shared species in species(⟦α⟧) ∩ species(⟦β⟧) 

appears in the same category (formal, waste, fuel, or intermediate) in both encodings, and if 
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both encodings are extra tolerant with respect to every shared species. Furthermore, we 
require that a species from ⟦α⟧ can only interact with a species from ⟦β⟧ if at least one of 
those species occurs in species(⟦α⟧) ∩ species(⟦β⟧).

Hence, different reaction encodings may share formal species, waste species, and fuel 

strands. They may also share intermediate strands provided that the presence of additional 

copies of those species does not enable additional reaction pathways in either reaction 

encoding. In all cases, shared species must appear in the same category in both reaction 

encodings, and no species may interact with any species from a reaction encoding in which 

it is not present as a species. We note that, when CRN encodings are specified in a modular 

fashion via CRNs as in Definition 10 and Definition 11, it is in fact not possible for species 

to interact unless they occur in the same reaction encoding, because we rely on the CRNs 

from the reaction encodings to specify which species may react. However, we include this 

possibility in Definition 18 so that our definitions can also be applied when we have a 

general mechanism to compute whether an arbitrary pair of species may interact. Thus, the 

following proof techniques can be used to verify both high-level encodings using CRNs and 

lower-level encodings that account for species structure to check for unwanted interference 

between reaction encodings, e.g., by using the DSD programming language and compiler 

[15].

We now present some preliminary lemmas that will be needed to prove our main soundness 

result.

Lemma 5.5 (Trace rewriting and reversible reactions)—If τ ∈ Traces( ) consists 
entirely of reversible reactions and S  τ then there exists τ′ ∈ Traces( ) such that S  τ:τ′ 

⇝ ε.

Proof: Straightforward: if τ = [r1, …, rn] then let τ′ = [rn
−1, …, r1

−1]. Then, the last reaction 

from τ and the first reaction from τ′ can be cancelled out via rule (cancel), and so on, 

eventually leaving the empty trace ε, as required.

Lemma 5.6 (Serializability)—Assume that all reaction encodings are transactional and 
pairwise compatible, and suppose that S  τ, where

where  is the first commit reaction in τ, where  is 

an execution of ⟦α⟧ and where . Then, there exists  such that .

Proof: We assume that S  τ, i.e., that
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Since  is the first commit reaction in τ, all reactions prior to it must be reversible. Also, 

we note that the only species which can be shared between encodings are those with respect 

to which the encodings are extra tolerant, and, because of the stratified CRN property, a 

single reaction encoding cannot consume more fuel or formal species than is necessary to 

complete an execution.

By assumption, we know that  and . We must show that there exists 

such that  holds, for any S. Suppose that x is a reactant of , and that 

there are n copies of x in the initial state. Then, we observe that τ1 and [ ] may only 

conflict if τ1 consumes all n copies of x and subsequently releases just enough copies of x so 

that  can be subsequently executed: if  were to be executed first then there would be 

fewer than n copies of x remaining, so τ1 could not be executed to completion. Since τ1 is a 

trace of pre-commit reactions, in which formal species are consumed by forward steps and 

re-emitted by backward steps, it follows from Definition 17 that the encoding must revisit 

one of its previous states in order to release a species. Therefore we can use (cancel) to 

derive , for some  which contains no backward steps. It follows that S contains 

sufficient species to execute both  and , and hence it follows that

By repeated application of this argument we get that

where .

Now,  is the last reaction in a complete execution of ⟦α⟧, which means that it must be a 

forward step. By Definition 17, forward steps after the commit reaction only have fuels and 

intermediates as reactants, and by Definition 18 we know that fuel and intermediate strands 

could potentially be shared with other reaction encodings. However, by Definition 16 we 

know that if any reaction in τn consumes a reactant x of , then that reaction must be from a 

copy of the reaction encoding which is in a state where it could consume x anyway, and 

hence that copy must have its own copy of x present. Hence, since we know that  can be 

executed directly after , we can move  forward using the (swap) rule, to get

Now consider the subtrace [ ]. In general, a trace of post-commit reactions of the 

form [ ] could contain both forward and backward steps, which means that 

these reactions could consume reactants that correspond to formal species. This has the 
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potential to cause a conflict if some reaction in τn−m also consumes that species. However, 

by Definition 17 we know that a formal species can only be consumed by a post-commit 

reaction if that reaction is a backward step, and this means that by the end of the subtrace 

[ ], any formal species consumed by a backward step within [ ] 

will eventually be re-generated by a subsequent reaction within [ ]. Thus, τn−1 

and [ ] can be swapped using the (swap) from Definition 13, to give

Furthermore, by repeated application of this argument we get that

as required, where , i.e., .

We can now state and prove our main soundness theorem, which is valid for CRN encodings 

composed of reaction encodings that satisfy the criteria in Definition 17 and Definition 18. 

Since the set of all traces includes incomplete executions of reaction encodings, we require 

that any trace can be extended to produce a serializable execution. To express this we will 

write  (X, F) for the set of “possible traces”, that is, the set of non-empty formal traces 

that are valid from the formal state X and that can be emulated using the fuel F, i.e.,  (X, 

F) ≜ {τ ∈ Traces( ) | X  τ ∧ reqfuel(τ) ≤ F ∧ τ ≠ ε}. This is required so that we can 

assess whether any reaction encodings can be executed using the available species, and 

therefore we must know the reaction encodings at this stage. Then, the soundness theorem 

and its proof are as follows.

Theorem 5.7 (Soundness)—Fix a formal CRN  with reactions α1, …, αn, with 
corresponding reaction encodings into an encoding CRN  that are all transactional and 
pairwise compatible. Let X range over multisets of formal species, and let F range over 
multisets of fuels such that F = k1 · Fα1 + ··· + kn · Fαn, where k1, …, kn ∈  and k1, …, kn 

≥ 0. Then, for all τ ∈ Traces( ) and all X and F such that ( (X) + F)  τ, either:

•  (X, F) = Ø and there exists τ′ such that ( (X) + F)  τ:τ′ ⇝ ε; or

•  (X, F) ≠ Ø and there exists τ′ such that (  (X) + F)  τ:τ′ ⇝ τser, where 
τser is a serial execution of some τformal ∈ (X, F).

Proof: We begin by noting that F can be expressed as integer multiples of the multisets of 

fuel species required to execute the various reaction encodings. Then, by Definition 18 there 

can be no direct interaction between species that do not appear in the same reaction 

encoding. Furthermore, the only species which are shared are those with respect to which 

the encodings are extra tolerant, and a single copy of a given reaction encoding must be 

extra tolerant with respect to any formal or fuel species that it uses. Thus, the trace τ must 

consist of an interleaving of reactions which all correspond to a valid state transition from 
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precisely one of the constituent reaction encodings. Furthermore, since there is only a finite 

supply of fuel, there can only be finitely many commit reactions in τ. However, τ could 

include infinite cycles of reversible reactions—we assume that τ has already been rewritten 

to eliminate these, using the rewrite rules from Definition 13. We proceed by mathematical 

induction on χ(τ), the number of commit reactions in τ.

Base case: χ(τ) = 0.. Since there are no commit reactions, all reactions in τ must be 

reversible. Therefore, by Lemma 5.5 there exists a trace τ″ such that ( (X) + F)  τ:τ″ ⇝ 

ε. Then, if (X, F) = ø we can set τ′ = τ″ to get that ( (X) + F)  τ:τ′ ⇝ ε, as required. 

On the other hand, if (X, F) ≠ ø then there must be a formal reaction α such that X  α 

and for which reqfuel ([α]) ≤ F. Then, for a complete execution τα of ⟦α⟧, we can set τ′ = τ

″:τα to get ( (X) + F)  τ:τ′ ⇝ τα, which is a serial execution of [α] ∈  (X, F), as 

required.

Inductive case: χ(τ) = n+1.. Suppose that  is the first commit reaction in τ, belonging to 

the encoding of the formal reaction α = (Rα → Pα). By Definition 17, in order to pass the 

commit reaction we must consume all of the species from (Rα), and hence it follows that 

Rα ≤ X. Furthermore, since we are only considering initial states with fuel to run complete 

encodings, we get that [α] ∈ (X, F) and hence (X, F) ≠ ø.

We proceed by identifying those reactions from τ which precede and follow  to make up 

a trace from ⟦α⟧. If τ does not contain a full execution of ⟦α⟧, let  denote a trace which 

completes an execution of ⟦α⟧. Since [α] ∈ (X, F) we know that  holds, 

where  is the first reaction of the execution of ⟦α⟧. Then, by Lemma 5.6 we get that 

, where τα is an execution of ⟦α⟧.

Let X′ be a formal state such that . Then, we get 

, where Lα is the non-formal species which 

remain after the execution of ⟦α⟧ has completed. By Lemma 5.2 we can deduce that ( (X′) 

+ (F − Fα) + Lα)  τrest. All reaction encodings must be extra tolerant with respect to the 

species from Lα, which means that the reactions in τrest may occur with or without the 

additional leftover species from Lα. It follows that ( (X′) + (F − Fα))  τrest, and we write 

Sα = (X′) + (F − Fα).

Since χ(τrest) = n = χ(τ) − 1, we can invoke our induction hypothesis on τrest. Now, we 

perform a case split on whether (X′, F − Fα) is empty. If (X′, F − Fα) = ø, by induction 

there exists  such that , and hence that . It follows 

that , and since τα is a serial execution of [α] ∈  (X, F), we 

get the result.

