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Abstract

We study the following problem, introduced by Chung et al. in2006. We are given, online or offline,
a set of coloured items of different sizes, and wish to pack them into bins of equal size so that we use
few bins in total (at mostα times optimal), and that the items of each colour span few bins (at mostβ
times optimal). We call such allocations(α, β)-approximate. As usual in bin packing problems, we allow
additive constants and consider(α, β) as the asymptotic performance ratios. We prove that forε > 0, if
we desire smallα, no scheme can beat(1 + ε,Ω(1/ε))-approximate allocations and similarly as we desire
smallβ, no scheme can beat(1.69103, 1+ ε)-approximate allocations. We give offline schemes that come
very close to achieving these lower bounds. For the online case, we prove that no scheme can even achieve
(O(1), O(1))-approximate allocations. However, a small restriction onitem sizes permits a simple online
scheme that computes(2 + ε, 1.7)-approximate allocations.

1 Introduction

We consider the problem of computing locality-preserving allocations of coloured items to bins, so as to
preserve locality (colours span few bins) but remain efficient (use a few total bins). The problem appears
to be a fundamental problem arising in allocating files in peer-to-peer networks, allocating related jobs to
processors, allocating related items in a distributed cache, and so on. The aim is to keep the communication
overhead between items of the same colour small. One application for example appears in allocating jobs in a
grid computing system. Some of the jobs are related in a such away that results computed by one job is used
by another one. There are also non-related jobs that may be from different users and contexts. Related jobs
are of a same colour and each job has a length (number of instructions for example). In the grid environment
each computer has a number of instructions donated by its owner to be used by the grid jobs. This way the
objective is to allocate jobs to machines trying to use few machines (bins) respecting the number of instructions
available (bins size), while also trying to keep related jobs together in as few machines as possible. In peer-to-
peer systems a similar problem also appears where one want tosplit pieces of files across several machines,
and want to keep pieces of a file close together to minimize thetime to retrieve the entire file.

These problems can be stated as a fundamental bi-criteria bin packing problem. LetI be a set of items,
each item of some colourc ∈ C, and denote byIc the set of items of a given colourc. Denote byOPT(I)
the minimum number of bins necessary to pack all items and denote byOPT(Ic) the minimum number of
bins necessary to pack only items of colourc, i.e, as if we had a bin packing instance with itemsIc. LetA(I)
be the number of bins generated by algorithmA when packing all items, and for each colourc, let A(Ic) be
the number of bins of this packing having items of colourc. We say that items of colourc spanA(Ic) bins
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2 PRELIMINARIES 2

in this packing. We want an algorithm that minimizes both ratios A(I)
OPT(I) andmaxc∈C

A(Ic)
OPT(Ic)

. So we would
like to allocate the items to bins so that we use few bins in total (at mostαOPT(I), where we callα thebin
stretch), and the items of each colourc span few bins (at mostβOPT(Ic), where we callβ thecolour stretch).
We call such allocations (or packings)(α, β)-approximate. The problem of minimizing any one ofα or β is
equivalent to the classical one-dimensional bin packing, but as we show, in general it is not even possible to
minimize them simultaneously. A natural extension is to consider bins as nodes of some graphG, and we
want to allocate bins so that each subgraphGc induced by nodes containing items of colourc has some natural
property allowing small communication overhead, such as having low diameter, or small size.

We prove that forε > 0, if we desire small bin stretch, no scheme can beat(1 + ε,Ω(1/ε))-approximate
allocations and similarly as we desire small colour stretch, no scheme can beat(1.69103, 1 + ε)-approximate
allocations. We give offline schemes that are based in well know bin packing algorithms and yet come very
close to achieving these lower bounds. We show how to construct (1 + ε,Ω(1/ε)) and(1.7, 1 + ε) approx-
imate allocations, the first one closing the gap with the lower bound and the last one almost closing the gap.
For the online case, we prove that no scheme can even achieve(O(1), O(1))-approximate allocations. How-
ever, a small restriction on item sizes permits a simple online scheme that computes(2 + ε, 1.7)-approximate
allocations.

2 Preliminaries

We now formulate the problem of computing locality-preserving allocations as a coloured bin packing prob-
lem. We are given a setI of n coloured items each iteme with a sizes(e) in (0, 1] and with a colourc(e)
from C = {1, . . . ,m}, and an infinite number of unit-capacity bins. LetIc be the set of colour-c items, and
denote byOPT(I) (OPT(Ic) respectively) the smallest possible number of bins needed to store items inI (Ic
respectively). For a packingP of itemsI, defineP (I) as the number of bins used to packI, and definePc(I)
as the number of bins spanned by colour-c items in the packingP . WhenI is obvious, we drop it and writeP
andPc.

We define an(α, β)-approximate packingas one where: (1)P 6 αOPT(I)+O(1) and (2) for each colour
c ∈ C, Pc 6 βOPT(Ic) + O(1). An algorithm that always produces(α, β)-approximate packings is called
an(α, β)-approximation algorithm.

As usual in bin packing problems, we allow additive constants and considerα (respectivelyβ) as the
asymptotic performance ratio asOPT(I) (respectivelyOPT(Ic)) grows to infinity (and hence the total weight
of items). This is because a simple reduction from PARTITION(eg see [10]) shows that, without allowing
additive constants, it would be NP-hard to do better than(1.5− ε, δ) or (δ, 1.5 − ε) approximate packings for
anyδ.

When dealing with the online problem we have similar definitions for the competitive ratio of an online
algorithm, and in this caseOPT(I) corresponds to an optimal offline solution to instanceI that has full
knowledge of the request sequenceI. As standard, we shall use the term approximation ratio interchangeably
with competitive ratio when discussing online algorithms (ie a 2-approximate online scheme is one that is
within a factor 2 of the optimal offline scheme).

