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Abstract

The paper is a contribution both to the theoretical foundations and to the ac-
tual construction of efficient automatizable proof procedures for non-classical
logics. We focus here on the case of finite-valued logics, and exhibit: (i) a mech-
anism for producing a classic-like description of them in terms of an effective
variety of bivalent semantics; (ii) a mechanism for extracting, from the bivalent
semantics so obtained, uniform (classically-labeled) cut-free standard analytic
tableaux with possibly branching invertible rules and paired with proof strate-
gies designed to guarantee termination of the associated proof procedure; (iii) a
mechanism to also provide, for the same logics, uniform cut-based tableau sys-
tems with linear rules. The latter tableau systems are shown to be adequate
even when restricted to analytic cuts, and they are also shown to polynomially
simulate truth-tables, a feature that is not enjoyed by the former standard type
of tableau systems (not even in the 2-valued case). The results are based on
useful generalizations of the notions of analyticity and compositionality, and
illustrate a theory that applies to many other classes of non-classical logics.

Keywords: bivalent semantics, truth-functionality, compositionality,
analyticity, tableaux, proof complexity.

1. Introduction

Our paper is a contribution to the modern study of deduction in many-valued
logics, in line with the research from standard references such as [3, 21], and con-
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summating the track of publications surveyed in [9]. The present paper deals
with finite-valued logics — logics whose connectives are semantically charac-
terizable by truth-tables with a finite number of ‘algebraic truth-values’. We
first recall that such logics may be alternatively characterized by way of biva-
lent semantics — semantics with only two ‘logical values’ (cf. [32, 10]). Going
beyond that, we show that such bivalent characterizations, based on a general-
ized notion of compositionality, can be produced in a constructive way, for any
finite-valued logic. Several technical problems that appear underway are shown
to be circumventable. Providing further evidence on how model-theoretic and
proof-theoretic analyses have strong impact on each other, from our bivalent
characterizations of finite-valued logics we show, in each case, how to extract
adequate analytic classic-like tableau systems. Analyticity, in these systems,
is based on appropriate generalized versions of the subformula property and
on the adoption, in each case, of convenient proof strategies. While analytic
tableaux for propositional logic are expected to yield decidability, there is no
general reason to expect the associated decision procedure to be computation-
ally feasible. In order to secure a measurable gain in proof complexity we show
also how to extract, from our bivalent characterizations of finite-valued logics,
alternative tableau systems that control the combinatorial explosion caused by
intrinsic redundancies of usual analytic tableau methods. We show that these
alternative systems can polynomially simulate truth-tables, the former thus not
being ‘worse’ than the latter. Such cut-based tableaux generalize the so-called
‘KE system’ for Classical Logic (cf. [14]), in which all tableau rules are linear
except for the (non-eliminable yet analytic) cut rule.

In Section 2 we list the basic syntactical definitions about logics in gen-
eral and the basic semantic definitions about finite-valued logics in particular,
and contrast truth-functional semantics with classic-like (bivalent) semantics.
Several well-known examples of truth-functional logics are introduced. Many-
valued logics in general, and truth-functional logics in particular, are shown to
be (non-constructively) reducible to bivalent semantics, alongside the lines of
the so-called ‘Suszko’s Thesis’. To render such bivalent reduction constructive,
for a given finite-valued truth-functional logic, a fine analysis of its expressive-
ness is due: in turn, we show how one may algorithmically check for sufficient
expressiveness, and how one may generate upon demand a sufficiently expres-
sive conservative extension of the given logic. We then show how to produce an
adequate classic-like characterization of any given finite-valued logic. We also
show that this characterization is rather robust: the collection of boolean state-
ments that determines it, in the metalanguage, may be replaced by equivalent
(and possibly more economical) collections of similar statements. Our reductive
mechanism gives rise to an effective variety of bivalent semantics, based on a
generalization of the syntactical notion of subformula and a related broader take
on the Principle of Compositionality of Meaning.

In Section 3 we show how to deal with partial information and syntactical
subtleties describing unobtainable semantic scenarios, that will lead to nonstan-
dard additional closure rules in tableau systems. Adequate classic-like tableaux
are then shown to be extractible for each sufficiently expressive finite-valued
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logic. An extended notion of analyticity is guaranteed by a proof strategy to
be coupled with a given proof system, based on an extended notion of formula
complexity.

On the one hand, it is well known that proofs involving the cut rule (or,
equivalently, modus ponens) can be dramatically shorter than the shortest cut-
free proof of the same assertion (see, e.g., [6], and the discussion in [14, Section
3.8], where the introduction of cut-based KE tableau systems is motivated). On
the other hand it is obvious that unrestricted use of cuts may lead to infinitary
branching in proof search. Taking those facts into account, restricted forms
of cut have been investigated that imply gains in minimal proof size without
rendering proof search unwieldy. In particular, cut-based tableaux are based on
a goal-directed form of employing analytic cuts, that is, cuts involving what we
call generalized subformulas of formulas already to be found in a given branch.
Cut-based tableaux for Classical Logic are studied in [15]. In Section 4 of
the present paper we show how such systems may be uplifted to the realm of
finite-valued logics. Moreover, for Classical Logic it has been proved (cf. [13])
that (propositional) cut-based tableaux polynomially simulate the truth-table
procedure while for some classes of formulas the shortest standard analytic
tableaux may be exponentially larger than the truth-tables. We extend these
findings about proof complexity to finite-valued logics in general.

2. Exploring the bivalence behind truth-functionality

In what follows we propose a mechanism for producing a classic-like description
of an arbitrary finite-valued logic in terms of an effective variety of bivalent
semantics. To accomplish such goal, we show how one may exploit the linguistic
resources of a given logic, automatically checking for its sufficient expressiveness,
and minimally extending it, in a conservative way, when necessary.

2.1. Finite-valued logics

Consider an alphabet consisting of a denumerable set A of atomic variables
and a finite collection Σ of connectives (or constructors). By Σk ⊆ Σ we will
denote the collection of k-ary constructors in Σ; the 0-ary connectives are also
called sentential constants. The set S of formulas, as usual, is the carrier of the
free Σ-algebra S generated by A. By ϕ(q1, . . . , qk) we will denote a statement-
form ϕ ∈ S written in the variables q1, . . . , qk ∈ A; if ψ = ϕ(ψ1, . . . , ψk), for
given ψ1, . . . , ψk ∈ S, we say that ψ is an instance of ϕ. By S(ϕ) we denote
the set of all instances of ϕ. If ϕ ∈ S contains some k-ary connective, for
k > 1, we call this formula composite; otherwise, that is, in case ϕ is either an
atomic variable or a sentential constant, we call it noncomposite. The outermost
constructor of a composite formula is called its head connective. Formulas
containing no atomic variables are called ground. Given ϕ = ⊙(ϕ1, ϕ2, . . . , ϕk)
in S, with ⊙ ∈ Σk, we call ϕ1, . . . , ϕk ∈ S the immediate subformulas of ϕ.
The set sbf(ϕ) of subformulas of ϕ is obtained by closing {ϕ} under immediate
subformulas, that is, it is the smallest set containing ϕ and the immediate
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subformulas of each element of sbf(ϕ). A proper subformula of ϕ is any element
of sbf(ϕ)\ {ϕ}. These notions are extended from formulas to sets of formulas in
the usual way. A canonical way of measuring the complexity of a given formula
is by counting the nested occurrences of k-ary constructors in it, for k > 1, that
is, by inductively defining a mapping dpth : S −→ N such that:

dpth(ϕ) =





0 if ϕ is noncomposite

1+ Max
1≤i≤k

dpth(ϕi) if ϕ = ⊙(ϕ1, . . . , ϕk)

for ⊙ ∈ Σk, k 6= 0 and ϕ1, . . . , ϕk ∈ S

In the present study, by Vn = { i
n−1 : 0 ≤ i < n}, where n ∈ N, we will denote

a set of truth-values, partitioned into a set Dm,n ⊆ Vn of designated values and
a set Um,n = Vn \ Dm,n of undesignated values. In what follows, we will often
refer to 0 as F and to 1 as T . In general, an (n-valued) assignment of truth-
values to the atomic variables is any mapping e : A −→ Vn, and a(n n-valued)
valuation is any extension we : S −→ Vn of such an assignment to the set of all
formulas. Given some R ( S and some valuation w, the restriction w|R will
be called a partial valuation over R. An n-valent semantics for S based on Vn,
then, is simply an arbitrary collection of n-valued valuations. In particular, we
will call bivalent any semantics over V2 = {F, T }, and say it is classic-like in case
D1,2 = {T }; the corresponding valuations are called bivaluations. The canonical
notion of entailment |=Sem ⊆ Pow(S) × S associated to an n-valent semantics
Sem and characterizing a logic 〈S, |=Sem〉 is defined by setting, for arbitrary
Γ ∪ {α} ⊆ S, (Γ |=Sem α) iff (w[Γ] ⊆ Dm,n implies w(α) ∈ Dm,n, for every
w : S −→ Dm,n∪ Um,n in Sem), where w[Γ] = {w(γ) : γ ∈ Γ}. If ∅ |=Sem α,
we say that α is a valid formula. Subscripts in the sets of truth-values will be
dropped whenever there is no risk of ambiguity.

Now, in any n-valent semantics one can clearly notice a shade of bivalence
resting upon the opposition between designated and undesignated truth-values.
It is not difficult to see that we can take advantage of this in order to transform
such an n-valent semantics into a classic-like bivalent semantics which is undis-
tinguishable from the former semantics from the viewpoint of the associated
notions of entailment. To see that, consider the total mapping tm,n : Vn −→ V2

such that tm,n(v) = T iff v ∈ Dm,n. Then:

Definition 2.1. Let L = 〈S, |=Sem〉 be an n-valent logic with a semantics Sem.
For each valuation w : S −→ Dm,n∪Um,n, consider the bivaluation bw = tm,n◦w.
We call Sem2 = {bw : w ∈ Sem} the S-reduction of Sem.