If (X′, F − Fα) ≠ ø, by induction there exists  such that , where τser 

is a serial execution of some formal trace τformal ∈  (X′, F − Fα). From this we get 

, and hence that . Since τformal 
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∈ (X′, F − Fα) it follows that [α]: τformal ∈ (X, F), and since τα:τser is a serial 

execution of [α]:τformal, we get the result.

6. Unlimited fuel populations

The results proved in Section 4 and Section 5 were predicated on the size of a finite multiset 

of fuel species from the individual reaction encodings. These fuel species are consumed as 

the reaction encodings are executed, and the finite amount of fuel present initially imposed 

an upper bound on the number of encoded reactions that could be executed. However, in 

certain situations we may want to make the assumption that the populations of fuel species 

are unlimited. In particular, this simplification is valid if the actual fuel populations are much 

larger than the populations of the species that encode formal species, or if the fuel 

populations are being replenished from an external source. Furthermore, making this 

assumption allows us to study encodings of formal CRNs that admit infinite traces, such as 

the formal CRN  that contains the formal species a, b, and c, and the following three 

formal reactions.

This CRN implements a three-phase oscillator that we have studied as a DNA strand 

displacement system in previous work [15]. It is straightforward to show that {a = 2, b = 1, c 
= 1}  [α1, α2, α3, α1, α2, α3, …] holds, because we can derive the following reaction 

sequence, which returns to its starting state.

Thus, it is of interest to generalize our correctness results to the case with unlimited fuel 

populations.

In fact, it is straightforward to extend Theorem 4.2 and Theorem 5.7 to handle unlimited fuel 

populations. In the case of Theorem 4.2, we simply observe that any finite or infinite formal 

trace can be emulated using an unlimited amount of fuel, so Lemma 4.1 can can be 

generalized to handle infinite formal traces if the multiset F contains unlimited populations 

for the necessary fuel species. The case of Theorem 5.7 is slightly more involved because 

the proof presented above was obtained by mathematical induction on the number of commit 

reactions present in the encoding trace, which does not allow us to deduce anything about 

the case for infinite traces. However, we observe that, even for an infinite trace, we can still 

ascertain the order in which the commit reactions occur. Therefore, if we have unlimited fuel 

populations then we can repeatedly apply Theorem 5.7 to serialize finite prefixes of the 

infinite trace, since after the execution of each finite prefix we will still have unlimited 

populations of fuel left over. Thus, we straightforwardly obtain extensions of Theorem 4.2 

and Theorem 5.7 that allow us to reason about infinite formal traces, provided that we also 

have unlimited fuel populations.
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7. Examples

In this section we present examples of CRN encodings using abstract CRNs as well as 

several commonly-used frameworks based on DNA strand displacement. We will apply 

these to a well-known chemical algorithm for distributed consensus voting, known as the 

“approximate majority” algorithm.

7.1. The approximate majority system

In previous work [28], we studied encodings of the approximate majority (AM) distributed 

voting algorithm of [16]. We verified the implementation (for specific initial states) using 

probabilistic model checking [33, 34]. An experimental implementation of the approximate 

majority circuit has been demonstrated using DNA strand displacement reactions [35], and 

similar network structures and dynamics have been identified in cellular regulatory networks 

governing the cell cycle [36]. Therefore this particular CRN is of both theoretical and 

practical interest.

In this section we will present example applications of our modular verification strategy to 

various encodings of the approximate majority CRN. Our modular approach will allow us to 

infer correctness for arbitrarily large populations of species in the initial state, providing us 

with stronger guarantees that the circuit will function as intended than in our previous work 

on verification of DNA strand displacement circuits using probabilistic model checking [28]. 

We write  = ( , ) for the approximate majority CRN, where:

The intuition behind the AM system is as follows. The initial state of the system consists 

entirely of species x and y, and the system is guaranteed to converge to a heterogeneous 

population of whichever species was initially in the majority, provided that the initial 

majority is large enough relative to the absolute population sizes [16]. To see why this 

happens, observe that the first two reactions ((x + y → y + b), (y + x → x + b)) mean that, 

when x and y meet, one of them is converted to the intermediate species b, with equal 

probability of x and y being converted. Then, the final two reactions ((b + x → x + x), (b + y 
→ y + y)) mean that b is converted to x if it encounters x first, or to y if it encounters y first. 

In a well-mixed solution, which species b encounters is dependent on the relative population 

sizes of x and y in the solution. Hence, it is more likely that b will be recruited to whichever 

species is currently in the majority, which enables a small initial majority to be amplified to 

produce a heterogeneous state. Furthermore, once a heterogeneous state consisting entirely 

of x or y is achieved, no further reactions can take place.

7.2. An abstract CRN encoding of the approximate majority system

We now present an encoding of the approximate majority CRN , using abstract CRNs to 

encode the individual approximate majority reactions. We begin by fixing a species 

encoding  such that  (z) = {ẑ} for every formal species z, i.e., each formal species is 

encoded by precisely one species in the encoding CRN. Now, the abstract CRN encodings of 

the four approximate majority reactions are presented in Figure 1. We form the overall 
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encoding CRN  by combining the four individual encoding CRNs , , , , as 

described in Definition 11. To begin checking the correctness properties of this CRN 

encoding, we must first construct the state spaces for the individual reaction encodings: 

Figure 2 presents the state space for the encoding of the formal reaction α1 from Figure 1.

Proposition 1 (Correctness of AM encoding using abstract CRN)—The encoding 
of the AM system using an abstract CRN, as presented in Figure 1 and Figure 2, is correct in 

the sense of Theorem 4.2 and Theorem 5.7.

Proof: We will only discuss the encoding of α1 because all four encodings follow the same 

pattern. We begin by noting that the state space from Figure 2 satisfies the definition of a 

reaction encoding from Definition 10 because the initial and terminal states encode the 

formal reactant and product species respectively. Furthermore, the terminal state is unique 

and universally reachable, and the fuel multiset Fα1 is unique and minimal, and the encoding 

CRN is stratified, as illustrated by the state space diagram from Figure 2.

To see that the encoding is transactional, we note that every terminal trace of the encoding 

passes through the same commit reaction (labeled Commit in Figure 2). Before the commit 

reaction, encoded formal species are only reactants of forward reactions and products of 

backward reactions, as required. Similarly, after the commit reaction, encoded formal 

species are only products of forward reactions and reactants of backward reactions, and 

when the commit reaction is executed, all formal reactant species have been consumed. It is 

straightforward to show that the encoding is extra tolerant with respect to the formal and fuel 

species, because all fuel species are used precisely once in each terminal trace. Furthermore, 

it is easy to see that the encoding is extra tolerant with respect to the “leftover” species in the 

terminal state, because they are either waste species or an intermediate species that can only 

be a reactant of a backwards reaction (therefore, the system has to undergo the 

corresponding forward reaction to reach the state from which the extra intermediate species 

can be consumed), and all pre-commit traces follow the same pathway.

Finally, we must check that the individual reaction encodings are pairwise compatible, in the 

sense of Definition 18. This is straightforward because the only shared species are the 

encoded formal species, and from the above arguments we know that the encodings are extra 

tolerant with respect to these. Furthermore, the fact that each reaction encoding is presented 

as a separate abstract CRN means that there is no way to derive cross-talk reactions between 

species that only occur in different reaction encodings. This is a limitation of encodings 

specified as abstract CRNs, which we will discuss further below.

Thus, we conclude that the abstract CRN encoding from Figure 1 is a correct encoding of 

the AM system, in the sense of Theorem 4.2 and Theorem 5.7.

7.3. A four-domain DNA strand displacement encoding of the approximate majority system

We now develop the abstract CRN encoding of the AM system from Section 7.2 into a form 

more suitable for a direct implementation in wet chemistry. Here, our chemistry of choice is 

DNA strand displacement [17, 18]. The basic mechanism of strand displacement reactions is 

illustrated in Figure 3. In particular, in this section we focus on the four-domain encoding 
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framework, which was previously introduced as a means of implementing arbitrary CRNs 

using just DNA reactions [26]. The four-domain encoding is so called because each formal 

species is represented by single strands of DNA whose sequence is broken down into four 

domains: an arbitrary “history” domain and three additional domains (two toeholds and a 

long domain) that encode the identity of the formal species. The species encoding a given 

formal species may have different history domains: the history domain simply records which 

reaction encoding generated the strand, and does not affect the subsequent reactions in 

which the strand may take part. Thus we will define the species encoding function to have 

the form

where H is the finite set of history domains that may be associated with the encoded species 

x within our entire encoding, and tx1^ and tx2^ are toehold domains which, together with the 

long domain x, define which species is encoded by the strand. Hence, this encoding will 

fully exploit the fact that our species encodings represent each formal species as a set of 

encoding species (Definition 8).

We will represent the species from DNA strand displacement-based CRN encodings using 

the syntax of the DSD programming language [15, 37]. This provides a clear and concise 

representation for the structures of species involved in strand displacement reactions and a 

convenient operational semantics for automatically deriving the possible interactions 

between species. We will use the “Infinite” DSD semantics [15] throughout, in which we 

ignore all “unproductive” reactions where a strand binds to a complex via a complementary 

toehold but cannot complete a subsequent strand displacement reaction. We refer the reader 

to the above-referenced papers for the details of the syntax and semantics of the DSD 

language. The Visual DSD compiler can be used to generate the corresponding CRN for 

four-domain DNA strand displacement reaction encodings. Figure 4 presents DSD code that 

implements four-domain species encodings and a parameterized module that encodes of 

formal reactions of the form x + y → y + z, with a specific instantiation to the reaction x + y 
→ y + b from the AM system.