2.1 Related work

Chung et al.[4] consider the case where each item is of a different colour and can be fractionally (arbitrarily)
divided between bins, bins have different sizes and the total weight of items exactly equals the total weight
of bins. They show how to compute an allocation that is asymptotically optimal for each colour. By contrast,
we relax the assumption that we must exactly fill all the bins,and consider the case of indivisible allocations.
In this setting, the problem is much more interesting: it is impossible to get arbitrarily good(1 + ε, 1 + ε)-
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approximate allocations in general. Thus, these relaxed packings have a tradeoff between bin stretch and
colour stretch, with polynomial-time approximations. We also consider for the first time the case where items
arrive online. However, the case of heterogenous bins is open for our setting.

The nonexpansive hashing scheme of Linial and Sasson [16] can also be used to find a locality-preserving
packing for unit-size items. By defining the distance of two items to be 0 if they are of the same colour, and
δ > 1 otherwise, one can interpret their dynamic hashing result as follows: for anyε > 0, it is possible to hash
unit-size items into bins inO(1) time so that they have useO(OPT1+ε) bins (giving bin stretchO(OPTε)
and colour stretchO(1).

Krumke et al.[14] study a related ‘online coloured bin packing’ problem where the goal is to minimize
the number of different colours packed into each bin, while using the entire capacity of each bin (in their
problem all items have same unit size). However, this problem is quite different to ours. In particular, an
optimal solution problem when minimizing the number of colours per bin may give arbitrarily bad bin stretch.
Considerb bins of capacityx, and unit size items of many coloursc1, c2, ..., c(x−2)b+1. There will be2b items
of colour c1 and 1 item of each of the other colours. Now, a(1, 1)-approximate packing placesx colours
from {c2...c(x−2)b+1} into each bin and the items ofc1 into the remaining bins. On the other hand, a packing
minimizing the maximum number of colours per bin (while using all the capacity of each bin) will place 2
items ofc1 andx−2 items of other other colours into each bin. Hence, considering colour1, it may be packed
individually intoOPT(I1) = 2b/x bins, but in this solution it spansb bins, giving colour stretchx/2, which
can be made arbitrarily large.

There are some other variants of bin packing problems with colours, for example the so called Colored Bin
Packing that has the restriction that items of a same colour cannot be packed next to each other on a same bin.
Approximation algorithms for the online version of the problem were presented by Böhm et al [2] and Dosa
and Epstein [6]. A generalization where the objective is to pack a graphG into another graphH where nodes
into H have capacities and nodes inG corresponds to items of given size, was studied by Bujtás etal. in [3]

The ‘class-constrained bin packing problem’, studied by Golubchik et al.[11], Kashyap et al.[13], Xavier
et al.[18] and Epstein et al.[7] is a coloured bin packing problem. The aim is to minimize the number of bins
used, subject to the constraint that each bin contains itemsfrom at mostc different colours (and subject to its
capacity constraints). This problem has applications in developing algorithms for data placement on parallel
disk arrays. Again, optimal solutions to this problem may bearbitrarily far from good if we wish to minimize
colour stretch.

A recent survey covering different variants of bin packing problems was made by Coffman et al. [9].

3 Impossibility results for Offline Algorithms

We start by considering some lower bounds on what values of bin and colour stretch can be achieved simul-
taneously. All these bounds hold for offline algorithms, so there is some inherent tension between the two
measures of colour stretch and bin stretch. We now show a lower bound on colour stretch, if we wish to take
bin stretch arbitrarily small.

Theorem 1 For bin stretch(1 + ε), it is impossible to achieve better thanΩ(1/ε) colour stretch.

Proof. For 0 < δ < 1/2, consider the instance containingn items of size1 − δ, one for each colour
1, . . . , n andn items of sizeδ, all of colourn + 1. For simplicity assume thatε = 1/x for some integerx,
andδ = 2ε, such thatδn andεn are integers. We haveOPT(I) = n,OPT(Ic) = 1 for c = 1, . . . , n and
OPT(In+1) = δn. Assume we want to construct a packing using at most(1 + ε)n bins in total.

Since items of coloursc = 1, . . . , n can not fit together, we use at mostnε bins only for colourn+1, then
at leastn − (nε/δ) = n/2 colour-(n + 1) items overflow. Therefore at leastn/2 + εn = n(1/2 + ε) bins
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are used for colour-(n + 1) items in any packing using at mostn(1 + ε) bins. SinceOPT(In+1) = δn, the
number of bins for colour-(n + 1) is at least

OPT(In+1)(1/2 + ε)/δ = OPT(In+1)(1/(4ε) + 1/2)

= Ω(1/ε)OPT(In+1).

The construction holds forδ < 1/2, so it is valid forε < 1/4. ⊓⊔

On the other hand, if one wants to keep low colour stretch, no bin stretch smaller than1.69103 can be
achieved.

Theorem 2 For colour stretch(1+ε), it is impossible to achieve bin stretch better than1.69103, for sufficiently
smallε.

Proof. Consider the following Sylvester sequence withl0 = 1, lj+1 = lj(lj + 1). For some constantm, we
assume we have items of(m + 1) different colours where, for colourci, i = 0, . . . ,m, we have a list ofn
items each one with size1li+1 + ε, whereε is a small enough constant that depends on the value ofm. Note
however thatm is independent ofε, and its value will be defined later. For each colourci an optimal packing
OPT(Ici) for colour stretch usesnli bins for i = 0, . . . ,m, each bin containing exactlyli items. We assume
for simplicity and w.l.o.g thatli dividesn. Let P be the packing corresponding to the union of the optimal
packingsOPT(Ici) for each colour. Notice that the bins of this packing cannot be joined together.