Proposition 2.2. Any n-valent logic L = 〈S, |=Sem〉 can be characterized by its
S-reduction, in other words, Sem and Sem2 characterize the same logic L.

Proof: It is straightforward to check that |=Sem = |=Sem2
, as a consequence of

the fact that bw(ϕ) ∈ D1,2 iff bw(ϕ) = tm,n(w(ϕ)) = T iff w(ϕ) ∈ Dm,n, for any
n-valent valuation w ∈ Sem. ✷
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A particularly interesting case of n-valent semantics, hereupon dubbed truth-
functional, obtains when the semantics is presented by way of an appropriate
Σ-algebra V with carrier V , when we associate to each connective ⊙ ∈ Σk an
operator ⊙̂ : Vk −→ V in V, and we collect in Sem the set of all homomorphisms
w : S −→ V. Any such homomorphism may be construed as the free extension
of some assignment e : A −→ V into a valuation we : S −→ V by imposing
that w(⊙(ϕ1, . . . , ϕk)) = ⊙̂(w(ϕ1), . . . , w(ϕk)). Given a formula ϕ(q1, . . . , qk)
we will write ϕ̂(x1, . . . , xk) to denote the value w(ϕ) assigned to ϕ by any
homomorphism w : S −→ V such that w(qr) = xr for every 1 ≤ r ≤ k. One
might say that such a truth-functional semantics is ‘compositional’ in that the
meaning it attributes to a composite formula depends (functionally) on the
meaning of its immediate subformulas.

Definition 2.3. A logic characterized by truth-functional means, for a given Vn,
is called n-valued. An n-valued logic L with an entailment relation |=Sem is said
to be genuinely n-valued in case there is no n′ < n such that |=Sem can be
canonically obtained by way of an n′-valued truth-functional semantics.

Example 2.4 (Some well-known truth-functional logics). Recall the set
of truth-values Vn = {0, 1

n−1 , . . . ,
n−2
n−1 , 1}, and consider initially the collection

of binary connectives Σa2 = {∧,∨}, that will be interpreted by setting ∧̂ =
λx y.Min(x, y) and ∨̂ = λx y.Max(x, y). Let’s introduce a single unary connec-
tive through the collection Σa1 = {¬} and interpret this connective by setting
¬̂ = λx.(1 − x). Assume Σa = Σa1 ∪ Σa2 . Classical Logic is obtained now
if we fix n = 2 and D1,n = {1}. Kleene Logic is obtained by fixing n = 3
and D1,n = {1}, and Asenjo-Priest Logic again fixes n = 3 but differs from
Kleene in fixing U2,n = {0}. Consider now an extra binary connective given
by Σb2 = {⊃}, and assume that Σb = Σa ∪ Σb2. For all logics below, we will
consider ϕ ≡ ψ as simply an abbreviation for (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ). To define
the hierarchy of n-valued logics  Ln, proposed by  Lukasiewicz, for n ≥ 2, inter-
pret ∧, ∨ and ¬ as above, and interpret ⊃̂ = λx y.Min(1, 1 − x+y). To define
the hierarchy of n-valued logics Gn, proposed by Gödel, for n ≥ 2, interpret ∧
and ∨ again as above, but now interpret ¬̂ = λx.(If x = 0 Then 1 Else 0), and
⊃̂ = λx y.(If x ≤ y Then 1 Else y). For each  Ln and Gn we fix D1,n = {1}.
Note that the interpretation of ⊃ for  Ln and for Gn coincide if n = 2, and may
be defined in that case by setting ϕ ⊃ ψ as an abbreviation for (¬ϕ) ∨ ψ; this
coincidence no longer obtains if n > 2. Further, in the  Ln it is enough to take
Σa1 ∪ Σb2 as a choice of primitive connectives, given that x∨̂y = (x⊃̂y)⊃̂y, and
that x∧̂y = ¬̂(¬̂x∨̂¬̂y).

It shoud be clear that:

Proposition 2.5. Any truth-functional logic can be characterized by a classic-
like bivalent semantics.

Proof: This follows in fact as a corollary of Prop. 2.2, where we now start with
a semantics Sem written in terms of n-valued homomorphisms w : S −→ V,
where Dm,n is fixed as the set of designated values in the carrier of V. ✷
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Remark 2.6. The idea that any semantics can be converted / reduced to a
bivalent semantics is known as Suszko’s Thesis (cf. [11, 30]). For the truth-func-
tional case, the underlying intuition is that the ‘algebraic truth-values’ from the
carrier of V should be distinguished from the ‘logical values’ (namely, F and T :
‘the False’ and ‘the True’, according to Roman Suszko). The paradoxicality of
such a reduction would seem to reside in regarding a logic at times as truth-
functional and at other times simply as bivalent (cf. [23, 10]). One should be
wary not to confuse though, on the one hand, a logic as a structure in which a set
of formulas is endowed with a consequence relation enjoying certain properties,
and, on the other hand, the variegated forms in which such a consequence
relation may be characterized by semantical means (cf. [25]).

The bivalent semantics produced by the instructions laid out in Def. 2.1 is
obviously classic-like, and if the input logic is genuinely n-valued, for n > 2,
the output semantics cannot be truth-functional. In particular, while a truth-
functional characterization seems obviously attractive for its good behavior, it is
not clear that the same can be said about the bivalent characterization thereby
originated. Is the latter set of bivaluations at least describable recursively,
without resource to the original set of n-valued valuations? Can the reduction
from Sem to Sem2 at least be done constructively, in the truth-functional case?
Furthermore, must such reduction throw away for good the fundamental feature
of compositionality, together with truth-functionality? Will the meaning of a
formula no longer be related to the meaning of its subformulas? The answer
to the first two questions will be affirmative if we find a way of appropriately
exploiting the original linguistic resources of the given logic, or else extend such
resources conveniently in order to make the logic sufficiently expressive. The
answer to the final two questions will be negative if we find a way of being more
generous about the very meaning of compositionality. We will next discuss these
issues, and show how they can be satisfactorily resolved to our benefit.

2.2. Separation of truth-values

An n-valued logic L is said to be functionally complete if any operation ϕ̂ :
(Vn)k −→ Vn is the interpretation of some statement form ϕ(q1, . . . , qk) express-
ible in the language of L. Besides being 2-valued (thus, bivalent), Classical Logic
is the only logic in Ex. 2.4 that enjoys functional completeness. The so-called
Post Logics Pmn are functionally complete genuinely n-valued logics with m des-
ignated values, for n > 2 and 0 < m < n, and they may be defined by adding
unary permutation operators to the  Ln and setting U = {0, 1

n−1 . . . ,
n−m−1
n−1 }.

Of course, P1
2 coincides with Classical Logic. Functional completeness is a rare

property, enjoyed only by extremely expressive logics.
In producing an algorithmic version of the S-reduction, which identifies ev-

ery designated value as a ‘true’ value and identifies every undesignated value as
a ‘false’ value, the challenge is to still be able to somehow recover information
about the original ‘algebraic’ values even after the classic-like reduction is pro-
duced. In all cases, the idea will be to check whether a given logic is expressive
enough so as to allow for its original truth-values to be uniquely described by
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way of its original linguistic resources. To that effect, we will look for a way of
distinguishing each pair of values of a genuinely n-valued logic L.

Definition 2.7. Given x, y ∈ Vn, we write x # y and say that x and y are sepa-
rated in case one value is designated and the other undesignated, that is, in case
t(x) 6= t(y). We say that a one-variable formula θxy(p) of L distinguishes two

truth-values x and y if θ̂xy(x) # θ̂xy(y). In that case we will also say that the
values x and y of L are distinguishable, as they may be separated using just
the linguistic resources of L. Finally, a logic L is called separable in case its
truth-values are pairwise distinguishable, that is, in case for any pair of distinct
values 〈x, y〉 ∈ V × V there exists a one-variable separator formula θxy(p) that
distinguishes x and y.

Obviously, in functionally complete genuinely n-valued logics, by design, any
pair of values is distinguishable — thus, any such logic is separable. For other
logics, when the separation of all truth-values is at all possible, we will often
assume some appropriate collection of one-variable separators to have been listed
as a finite sequence θ1, . . . , θs, and we will further use θ0 to denote the identity
mapping id = λp.p (notice indeed that θ0(p) by itself suffices to distinguish any
pair of values 〈x, y〉 ∈ (D × U) ∪ (U × D)). From here on, any such θ = 〈θr〉

s
r=0

will be dubbed a separating sequence for the given logic.

Remark 2.8. It is worth remarking that the length s + 1 of the separating
sequence 〈θr〉

s
r=0 must be such that log2(n) ≤ s + 1 < n for any n-valued

logic. In fact, considering that the same suitably designed separator formula
could be used to distinguish some pair of designated values and simultaneously
also to distinguish some pair of undesignated values, it will be sufficient in the
best scenario to have precisely log2(max(|D|, |U|)) + 1 separator formulas in the
separating sequence of a given |V|-valued logic, where V = D ∪ U .

Definition 2.9. Fixed a separating sequence θ = 〈θr〉
s
r=0 for a given n-valued

logic L, the binary print of a value z ∈ Vn is the sequence θ(z) = 〈bw(θr(p))〉
s
r=0,

where w(p) = z. We dub θ[Vn] the set of obtainable binary prints; intuitively,
they are the binary prints that correspond and uniquely describe some actual
truth-value from the given n-valued semantics.