The goal of this four-domain encoding example is to provide a concrete biochemical 

implementation of the abstract CRN encoding presented in Section 7.2. The set of derived 

chemical reactions is presented in Figure 5, and the corresponding state space is presented in 

Figure 6. Here, the fuel species that correspond to the encoding of the x + y → y + b 
reaction are the two multi-strand complexes present in the initial state. We observe a direct 

mapping between the species and states from Figure 6 and those from Figure 2. 

Furthermore, the “private domains”, declared using the new keyword in the DSD module 

definitions, will be instantiated differently for each use of the module, meaning that fuel, 

intermediate and waste species will not be shared between modules. Furthermore, this fact 

will prevent the long intermediate strand from interacting with any species from another 

module.
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Proposition 2 (Correctness of AM encoding using four-domain strand 
displacement)—The encoding of the AM system using four-domain strand displacement, 
as presented in Figure 5 and Figure 6, is correct in the sense of Theorem 4.2 and Theorem 

5.7.

Proof: We can deploy arguments similar to those from Proposition 1 to argue that this 4-

domain strand displacement encoding of x + y → y + b is correct. Briefly, by inspection of 

Figure 6 we see that this encoding of x + y → y + b satisfies the definition of a reaction 

encoding because the initial and terminal states encode the correct reactants and products, 

the terminal state is unique and universally reachable, the fuel multiset is unique and 

minimal, and the CRN is stratified.

Furthermore, the reaction labeled Commit in Figure 6 is a commit reaction in the sense of 

Definition 17: all traces pass through it, and prior to the commit reaction the forward 

reactions consume formal species and the backward reactions release formal species, and the 

opposite is true after the commit reaction. (Note that, in this case, the commit reaction 

actually consumes the second formal reactant species.) Furthermore, all pre-commit traces 

follow the same pathway as there is just a single reversible reaction in the pre-commit phase 

of the state space, and it is straightforward to show that the encoding is extra tolerant with 

respect to all formal species, fuel species, and leftover species in the terminal state. Given 

that the state spaces for all four reactions from the formal AM CRN  follow a similar 

pattern, we can make similar arguments for all four formal reactions from . Even in the 

cases where the two products are the same species, the state space follows the same pattern 

because there will still be a single strand displacement reaction that simultaneously releases 

both product strands into solution by displacing across their history domains. Furthermore, 

the absence of species sharing due to the use of private history domains means that it is 

straightforward to show that the four encodings are pairwise compatible.

A closer inspection of the corresponding set of generated reactions, as presented in Figure 5, 

reveals that there is not a one-to-one correspondence with the reactions from Section 7.2, 

because an additional reaction appears in Figure 5. This additional reaction appears because 

the formal species y appears as both a reactant and a product of the underlying formal 

reaction x + y → y + b, and in the four-domain encoding the reactant and product versions 

of the y species have different history domains. While the  encoding defined above 

considers these to represent the same formal species, in the DSD programming language 

they are distinct species. Therefore, when using this encoding our definition of the encoding 

CRNs for the four AM reactions must take account of all possible variants on the species 

encoding strands, and we must ensure that the reaction encoding behaves correctly for all 

possible formal reactant species.

To see that the compiled CRN from Figure 5 is agnostic to the different variants of the 

strands that encode the reactants, it suffices to observe that the history domains of the 

incoming strands are never involved in the strand displacement reactions that drive the 

execution of the encoding forward. It is true that the output product strands must be 

displaced via their history domains, but the invader strand for this reaction is a fuel strand 

that is part of the reaction encoding and can therefore be matched to the history domains of 
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the output strands, which we are at liberty to fix on a per-encoding basis. Therefore, 

reactions similar to those from Figure 5 could be derived for incoming reactant strands with 

any history domains. Thus, we can extend the CRN from Figure 5 by including additional 

reactions and intermediate species for all of the species variants required for a full encoding 

of the four-reaction AM system.

Therefore, we can deduce that a system containing four encodings of the individual AM 

reactions based on the above template encodes the AM system correctly, in the sense of 

Theorem 4.2 and Theorem 5.7.

7.4. A two-domain DNA strand displacement encoding of the approximate majority system

We now present an alternative strand displacement encoding of the approximate majority 

system, this time using the two-domain approach developed by Cardelli [27]. The two-

domain encoding has a number of favorable characteristics for experimental 

implementation: (i) the single-stranded species are short, typically consisting of just a 

toehold domain and a long domain, which minimizes the possibility of secondary structure 

formation, and (ii) the complexes that make up the reaction encodings have simple structures 

with no overhanging strands. The latter property means that complexes can be manufactured 

in bulk in bacteria, which produces higher-quality strands than is currently available using 

solid-state synthesis technology [35]. This approach was used in an experimental 

implementation of the approximate majority system [35]. While the simplicity of two-

domain structures is enticing from a practical perspective, the design necessitates additional 

intermediate steps in the reaction encoding. Hence, it may be less obvious that the design is 

correct. In previous work we have explored the use of probabilistic model checking for the 

verification of two-domain strand displacement systems [28].

In the two-domain encoding, all strands that encode a given formal species are identical. 

Hence, the species encoding function  is such that (x) = {< t^x >} for every formal 

species x. Following previous work [28, 27], we also extend the basic two-domain syntax 

with extended strands to enable irreversible product release, by including extended strands 

of the form <t^ x y> and <x y t^>. The DSD code in Figure 7 presents two-domain species 

encodings, and a parameterized encoding of formal reactions of the form x + y → y + z.

In previous work [28], we used the above catalyst encoding design to implement the 

approximate majority system, and we verified the implementation (for specific initial states) 

using probabilistic model checking [33, 34]. In the two-domain case, the species encoding is 

simpler but the execution of the reaction encoding involves more individual steps. Figure 8 

presents all reactions and species derived from the two-domain encoding of x + y → y + b, 

and the corresponding state space is presented in Figure 9. This visualization of the state 

space shows that the encoding has appropriate initial and terminal states, that the terminal 

state is universally reachable, and that every terminal trace from the initial state has a 

commit reaction (in fact, this is the same reaction in all cases) which satisfies the criteria 

from Definition 17.

Proposition 3 (Correctness of AM encoding using two-domain strand 
displacement)—The encoding of the AM system using two-domain strand displacement, 
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as presented in Figure 8 and Figure 9, is correct in the sense of Theorem 4.2 and Theorem 

5.7.

Proof: The reaction module from Figure 7 can be instantiated to produce encodings of all 

four reactions from the AM system, and analysed similarly. For reasons of space, we do not 

present the full details for all four encodings, though it is important to note that the reaction 

encodings must work correctly in both the catalytic case when the two products are different 

species (i.e., reactions x + y → y + b and y + x → x + b) and the autocatalytic case when the 

two products are the same species (i.e., reactions b + x → x + x and b + y → y + y). By 

similar arguments to those presented above we conclude that all four encodings satisfy 

Definition 17.

It remains to show that the four reaction encodings are pairwise compatible in the sense of 

Definition 18. It is not hard to check that the only shared species between these encodings 

are waste strands, strands which correspond to formal species and certain intermediate 

strands that are the cosignals of formal species strands. We know that the encodings are 

extra tolerant with respect to the waste strands, hence we must show that the encodings are 

extra tolerant with respect to the remaining shared strands. We can use the DSD compiler to 

achieve this by (separately) adding an extra copy of each of these species to the starting state 

of the relevant reaction encodings and verifying that the state space is identical in each case 

(modulo the additional copies of those species in every state). Adding a single copy of each 

suffices because none of the reactions from Figure 8 (or any other two-domain strand 

displacement reactions) involve more than one copy of any reactant, so just one additional 

copy will be enough to reveal any additional reactions enabled by extra copies of this 

species. Although Definition 11 specified that the CRNs from individual reaction encodings 

are simply composed to produce the overall CRN encoding, without the possibility of any 

additional crosstalk reactions, we can actually use the DSD compiler to verify that no 

crosstalk is possible by checking all pairs of non-shared species from different encodings.

Hence, we obtain that the two-domain encoding in this section correctly encodes the AM 

system in the sense of Theorem 4.2 and Theorem 5.7, i.e., any trace generated by these four 

reaction encodings can be rewritten to produce a serial trace which corresponds to a valid 

execution of the formal reactions from the AM system.

7.5. Comparison of DNA strand displacement encodings of the approximate majority 
system

In this section, we have presented three different encodings of the approximate majority 

system: one based on abstract CRN species, one using four-domain DNA strand 

displacement reactions, and one using two-domain DNA strand displacement. In each case, 

we have demonstrated that the encoding satisfies the criteria imposed by our correctness 

theorems, and therefore we conclude that all three faithfully encode the formal approximate 

majority CRN . We conclude this section by noting that these results also allow us to draw 

conclusions about the relationships of the various encodings to each other. If two encodings 

are sound and complete with regard to the formal CRN, then any and all traces from one 

encoding can be serialized such that a similar serial trace can be derived from the other 
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encoding, and vice versa. Thus the two encodings may be considered as equivalent to one 

another.

8. Discussion

Chemical reaction networks have been shown to be a convenient means of specifying the 

desired behavior of synthetic biochemical systems based on DNA strand displacement [38, 

12, 26, 35]. Therefore, verification of chemical reaction network encodings is an important 

area of future research. In previous work, we pioneered the application of probabilistic 

model checking [33, 34] and its application to probabilistic verification of two-domain DNA 

strand displacement circuits [28] and to DNA stack machine designs [11, 39].