Now consider an optimal packingP ∗ for bin stretch, but which has colour stretch at most(1+ ε). We will
show that if the packing has colour stretch(1 + ε), then most of the bins for each colourci are packed like the
optimal colour stretch packing. SoP ∗ uses almost the same number of bins asP .

For some colourci, let kcij be the number of bins inP ∗ that contain exactlyj items for j = 1, . . . , li.

We want to upper bound the number of bins that contain less than li items, which is
∑li−1

j=1 kcij . SinceP ∗ has
colour stretch(1 + ε), each colourci must span at most(1 + ε)n/li bins. The number of bins used to pack
items of colourci can be bounded as follows:

kcili +

li−1
∑

j=1

kcij =
n−

∑li−1
j=1 jkcij
li

+

li−1
∑

j=1

kcij 6 (1 + ε)
n

li
,

so we can write

−

li−1
∑

j=1

jkcij + li

li−1
∑

j=1

kcij =

li−1
∑

j=1

[(li − j)kcij ] 6 εn

Since(li− j) > 1 for j = 1, . . . , li−1, the number of bins inP ∗ not containing exactlyli items of colourci is
at most

∑li−1
j=1 kcij 6 εn. Hence there are at leastn− (li − 1)εn items that must be packed in bins containing

li items. So at least
n− (li − 1)εn

li
=

n

li
(1− (li − 1)ε)

bins are used to pack only items of colourci. Note thatm is a constant and then(li − 1) isO(1). The packing
P ∗ must use at least

P ∗(I) >

m
∑

i=0

n

li
(1− (li − 1)ε)
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bins, while an optimal solution for bin stretch uses exactlyn bins by packing one item of each colour in a bin,
so the bound

P ∗(I)

OPT(I)
>

m
∑

i=0

1− (li − 1)ε

li

=

m
∑

i=0

1

li
− ε(m−

m
∑

i=0

1

li
) > 1.69103 − ε′

holds form > 5 and sufficiently smallε 6 ε′

m . ⊓⊔

Somewhat suprisingly, the two correct bounds are not symmetric – the upper bounds in the next section
show that we can indeed achieve(O(1), 1 + ε)-approximation schemes.

4 Offline Algorithms

4.1 A (1 + ε, O(1/ε))-approximation algorithm

We now describe how to achieve asymptotically the bound in Theorem 1. We shall make use of the APTAS of
Fernadez de La Vega and Lueker [8] (VL), which operates as follows:

The APTAS VL: fix someε > 0, and separate itemsI into smallIs (< ε) and largeIl(> ε). For the large
items, sort them by increasing size and partition them intoK = 1/ε2 groups, each of at mostnε2 items.
Round each item up to the size of the largest item in its group,to obtain an instanceJ .

Each bin contains at most1/ε items fromIl, so the total number of different bin types is at mostt =
(1/ε+K

1/ε

)

, and the total number of possible packings using at mostn bins is at most
(

n+t
t

)

, which is polynomial
in n. Therefore we can enumerate these packings and choose the best one. Since we have rounded all items up
in size, a packing of the rounded up items gives a valid packing of the original items. The following elegant
domination argument (from [8]) shows that an optimal packing for the rounded up items uses at most a factor
(1 + ε) more bins than packing the original items: consider rounding down item sizes to the smallest in the
group to obtain an instanceJ ′. Then a packing forJ ′ gives a packing for all but the largest group inJ , which
contains at mostnε2 items. Since each item has size> ε, we haveOPT(Il) > nε. Thus,

OPT(J) 6 OPT(J ′) + nε2 6 (1 + ε)OPT(Il).

Now take the small itemsIs and pack them into the remaining free space using first fit (FF). If we do not
open more bins, then we already have at most(1 + ε)OPT(I) bins. If we need to add more bins, then clearly
each bin except at most 1 is full to at least1 − ε. In this case, we have at mostOPT(I)/(1 − ε) + 1 6

(1 + 2ε)OPT(I) + 1 bins.

Our modification: For our problem, we can use the rounding step, but we cannot use the FF step for small
items (as some colours may be spread over many bins). However, a small change fixes this: group small items
by colour, pack each group using FF into existing bins havingmore than2ε of free space, then open more bins
if necessary. With this idea, for each colourc, every bin (except at most 1) either contains at leastε weight of
colourc, or no items of colourc (if a bin contains a large item this is clearly true, and if not, since we used FF
and each bin has at least2ε of free space, at least half of this space is used).

So each colour spans at mostOPT(Ic)/ε bins, giving the desired colour stretch. For the bin stretch, the
argument is similar to the one above – if new empty bins are used when packing small items, then each bin is
full to at least(1− 2ε) and if not, we already have the desired number of bins.
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4.2 A (1.7, 1 + ε)-approximation algorithm

We now present an algorithm that almost closes the gap with the lower bound of Theorem 2. For this, we will
use both the APTAS of Fernadez de La Vega and Lueker (VL) [8] described above, and the online bin packing
algorithm Bounded Best-Fit (BBF), whose competitive ratiois 1.7 [5].

BBF : maintain at mostk open bins, and the rest are closed and cannot be reopened. An item of sizes is
packed into the open bin that is most full and has space for theitem, breaking ties arbitrarily. If no such bin
exists, the fullest bin is closed and a new empty bin opened. It is known that BBF withk = 2 has (asymptotic)
competitive ratio 1.7 [5].

Our algorithm is presented in Algorithm 1. It first packs items of each colour separated using the algorithm
VL. Then given allm packings for each colour in some order, we apply the algorithm BBF over the items in
the order the items appears in these packings.