Notice that θ(z) = 〈t(θ̂r(z))〉sr=0. More importantly, for each pair of distinct
values 〈x, y〉 ∈ Vn × Vn it is now obviously the case that θ(x) 6= θ(y).

Example 2.10 (Some separable logics). Recall Ex. 2.4. It should be clear
that the two values of Classical Logic are separated by θ0(p) = p. Also, the two
undesignated values of Kleene Logic and the two designated values in Asenjo-
Priest Logic are separated by adding θ1(p) = ¬p to the separating sequence:
indeed, such θ1(p) helps in distinguishing the binary prints of 0 and 1

2 in Kleene,
and in distinguishing the binary prints of 1

2 and 1 in Asenjo-Priest. Consider
now  Lukasiewicz logic  Ln, with n > 2. In that case we have to devise a way of
pairwise separating each of its n− 1 undesignated values. For that purpose one
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may consider a collection of operators jm≥ , for 0 < m < n− 1, such that ĵm≥ =
λz.(If z ≥ m

n−1 Then 1 Else 0) — it is worth noticing that such jm≥ operators

may be defined as abbreviations using solely the connectives in Σb (cf. [29]).
Clearly a jm≥ operator separates the undesignated value m

n−1 of  Ln from all the

lower values. Indeed, an appropriate separating sequence θ = 〈θr〉
n−2
r=0 for  Ln

may be defined by setting θr = j
(n−1)−r
≥ . For such choice, we see that θ

(
m
n−1

)
,

the (n−1)-long binary print of m
n−1 , will be an (n−1−m)-long sequence of F s,

followed by an m-long sequence of T s.

A word is due here with respect to the general problem of distinguishing
truth-values. It turns out that not every n-valued logic L is separable, even if L
is genuinely n-valued, as illustrated below in Ex. 2.13 — the original language of
the logic L may simply fail to be sufficiently expressive. This fact would seem to
pose a limitation to the methods proposed in the present paper. However, this
is by no means a serious limitation. Indeed, as we will show in what follows, it
is not difficult to see that a clever search may be employed to efficiently decide
the separability of any given finite-valued logic, and a simple procedure may be
devised to output a separating sequence in case it exists.

Remark 2.11. Let Fn denote the set of all unary operations on Vn. To decide
whether a given n-valued logic L is separable, it suffices to compute the set of all
unary functions f : Vn −→ Vn that are definable by the connectives in Σ. Since
this set must be finite (there are only nn functions in Fn), one can then test
each of the definable functions on the pairs of values that demand separation.

Note that the definable unary functions are precisely those that can be ex-
pressed by α̂ where α(p) ∈ S is a formula written with at most one variable.
This gives us a simple way of computing the set of all definable unary func-
tions, using Kleene’s fixed-point theorem [22], as the least fixed-point of the
operator µ : 2Fn −→ 2Fn defined by µ(H) = H ∪ {id} ∪ {ĉ : c ∈ Σ0} ∪
{λx.⊙̂(h1(x), . . . , hk(x)) : ⊙ ∈ Σk, for k 6= 0, and h1, . . . , hk ∈ H}. This opera-
tor is clearly Scott-continuous as any function in µ(H) depends only on finitely
many elements of H , and thus the set of definable unary functions is given in
particular by the least m such that µm(∅) = µm+1(∅). Obviously, m ≤ nn.

We will consider in what follows the extension of an n-valued logic by the
addition of connectives with n-valued interpretations. In other words, let L be
an n-valued logic given by means of the collection of all homomorphisms from
the algebra of formulas S to an n-valued Σ-algebra V, and consider an extension
L+ of L, defined over the extended algebra of formulas S+ obtained from the
extended set of connectives Σ+, and characterized by the collection Sem+ of
all homomorphisms to a properly extended n-valued algebra V+. It is clear
that L+ is always a conservative extension of L in the sense that Γ |=Sem α if
and only if Γ |=Sem+ α for every pair Γ∪{α} ⊆ S. We will see next how one such
conservative extension can be built in order to upgrade a nonseparable logic L
into a separable logic L+.
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When L is genuinely n-valued, and determined by a set Dm,n ⊆ Vn of desig-
nated values, the structure 〈V,Dm,n〉 is often dubbed a logical matrix (cf. [34]).
It should be clear that the Leibniz congruence (in the sense of [5]) of any such
logical matrix is the identity. That is to say that the matrix is simple, mean-
ing that every non-trivial congruence of the algebra V must equate designated
with undesignated values. Indeed, if that were not the case, then one could use
any such non-trivial congruence to quotient V (and Dm,n) and obtain a truth-
functional semantics for the logic L with less than n truth-values. It turns
out that such property can be used to compute a convenient extension of the
primitive collection of connectives of L whenever this logic is not separable.

Proposition 2.12. Every genuinely n-valued logic has a separable genuinely
n-valued conservative extension.

Proof: In the following, we shall employ −→v (m) as notation for a list v, . . . , v︸ ︷︷ ︸
m times

.

Let x and y be two truth-values that cannot be distinguished by formulas
of L. Then, by identifying the two, one generates a non-trivial congruence of the
algebra V that must therefore also identify a designated with an undesignated
value. So, there must exist a formula ϕ(q1, . . . , qk) ∈ S in k > 1 variables and
values l1, . . . , lk, r1, . . . , rk ∈ Vn such that:

ϕ̂(l1, . . . , lk) # ϕ̂(r1, . . . , rk) (1)

where, for each 1 ≤ i ≤ k, either (a) li = ri, or (b) {li, ri} = {x, y}. Of course
option (b) must be satisfied at least once for 1 ≤ i ≤ k. Let us assume, without
loss of generality, that option (a) is satisfied for 1 ≤ i ≤ j for some j < k. We
have, then

ϕ̂(r1, . . . , rj , lj+1, . . . , lk) # ϕ̂(r1, . . . , rj , rj+1, . . . , rk). (2)

Now, if lj+1 = · · · = lk then rj+1 = · · · = rk. Assuming, without loss of
generality, that lj+i = x and rj+i = y, for 0 < i < k − j, we thus have

ϕ̂(r1, . . . , rj ,
−→x (k−j)) # ϕ̂(r1, . . . , rj ,

−→y (k−j)). (2.1)

In this case, one may distinguish x and y by introducing a unary connective θ
such that θ̂ = λz.ϕ̂(r1, . . . , rj ,

−→z (k−j)). Alternatively, one could introduce (only
the necessary) sentential constants a1, . . . , aj such that âi = ri for 1 ≤ i ≤ j,
defining the separator θ = λq.ϕ(a1, . . . , aj ,

−→q (k−j)).
Otherwise, assume, again without loss of generality, that lj+1 = · · · = lp = x

and lp+1 = · · · = lk = y for some j < p < k. Of course, one will then have
rj+1 = · · · = rp = y and rp+1 = · · · = rk = x. The situation is described by

ϕ̂(r1, . . . , rj ,
−→x (p−j),−→y (k−p)) # ϕ̂(r1, . . . , rj ,

−→y (p−j),−→x (k−p)). (2.2)

Take the expression ϕ̂(r1, . . . , rj ,
−→y (k−j)). Clearly, its value must be separated

from one of the two expressions in (2.2). Assume, yet again without loss of
generality, that it is separated from the first expression, i.e.,

ϕ̂(r1, . . . , rj ,
−→x (p−j),−→y (k−p)) # ϕ̂(r1, . . . , rj ,

−→y (p−j),−→y (k−p)). (2.3)

9



In this case, we can separate x and y by introducing a unary connective θ such
that θ̂ = λz.ϕ̂(r1, . . . , rj ,

−→z (p−j),−→y (k−p)). Alternatively, one could introduce
the sentential constants a1, . . . , aj , ay such that âi = ri for 1 ≤ i ≤ j and
ây = y, and define the separator θ = λq.ϕ(a1, . . . , aj ,

−→q (p−j),−→ay
(k−p)). ✷

Example 2.13 (Separating with the help of a conservative extension).
In Remark 2.11 we have seen a fixed-point procedure that may be used now to
show that Gödel logics (introduced in Ex. 2.4) are not separable when they
involve more than three truth-values. For instance, it is easy to see that in G4

there are precisely six different definable unary operations, and none of them dis-
tinguishes the undesignated values 1

3 and 2
3 from one another. Thus, we here will

directly follow one of the two strategies employed in the proof of Prop. 2.12 and
consider the conservative extension of each logic Gn obtained by the addition
to Σb of the family of sentential constants Σ0 = {am}0<m<n−1, to be inter-
preted by setting âm = m

n−1 . In the extended logic G+
n , we may now introduce a

family of unary operators Σ1 = {km}0<m<n−1 interpreted to such an effect that

k̂m = λz.
(
If z = m

n−1 Then 1 Else (If z > m
n−1 Then m

n−1 Else z)
)

. Such opera-

tors km are easily definable, e.g., by λp.(am ≡ p) or λp.(p ≡ am). Obviously,

given that t(k̂m(z)) = T iff z = m
n−1 , these unary operators may be used to

produce an appropriate separating sequence for G+
n : just define θ = 〈θr〉

n−2
r=0 by

setting θr = kr for r > 0. The resulting binary print θ(0) will consist only of

F s, while θ(1) will have exactly one T , in the first position. Each θ
(

m
n−1

)
, for

0 < m < n− 1, will also have exactly one T , in position m+ 1.

As we shall see in Remark 2.25, a suitable conservative extension may be
useful even if the logic at hand is already separable from the start.