Here, we have shown that any CRN encoding composed of individual reaction encodings 

that meet the criteria from Definition 17 and Definition 18 is correct in the sense that all 

traces can be rewritten using the rules from Definition 13 into a serialized trace in which 

each execution of a reaction encoding runs to completion before the next one starts. This 

notion of correctness is reasonable because reaction encodings are intended to encode a 

single rewriting step in the formal reactions, and if a trace cannot be rewritten in this way 

there must be a concurrency bug in the reaction encodings that allows them to produce a 

trace unrelated to any trace of the underlying formal reactions.

This work is a generalization of our previous conference paper [29]. The current paper 

provides full details of proofs and explicitly defines reaction encodings in terms of arbitrary 

CRNs as opposed to specifically strand displacement reaction systems. Furthermore, we 

have generalized our previous work to enable the definition of species encodings in which 

each formal species is represented by a structurally similar family of encoding species, such 

as the four-domain species encoding using history domains [26]. To our knowledge, this 

work is the first modular analysis of chemical reaction network encodings.

It is interesting that the correctness criteria from Definition 17 share much in common with 

other notions from existing concurrency theory, such as two-phase locking [14], in which 

each transaction has an initial phase of lock acquisition where exclusive access is obtained to 

the necessary resources, followed by a phase of lock release where those access rights are 

gradually relinquished. In our case, the first phase consumes the inputs and the second phase 

produces the outputs.

In Definition 17 and Definition 18 we aimed to allow the maximum possible sharing of 

species between different reaction encodings without invalidating the soundness result in 

Theorem 5.7. However, it is worth noting that certain published designs for strand 

displacement systems that implement chemical reaction networks fall foul of our restrictions 

on the structure of reaction encodings and on the sharing of species between encodings. For 

example, the two-domain reaction encoding designs from [27] without irreversible product 

release do not involve a commit reaction as defined in Definition 17, and therefore the 

soundness theorem does not apply to these encodings. Designs such as this that do not meet 

our criteria may be investigated further, to see if they are indeed flawed or if there may be a 

weaker version of our conditions that they do satisfy. Analyses such as ours are particularly 
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important for low copy-number systems, such as surface-tethered strand displacement 

networks that have recently been proposed [40, 41] and implemented in the laboratory [42].

Furthermore, certain combinations of two-domain strand displacement reaction encodings 

may violate our requirement that shared species must fall into the same category in all 

reaction encodings. In some designs from [27], it is possible for certain global cosignals to 

serve as an intermediate in one reaction encoding and as a fuel in another, which could 

adversely affect the kinetics of the reactions producing that strand as an intermediate if an 

excess quantity of that strand is supplied as fuel. This subtle point could be addressed in 

future two-domain reaction encoding designs.

In this work we used arbitrary CRNs to specify individual reaction encodings, which were 

combined to produce a CRN that encodes the formal CRN. For maximum generality we 

assumed that the CRNs involved abstract species without any internal structure. Therefore, 

the model considered in this paper is more abstract than in our previous work [29], where we 

restricted ourselves to verifying concrete encodings using DNA strand displacement 

reactions. It is worth noting, however, that our Definition 18 still includes the requirement 

that species can only interact if they appear in the same reaction encoding, so that the same 

formalism can be applied to both the case of an abstract CRN and the case where a more 

detailed semantics of individual species interactions is available. Thus, if we do have 

additional information on potential interactions between species from different modules, we 

can use this information to check for cross-talk reactions that may invalidate our correctness 

guarantees. An example of this approach is to use automated enumeration of reactions in a 

given domain, as exemplified by the DSD programming language and compiler [15] in the 

case of strand displacement systems.

8.1. Related Work

Previous work on the verification of chemical reaction network implementations based on 

pathway decomposition [32] or bisimulation-based approaches [43] is clearly related to this 

work.

Our definition of commit reactions in the context of transactional reaction encodings 

(Definition 17) is closely related to the definition of “regular” pathways from [32]. It is not 

quite the same notion, as the definition of “regular” pathways from [32] requires just that the 

sequence of states in the pathway can be partitioned such that the formal species in the first 

subsequence are all the formal reactants and the formal species in the second subsequence 

are all formal products. In Definition 17, we also require that the formal reactants (before the 

commit reaction) are consumed by “forward” reactions and produced by “backward” 

reactions and, similarly, that the formal products (after the commit reaction) are produced by 

“forward” reactions and consumed by “backward” reactions. (This fact is used at various 

points in the proof of Lemma 5.6 to justify applications of the trace rewriting rules.) Our 

more restrictive definition excludes reaction encodings that, for example, generate additional 

copies of their reactants during the initial phase that are later consumed, which would be a 

somewhat unnatural way to encode a formal reaction and, to our knowledge, is not seen in 

any proposed encoding framework. As an example, consider an encoding of the formal 

reaction x + y → z in which the formal species x, y, and z are represented by encoding 
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species x̂, ŷ, and ẑ respectively, and where the following reactions encode the formal 

reaction using a fuel species f1 and intermediate species i1 and i2:

Here, the first and second reactions are the two directions of a reversible reaction, as are the 

third and fourth reactions. The final reaction is the commit reaction, which produces the 

encoded product species ẑ. The key point here is that, while the first reaction consumes both 

reactant species x̂ and ŷ, another copy of x̂ is subsequently re-emitted and then consumed by 

the commit reaction. This is not permitted by our definitions, as a pre-commit “forward” 

reaction (the third reaction above) is releasing a formal species. Thus, our correctness results 

do not apply to this candidate encoding. However, this would be considered a valid encoding 

by [32], because all states before the commit reaction are a subset of the products, and the 

pathway cannot be decomposed at the point where x̂ is re-emitted because an intermediate 

species is also present. The definition of encodings from [32] furthermore deliberately 

excludes “fuel” and “waste” species from encodings: the former because they are assumed to 

be present in excess. In our approach, finite quantities of “fuel” species are explicitly 

accounted for in the formalism and, as an extension, we can also handle the case where fuel 

populations are present in such excess as to be considered unlimited (Section 6).

Furthermore, there is clearly a strong connection between our approach and the approach of 

[43]. In Section 2.2 of [43], proving equivalence in terms of trajectories is akin to proving 

our completeness result. Similarly, in the definition of the “three conditions of 

interpretation” from Section 2.2 of [43], we require the “atomic condition” to hold by our 

definition of species mappings, and proving the “permissive condition” and the “delimiting 

condition” is akin to proving our completeness result. The notion of equivalence based on 

weak bisimulation from Section 2.2 of [43] is closely related to our notion of transactional 

reaction encodings, where the silent (“tau”) reactions correspond to those on either side of 

the commit reaction in our definition, and the non-silent reaction corresponds to the commit 

reaction. The approach to equivalence taken in [43], in terms of interpreting potentially any 

encoding species as representing some formal species, is somewhat different from our 

approach where we only consider a well-defined class of encoding species as potentially 

representing formal species. Our approach is perhaps more practically oriented, as the 

encoding species that we consider to represent formal species are those that would be 

monitored directly in an experimental system, e.g., by adding reporter gates for those 

strands. It would be a challenging proposition to monitor the populations of all the various 

intermediate species that could be interpreted as a given formal species in the approach from 

[43]. The above example that is disallowed by our definitions would also be considered a 

valid encoding in the context of [43], via the interpretation that maps x̂ to {x}, ŷ to {y}, ẑ to 

{z}, f1 to the empty set, i1 to {x, y}, and i2 to {y}.

The key distinction of our work relative to [32] and [43] is that we can verify individual 

reaction encodings in isolation and infer correctness for any system constructed solely of 

verified encodings, subject to restrictions on sharing of species between the encodings. In 

the case of [32], verifying a particular CRN requires running an exponential-time algorithm 
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to enumerate the formal basis. In [43], the problem of finding a valid interpretation of 

species in the encoding CRN that serves as a witness to the correctness of the encoding “has 

no known polynomial time solution”. In our approach, once each reaction encoding has been 

individually verified, the additional verification required to prove correctness of an arbitrary 

CRN implemented using these encodings scales quadratically with the number of different 

encodings in the system (because pairwise sharing between all encodings must be checked), 

and is independent of the initial species populations or the size of the full state space of the 

system. This is a significant improvement on standard model checking approaches in which 

the cost of verification scales with the size of the state space, which typically grows 

exponentially as the initial species populations increase.

We conjecture that our notion of equivalence between a formal CRN and its encoding CRN 

(which has been constructed in a modular manner, as described above) is a strict subset of 

the notions of equivalence presented in [32] and [43]. That is, if, under our definitions, an 

encoding CRN correctly implements a formal CRN, then the two CRNs are equivalent under 

the “pathway decomposition” approach of [32] and also under the weak bisimulation-based 

approach of [43]. Formally proving this conjecture is a matter for further study, but we do 

not believe that the reverse implications would hold, for reasons outlined above: our 

definition of reaction encodings places restrictions on the behavior of encoded formal 

species that are not present in either [32] or [43]. Nevertheless, while there is clearly a close 

relationship between the various notions of CRN equivalence, we believe that they are all 

worthy of further study as the various presentations shed light on different aspects of the 

encoding problem.

To address the issues with model checking mentioned above, recent work has employed 

SMT solvers that provide more compact representations of the state space, so that larger-

scale DNA strand displacement systems with more copies of the initial species can be 

verified [44]. Probabilistic model checking has also been used to study molecular walkers 

[45], which is a promising application domain because molecular walkers are either single-

molecule or low copy number systems, which limits the size of the state space and makes 

checking of the entire state space more feasible. In other related work, Cardelli and Laneve 

[46, 47] developed a theory of reversible computational structures with a strong relationship 

to DNA strand displacement reaction encodings. However, that work did not take the initial 

state of a computation into account and was therefore not capable of distinguishing between 

traces where reactions involving the same species could be safely permuted. Existing work 

on reachability in CRNs [48] was an inspiration to our work, in particular the notion of copy 

tolerance from that paper.