Algorithm 1 A (1.7,1+ε)-APPROXIMATION ALGORITHM

1: Arbitrarily order coloursc1 . . . cm.
2: for each colourci do
3: pack items of this colour into new bins using the APTAS of (VL)(all bins are monochromatic).
4: end for
5: Let P = P (c1) ∪ . . . ∪ P (cm) be all bins generated.
6: Let P ′ be a new packing initially empty.
7: for each iteme in the order it appears inP do
8: Packe intoP ′ with BBF.
9: end for

10: ReturnP ′.

We now prove a lemma that shall be useful in proving the desired approximation ratio of the algorithm.

Lemma 3 Letb = (B−(k−1), . . . , B0), be some opened bins that may contain items, and letP = (B1, . . . , Bx)
be bins packing items of some setS. LetP ′ be the packing generated over the items inS by the BBF algorithm
in the order they appear inP using the bins inb as initially opened. Then the number of used bins byP ′ is at
mostk + x.

Proof. Let P ′ = (B′
−(k−1), . . . , B

′
0, B

′
1, . . . , B

′
y) be the bins in the order they are closed by BBF. We will

show that any iteme ∈ Bi of P for i ∈ {1, . . . , x} is packed in a binB′
j of P ′ wherej 6 i.

Assume for contradiction thate ∈ Bi is the first item packed in some binB′
j with j > i. Sincee is the first

such item ofBi, all previous itemse′ ∈ Bi′ , i
′ = 1, . . . , i− 1 must have been packed in a binB′

j′ with j′ 6 i′.
So binB′

i only contains items ofBi. But sinceP is a valid packing, there must be room fore in B′
i. ⊓⊔

Theorem 4 The algorithm computes(1.7, 1 + ε)-approximate packings.

Proof. The time bound follows since the number of colours is polynomial in n, and both algorithms VL and
BBF run in polynomial time. In steps (1-4) we generate packingsP (ci) for each colourci such thatP (ci) 6
(1 + 2ε)OPT(ci) + 1. In steps (7-9) of the algorithm it is used the BBF algorithm to pack the items in the
order they appear inP = (P (c1), . . . , P (cm)). Since the BBF algorithm keeps at any timek = 2 opened bins,
by the previous Lemma 3, in the final packingP ′ we have for each colourci, P ′

ci(I) 6 (1+2ε)OPT(Ici)+3.
Since BBF has approximation factor1.7 we also have the boundP ′(I) 6 1.7OPT(I) + O(1) for the entire
packing. ⊓⊔

It is interesting to note that just packing the items of each colour in order using bounded best fit gives a
(1.7, 1.7)-approximate packing (for the bin stretch, ignore colours then the entire packing is 1.7-approximate,
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and for colour stretch use Lemma 3 above to getPc 6 1.7OPT(Ic) + O(1) since the algorithm is bounded
space).

Note that in order to have the(1.7, 1 + ε)-approximation we need a bounded space online algorithm on
step 8 of Algorithm 1, but not necessarily any online boundedspace algorithm would work. We have to use
an algorithm that satisfies the property of Lemma 3. Considerthe Harmonic algorithm [15] for instance. If we
have an instance consisting of just one colour, then after step 8, the Harmonic algorithm would have separated
items by types of sizes creating an entire new packing and the(1 + ε)-colour stretch would be lost.

5 Online Algorithms

We now consider the online version of the problem. Coloured items arrive and must be packed with no
knowledge of future arrivals. The main difficulty with constructing an online algorithm is that we don’t know
in advance the total weight of each colour, but on the other hand would like to reserve space so that colours of
small weight aren’t spread over many bins.

5.1 Impossibility of online (O(1), O(1))-approximation

Even under the restriction that items are> ε, there is still a lower boundL > 1.5403 for the online classical
bin packing problem, due to by Balogh et al. [1] which improved a previous lower bound of1.5401 by van
Vliet [17]. In this case,L is also a lower bound for both bin stretch and colour stretch;we cannot hope to do
better in either parameter. To see this, consider packing items of only one colour, then the number of bins used
cannot be smaller thanLOPT+O(1).

We now show that no online(O(1), O(1))-approximation scheme exists. The idea is to consider itemsin
rounds. In each round an optimal packing for the items needs asingle extra bin. If a scheme has bin stretch
O(1) it only needsO(1) bins per round, but if the instance has a large number of colours then some fraction of
colours will be forced to split every few rounds, from which it follows that some colour must split in at least a
constant fraction of rounds.

Theorem 5 There is no(α, β)-approximation online algorithm for the coloured bin packing problem where
(α, β) are constants.

Proof. Consider an instance where there aren different colours and where each item has size1/n. We analyze
the packing in rounds and in each round we receive a listL of n items ofn different colours. There will be at
mostnx rounds wherex is the number of bins necessary to pack any colour afternx rounds, andn is going to
be defined later.

Let Ii be the total number of items until roundi (there areni) . Since the optimal packing for bin stretch
usesi bins, any(α, β)-algorithm must use at mostαi bins by roundi. Wlog assume that in each new round
the algorithm uses at mostα bins, since otherwise it will have approximation ratio> α and the adversary will
stop at this point. The algorithm may use less thanα bins in one round and more thanα bins in a later round,
but the average per round must beα. So we can assume that the algorithm opensα bins per round even if
it will only use some bins in a later round. So we focus on the colour stretch. We will consider at mostnx
rounds, and so there are at mostnx items of each colour. Clearly the optimal packing for colourstretch hasx
bins per colour, soA must guarantee that each colour spans at mostxβ bins.