2.3. Classic-like characterization of finite-valued logics

Assuming, henceforth, that we are dealing with a separable n-valued truth-func-
tional logic L characterized by a semantics Sem, let us proceed toward providing
a constructive description of its S-reduction Sem2 produced by Def. 2.1. For that
purpose we will adopt a classic metalanguage: we shall use & to represent con-
junction, || to represent disjunction, =⇒ to represent implication, ⊤ to represent
truth, and > to represent an absurd. We shall also consider labeled formulas
of the form X:ϕ where X ∈ {F, T } and ϕ is a formula of L. When convenient,
we shall write Xc to denote the conjugate of X , defined by setting F c = T and
T c = F . We shall say that a bivaluation b satisfies X:ϕ if b(ϕ) = X . Anal-
ogously, we shall say that an n-valued valuation w satisfies a labeled formula
X:ϕ if the corresponding bivaluation bw does, that is, if bw(ϕ) = t(w(ϕ)) = X .
The extension of both notions of satisfaction to statements of the classical met-
alanguage is straightforward (that is, we assume &, ||, =⇒, ⊤ and > have the
expected boolean interpretations).

We will describe the bivalent non-truth-functional semantics Sem2 by taking
advantage of the truth-value separation apparatus developed above. Let us
assume that θ = 〈θr〉

s
r=0 is a separating sequence for L. As we have seen,

10



θ associates a different binary print to each of the n truth-values in Vn. We
can use an appropriate meta-linguistic statement to capture the fact that, in a
given situation, the value of a formula ϕ corresponds to a certain binary print
X = 〈Xr〉

s
r=0:

X0:ϕ & X1:θ1(ϕ) & . . . & Xs:θs(ϕ). (V(ϕ ;X))

In general, given binary prints X1, . . . , Xk and formulas ϕ1, . . . , ϕk, we write:

V(ϕ1 ;X1) & . . . & V(ϕk ;Xk). (V(ϕ1, . . . , ϕk ;X1, . . . , Xk))

Obviously, given z ∈ Vn, the statement V(ϕ ; θ(z)) will capture the fact that the
value of ϕ is precisely z. This means in particular that we can characterize the
2s+1−n sequences of F and T of length s+1 that are unobtainable. This fact can
be captured, for each such sequence X /∈ θ[Vn], by the following meta-linguistic
statement over an arbitrary ϕ ∈ S:

V(ϕ ;X) =⇒ > . (UX)

Recall that for each connective ⊙ ∈ Σk there is an associated operator ⊙̂ :
(Vn)k −→ Vn in the algebra of truth-values. Given X ∈ {F, T } and a separating

formula θr with 0 ≤ r ≤ s, let Rθr⊙X be the set {x ∈ (Vn)k : t(θ̂r(⊙̂(x))) = X},
that is, the set of all tuples of values in Vn that the subformulas ϕ1, . . . , ϕk
may be assigned in order to guarantee that the bivalent value of the composite
formula θr(⊙(ϕ1, . . . , ϕk)) is X . Each such tuple x = 〈x1, . . . , xk〉 ∈ Rθr⊙X is
characterized by the statement V(ϕ1, . . . , ϕk ; θ(x1), . . . , θ(xk)). Thus, the com-
plete behavior of the formula θr(⊙(ϕ1, . . . , ϕk)) is captured by meta-linguistic
statements of the form:

X:θr(⊙(ϕ1, . . . , ϕk)) =⇒ (||
x∈Rθr⊙

X

V(ϕ1, . . . , ϕk ; θ(x1), . . . , θ(xk))). (Bθr⊙X )

Remark 2.14. It should be clear that Rθr⊙F and Rθr⊙T are such that Rθr⊙F ∪

Rθr⊙T = (Vn)k and Rθr⊙F ∩Rθr⊙T = ∅. Hence, the right-hand sides of Bθr⊙F and

Bθr⊙T are complementary, taking into account the unobtainable binary prints,
i.e., a bivaluation satisfying statements UX for all X ∈ ({F, T }s+1 \ θ[Vn]) will
satisfy the right-hand side of Rθr⊙F if and only if it does not satisfy the right-hand

side of Rθr⊙T . This means also that the meta-linguistic implication in each Bθr⊙X

statement is actually an equivalence. Note that it may occur that Rθr⊙X = ∅, for

some X ∈ {F, T }, and thus Rθr⊙Xc = (Vn)k. That happens, for instance, when
⊙ ∈ Σ0, or when ⊙̂[(Vn)k] ⊆ Dm,n or ⊙̂[(Vn)k] ⊆ Um,n, for ⊙ ∈ Σk and k > 0.

In such circumstances, the right-hand side of one of the two Bθr⊙X statements
with X ∈ {F, T } will be tautological, and the other will be absurd.

Definition 2.15. The set B(L, θ) of bivalent statements associated to a given
separable finite-valued logic L, fixed a separating sequence θ = 〈θr〉

s
r=0, is

formed by all instances of:
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• UX, for each X ∈ ({F, T }s+1 \ θ[Vn]), and (U-statements)

• Bθr⊙X , for each X ∈ {F, T }, 0 ≤ r ≤ s and ⊙ ∈ Σ. (B-statements)

Remark 2.16. Note that all the bivalent statements employed to characterize a
finite-valued logic have left-hand sides that are conjunctions of labeled formulas,
and right-hand sides that are in disjunctive normal form.

The following result guarantees the adequacy of our bivalent characterization.

Proposition 2.17. Sem2 is the set of all bivaluations that satisfy B(L, θ).

Proof: First, observe that if w : S −→ V ∈ Sem then bw (and w) satisfies
the bivalent statements associated to L almost by construction. Indeed, given
ϕ ∈ S and an unobtainable binary sequence X , then of course θ(w(ϕ)) 6= X.
This implies that bw(θr(ϕ)) 6= Xr for some 0 ≤ r ≤ s, thus bw fails to satisfy
Xr:θr(ϕ) and by consequence it fails to satisfy the meta-linguistic conjunction
on the left-hand side of UX. Given X ∈ {F, T }, 0 ≤ r ≤ s and ⊙ ∈ Σ, as-
sume that bw satisfies the left-hand side of Bθr⊙X , that is, assume bw satisfies
X:θr(⊙(ϕ1, . . . , ϕk)). Such assumption means that bw(θr(⊙(ϕ1, . . . , ϕk))) =

t(θ̂r(⊙̂(w(ϕ1), . . . , w(ϕk)))) = X and therefore 〈w(ϕ1), . . . , w(ϕk)〉 ∈ Rθr⊙X .
Thus, bw satisfies V(ϕ1, . . . , ϕk ; θ(w(ϕ1)), . . . , θ(w(ϕk))), consequently satisfy-
ing the disjunction on the right-hand side of Bθr⊙X .

Conversely, suppose that a bivaluation b : S −→ V2 satisfies all the bivalent
statements associated to L. For each ϕ ∈ S, due to the fact that b satisfies
all the statements UX for unobtainable X , it is clear that the sequence Xϕ =
〈b(ϕ), b(θ1(ϕ)), . . . , b(θs(ϕ))〉 must be obtainable. Thus, we can define an n-
valuation wb : S −→ Vn by setting wb(ϕ) to be the unique truth-value in Vn
whose binary print θ(wb(ϕ)) is Xϕ. Clearly, bwb

= tm,n ◦ wb = b and then we
are just left with proving that wb is a homomorphism between the Σ-algebras S
and V. Let ⊙ ∈ Σ be an arbitrary connective and ϕ1, . . . , ϕk ∈ S, and recall
that b satisfies the statements Bθr⊙X for each X ∈ {F, T } and 0 ≤ r ≤ s.
For x = 〈wb(ϕ1), . . . , wb(ϕk)〉, it must be the case that either we have both
x ∈ Rθr⊙F and x /∈ Rθr⊙T , or else we have both x /∈ Rθr⊙F and x ∈ Rθr⊙T . If

x ∈ Rθr⊙X then t(θ̂r(⊙̂(x))) = X . Moreover, b cannot satisfy the disjunction

on the right-hand side of Bθr⊙Xc , and thus it also does not satisfy its left-hand

side. Hence, it must be the case that b satisfies the left-hand side of Bθr⊙X , that
is, b(θr(⊙(ϕ1, . . . , ϕk))) = X as well. But this means that the binary print
θ(⊙̂(x)) coincides with X⊙(ϕ1,...,ϕk), and thus ⊙̂(x) is the unique value whose

binary print is X⊙(ϕ1,...,ϕk). We conclude that wb(⊙(ϕ1, . . . , ϕk)) = ⊙̂(x) =

⊙̂(wb(ϕ1), . . . , wb(ϕk)), thus wb ∈ Sem. ✷

Example 2.18 (Bivalent characterization of  L3). Let us return to the ex-
ample of  L3, separated by θ = 〈id, θ〉, where θ = λp.(¬p ⊃ p) is a possible
definition of the unary operator j1≥ (i.e., the separator θ1 mentioned in Ex. 2.10,
whose subscript we drop here). Note that the binary print 〈T, F 〉 is unobtain-
able, whereas θ(0) = 〈F, F 〉, θ(12 ) = 〈F, T 〉 and θ(1) = 〈T, T 〉. The bivalent
statements in B( L3, 〈p, θ(p)〉) are shown in Table 1.
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(U〈T, F 〉) (T :ϕ & F :θ(ϕ)) =⇒ >

(B¬
F ) F :¬ϕ =⇒ (F :ϕ & T :θ(ϕ)) || (T :ϕ & T :θ(ϕ))

(B¬
T ) T :¬ϕ =⇒ (F :ϕ & F :θ(ϕ))

(B θ¬
F ) F :θ(¬ϕ) =⇒ (T :ϕ & T :θ(ϕ))