8.2. Future Work

We have demonstrated that the restrictions we imposed on reaction encodings are sufficient 
to obtain a serializability result. Another important future research direction will be to 

determine which restrictions are necessary to derive such a result. We conjecture that the 

restrictions presented in this paper are both necessary and sufficient, though proving this 

would be a question for future work. Given the delicacy of some of these proofs, we believe 

that it will become important to mechanize the metatheory of chemical reaction networks, as 
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has been done for much metatheory in the area of programming language semantics [49], so 

that results such as this can be formally verified using computer-aided theorem proving 

techniques.

Our modular approach provides a path to verification of module definitions, for example, 

checking that a definition which maps arbitrary species w, x, y, and z to the corresponding 

reaction encoding ⟦w + x → y + z⟧ produces a correct reaction encoding for any values of w, 

x, y, and z, some of which might in fact represent the same formal species. This notion of 

modular molecular programming is already embodied in tools such as the DSD domain-

specific programming language [37, 15]. Note that to verify the approximate majority circuit 

encodings in Section 7 we had to verify four specific instantiations of the catalyst encoding 

module. In future work, we plan to express our correctness criteria in a temporal logic, so 

that module definitions can be checked automatically using a model checker, allowing us to 

cover all possible input patterns. This would potentially enable us to verify a set of strand 

displacement primitives sufficient to encode arbitrary CRNs consisting of unimolecular and 

bimolecular reactions, from which it would follow that any CRN encoded using these 

encodings would be correct in the sense of the definitions from this paper. This would 

provide a formally verified basis for implementing arbitrary CRNs using strand 

displacement networks that are correct by construction.

Finally, we note that our formalism and proofs do not take account of reaction rates. 

Expressing correctness in terms of reachability of states is both important and natural from a 

computer science perspective. However, unfavourable kinetics might cause CRN encodings 

that satisfy our reachability criteria to function poorly in practice, as discussed above in the 

case of certain two-domain strand displacement systems. Furthermore, certain designs that 

fail to satisfy the criteria might function acceptably in practice due to favourable kinetics, as 

exemplified by the “wisdom of crowds” example [28, 27]. Proving soundness of CRN 

encodings is already challenging without considering reaction rates, and indeed it is not 

clear how such a correctness result would be formulated in a modular setting when 

considering reaction rates. Previous work [26] presented proofs for a particular encoding of 

chemical reaction networks using four-domain DNA strand displacement, and future 

extensions of our work may enable such results to be proved for arbitrary reaction encodings 

in a modular way. For instance, it may be possible to relate the expected time to fully 

execute a reaction encoding to the rate of the corresponding formal reaction, either by 

solving the corresponding continuous-time Markov chain analytically or by using a 

probabilistic model checker such as prism [34]. However, such efforts would be complicated 

by the fact that the output species from a reaction encoding are typically released gradually, 

some time before the final irreversible reaction that concludes the execution of the encoding. 

Hence, it is not obvious which point in time should be considered as the end of the execution 

of the encoding for the purposes of proving results about the kinetics.
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Figure 1. 
Abstract CRN encoding of the AM reaction system. Note that all four encodings follow a 

common pattern.
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Figure 2. 
State space for ⟦α1⟧ from Figure 1, derived from the fuel multiset Fα1 and the encoded initial 

species (x) and (y) using the reaction encoding CRN .

Lakin et al. Page 35

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
DNA strand displacement reaction mechanism. (i) The toehold t^ on the single-stranded 

invader is complementary to the toehold on the two-strand complex, which is a complex of 

the template and incumbent strands. The toehold on the template strand provides a 

nucleation point for the invader to bind (reversibly) and initiate the strand displacement 

reaction. (ii) Breathing at the end of the duplex enables the invader strand to begin 

displacing the incumbent strand from the template strand, since the sequences of their x 
domains match. This initiates a random walk branch migration reaction along the x domain. 

(iii) If the branch migrates all the way to the far end of the x domain, the incumbent strand is 

displaced from the template strand. In this example, the strand displacement reaction is 

irreversible because there is no toehold for the displaced strand to rebind. As shown here, the 

complex can be labeled with a fluorophore-quencher pair to provide a readout of successful 

completion of the strand displacement reaction due to increased fluorescence when the 

fluorophore and quencher are separated.
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Figure 4. 
DSD code for a four-domain species encoding, and an encoding of the reaction x + y → y + 

b from the AM system.
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Figure 5. 
Compiled CRN of the four-domain strand displacement reaction encoding of the formal 

reaction x + y → y + b from the AM system. We represent toeholds in black and long 

domains in grey. This figure is the equivalent of Figure 1 for the four-domain strand 

displacement encoding.
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Figure 6. 
Compiled state space of the four-domain strand displacement reaction encoding of the 

formal reaction x + y → y + b from the AM system. As in Figure 5, we represent toeholds in 

black and long domains in grey. The initial state has a thick grey outline, the terminal state 

has a thick black outline, and the intermediate states are shown with broken outlines. The 

strands corresponding to formal species have been highlighted with dashed grey outlines. 

The state transition labeled “commit” indicates the commit reaction in the reaction encoding. 

This figure is the equivalent of Figure 2 for the four-domain strand displacement encoding.
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Figure 7. 
DSD code for a two-domain species encoding, and an encoding of the reaction x + y → y + 

b from the AM system.
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Figure 8. 
Summary of reactions and species derived from a two-domain encoding of x + y → y + b. 

As in Figure 5, we represent toeholds in black and long domains in grey. (a) All possible 

reactions using the formal reactant species and the fuel species from the two-domain 

encoding. (b) All species generated by these reactions, divided into categories (see above). 

This figure is the equivalent of Figure 1 for the two-domain strand displacement encoding.
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Figure 9. 
Summary of catalyst encoding state space derived from an encoding of the reaction x + y → 

y + b. As in Figure 5, we represent toeholds in black and long domains in grey. The initial 

state has a thick grey outline, the terminal state has a thick black outline, and the 

intermediate states are shown with broken outlines. The strands corresponding to formal 

species have been highlighted with dashed grey outlines. The state transition labeled 

“commit” indicates the commit reaction in the reaction encoding. This figure is the 