In each round the algorithm hasα bins available and some other bins that were partially filled. Since the
bin stretch is guaranteed to be at mostα, the only job of the algorithm is to keep theβ approximation in colour
stretch. We now show that any algorithmAmust incur colour stretch larger thanβ on the request sequence.
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Defines(i) = α+α2+ . . .+αi, with s(0) = 0. Fori > 1, stagei consists of rounds(s(i−1)+1) . . . s(i).
At the end of stagei the algorithm hasαs(i) bins available, and items of total weights(i). It can be seen that

s(i+ d) = αds(i) + s(d) > αds(i). (1)

We consider groups ofd + 1 stages, whered = ⌈ 5
logα⌉. We will show that for every group ofd + 1 stages,

there exists a set of at leastn/8 colours that split during this group, i.e colours that need to be packed in more
bins than the ones available in the beginning of the group.

Here is the proof of this claim. Assume that less thann/8 colours split during the firstd stages of the
group starting at rounds(i) + 1. Then there is a set of at least7n/8 colours that do not split during the nextd
stages. All items of these colours remain packed in the firstαs(i) bins. In this case, we have items of weight

7

8
(s(i+ d)− s(i)) + s(i) =

1

8
(7s(i+ d) + s(i))

>
7

8
αds(i)

going into at mostαs(i) bins (the last inequality uses (1)). Now we choosed so that78α
ds(i) > αs(i), which

is satisfied by takingd = ⌈ 5
logα⌉ >

log 8/7
logα + 1.

This shows that at least7n/8 (> n/8) colours (sayC ′) must split during the following (i.e.(d + 1)th)
stage. The argument for this is the following: consider all the bins that contained items of coloursC ′ at the
start of the group. All these bins become overfull just by considering the weight of items with colours inC ′.
So for every colourc in C ′, at least one of its bins splits, and so at least|C ′| colours split.

Clearly, an item of every colour is contained in some bin at the start of every group, so the claim implies
that afterq(d + 1) stages, we have at leastqn/8 splittings. So takingq > 8xβ, after 125xβ

logα > 8xβ(d + 1)
stages, we have had> xβn splittings, so some colour must have split> xβ times. It remains to choosen
large enough so that we have at leastα

α−12
125xβ > s(125xβlogα ) rounds. ⊓⊔

5.2 An online(3, 1.7)-approximation

In this section we provide an online algorithm that computes(3, 1.7)-approximate packings, but we need to
assume that each item has size at leastε > 0, whereε is a constant. Note that in the approximation factors
there is a dependency on the value ofε, since the bin stretch is limited by3OPT(I) + O(log 1/ε) and the
colour stretch is limited by1.7OPT(I) +O(log 1/ε).

Wlog assume thatε = 1
2j

for some positive integerj. We consider two types of bins: isolated, that
corresponds to bins packing only items of a given colour, andnon-isolated, that may pack items of different
colours. For eachi = 1, . . . , j we define some special bins which we call level-i bins. A level-i bin is
divided in exactly1/2iε regions each of size2iε for i = 1, . . . , j. These regions are monochromatic (each
region contains items of at most one colour). A region in somelevel-i bin is called alevel-i region. We use
a modified NF algorithm MNF to pack items into non-isolated bins, and switch to BBF to pack colours in
isolated bins. MNF is similar to NF and a description is givenbelow (Algorithm 2).

Notice that each colour occupies at most one level-i bin, for each leveli = 1, . . . , j. We say that a colour
c has leveli if i is the largest level of a bin containing items of colourc. The following algorithm uses MNF
to pack items of the same colour until the colour has levelj. When this happens the algorithm starts packing
items of the colour in isolated bins (the last level-j bin is also considered an isolated bin) using the BBF
algorithm. A description of the algorithm is given below (Algorithm 3).

A region is used when there are items packed on it. A bin is usedwhen all its regions are used. The
following lemma states that level-i bins that are used, have at least1/3 of their capacity used by items. Notice
that for each leveli, at most one level-i bin is not using all its regions, since a new level-i bin is created only
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Algorithm 2 MODIFIED NEXT FIT (MNF)
1: To pack iteme of colourc and sizes(e)
2: Let i be the highest level where an item of colourc is packed
3: (Let i = 1 if this is the first item of colourc)
4: if e can be packed in the level-i regionthen
5: Packe into this level-i region
6: else
7: Let l > i be the lowest level such that2lε > s(e)
8: Packe into a new level-l region (possibly creating a new level-l bin)
9: end if

Algorithm 3 A (3,1.7)-APPROXIMATION ALGORITHM.
1: To pack iteme of colourc and sizes(e)
2: if colourc has level< j then
3: Packe with MNF in the non-isolated bins
4: else
5: Packe with BBF in the isolated bins.
6: end if

when all existing level-i regions are used. So there are at mostO(log 1
ε ) = O(1) non-isolated bins that have

some unused regions.

Lemma 6 Consider the non-isolated bins that have all their regions in use. On average, each bin has at least
1/3 of its capacity used by items.

Proof. We will prove this by considering the levels used by any colour c using non-isolated bins.
For each colourc, agroup is a maximal sequence of regions2kε, 2k+1ε, . . . , 2k+pε used by colourc (each

colour may occupy a number of disjoint groups). We will show that for each group, its regions used by colour
c have1/3 of their area occupied. Let2kε, 2k+1ε, . . . , 2k+pε be a group used by colourc.

We have two cases:

• p is odd: Consider the pairs of adjacent regions

(2kε, 2k+1ε), . . . , (2k+p−1ε, 2k+pε).

Since we used MNF to pack the items, for each pair of regions the total weight of items is at least the
size of the region in the lowest level. Since the higher levelregion is twice the size of the lower one,
each pair has at least1/3 of its area occupied.