(B θ¬
T ) T :θ(¬ϕ) =⇒ (F :ϕ & F :θ(ϕ)) || (F :ϕ & T :θ(ϕ))

(B⊃
F
) F :ϕ ⊃ ψ =⇒ (F :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) || (T :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ))

(B⊃
T
) T :ϕ ⊃ ψ =⇒ (F :ϕ & F :θ(ϕ) & F :ψ & F :θ(ψ)) || (F :ϕ & F :θ(ϕ) & F :ψ & T :θ(ψ)) ||

(F :ϕ & F :θ(ϕ) & T :ψ & T :θ(ψ)) || (F :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)) ||

(F :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ)) || (T :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ))

(B θ⊃
F

) F :θ(ϕ ⊃ ψ) =⇒ (T :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ))

(B θ⊃
T

) T :θ(ϕ ⊃ ψ) =⇒ (F :ϕ & F :θ(ϕ) & F :ψ & F :θ(ψ)) || (F :ϕ & F :θ(ϕ) & F :ψ & T :θ(ψ)) ||

(F :ϕ & F :θ(ϕ) & T :ψ & T :θ(ψ)) || (F :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) ||

(F :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)) || (F :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)) || (T :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ))

(B∨
F ) F :ϕ ∨ ψ =⇒ (F :ϕ & F :θ(ϕ) & F :ψ & F :θ(ψ)) || (F :ϕ & F :θ(ϕ) & F :ψ & T :θ(ψ)) ||

(F :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) || (F :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ))

(B∨
T ) T :ϕ ∨ ψ =⇒ (F :ϕ & F :θ(ϕ) & T :ψ & T :θ(ψ)) || (F :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) || (T :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ))

(B θ∨
F ) F :θ(ϕ ∨ ψ) =⇒ (F :ϕ & F :θ(ϕ) & F :ψ & F :θ(ψ))

(B θ∨
T ) T :θ(ϕ ∨ ψ) =⇒ (F :ϕ & F :θ(ϕ) & F :ψ & T :θ(ψ)) || (F :ϕ & F :θ(ϕ) & T :ψ & T :θ(ψ)) ||

(F :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) || (F :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)) ||

(F :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ)) || (T :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)) || (T :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ))

(B∧
F ) F :ϕ ∧ ψ =⇒ (F :ϕ & F :θ(ϕ) & F :ψ & F :θ(ψ)) || (F :ϕ & F :θ(ϕ) & F :ψ & T :θ(ψ)) ||

(F :ϕ & F :θ(ϕ) & T :ψ & T :θ(ψ)) || (F :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) ||

(F :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)) || (F :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) || (T :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ))

(B∧
T ) T :ϕ ∧ ψ =⇒ (T :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ))

(B θ∧
F ) F :θ(ϕ ∧ ψ) =⇒ (F :ϕ & F :θ(ϕ) & F :ψ & F :θ(ψ)) || (F :ϕ & F :θ(ϕ) & F :ψ & T :θ(ψ)) ||

(F :ϕ & F :θ(ϕ) & T :ψ & T :θ(ψ)) || (F :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ))

(B θ∧
T ) T :θ(ϕ ∧ ψ) =⇒ (F :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)) || (F :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)) || (T :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ))

Table 1: B( L3, 〈id, λp.(¬p ⊃ p)〉): the bivalent characterization of  L3 separated by 〈id, θ〉.
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Remark 2.19. The set of bivalent statements associated to a logic can often
be simplified, without any danger of spoiling the result of Prop. 2.17, nor any of
the subsequent results. To start with, it may happen that a statement is simply
tautological, as already explained in Remark 2.14, in which case it can be simply
omitted. The example of  L3 above does not contain statements of that kind,
but several such statements appear in connection with G4 (see Ex. 3.7 below).
Still, even a nontautological statement can often be substantially shortened.
Consider for instance B⊃

F from the example above, namely,

F :ϕ ⊃ ψ =⇒ (F :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)) ||

(T :ϕ & T :θ(ϕ) & F :ψ & T :θ(ψ)).

Clearly, the first two disjuncts on the right-hand side are classically equiva-
lent to (T :θ(ϕ) & F :ψ & F :θ(ψ)), as either F :ϕ or T :ϕ must be satisfied
by any given bivaluation. Similarly, the last two disjuncts are equivalent to
(T :ϕ & T :θ(ϕ) & F :ψ). Each of these new expressions can be further simpli-
fied by taking into account the statement U〈T, F 〉. As the binary print 〈T, F 〉
is unobtainable, we thus conclude, in the former case, that F :θ(ψ) must imply
F :ψ. Analogously, in the latter case, we conclude that T :ϕ must imply T :θ(ϕ).
Thus, B⊃

F may be equivalently stated as

F :ϕ ⊃ ψ =⇒ (T :ϕ & F :ψ) || (T :θ(ϕ) & F :θ(ψ)).

Such a simplification strategy may be applied, using boolean reasoning and
the unobtainable binary prints as premises, to reach a streamlined version of the
right-hand side of each statement. The only general restriction that we must
impose is that the right-hand sides of our statements remain in disjunctive
normal form and use only labeled formulas already occurring on the right-hand
side of the original statement. Note that this streamlining procedure can be
systematized by means of Karnaugh maps, and even automated by using the
Quine-McCluskey algorithm, or the Espresso heuristic [7].

Notation-wise, we will not distinguish a statement from a convenient simpli-
fication. Note, at any rate, that none of the results in this paper depend on (or
is affected by) performing such a simplification.

Example 2.20 (A streamlined bivalent characterization of  L3). Simpli-
fying the bivalent statements from Ex. 2.18 we may obtain the equivalent list
of statements, also dubbed B( L3, 〈p, θ(p)〉), shown in Table 2.

2.4. Compositionality generalized

Separators play a crucial role in our development. Now, while the original truth-
functional semantics of our finite-valued logics was based, as it has been already
mentioned, on a straightforward notion of ‘compositionality’, one might contend
that the bivalent semantics which we can associate to the same logics are in fact
based on a generalized notion of compositionality according to which the value
of a formula is to be (uniquely) determined from the values of separators applied
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(U〈T, F 〉) (T :ϕ & F :θ(ϕ)) =⇒ >

(B¬
F ) F :¬ϕ =⇒ T :θ(ϕ)

(B¬
T ) T :¬ϕ =⇒ F :θ(ϕ)

(B θ¬
F ) F :θ(¬ϕ) =⇒ T :ϕ

(B θ¬
T ) T :θ(¬ϕ) =⇒ F :ϕ

(B⊃
F
) F :ϕ ⊃ ψ =⇒ (T :ϕ & F :ψ) || (T :θ(ϕ) & F :θ(ψ))

(B⊃
T
) T :ϕ ⊃ ψ =⇒ (F :ϕ & T :θ(ψ)) || F :θ(ϕ) || T :ψ

(B θ⊃
F

) F :θ(ϕ ⊃ ψ) =⇒ (T :ϕ & F :θ(ψ))

(B θ⊃
T

) T :θ(ϕ ⊃ ψ) =⇒ F :ϕ || T :θ(ψ)

(B∨
F ) F :ϕ ∨ ψ =⇒ (F :ϕ & F :ψ)

(B∨
T ) T :ϕ ∨ ψ =⇒ T :ϕ || T :ψ

(B θ∨
F ) F :θ(ϕ ∨ ψ) =⇒ (F :θ(ϕ) & F :θ(ψ))

(B θ∨
T ) T :θ(ϕ ∨ ψ) =⇒ T :θ(ϕ) || T :θ(ψ)

(B∧
F ) F :ϕ ∧ ψ =⇒ F :ϕ || F :ψ

(B∧
T ) T :ϕ ∧ ψ =⇒ (T :ϕ & T :ψ)

(B θ∧
F ) F :θ(ϕ ∧ ψ) =⇒ F :θ(ϕ) || F :θ(ψ)

(B θ∧
T ) T :θ(ϕ ∧ ψ) =⇒ (T :θ(ϕ) & T :θ(ψ))

Table 2: Streamlined B( L3, 〈id, λp.(¬p ⊃ p)〉).

to its immediate subformulas. In order to burst life into this idea we must first
understand how to adequately explore the structure of formulas.

Let’s start by upgrading some terminology from Section 2.1 to take the
separators from θ = 〈θr〉

s
r=0 into account. We call ϕ ∈ S a basic formula

if ϕ = θr(ψ) for some noncomposite formula ψ and some 0 ≤ r ≤ s; other
formulas are called nonbasic. To be sure, basic formulas are precisely those
that may be obtained by applying a separator to either an atomic variable or
a sentential constant; note in particular that atomic variables are indeed basic
formulas, given our convention to set θ0 = id. Given 0 ≤ r ≤ s and a connective
⊙ ∈ Σk with k 6= 0, recall from Section 2.1 that by S(θr(⊙(q1, . . . , qk))) we
denoted the set of all instances of the statement-form θr(⊙(q1, . . . , qk)) — here
we will denote this more simply as S(θr⊙). Instead of S(θ0⊙) we will also
simply write S(⊙), given that θ0(p) = p. Clearly, the family {S(⊙)}⊙∈Σ\Σ0

constitutes a partition of the set of composite formulas.
Let ϕ be a nonbasic formula. Given 0 ≤ r ≤ s, whenever ϕ ∈ S(θr⊙) for

some ⊙ ∈ Σ we shall say that θr⊙ is a fit for ϕ. As it happens, there may be
r1 6= r2 and ⊙1 6= ⊙2 such that both θr1⊙ and θr2⊙ are fit for ϕ. In general:

Lemma 2.21. Let 0 ≤ r1, r2 ≤ s and ⊙1,⊙2 ∈ Σ. In case S(θr1⊙1) ∩
S(θr2⊙2) 6= ∅ then exactly one of the following three situations must occur:

(1) r1 = r2 and ⊙1 = ⊙2; or

(2) S(θr1⊙1) ( S(θr2⊙2) (or the other way around, S(θr2⊙2) ( S(θr1⊙1)); or

(3) S(θr1⊙1) ∩ S(θr2⊙2) is a singleton set, whose sole formula,
dubbed ι(θr1⊙1, θr2⊙2), is a ground formula.