equivalent of Figure 2 for the two-domain strand displacement encoding.
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.Note that, in general, it is not the case that every reaction is necessarily either reversible or committed in the above sense: for example, consider the CRN with reactions a → b, b → c and c → a. None of these reactions are reversible, but none of the reactions are committed either, because there is always a route back to the previous state via the other two irreversible reactions. In practice, such reactions would violate conservation laws: similar reaction cycles in natural biochemical systems typically require the consumption of some fuel species that provides the chemical potential energy to drive the system round the cycle, e.g., the hydrolysis of ATP powers the chemomechanical cycles of motor proteins such as myosin and kinesin. Furthermore, wet chemistry implementations of reaction encodings, e.g., using DNA strand displacement reactions, will also have this property, as the resulting reactions are either directly reversible “toehold exchange” reactions [31], or committed reactions that produce one or more inert “waste” species, which prevent that strand displacement reaction from ever being undone. For this reason, we will only consider encodings in which all reactions are either reversible or committed.
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	3. Chemical reaction network encodings
	Definition 8 (Species encodings)—A species encoding is a function :  →  such that (x1) ∩ (x2) = ø for x1 ≠ x2 ∈ . We write  for the “inverse” mapping, which is defined as follows:To motivate the above definition, the ability to use a family of species to encode a single formal species will enable us to model a range of practical DNA implementations of CRN encodings, as will be seen below. The intuition here is that a formal state S, in which S(x) = nx for each x ∈ , can be represented by any encoding state S′ in which  S′(x′) = nx for each x ∈ , i.e., the sum of the populations of all encoding species that represent a given formal species x yields the encoded population of that formal species. Since the sets returned by  are disjoint for distinct input values, one can tell exactly which species from  (if any) is encoded by a given species from  (this criterion is related to injectivity). This property also ensures that  is a function.Furthermore, this definition requires that  ⊇ (  (x)), i.e., there are sufficient species in  to handle all possible encodings of the species from  under the species encoding . Any species present in  that do not correspond directly to encoded species from  will mediate the transitions between encoded species, as specified by the formal CRN. Note, also, that  is undefined on any encoding species that does not encode a formal species. Examples of species encodings used in practical systems are the four-domain DNA strand displacement encoding introduced in [26] (see Section 7.3) and the two-domain DNA strand displacement encoding introduced in [27] (see Section 7.4).Now, to simplify the presentation of the theorems and their proofs, we will overload the notation for species encodings to apply directly to sets and multisets of species. We will use  to also represent its pointwise application to states, which are just multisets of formal species, as follows.Definition 9 (Species encodings applied to states)—For a state S = {x1 = n1, …, xk = nk} of formal species, we write (S) to stand for some multiset { } where, for all i ∈ {1, …, k},  and .For a state  of encoding species, we let (S′) = {x1 = n1, …, xj = nj} (for some j ≤ k) where, for all i ∈ {1, …, j}, xi ∈ (S′) iff xi = (x′) for some x′ ∈ S′, and ni =  S′(x″).The above definition is not deterministic because a species encoding  may offer a range of possibilities for encoding a given formal species. Having defined species encodings, we now present a formal definition of individual reaction encodings, which will be subsequently composed to produce encodings of entire formal CRNs, in a modular fashion.Definition 10 (Reaction encodings)—The reaction encoding of a formal reaction α = (Rα → Pα) using a species encoding  is ⟦α⟧ = ( , Fα). The encoding CRN  = ( , ) is such that:1. = (⨄x∈(set(Rα∪Pα)) (x)) ⊎ Oα, where Oα contains all species involved in the encoding that are not encodings of formal species, and2.Fα is a multiset of species from Oα such that, for any possible initial state  (recall that there are multiple possible results of (Rα), as defined in Definition 8), there exists a terminal state  that is universally reachable from  using the chemical reactions from , and where  and .We also require that no F < Fα has the above properties, meaning that Fα is the minimal amount of fuel needed for a trace that reaches the terminal state, as described above. If  we say that the trace τ is an execution of ⟦α⟧.In Section 7 we present several examples of different reaction encodings, all applied to the same abstract CRN, the approximate majority voting system originally introduced in [16].Intuitively, a reaction encoding ⟦α⟧ comprises a CRN  that describes the possible interactions within the reaction encoding and a multiset Fα containing the minimal amount of fuel which, when placed with the encoded reactants (Rα), allows a single execution of ⟦α⟧ to run to completion from any initial state . We also require that the encoding always finishes in the same terminal state , in which the only encoded formal species are the products of α. Furthermore, the encoding should never get stuck in a state from which 
 is not reachable.We assume that the minimal fuel multiset is unique, as is the case in all existing published reaction encodings. The fuel minimality condition could only be violated if there were two independent reaction pathways in the encoding, each requiring different fuel species. Note that we refer to the species from Fα from Definition 10 as fuels, a term we use to mean any species that must be present initially in order for the chemical reactions in the encoding to run to completion. In addition to these fuel species, and the species that directly encode formal species, the encoding CRNs will, in general, contain other species that are intermediaries produced during the execution of the encoding, and waste species. At this stage, these other categories are not critical to the exposition, as they are most relevant to restricting crosstalk to ensure soundness of encodings, so we will defer further discussion of them until Section 5. Furthermore, note that the requirement of a terminal state that is universally reachable implies that there can only be a single terminal state: if there were a second terminal state, then by definition the first would not be reachable from the second and hence would not be universally reachable.Note that the definition of reaction encodings from Definition 10 specifies the behaviour of the system from any initial state 
. This is because if the species encoding 
 maps any of the reactants of the formal reaction to more than one different encoding species then there will be more than one possible corresponding initial state. We require that every reaction encoding must respect the species encoding in the sense that all possible patterns of encoded reactants should produce the desired result from the reaction encoding. In making this definition, we rely on the fact that 
(x) returns the set of all possible encodings of the formal species x. Thus, we can check all possible patterns of encoded reactants for correct behaviour under the reactant encoding. This issue disappears in the special case where 
 maps each formal species into precisely one encoding species, as is the case in encodings based on two-domain DNA strand displacement [27].Now, individually defined reaction encodings can be combined to produce an encoding of a full CRN, which we define as follows.Definition 11 (CRN encodings)—Consider a formal CRN
 = (
, 
) and a species encoding
, where
 = {α1, …, αn} and ⟦αi⟧ = (
, Fαi), for i ∈ {1, …, n}, where
 = (
, 
). Then, the CRN encoding of

comprises:1.an encoding CRN
 = (
, 
), where
 = (
 ∪ ··· ∪ 
) and
 = (
 ∪ ··· ∪ 
), and2.the list
Fα1, …, Fαn
of fuel multisets from the individual reaction encodings.Note that the set of possible reactions in 
 is just the union of the possible sets of reactions from the CRNs that encode the individual formal reactions from 
. If a particular species is shared between two reaction encodings, then it may react with other species from either encoding according to the rules of the corresponding CRNs from the individual encodings.
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	4. Completeness of CRN encodings
	Definition 12 (Serial executions)—For a formal trace τ ∈ Traces( ), we say that a trace τ′ ∈ Traces( ) in the encoding CRN  is a serial execution of τ = [r1, …, rn] if τ′ can be decomposed into a concatenation τ1:…: τn of subtraces such that the ith subtrace τi is an execution of ri.Since reaction encodings require fuel species to be present, any statement about the correctness of reaction encodings must be predicated on the amount of fuel available in the system. Thus it is important to identify the minimal amount of fuel needed to emulate a given trace of formal reactions.Lemma 4.1 (Fuel required for emulation)—Let τ = [α1, …, αn] ∈ Traces( ) be a finite trace of formal reactions, let S be a formal state such that S  τ, and let τser ∈ Traces( ) be a serial execution of τ using the encoding CRN . Then, for any (S), it is the case that ( (S) + F)  τser iff F ≥ reqfuel (τ), where the required fuel, reqfuel (τ), is defined as the sum of the fuel required by the encoding of each reaction in the formal trace, i.e., reqfuel(τ) ≜ Fα1 + ··· + Fαn.Proof: This result follows from the definitions of reaction encodings and CRN encodings from Definition 10 and Definition 11, respectively. (Given that traces are sequences of reactions, they are inherently sequential). The “only if” direction of this proof uses the assumption that all reactions are either reversible or committed, in the sense of Definition 7.We can now state and prove a straightforward completeness theorem for the emulation of formal traces by serial executions.Theorem 4.2 (Completeness)—Let τ ∈ Traces( ) be a finite formal trace and let S be a formal state. If S  τ and F ≥ reqfuel (τ) both hold then, for any (S), it is the case that ( (S) + F)  τser holds for some τser ∈ Traces( ) that is a serial execution of τ using the encoding CRN .Proof: This result follows from Lemma 4.1, because we can emulate any finite formal trace by creating an initial state with sufficient encoded species (S) and fuels F so that the corresponding serial execution can be run.
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	5. Soundness of CRN encodings
	Definition 13 (Trace rewriting)—The trace rewriting relation is indexed by a CRN  and the starting state S. We write S  τ ⇝ τ′ to mean that, for a CRN  and starting state S, the trace τ can be rewritten to produce the trace τ′. These judgments are derived by constructing a proof tree using the following inference rules.The inference rules from Definition 13 follow a standard format from structural operational semantics and can be interpreted either top-down (if the premises from the top line hold, then the conclusion from the bottom line holds also) or bottom-up (to prove that the conclusion holds, we must prove that the premises hold). We note that, by the definition of the inference rules from Definition 13, the trace rewriting rules can only be applied to valid traces. The (REFL) rule ensures that the trace rewriting relation is reflexive, i.e., any valid trace can be trivially rewritten to itself, and the (TRANS) rule means that the rewriting relation is transitive, i.e., multiple rewrite steps can be combined into a single rewriting judgment using this rule. The (CANCEL) rule allows the subtrace τ2 to be removed if its net effect is no change, which allows a cycle of a reaction and its inverse to be canceled if they appear next to each other in the trace. The (SWAP) rule allows two neighbouring subtraces τ2 and τ3 to be swapped if they may occur in either order, when preceded by τ1 and followed by τ4, i.e., subtraces that are causally independent can occur in either order. In the (SWAP) rule, since executing a reaction trace is essentially a series of addition and subtraction operations on the species populations, which are commutative, it follows that τ1: τ2: τ3 and τ1: τ3 : τ2 both produce the same final state. Finally, we note that the prefix and suffix traces τ1 and τ3 from (CANCEL), and τ1 and τ4 from (SWAP) may be empty, so these rules can also be applied at the very beginning or the very end of a trace without the need for additional contextual rules.Example 5.1 (Trace rewriting)—Consider a CRN  = ({x1, x2, x3}, {r1, r2, r3}), whereand an initial state S = {x1 = 3}. Note that S  [r1, r2, r3] holds, by the following sequence of reactions:Since there are sufficient copies of x1 in the initial state, r3 can be executed independently of the other two reactions. Therefore, we could execute r3 first, i.e., the trace rewriting judgment S  [r1, r2, r3] ⇝ [r3, r1, r2] also holds. This can be derived by constructing a proof tree as follows.Note, however, that S  [r1, r2, r3] ⇝ [r2, r1, r3] does not hold. This is because the (SWAP) rule cannot be applied to the first two reactions in this judgment, due to the absence of x2 in the initial state.It is important to show that trace rewriting preserves validity and the final states produced by executing the traces. This can be done as follows.Lemma 5.2—If S  τ ⇝ τ′ then S  τ′ and (S, τ) = (S, τ′).Proof: Assume that S  τ ⇝ τ′. By definition of the inference rules from Definition 13 it follows that S  τ. If (CANCEL) was used to derive S  τ ⇝ τ′ then τ has the form τ1 : τ2 : τ3 and τ′ has the form τ1 : τ3, and furthermore we know that . It follows immediately that S  τ1 : τ3, and hence that S  τ′ and (S, τ) = (S, τ′), as required. On the other hand, if (SWAP) was used to derive S  τ ⇝ τ′ then τ has the form τ1 : τ2 : τ3 : τ4 and τ′ has the form τ1 : τ3 : τ2 : τ4. Furthermore, we know that S  τ1 : τ3 : τ2, and (S, τ1 : τ3 : τ2) = (S, τ1 : τ2 : τ3). Thus it follows that S  τ1 : τ3 : τ2 : τ4, and hence that S  τ′ and (S, τ) = (S, τ′), as required. The cases for the remaining rules, (REFL) and (TRANS), are straightforward.Note that it is not the case that any two valid traces from a given starting state can be interconverted using these trace rewriting rules—indeed, this is the crux of our analysis. Proving soundness is challenging because we must show that all possible interleavings of the various reaction encodings in a given system can be rewritten to produce a serial execution of a valid formal trace. In particular, sharing of species between reaction encodings may lead to non-serializable behaviour, e.g., if a species generated during the execution of one reaction encoding can erroneously trigger part of a second reaction encoding. Therefore, to obtain a soundness result, we must place several additional constraints on the reaction encodings which we will consider.Definition 14 (Stratified CRNs)—If a state S′ is reachable from S under , we write Λ(S, S′) for the length of the shortest trace τ ∈ Traces( ) such that . Then, we say that the CRN 
is stratified if, for any starting state
S0
and any states
S
and
S′ which are reachable from
S0
under
, it is the case that