• p is even: If k > 2 then there is an item in the first region2kε of the group that could not fit in a
previous used region by colourc. This item was packed in the smallest region with room for it.So this
item occupies at least1/2 of region2kε. If k = 1 then the assumption thats(e) > ε implies that this
region is filled by at least1/2. The remaining regions2k+1ε, . . . , 2k+p−1ε, 2k+pε can be paired as in
the odd case, and for each pair at least1/3 of its total area is occupied.

⊓⊔

With this result we can prove the following theorem:

Theorem 7 The algorithm is a(3, 1.7)-approximation scheme, and uses space at mostO(m).
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Proof. Since we use BBF to pack isolated bins we can guarantee that onaverage at least1/2 of the area of
the isolated bins is occupied, and for the non-isolated bins, the previous lemma says that at least1/3 of the
capacity of these bins is occupied, with the exception of at mostO(log 1/ε) bins. So for bin stretch we have a
bound of3OPT(I) +O(log 1/ε).

Now we consider the colour stretch. For a colourc using only non-isolated bins, it must use at most
O(log 1/ε) bins, which is a constant. If a colourc also uses isolated bins, then by the performance bound of
BBF [5], it uses at most1.7OPT(Ic) +O(log 1/ε) bins. The approximation ratio(3, 1.7) is then valid if1/ε
is bounded by a constant.

For the space bound, BBF uses at mostO(1) open bins per isolated colour, and MNF uses at most one
open bin per level which isO(log 1/ε), a constante. ⊓⊔

We may also consider trying to improve the bin stretch bound of 3 by using a variation of FF instead of
NF in the modified next fit scheme. A ‘modified first fit’ MFF worksas MNF except that step 2 is replaced by
‘let i be the lowest level occupied by colourc with space fore’, so that we try to packe in each of the used
regions, packing it in the first such region with space fore. This requires at mostO(log 1/ε) open bins per
colour, but one may expect better performance, bearing in mind that FF beats NF. The following result shows
that this is not the case, and using MFF provides no improvement in the bin stretch.

Theorem 8 Using either MFF or MNF, the approximation factor(3, 1.7) is tight.

Proof. Consider thatε = 1
2j

for some positive even integerj. Notice that the regions size are(2ε, 4ε, . . . , 1/2, 1)
which is equal to( 1

2j−1 ,
1

2j−2 , . . . ,
1
2 , 1). We will consider pairs of colours(c, c′). Assume that for colourc

we receivej items in the following order: an item of size1
2j−i followed by an item of size 1

2j−i + γ, for
i = 0, 2, 6, . . . , j − 2, whereγ > 0 is arbitrarily small. Then we receive items of colourc′. For colourc′

we havej − 2 items in the following order: an item of size1
2j−i + γ followed by an item of size 1

2j−i , for
i = 1, 3, . . . , j − 3.

Using the MFF (or MNF) algorithm to pack these items, for colour c we will have items1
2j
, 1
2j
+γ, . . . , 1

22
, 1
22
+

γ packed respectively in regions1
2j−1 ,

1
2j−2 , . . . ,

1
2 , 1. For colourc′ we will have items 1

2j−1 +γ, 1
2j−1 , . . . ,

1
23 +

γ, 1
23

packed respectively in regions1
2j−2 ,

1
2j−3 , . . . ,

1
22
, 12 . Pairing items of each colour we can see that they

use approximately 1/3 of the allocated area for each pair (for smallγ). So for each colour it uses approximately
1/3 of the total area allocated to it. An optimal packing of the items of the colours(c, c′) uses one bin almost
full. To see this, note that the sum of the sizes of the items ofthese colours is

j
∑

i=2

1

2i
+

j
∑

i=2

(
1

2i
+ γ) =

j−1
∑

i=1

1

2i
+ (j − 1)γ 6

∞
∑

i=1

(1/2)i = 1

for sufficiently smallγ (i.e. 1
(j−1)·2j

). So for appropriate values ofj and lettingγ → 0, the sum of item sizes
of each pair of colours can be made arbitrarily close to 1. We can then consider arbitrarily large instances by
using many pairs of colours, thus establishing an asymptotic lower bound on 3 on bin stretch.

In the same instance we consider a special colourc∗ where we first receive an item of size 1 and then an
instance that provides the worst case ratio1.7 for the BBF algorithm (see [12]). Then for colour stretch the
bound1.7 is also tight. ⊓⊔

5.3 An online(2 + ε, 1.7)-approximation

In this section we show how to extend the algorithm of the previous section 5.2 to get an online algorithm that
computes(2 + ε, 1.7)-approximate packings. We assume that each item has size at leastε > 0.
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The algorithm also uses isolated and non-isolated bins. It pack items of colourc in non-isolated bins while
the total size of packed items of colourc, w(c) 6 g, whereg = 1/ε. Whenw(c) > g the algorithm uses
isolated bins to pack items of colourc. The algorithm is given below (Algorithm 4).

Algorithm 4 (2 + ε, 1.7)-APPROXIMATION

1: Let g = 1/ε
2: For each colourc let w(c) = 0
3: To pack iteme of colourc and sizes(e)
4: if w(c) 6 g then
5: Packe into non-isolated bins using FF
6: w(c)← w(c) + s(e)
7: else
8: Packe into isolated bins of colourc using FF
9: end if

Theorem 9 The algorithm is a(2 + ε, 1.7)-approximation.

Proof. First consider colour stretch. For each colourc, it uses at mostg/ε non-isolated bins, because each
item has size at leastε. Whenw(c) > g it packs all items of this colour in isolated bins, and since we use the
FF algorithm we can bound colour stretch by1.7OPT +O(g/ε).