Proof: We first show that if S(θr1) ∩ S(θr2) 6= ∅ then exactly one of the
following three situations must occur:

(a) r1 = r2; or

(b) S(θr1) ( S(θr2 ) (or the other way around, S(θr2) ( S(θr1)); or
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(c) S(θr1) ∩ S(θr2) is a singleton set, whose sole formula is a ground formula.

Let r1 6= r2. We use Robinson’s unification algorithm [28] on the pair formed
by θr1(p) and θr2(q) with p, q ∈ A, p 6= q. Clearly, the pair is unifiable, and the
algorithm outputs a most general unifier that will convey either a substitution
of p by some δ(q) ∈ S (or the other way around, a substitution of q by some
δ(p) ∈ S), or else a substitution of p and q by some ground formulas αp, αq ∈ S.
In the latter case, we can conclude that θr1(p) and θr2(q) have exactly one
common instance θr1(αp) = θr2(αq), which is ground. In the former cases,
assuming without loss of generality that the most general unifier conveys the
substitution of q by δ(p), we then have that θr1(p) = θr2(δ(p)) and thus S(θr1) ⊆
S(θr2). The inclusion is proper as δ(p) 6= p, or else we would have r1 = r2.

Our main result follows easily, now. Let ϕ ∈ S(θr1⊙1) ∩ S(θr2⊙2). Clearly,
one also has ϕ ∈ S(θr1) ∩ S(θr2 ) 6= ∅. If (a) is the case then r1 = r2 and it
is immediate that also ⊙1 = ⊙2, and we are in situation (1). If r1 6= r2, then
either (b) or (c) must be the case. If (c) is the case then ϕ must be the sole
formula in the intersection, and is therefore a ground formula, so we are in situ-
ation (3). Otherwise, (b) must be the case, and S(θr1) ( S(θr2). Thus, we have
θr1(p) = θr2(δ(p)), where δ(p) = ⊗(δ1(p), . . . , δk(p)) for some connective ⊗ ∈ Σk
with k 6= 0 and one-variable formulas δ1, . . . , δk ∈ S. Hence, we have ϕ =
θr1(⊙1(ϕ1, . . . , ϕk1)) = θr2(⊗(δ1(⊙1(ϕ1, . . . , ϕk1)), . . . , δk(⊙1(ϕ1, . . . , ϕk1)))) =
θr2(⊙2(ψ1, . . . , ψk2)). In particular, this implies that ⊗ = ⊙2 and k = k2. Thus,
θr1(⊙1(q1, . . . , qk1)) = θr2(⊙2(δ1(⊙1(q1, . . . , qk1)), . . . , δk(⊙1(q1, . . . , qk1)))) and
therefore S(θr1⊙1) ( S(θr2⊙2), so we are in situation (2). ✷

Suppose that for a nonbasic formula ϕ ∈ S we have ϕ = θr1(⊙1(ϕ1, . . . , ϕk1))
and ϕ = θr2(⊙2(ψ1, . . . , ψk2)) with r1 6= r2, that is, suppose that θr1⊙ and θr2⊙
are both fit for ϕ despite the fact that θr1 are θr2 are distinct separators. Then,
ϕ ∈ S(θr1⊙1) ∩ S(θr2⊙2) 6= ∅ and we can examine the situation in the light of
Lemma 2.21. If S(θr1⊙1) ∩ S(θr2⊙2) is a singleton then ϕ = ι(θr1⊙1, θr2⊙2),
and we dub ϕ an intersection formula. Otherwise, without loss of generality,
we have that S(θr1⊙1) ( S(θr2⊙2). In this case, we say that θr1⊙1 is more
concrete than θr2⊙2, or that θr2⊙2 is more general than θr1⊙1.

Example 2.22 (Formula fitting and intersections). Let us return to the
case of  L3, in the streamlined form given in Ex. 2.20, Table 2. Recall that we
proposed for this logic the separating sequence θ = 〈id, θ〉 with θ = λp.(¬p ⊃ p).
It is easy to see that both θ∧ and ⊃ are fit for a formula of the form θ(ϕ∧ψ) =
¬(ϕ ∧ ψ) ⊃ (ϕ ∧ ψ), as θ itself has ⊃ as head connective. Clearly, θ∧ is more
concrete and ⊃ is more general. Of course, a formula of the form ϕ ∨ ψ has a
unique fit ∨.

Consider now G+
4 as introduced in Ex. 2.13. Recall that in Ex. 3.3 we used

the separating sequence θ = 〈id, θ1, θ2〉 with θ1 = λp.(a1 ≡ p) and θ2 = λp.(p ≡
a2). The asymmetric definitions of θ1 and θ2 were not without a purpose, as
they allow us to illustrate at this point the existence of an intersection formula,
namely ι(θ1a2, θ2a1) = (a1 ≡ a2).
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It is easy to see that the concreteness/generality order allows us to define
the most concrete combination of separator and connective that fits any given
composite formula that is not an intersection formula: for each such formula ϕ,
the set of all fits for ϕ (obviously non-empty and finite) is totally ordered by
the concreteness/generality order, and therefore a minimum and a maximum
exist. In particular, if θr⊙ is the minimum (most concrete) fit for ϕ then we
say that ϕ is a proper θr⊙-formula.

Given a nonbasic proper θr⊙-formula ϕ = θr⊙(ϕ1, . . . , ϕk), where ⊙ ∈ Σk,
we call each θtϕ1, . . . , θtϕk ∈ S, with 0 ≤ t ≤ r, a generalized immediate subfor-
mula of ϕ. The set gsbf(ϕ) of generalized subformulas of ϕ is obtained by clos-
ing {ϕ} under generalized immediate subformulas, and the proper generalized
subformulas of ϕ, pgsbf(ϕ), are the elements of gsbf(ϕ) \ {ϕ}. The generalized
notion of compositionality that will be presupposed in what follows demands
a measure of formula complexity that is more fine-grained than the canonical
measure given by dpth, and that takes into account both proper θr⊙-formulas
and generalized subformulas.

Definition 2.23. The generalized notion of formula complexity is given by the
function cplx : S −→ N such that:

cplx(ϕ) =





0 if ϕ is basic or an intersection formula

1 + Max
0≤t≤s,1≤i≤k

cplx(θt(ϕi)) if ϕ = θr(⊙(ϕ1, . . . , ϕk)) is a

proper θr⊙-formula,

for ⊙ ∈ Σk, k 6= 0, 0 ≤ r ≤ s,

and ϕ1, . . . , ϕk ∈ S

Note that this complexity function is well-defined precisely because cplx(ϕ)
is completely determined from the values of cplx(θrψ) with 0 ≤ r ≤ s and ψ is
an immediate subformula of ϕ, and not only we have finitely many separators
but also the number of immediate subformulas of ϕ is finite. With respect to
this generalized notion of complexity, formulas of complexity 0 will be called
simple, and formulas of positive complexity will be called analyzable. While
many usual deductive formalisms capitalize on the so-called ‘subformula prop-
erty’, based on the truth-functional principle according to which the behavior
of a formula is to be uniquely determined from the values of its less complex
components, the same idea will later be explored in terms of the generalized no-
tion of formula complexity and its associated generalized subformula property
that takes separators into account as prefixes that help in internalizing ‘without
additional cost’ important semantic information at the syntactical level.

Example 2.24 (Generalized complexity). Returning to the example of  L3

separated by θ = 〈id, θ〉 with θ = λp.(¬p ⊃ p) from Ex. 2.22, we see that formulas
like p or θ(p) are simple. Consider now θ(ϕ ∧ ψ) and ϕ ∧ ψ. Despite the fact
that dpth(θ(ϕ ∧ ψ)) > dpth(ϕ ∧ ψ), both formulas have the same complexity
cplx(θ(ϕ ∧ ψ)) = cplx(ϕ ∧ ψ) = 1 + Max(cplx(ϕ), cplx(θ(ϕ)), cplx(ψ), cplx(θ(ψ))).
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Remark 2.25. Note that if ϕ is a proper ⊙-formula then there can be no
separator θr with r 6= 0 that is a fit for ϕ. Any other syntactic coincidences
besides those that happen between θr with r 6= 0 and the head connective of θr
may in fact be considered a nuisance to the purity of our method. This includes
the case when θr1 and θr2 have common instances with r1 6= r2 and r1, r2 6= 0,
and in particular intersection formulas. However, we must mention that there
is a simple way of avoiding such intricacies. The trick (cf. [26]) is to require
all separators to be primitive unary connectives of the logic. When that is not
originally the case, one may simply work with a suitable conservative extension
of the given logic. In the case of such an extension, there will obviously be a
single fit for each formula ϕ, what simplifies somewhat the calculation of cplx.

As we shall see later on, yet another issue that must be taken into account
for the development of successful tableaux is the possibility of matching the
same signed formula to the premises of distinct (therefore applicable) rules.
The most usual form in which this problem presents itself will be dealt with in
Def. 3.13, by way of an analytic proof strategy intended to guarantee termination
of the proof procedure. For now, to deal with the exceptional cases mentioned
in Lemma 2.21, we need to devote some attention to the case of intersection
formulas.