implies Λ(S0, S′) = Λ(S0, S) ± 1.Example 5.3 (Example of stratified and non-stratified CRNs)—As a simple example, a CRN containing species {x1, x2, x3} and reactions {x1 → x2, x2 → x3} is stratified, whereas a CRN containing the same species and reactions {x1 → x2, x2 → x3, x1 → x3} is not stratified, because x1
can be converted to x3
either via the intermediate species x2
(with a trace of length 2) or directly (with a trace of length 1).We consider it reasonable to restrict our attention to stratified CRNs. In particular, CRNs comprising the form of reactions typical to chemical implementation frameworks such as DNA strand displacement [17, 18] give rise to stratified CRNs (when considered at a fixed level of abstraction [15]), as the type of “shortcircuit” reaction mentioned above is not possible. This can be seen in the state spaces from our examples encoded using four-domain and two-domain strand displacement schemes, which are illustrated in Figures 6 and 9.In the context of reaction encodings, the knowledge that the encoding CRN is stratified enables us to impose similar directionality on the individual reactions that execute the encoding, as follows.Definition 15 (Forward and backward reactions in reaction encodings)—Consider a reaction encoding ⟦α⟧ that uses a stratified encoding CRN
. Recall the initial state

of the encoding, as defined in Definition 10, and construct the state space of the encoding, that is, the graph of reachable states starting from

and using the reaction rules from

to make state transitions. Then, we say that a transition

in the state space is a forward step if
, i.e., the reaction takes us farther from the initial state. Similarly, we say that the transition is a reverse step if
, i.e., the reaction moves us back towards the initial state.In the state spaces from our example reaction encodings, shown in Figures 2, 6, and 9, the distances from the initial state to any given state in the state space can be easily calculated: thus, it is clear which reactions are forward steps and which are backward steps. All of these examples yield stratified CRNs. Indeed, it would be meaningless to apply Definition 15 to a reaction encoding that did not yield a stratified CRN, as the distance from the initial state would be ill-defined.Henceforth, we will assume that all CRNs are stratified. Furthermore, to simplify the presentation, we will also categorize the species involved in each reaction encoding according to their role. Hence we require that the set 
 of all species involved in the reaction encoding ⟦α⟧, which we will also write as species (⟦α⟧), can be partitioned into:1.formals(⟦α⟧)—those species in the image of 
;2.waste(⟦α⟧)—those species which are unreactive, i.e., never appear as a reactant in any reaction in 
;3.fuels(⟦α⟧)—those species which appear in Fα; and4.intermediates(⟦α⟧)—the remaining species.Now, to determine if two reaction encodings can be safely used with each other, we must test whether the presence of any extra copies of a particular species will cause an encoding to function incorrectly. To this end, we define a notion of extra tolerance, as follows.Definition 16 (Extra tolerance)—A reaction encoding ⟦α⟧ is extra tolerant with respect to a species x if

for any n ∈ 
, where

is the CRN from the encoding ⟦α⟧ (extended to include x if necessary) and

is any initial state of ⟦α⟧.Thus, 
 contains an encoding of the reactant species and the necessary fuel species. We can decide extra tolerance for a reaction encoding by checking whether the set of traces produced from any initial state of the encoding is identical in the presence or absence of the species x. If the sets of traces are the same, it follows that the state spaces have the same structure, but with n additional copies of x in each state.For example, in a four-domain DNA strand displacement reaction encoding, of the kind described in Section 7.3, including additional copies of the gate complexes does not enable any additional reactions, so the encoding is extra tolerant with respect to these species. However, the encoding is not extra tolerant with respect to the intermediate strand that is released from the reactant-binding gate to activate the product-generating gate. If this intermediate strand is present in the initial state then the products can be released straight away, which produces a different state space than for the correct execution of the encoding.We now use the above notion of extra tolerance to state the restrictions on individual reaction encodings that we will impose so that a soundness result can be proved.Definition 17 (Transactional reaction encodings)—Consider a formal reaction α = (Rα → Pα), encoded as ⟦α⟧ = (
, Fα). Let

denote an initial state consisting of just the required reactants and fuels, and let τ = [r1, …, rn] ∈ Traces(
) be a terminal trace of the encoding starting from
S0, where ri = (Ri → Pi) for i ∈ {1, …, n}. Labeling the corresponding sequence of states as
, we say that rj is a commit reaction if the following criteria are all satisfied:1.rj is the first committed reaction in τ;2.if x ∈ formals(⟦α⟧) occurs in r1, …, rj−1
or
Rj then x ∈ 
(Rα), and these occurrences are all either reactants of forward steps or products of backward steps;3.if x ∈ formals(⟦α⟧) occurs in
Pj or rj+1, …, rn then x ∈ 
(Pα), and these occurrences are all either products of forward steps or reactants of backward steps;4.
(Sj−1 − Rj) = Ø.We say that ⟦α⟧ is transactional if, for every possible initial state
S0, every terminal trace from
S0
has a commit reaction satisfying the above criteria and if every terminal trace visits the same set of states prior to the commit reaction. We also require that ⟦α⟧ is extra tolerant with respect to all formal and fuel species involved in the encoding, and that the terminal state has the form
(Pα) + Lα, where ⟦α⟧ is extra tolerant with respect to every species in the multiset
Lα of leftover species.In Definition 17, criterion 1 requires that the trace can be partitioned into two disjoint subtraces by the first committed reaction. Criteria 2 and 3 require that only input formal species can engage in reactions before the commit reaction, and only output formal species can engage in reactions after, and furthermore that the consumption of input formal species before the commit reaction and the production of output formal species after the commit reaction always drive the system forwards. Criterion 4 ensures that all necessary reactants are in fact consumed by the time the commit reaction is reached: this is needed in case the reactants and products have some species in common. These criteria correctly handle those cases where the commit reaction itself may consume encoded formal species as reactants and/or release encoded formal species as products. The restrictions on extra tolerance ensure that the behaviour of the encoding is identical in the presence of additional copies of fuels or formal species: note that any encoding is extra tolerant with respect to waste species, but that the encoding may not be extra tolerant with respect to certain intermediate species. We require that every terminal trace visits the same set of states prior to the commit reaction so that there is a single binding pathway for the reactants: this is necessary to show that backward reactions in pre-commit traces can always be eliminated using the trace rewriting rules. Finally, the restrictions on leftover species in the terminal state delimit those species which may be safely left behind by a reaction encoding that does not fully garbage-collect its intermediate species to produce unreactive waste. The correctness arguments for our three example encodings from Section 7 (Propositions 1, 2, and 3) illustrate the reasoning required to show that encodings are transactional, and the following example illustrates the problems that may arise due to the use of a non-transactional encoding.Example 5.4 (Problems caused by a non-transactional reaction encoding)—Following [32], we now present a concrete example of the kind of bug that may occur in a CRN encoding when using a non-transactional reaction encoding. Consider the following set of formal reactions: {x → y, y + a → y + b}, and suppose that our encoding of x → y is not transactional because the output y can be released before the first committed reaction in the execution of the encoding. Then, from an initial state corresponding to the formal state {x = 1, a = 1} the following sequence of operations is possible:1.Run the encoding of x → y until y is produced, but without executing any committed reactions. This produces a new state corresponding to {y = 1, a = 1}.2.Completely execute the encoding of y + a→y + b, which results in a state corresponding to {y = 1, b = 1}.3.Unwind the partial execution of x → y, which is possible because no committed reactions have been executed in this encoding. The final state corresponds to the formal state {x = 1, b = 1}.Note that the formal state {x = 1, b = 1} is not reachable from the initial formal state {x = 1, a = 1} using the above set of formal reactions. The only formal reaction that can be executed from the initial state ({x = 1, a = 1}) is x→y, therefore, any serial execution must begin with an execution of ⟦x → y⟧. Similarly, the next execution must be ⟦y + a → y + b⟧. However, this results in a state corresponding to {y = 1, b = 1}, not {x = 1, b = 1} as obtained above. The specific problem with this example is that the set of reactions outlined above relies on the fact that the y produced by the partial execution of ⟦x → y⟧ reaction is available before the encoding has executed a committed reaction to commit to its production. Thus the y species can be used to catalyse the conversion of a to b before being reclaimed and converted back to x. However, in transactional encodings this cannot occur, because the commit reaction must be executed before any products can be released.However, requiring that the reaction encodings are individually transactional is not sufficient for correctness because of the possibility of unwanted behaviour caused by crosstalk between reaction encodings. In general, this could occur either via unwanted direct sharing of species, or via crosstalk reactions between species from different reaction encodings. Therefore, we now define compatible reaction encodings, in which direct sharing of species between the encodings is only permitted in certain circumstances.Definition 18 (Compatible reaction encodings)—We say that two reaction encodings, ⟦α⟧ and ⟦β⟧, are compatible if every shared species in species(⟦α⟧) ∩ species(⟦β⟧) appears in the same category (formal, waste, fuel, or intermediate) in both encodings, and if both encodings are extra tolerant with respect to every shared species. Furthermore, we require that a species from ⟦α⟧ can only interact with a species from ⟦β⟧ if at least one of those species occurs in species(⟦α⟧) ∩ species(⟦β⟧).Hence, different reaction encodings may share formal species, waste species, and fuel strands. They may also share intermediate strands provided that the presence of additional copies of those species does not enable additional reaction pathways in either reaction encoding. In all cases, shared species must appear in the same category in both reaction encodings, and no species may interact with any species from a reaction encoding in which it is not present as a species. We note that, when CRN encodings are specified in a modular fashion via CRNs as in Definition 10 and Definition 11, it is in fact not possible for species to interact unless they occur in the same reaction encoding, because we rely on the CRNs from the reaction encodings to specify which species may react. However, we include this possibility in Definition 18 so that our definitions can also be applied when we have a general mechanism to compute whether an arbitrary pair of species may interact. Thus, the following proof techniques can be used to verify both high-level encodings using CRNs and lower-level encodings that account for species structure to check for unwanted interference between reaction encodings, e.g., by using the DSD programming language and compiler [15].We now present some preliminary lemmas that will be needed to prove our main soundness result.Lemma 5.5 (Trace rewriting and reversible reactions)—If τ ∈ Traces(
) consists entirely of reversible reactions and
S