Now for bin stretch we have the following. At the end of the execution of the algorithm, it usesN1 non-
isolated bins. It uses some isolated bins as well for large colours (the ones withw(c) > g). There are some
large colours that uses just one isolated bin, and assume there arek of these large colours. There are some
other large colours that uses more than one isolated bin, andassume that in total the algorithm usesN2 bins
for these large colours.

Since we used FF to pack the items in non-isolated bins we knowthat on average each one of theN1 bins
are full to 1/2. For the same reason theN2 bins used by large colours that uses more than one bin are fullon
average by at least 1/2. So the following bound is validOPT >

∑

e s(e) > (N1 +N2)/2.
Notice that the algorithm starts to use isolated bins for colour c, only whenw(c) > g, and then we also

have the boundOPT >
∑

e s(e) > k · g.
The approximation ratio of the algorithm is then bounded as follows

ratio =
N1 +N2 + k

OPT

6
N1 +N2 + k

∑

e s(e)

6
N1 +N2

(N1 +N2)/2
+

k

gk

= 2 + 1/g.

Sinceg = 1/ε the algorithm is a(2 + ε, 1.7)-approximation. ⊓⊔

6 An APTAS to approximate optimal bin stretch

Our lower bounds show that it is impossible in general to achieve a(1 + ε, 1 + ε)-approximation. We now
show that for any colour stretchβ > 1 and every class of instances that admit a(1, β)-approximate packing,
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we can compute a(1 + ε, (1 + ε)β)-approximate packing in polynomial time. In this section weconsider
that the number of different coloursm is bounded by a constant; relaxing this restriction remainsopen. It
is also worth noting that our problem now is slightly different since we are assuming instances that admit a
(1, β)-approximate packing, and in general there are instances that do not admit such packings (see Theorem
1).

We shall useOPTβ(I) to denote the smallest number of bins needed to pack itemsI using colour stretch
6 β. Similarly (by slight abuse of notation),OPTβ,c(I) is the number of bins spanned by colourc in such a
packing. Clearly,OPTβ,c(I) 6 βOPT(Ic). The scheme we describe below computes a packingP satisfying
(1) total number of binsP (I) 6 (1 + ε)OPTβ(I) + O(1), and(2) for each colourc, it uses at mostPc(I) 6
(1 + ε)OPTβ,c(I) +O(1) 6 β(1 + ε)OPT(Ic) +O(1) bins.

The idea is to use a variant of the grouping and rounding technique, but to explicitly work with the instance
where items are rounded down. We are able to show that by packing some very large items and very small
items separately, only a few items ‘overflow’ from some optimal packing OPT, and thus we can still achieve
the desired colour stretch and bin stretch.

Denote byI l the items inI with size at leastε2 (large items), andIs the remaining items inI (small items).

Packing large items: Partition the large items by colour:I l = I1, . . . , Im and letnc = |Ic| be the number
of items of each colourc. Then sort each colourIc by decreasing order of item size and partition it into at most
M = ⌈1/ε3⌉ groupsIc1, Ic2, . . . , IcM , i.eIc = Ic1‖ . . . ‖IcM where‖ is a concatenation operator. Each group
has⌊ncε

3⌋ items except perhaps the last.
For each group of each colour, round down the items to the sizeof the smallest item in the group (by

contrast with VL, who roundup item sizes). As before, we can enumerate all such packings: the number
of items per bin is at mosty 6 1/ε2, and the number of distinct item sizes is a constantmM (recallm is
the number of colours and is assumed to be a constant). Thus, there are at mostr′ =

(

y+Mm
y

)

different bin
configurations. We shall do something more involved with thesmall items, so we shall attach to each bin
configuration a subset of colours that shall be used for the small items later on. This gives at mostr = r′2m

total configurations so the number of feasible packings intoat mostn bins is bounded by
(n+r

n

)

6 (n + r)r.
Notice that among the configurations there are some that may contain bins with no large items, and just have
a subset of colours attached to show that small items can be packed later.

We enumerate all such packings, and keep only those that havecolour stretch at mostβ (ignoring the
additive constant). One of these packings corresponds exactly to an optimal packing after removing its small
items and with its large items rounded down.

A similar domination argument to before will now show that atleast one of these packings has close to the
desired colour stretch and bin stretch. LetP be one of the enumerated packings with colour stretch at mostβ.
Since item sizes were rounded down, each groupIcj in P gives a packing for the items with orignal sizes in
the next groupIc(j+1) (all these items have smaller size than the previous group).The only items not packed
by this are those in the first group (with largest size) – denote these items byQ = ∪mc=1Ic1.

The ‘very large’ items inQ are packed into new bins using first fit (FF), considering all items of one
colour before the next colour. LetP (Q) be the size of the packing obtained in this way. The followingsimple
argument shows that these very large items will contribute only a small amount to the total bin and colour
stretch.

Lemma 10 P (Q) 6 εOPT(I) andP (Qc) 6 εOPT(Ic) for each colourc.

Proof. Clearly first fit packs at least one item per bin. Since|Q| 6
∑

c ncε
3, and each item has size at leastε2,

we haveP (Q) 6 εOPT(I). Since we apply first fit to items grouped by colour, the same argument establishes
the claim for colour stretch. ⊓⊔
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Packing small items. Let P = {B1, . . . , Bk} be a packing of the large itemsI l. We now wish to pack
carefully the small itemsIs into P .