Given a ground formula ϕ, it is clearly the case that ϕ̂ ∈ Vn and thus either
ϕ̂ ∈ Dm,n or ϕ̂ ∈ Um,n. We may capture the fact that t(ϕ̂) = X , for X ∈ {F, T },
by the following bivalent ‘G-statement’:

Xc:ϕ =⇒ > . (G(ϕ))

In what follows, recall that Sem collects all n-valuations characterizing L.

Lemma 2.26. Let w ∈ Sem and let ϕ ∈ S be a ground formula. Then, w
satisfies G(ϕ).

Proof: Note that w does not satisfy the left-hand side of G(ϕ), as t(w(ϕ)) =
t(ϕ̂) = X , and X 6= Xc. ✷

Example 2.27 (Statements for intersection formulas). Returning to G+
4 ,

from Ex. 2.22, recall that ι(θ1a2, θ2a1) = (a1 ≡ a2) is an intersection formula
that takes an undesignated value, that is, such that t

(
1
3 ≡̂

2
3

)
= F . The corre-

sponding G-statement is

T :a1 ≡ a2 =⇒ >.

While decidability of a given finite-valued truth-functional semantics follows
straightforwardly using the truth-tabular method, it is not at all obvious that
a similar result applies to logics defined by a non-truth-functional bivalent se-
mantics. However, for semantics defined as collections of bivalent statements
as in Def. 2.15, one may easily devise a decision procedure after showing that
the value of any composite formula is uniquely determined by the value of its
generalized subformulas.
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Let us detail what we have just said. We will call a semantics Sem effective if
for determining satisfiability of a given set of formulas Γ it suffices to collect all
partial valuations over the proper generalized subformulas of Γ. In particular,
the value of any formula ϕ with cplx(ϕ) > 0 will be a function of the formulas
in pgsbf(ϕ). Alternatively, for effectiveness one might require that any partial
valuation w|R defined over a collection of formulas R closed under generalized
subformulas should be extendable into a full valuation w ∈ Sem (cf. [1]).

The above notion of effectiveness relies on the intuition that there should be a
computable set Γ⋆ that collects the formulas that ‘really matter’ in determining
the value of Γ. Typically, Γ⋆ denotes the set of atomic variables occurring
in Γ, or the set of proper subformulas of Γ; here we consider instead the set of
proper generalized subformulas of Γ. In fact, to endow an effective semantics
with a decidability procedure, in general we only need pgsbf to be such that:
(a) pgsbf(ϕ) is finite, for every ϕ; (b) pgsbf(ϕ) = ∅ if ϕ is a basic formula;
(c) pgsbf(ϕ) ( pgsbf(ψ) if ϕ ∈ pgsbf(ψ). In that case, everything boils down to
noticing that the value of a (generalized) composite formula ϕ is a function of
the values of its (generalized) atomic content (a specific subset of pgsbf(ϕ)).

It is not hard to show that Sem2, as obtained from our algorithm, is effective.
In fact, the value of a composite formula ϕ is not only calculable from the value
of its generalized subformulas, but it can be computed by at most cplx(ϕ)-nested
uses of the bivalent statements. More precisely:

Proposition 2.28. Let b ∈ Sem2 and ϕ(p1, . . . , pk) ∈ S. Then:

• the value b(ϕ) is uniquely determined from the values b(θr(pi)) for all
0 ≤ r ≤ s and 1 ≤ i ≤ k;

• the value b(ϕ) can be computed using the B(L, θ) statements.

Proof: The first result is a corollary of the proof of Prop. 2.17. Indeed, b = t◦w
for some valuation w ∈ Sem such that, for each 1 ≤ i ≤ k, w(pi) = xi is
the unique value such that θ(xi) = 〈b(pi), b(θ1(pi)), . . . , b(θs(pi))〉. Therefore,
b(ϕ) = t(w(ϕ)) = t(ϕ̂(x1, . . . , xn)). We show next, by induction on the com-
plexity cplx of ϕ, how b(ϕ) can be computed using the bivalent statements.

If ϕ = θr(pi) for some 0 ≤ r ≤ s and 1 ≤ i ≤ k, then b(θr(pi)) is given.
Alternatively, if ϕ = θr(a) for some a ∈ Σ0 and 0 ≤ r ≤ s, then, as explained
in Remark 2.14, one of the rules BθraX has ⊤ on the right-hand side, while the

complementing rule BθraXc has > on the right-hand side. Clearly, b(θr(a)) = X .
Otherwise, if ϕ = ι(θr1⊙1, θr2⊙2) is an intersection formula then b satisfies the
G(ϕ) statement with Xc:ϕ on the left-hand side, and b(ι(θr1⊙1, θr2⊙2)) = X .
Suppose now that ϕ = θr(⊙(ϕ1(p1, . . . , pk), . . . , ϕm(p1, . . . , pk))) is an analyz-
able proper θr⊙-formula. By induction hypothesis, we can compute Xϕj

=
〈b(θ0(ϕj)), . . . , b(θt(ϕj))〉 for each 1 ≤ j ≤ m, thus determining a unique vector

x = 〈x1, . . . , xm〉 ∈ (Vn)m such that θ(xj) = Xϕj
. Now, if x ∈ Rθr⊙X then b

satisfies a disjunct from the right-hand side of the rule, and so b(ϕ) = X . ✷

Decidability is an obvious corollary of the above result. Generalizations of
the usual truth-tabular method in terms of the so-called quasi matrix procedure
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(cf. [16]) may be developed in order to take generalized subformulas appropri-
ately into account (cf. the ‘dyadic semantics’ in [10]). Instead of doing just that,
in the next sections we will show instead how our bivalent semantics may be
utilized in associating adequate analytic proof procedures to the same logics,
that will at once guarantee decidability and also exhibit other pleasant compu-
tational features.

3. Uniform Analytic Classic-Like Branching Tableaux

The results from the preceding section will now be used in showing how the
classic-like semantics associated to a given finite-valued logic by means of biva-
lent statements may be exploited so as to devise an adequate classic-like tableau-
based proof formalism for the logic. Before accomplishing that task, however,
we first have to discuss a couple of technical issues related to the characteriza-
tion of the unobtainable semantic scenarios (which will opportunely give rise to
nonstandard tableau closure rules). Ultimately, to guarantee also termination
in the practice of tableau development (thus determining a decision procedure),
we resort in fact to a suitable generalization of analyticity. To address efficiency
aspects, at a later stage we will also consider a reformulation of the standard
branching tableaux in terms of linear tableaux (with analytic cuts).

3.1. Dealing with partial information and with intersection formulas

Recall from Def. 2.15 the description of the collection B(L, θ) of bivalent state-
ments (U-statements and B-statements) associated to a given separable finite-
valued logic L with separating sequence θ = 〈θr〉

s
r=0. To formulate our method

for associating also a classic-like tableau system to L we must first take a closer
look at the unobtainable binary prints.

Intuitively, the binary prints in {F, T }s+1 \ θ[Vn] bring about information
that does not represent any of the original truth-values of L. As we have shown,
such unobtainable binary prints are conveniently expressed by the bivalent U -
statements in B(L, θ). However, for each unobtainable X ∈ ({F, T }s+1 \ θ[Vn]),
the statement UX is, in general, too coarse for our purposes. What we seek
is to identify information —even if partial— about a binary print that leads
forcibly and unambiguously to an unobtainable state-of-affairs.

Definition 3.1. Let a partial binary print be any sequence Y ∈ {F, T, ↑}s+1

where the symbol ↑ stands for undefinedness (this definition includes, of course,
the total binary prints in {F, T }s+1). By dom(Y ) we denote the set {0 ≤ r ≤
s : Yr 6= ↑}. Given two partial binary prints Y and Z, we say that Y extends Z
if dom(Z) ⊆ dom(Y ) and Zr = Yr for every r ∈ dom(Z). A partial binary

print Y ∈ {F, T, ↑}s+1 is unobtainable if all of its 2s+1−|dom(Y )| possible total
extensions are unobtainable. Further, an unobtainable partial binary print Y
is said to be minimal if it is not an extension of another unobtainable partial
binary print.
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Extending notation from Section 2.3 to cover also partial binary prints, given
Y ∈ {F, T, ↑}s+1, we will write

(&r∈dom(Y )Yr:θr(ϕ)). (V(ϕ ;Y ))

to say that such partial binary print describes (more economically) the original
truth-value of ϕ. As before, we may capture the fact that Y is unobtainable by
the following statement involving an arbitrary ϕ ∈ S:

V(ϕ ;Y ) =⇒ > . (UY )

Lemma 3.2. Let b : S −→ {F, T } be a bivaluation. The (total) binary print
X = 〈b(ϕ), b(θ1(ϕ)), . . . , b(θs(ϕ))〉 is obtainable if and only if b satisfies UY for
every minimal unobtainable partial binary print Y .

Proof: Suppose that b does not satisfy UY for some minimal unobtainable
partial binary print Y . Thus, b satisfies the left-hand side of UY , and therefore
X must extend Y . Hence, as Y is unobtainable and X is total, it must be the
case that X is also unobtainable.

Assume now X is unobtainable and let Y be one (of the possibly many)
minimal partial binary print extended by X . Then, it is clear that b satisfies
the left-hand side of UY and so Y is unobtainable. ✷

The latter result means that, in general, one may replace the U -statements
concerning total unobtainable binary prints by the U -statements for minimal
unobtainable binary prints.

Example 3.3 (Unobtainable binary prints). Consider first the case of  L3,
from Ex. 2.18 and 2.20. Recall that using the separating sequence θ = 〈id, θ〉,
where θ = λp.(¬p ⊃ p) defines the unary operator j1≥ of Ex. 2.10, we get

the binary prints θ(0) = 〈F, F 〉, θ(12 ) = 〈F, T 〉 and θ(1) = 〈T, T 〉. The only
unobtainable binary print 〈T, F 〉 is therefore also minimal.