τ then there exists τ′ ∈ Traces(
) such that
S

τ:τ′ ⇝ ε.Proof: Straightforward: if τ = [r1, …, rn] then let τ′ = [rn−1, …, r1−1]. Then, the last reaction from τ and the first reaction from τ′ can be cancelled out via rule (cancel), and so on, eventually leaving the empty trace ε, as required.Lemma 5.6 (Serializability)—Assume that all reaction encodings are transactional and pairwise compatible, and suppose that
S

τ, where
where

is the first commit reaction in τ, where

is an execution of ⟦α⟧ and where
. Then, there exists

such that
.Proof: We assume that S

τ, i.e., thatSince 
 is the first commit reaction in τ, all reactions prior to it must be reversible. Also, we note that the only species which can be shared between encodings are those with respect to which the encodings are extra tolerant, and, because of the stratified CRN property, a single reaction encoding cannot consume more fuel or formal species than is necessary to complete an execution.By assumption, we know that 
 and 
. We must show that there exists 
 such that 
 holds, for any S. Suppose that x is a reactant of 
, and that there are n copies of x in the initial state. Then, we observe that τ1 and [
] may only conflict if τ1 consumes all n copies of x and subsequently releases just enough copies of x so that 
 can be subsequently executed: if 
 were to be executed first then there would be fewer than n copies of x remaining, so τ1 could not be executed to completion. Since τ1 is a trace of pre-commit reactions, in which formal species are consumed by forward steps and re-emitted by backward steps, it follows from Definition 17 that the encoding must revisit one of its previous states in order to release a species. Therefore we can use (cancel) to derive 
, for some 
 which contains no backward steps. It follows that S contains sufficient species to execute both 
 and 
, and hence it follows thatBy repeated application of this argument we get that
 where 
.Now, 
 is the last reaction in a complete execution of ⟦α⟧, which means that it must be a forward step. By Definition 17, forward steps after the commit reaction only have fuels and intermediates as reactants, and by Definition 18 we know that fuel and intermediate strands could potentially be shared with other reaction encodings. However, by Definition 16 we know that if any reaction in τn consumes a reactant x of 
, then that reaction must be from a copy of the reaction encoding which is in a state where it could consume x anyway, and hence that copy must have its own copy of x present. Hence, since we know that 
 can be executed directly after 
, we can move 
 forward using the (swap) rule, to getNow consider the subtrace [
]. In general, a trace of post-commit reactions of the form [
] could contain both forward and backward steps, which means that these reactions could consume reactants that correspond to formal species. This has the potential to cause a conflict if some reaction in τn−m also consumes that species. However, by Definition 17 we know that a formal species can only be consumed by a post-commit reaction if that reaction is a backward step, and this means that by the end of the subtrace [
], any formal species consumed by a backward step within [
] will eventually be re-generated by a subsequent reaction within [
]. Thus, τn−1 and [
] can be swapped using the (swap) from Definition 13, to giveFurthermore, by repeated application of this argument we get that
 as required, where 
, i.e., 
.We can now state and prove our main soundness theorem, which is valid for CRN encodings composed of reaction encodings that satisfy the criteria in Definition 17 and Definition 18. Since the set of all traces includes incomplete executions of reaction encodings, we require that any trace can be extended to produce a serializable execution. To express this we will write 
 (X, F) for the set of “possible traces”, that is, the set of non-empty formal traces that are valid from the formal state X and that can be emulated using the fuel F, i.e., 
 (X, F) ≜ {τ ∈ Traces(
) | X

τ ∧ reqfuel(τ) ≤ F ∧ τ ≠ ε}. This is required so that we can assess whether any reaction encodings can be executed using the available species, and therefore we must know the reaction encodings at this stage. Then, the soundness theorem and its proof are as follows.Theorem 5.7 (Soundness)—Fix a formal CRN

with reactions α1, …, αn, with corresponding reaction encodings into an encoding CRN

that are all transactional and pairwise compatible. Let
X
range over multisets of formal species, and let
F
range over multisets of fuels such that
F = k1 · Fα1 + ··· + kn · Fαn, where k1, …, kn ∈ 

and k1, …, kn ≥ 0. Then, for all τ ∈ Traces(
) and all
X
and
F
such that (
(X) + F) 

τ, either:•
 (X, F) = Ø and there exists τ′ such that (
(X) + F) 

τ:τ′ ⇝ ε; or•
 (X, F) ≠ Ø and there exists τ′ such that (
 (X) + F) 

τ:τ′ ⇝ τser, where τser is a serial execution of some τformal ∈ 
(X, F).Proof: We begin by noting that F can be expressed as integer multiples of the multisets of fuel species required to execute the various reaction encodings. Then, by Definition 18 there can be no direct interaction between species that do not appear in the same reaction encoding. Furthermore, the only species which are shared are those with respect to which the encodings are extra tolerant, and a single copy of a given reaction encoding must be extra tolerant with respect to any formal or fuel species that it uses. Thus, the trace τ must consist of an interleaving of reactions which all correspond to a valid state transition from precisely one of the constituent reaction encodings. Furthermore, since there is only a finite supply of fuel, there can only be finitely many commit reactions in τ. However, τ could include infinite cycles of reversible reactions—we assume that τ has already been rewritten to eliminate these, using the rewrite rules from Definition 13. We proceed by mathematical induction on χ(τ), the number of commit reactions in τ.Base case: χ(τ) = 0.. Since there are no commit reactions, all reactions in τ must be reversible. Therefore, by Lemma 5.5 there exists a trace τ″ such that (
(X) + F) 

τ:τ″ ⇝ ε. Then, if 
(X, F) = ø we can set τ′ = τ″ to get that (
(X) + F) 

τ:τ′ ⇝ ε, as required. On the other hand, if 
(X, F) ≠ ø then there must be a formal reaction α such that X

α and for which reqfuel ([α]) ≤ F. Then, for a complete execution τα of ⟦α⟧, we can set τ′ = τ″:τα to get (
(X) + F) 

τ:τ′ ⇝ τα, which is a serial execution of [α] ∈ 
 (X, F), as required.Inductive case: χ(τ) = n+1.. Suppose that 
 is the first commit reaction in τ, belonging to the encoding of the formal reaction α = (Rα → Pα). By Definition 17, in order to pass the commit reaction we must consume all of the species from 
(Rα), and hence it follows that Rα ≤ X. Furthermore, since we are only considering initial states with fuel to run complete encodings, we get that [α] ∈ 
(X, F) and hence 
(X, F) ≠ ø.We proceed by identifying those reactions from τ which precede and follow 
 to make up a trace from ⟦α⟧. If τ does not contain a full execution of ⟦α⟧, let 
 denote a trace which completes an execution of ⟦α⟧. Since [α] ∈ 
(X, F) we know that 
 holds, where 
 is the first reaction of the execution of ⟦α⟧. Then, by Lemma 5.6 we get that 
, where τα is an execution of ⟦α⟧.Let X′ be a formal state such that 
. Then, we get 
, where Lα is the non-formal species which remain after the execution of ⟦α⟧ has completed. By Lemma 5.2 we can deduce that (
(X′) + (F − Fα) + Lα) 

τrest. All reaction encodings must be extra tolerant with respect to the species from Lα, which means that the reactions in τrest may occur with or without the additional leftover species from Lα. It follows that (
(X′) + (F − Fα)) 

τrest, and we write Sα = 
(X′) + (F − Fα).Since χ(τrest) = n = χ(τ) − 1, we can invoke our induction hypothesis on τrest. Now, we perform a case split on whether 
(X′, F − Fα) is empty. If 
(X′, F − Fα) = ø, by induction there exists 
 such that 
, and hence that 
. It follows that 
, and since τα is a serial execution of [α] ∈ 
 (X, F), we get the result.If 
(X′, F − Fα) ≠ ø, by induction there exists 
 such that 
, where τser is a serial execution of some formal trace τformal ∈ 
 (X′, F − Fα). From this we get 
, and hence that 
. Since τformal ∈ 
(X′, F − Fα) it follows that [α]: τformal ∈ 
(X, F), and since τα:τser is a serial execution of [α]:τformal, we get the result.
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