The packing of the small items is obtained from a solution of alinear program. Recall that when enumer-
ating packings of large items, each bin was tagged with a subset of colours that could be used to pack small
items. LetNi ⊆ {1, . . . ,m} be the set of possible colours that may be used to pack the small items in the bin
Bi of the packingP . For each colourc ∈ Ni, define a non-negative variablexic. The variablexic indicates the
total size of small items of colourc to be packed in the binBi. Denote bys(Bi) the total size of items already
packed in the binBi. Consider the program denoted by LPS:

max

k
∑

i=1

∑

c∈Ni

xic s.t.

s(Bi) +
∑

c∈Ni

xic 6 1 i = 1, . . . , k (1)

k
∑

i=1

xic 6 s(Isc ) c = 1, . . . ,m (2)

whereIsc is the set of small items of colourc in I. The constraint (1) guarantees that the total size of items
packed in each bin does not exceed the bins size and constraint (2) guarantees that the sum of the values of
variablesxic is not greater than the total size of small items.

Given a packingP , and a fractional packing of the small items, we do the following: for each variablexic
we pack, while possible, the small items of colourc into the binBi, so that the total size of the packed small
items is at mostxic. The possible remaining small items (the ‘overflowing’ items) are packed using FF into
new bins, again grouped by colour (meaning pack all items of one colour before the next).

Algorithm 5 APTAS(I)

Require: Number of different coloursm in I isO(1)
1: Fix ε > 0
2: Split itemsI into small (< ε2) Is and large (> ε2) I l

3: Group large items by colour and sort by decreasing size
4: Group large items of each colour into⌈1/ε3⌉ groups and round item sizes down in each group
5: Enumerate all packings of large items, with attached ‘smallcolours’ labels
6: For each colourc, pack remaining ‘very large’ itemsQc using FF
7: For each packingP , solve LPS to add small items
8: For each packingP , pack the overflowing small items into new bins using FF
9: Return the best packing that has colour stretch at mostβ

Approximation ratio. We will claim that there exists a packingP such that after the very large itemsQ and
the small itemsIs have been packed intoP , it has the desired bin and colour stretch. In particular, atleast one
packing uses at most(1 +O(ε))OPTβ(I) +O(1) bins in total and at most(1 +O(ε))OPTβ,c(I) +O(1) 6
β(1 +O(ε))OPT(Ic) +O(1) bins for each colourc.

Theorem 11 Let β > 1 be the desired colour stretch. The algorithm finds a packingP such thatP (I) 6

(1 +O(ε))OPTβ(I) +O(1), andPc(I) 6 β(1 +O(ε))OPT(Ic) +O(1) for each colourc.

Proof. Let OPTβ be an optimal packing for the instanceI with colour stretchβ. Let OPT′β be the packing
OPTβ without the small items and with the large items rounded downas described. Assume that each bin of
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OPT′β has an indication of the colours of small items used in the corresponding bin of OPTβ. Clearly in the
enumeration step of the algorithm one packing with the same configuration of OPT′β with rounded items, is

generated. This gives a packingP for the original items inI l \Q. Notice that the number of bins used byP
and OPTβ is the same. The very large items inQ are packed separately.

In the packingP there must be enough room to pack all small items, since thereis in OPTβ. When packing
the small items (guided by the fractional packing LPS), at most one small item of each colour is not packed
into each desired bin. So, the total size of small items that overflow and need to be packed into new bins

is at most OPTβ(I)ε2m. These small items use at most
⌈

OPTβ(I)ε
2m

(1−ε2)

⌉

+ 1 new bins, since each bin is full

to at least(1 − ε2) except perhaps by the last one. Considering colour stretch,each colourc uses at most
⌈

OPTβ(Ic)ε
2

(1−ε2)

⌉

+ 1 new bins.

The algorithm packs these small items in new bins obtaining anew packingP ′(I \ Q). The number of
bins is at most

P ′(I \Q) 6 OPTβ(I) +

⌈

OPTβ(I)ε
2m

1− ε2

⌉

+ 1 (2)

6 (1 +O(ε))OPTβ(I) +O(1). (3)

Considering colour stretch we have, for each colourc,

P ′(Ic \Qc) 6 OPTβ(Ic) +

⌈

OPTβ(Ic)ε
2

1− ε2

⌉

+ 1 (4)

6 (1 +O(ε))OPTβ(Ic) +O(1). (5)

To finish the proof, it remains to consider the very large items Q. For these, Lemma 10 shows that they
need an extraε fraction of bins for each colour and in total. Notice that in order to obtain a truly(1 + ε)
approximated solution, we need to rescale the value ofε, for example by usingε′ = ε/m due to the factor
m multiplying ε in the term OPTβ(I)ε2m on equation (2). So the running time of the entire algorithm is

dominated by the enumeration step which isO(nO(1/ε′2)m/ε′3

) = O(nO(m2/ε2)m
4/ε3

) ⊓⊔

7 Open Problems

• Improved approximation ratio. Can we get an online algorithm with(1.7+ ε, 1.7+ ε) approximation
ratio, with the assumption on minimum item sizes?

• Multicoloured items. The multicoloured case is also interesting: fix a set of (possibly unbounded)
coloursC, and let each item have several (say at mostk) colours fromC. The original definitions of
colour and bin stretch still apply. By allowingk copies of each item to be packed, it is certainly possible
to reuse any(α, β)-approximation algorithm in this paper to construct one with bin stretchkα and colour
stretchβ. Is it possible to do better?

• Network packing version. Let the items form a graph as follows: the vertices are the items, and the
(weighted or unweighted) distance between two items is a measure of how closely together the items
should be ‘packed’. The notion of bin stretch is as before, and colour stretch is replaced by the following
notion of ‘strong diameter stretch’: for a set of verticesX, let diam(X) be their ‘strong diameter’, i.e.
maxu,v∈X dG(u, v). Let B(X) be the bins spanned by items inX. Then strong diameter stretch is

maxX⊆V
diam(X)
|B(X)| . What bounds can we achieve when using this quantity, and does it depend on eg. the

expansion ofG?
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