Consider now the case of G+
4 , from Ex. 2.13, where we add to G4 the

sentential constants a1 and a2 such that â1 = 1
3 and â2 = 2

3 , separated by

θ = 〈id, θ1, θ2〉, where θ1 = λp.(a1 ≡ p) and θ2 = λp.(p ≡ a2). Recall that θ1 and
θ2 define the unary operators k1 and k2, respectively. We get θ(0) = 〈F, F, F 〉,
θ(13 ) = 〈F, T, F 〉, θ(23 ) = 〈F, F, T 〉 and θ(1) = 〈T, F, F 〉. The remaining four bi-
nary prints 〈T, T, F 〉, 〈F, T, T 〉, 〈T, F, T 〉, 〈T, T, T 〉 are unobtainable, but are not
minimal. It is clear that any binary print with more than one T is unobtainable.
Thus, the minimal unobtainable (strictly partial, in this case) binary prints are
〈T, T, ↑〉, 〈T, ↑, T 〉, 〈↑, T, T 〉. For the sake of the illustration, the U -statements
that originate from these partial binary prints are listed in Table 3.

Taking minimal unobtainable partial binary prints into account will prove es-
sential for guaranteeing completeness of our tableau systems, later on.
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(U〈T, T, ↑〉) (T :ϕ & T :θ1(ϕ)) =⇒ >

(U〈T, ↑, T 〉) (T :ϕ & T :θ2(ϕ)) =⇒ >

(U〈↑, T, T 〉) (T :θ1(ϕ) & T :θ2(ϕ)) =⇒ >

Table 3: U -statements for G+

4
separated by 〈id, θ1, θ2〉.

3.2. Tableaux from bivaluations

We are almost ready for defining an appropriate classic-like deductive charac-
terization of the bivalent semantics of the logic at hand.

Definition 3.4. The set BT (L, θ) of classic-like tableau statements associated
to L, fixed a separating sequence θ = 〈θr〉

s
r=0, is formed by all instances of the

following U -statements, B-statements and G-statements:

• UY , for each minimal unobtainable partial binary print Y ;

• Bθr⊙
X , for each X ∈ {F, T }, 0 ≤ r ≤ s and ⊙ ∈ Σ; and

• G(ι(θr1⊙1, θr2⊙2)), for each intersection formula ι(θr1⊙1, θr2⊙2) with 0 ≤
r1, r2 ≤ s and ⊙1,⊙2 ∈ Σ.

In the following, recall that Sem2 is the bivalent semantics of the n-valued
logic L produced by Def. 2.1 and used in Prop. 2.5.

Proposition 3.5. Sem2 is the set of all bivaluations that satisfy BT (L, θ).

Proof: Immediate from Prop. 2.17, and Lemmas 3.2 and 2.26. ✷

To formulate our classic-like tableau systems for separable finite-valued logics
we need one final ingredient, captured by the statement below:

(F :ϕ & T :ϕ) =⇒ > . (ABS)

Notice indeed that the left-hand side of such ABS-statement is satisfied by no
bivaluation, given the functional character of valuations in general.

We are now ready to define our classically-labeled tableau system for L. As
customary, we will represent (branching) tableau rules by

H1, . . . , Hn

C1,1, . . . , C1,n1 | . . . | Ck,1, . . . , Ck,nk

where H1, . . . , Hn are the premises and C1,1, . . . , C1,n1 | · · · | Ck,1, . . . , Ck,nk

is the conclusion of the rule, where each list Ci,1, . . . , Ci,ni
, for 1 ≤ i ≤ k,

represents a branch. In our setting, as all the Hs and Cs are classically-labeled
formulas, we will denote such a rule by

R((H1& . . .&Hn) =⇒ (C1,1& . . .&C1,n1) || . . . || (Ck,1& . . .&Ck,nk
)).

Note that this notation univocally associates a rule to each bivalent statement
whose left-hand side is a conjunction and whose right-hand side is in disjunctive
normal form (recall Remarks 2.16 and 2.19).
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Definition 3.6. The classic-like tableau system T (L, θ) associated to L (and θ)
is composed of the rules R(S) for S ∈ BT (L, θ), plus R(ABS).

We will call closure rules all those rules whose conclusion contain the single
branch >, and nothing else. Clearly, this includes R(ABS), as well as all the
rules R(UY ), for minimally unobtainable Y , and also the rules for intersection
formulas G(ι(θr1⊙1, θr2⊙2)). Note that a closure rule may also result from
R(Bθr⊙

X ), with X ∈ {F, T }, 0 ≤ r ≤ s and ⊙ ∈ Σk, in case the signed formula

X:θr(⊙(ϕ1, . . . , ϕk)) is unsatisfiable, that is, when Rθr⊙X = ∅ (see Remark 2.14).

Example 3.7 (Classic-like tableau systems for  L3 and for G+
4 ). Let’s go

back to  L3, in the streamlined form given in Ex. 2.20 and Table 2, and using
the separating sequence θ = 〈id, θ〉 with θ = λp.(¬p ⊃ p). In that case Def. 3.6
outputs the tableau system T ( L3, θ) consisting of the rules below.

R(ABS)
F :ϕ,T :ϕ

>
R(U(T, F ))

T :ϕ,F :θ(ϕ)
>

R(B
¬
F

)
F :¬ϕ
T :θ(ϕ) R(B

¬
T

)
T :¬ϕ
F :θ(ϕ) R(B

θ¬
F

)
F :θ(¬ϕ)
T :ϕ R(B

θ¬
T

)
T :θ(¬ϕ)
F :ϕ

R(B
⊃
F

)
F :ϕ⊃ψ

T :ϕ,F :ψ|T :θ(ϕ),F :θ(ψ) R(B
⊃
T

)
T :ϕ⊃ψ

F :ϕ,T :θ(ψ)|F :θ(ϕ)|T :ψ

R(B
∨
F

)
F :ϕ∨ψ
F :ϕ,F :ψ R(B

∨
T

)
T :ϕ∨ψ
T :ϕ|T :ψ R(B

∧
F

)
F :ϕ∧ψ
F :ϕ|F :ψ R(B

∧
T

)
T :ϕ∧ψ
T :ϕ,T :ψ

R(B
θ⊃
F

)
F :θ(ϕ⊃ψ)
T :ϕ,F :θ(ψ) R(B

θ∨
F

)
F :θ(ϕ∨ψ)

F :θ(ϕ),F :θ(ψ) R(B
θ∧
F

)
F :θ(ϕ∧ψ)

F :θ(ϕ)|F :θ(ψ)

R(B
θ⊃
T

)
T :θ(ϕ⊃ψ)
F :ϕ|T :θ(ψ) R(B

θ∨
T

)
T :θ(ϕ∨ψ)

T :θ(ϕ)|T :θ(ψ) R(B
θ∧
T

)
T :θ(ϕ∧ψ)

T :θ(ϕ),T :θ(ψ)

Let us now return to G+
4 , from Ex. 2.13 and 3.3, where we added to G4 the

sentential constants a1 and a2, and employed the separating sequence θ =
〈id, θ1, θ2〉, with θ1 = λp.(a1 ≡ p) and θ2 = λp.(p ≡ a2). According to Def. 3.6,
the corresponding classic-like (streamlined) tableau system T (G+

4 , θ) is com-
posed of the rules below.

R(ABS)
F :ϕ,T :ϕ

>
R(U〈T, T, ↑〉)

T :ϕ,T :θ1(ϕ)
>

R(U〈T, ↑, T 〉)
T :ϕ,T :θ2(ϕ)

>

R(U〈↑, T, T 〉)
T :θ1(ϕ),T :θ2(ϕ)

>
R(B

θ1a1
F

)
F :θ1(a1)

>
R(B

θ2a2
F

)
F :θ2(a2)

>

R(B
a1
T

)
T :a1
>

R(B
a2
T

)
T :a2
>

R(B
θ1¬
T

)
T :θ1(¬ϕ)

>
R(B

θ2¬
T

)
T :θ2(¬ϕ)

>

R(G(a1 ≡ a2))
T :a1≡a2

>
R(B

∧
F

)
F :ϕ∧ψ
F :ϕ|F :ψ R(B

∨
F

)
F :ϕ∨ψ
F :ϕ,F :ψ R(B

∧
T

)
T :ϕ∧ψ
T :ϕ,T :ψ

R(B
∨
T

)
T :ϕ∨ψ
T :ϕ|T :ψ R(B

¬
F

)
F :¬ϕ

T :ϕ|T :θ1(ϕ)|T :θ2(ϕ)
R(B

¬
T

)
T :¬ϕ

F :ϕ,F :θ1(ϕ),F :θ2(ϕ)

R(B
⊃
F

)
F :ϕ⊃ψ

T :ϕ,F :ψ|T :θ2(ϕ),F :ψ,F :θ2(ψ)|T :θ1(ϕ),F :ψ,F :θ1(ψ),F :θ2(ψ)

R(B
⊃
T

)
T :ϕ⊃ψ

T :ψ|F :ϕ,T :θ2(ψ)|F :ϕ,F :θ1(ϕ),F :θ2(ϕ)|T :θ1(ϕ),T :θ1(ψ)
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R(B
θ1⊃
F

)
F :θ1(ϕ⊃ψ)

F :θ1(ψ)|F :ϕ,F :θ2(ϕ)
R(B

θ2⊃
F

)
F :θ2(ϕ⊃ψ)
F :ϕ|F :θ2(ψ)

R(B
θ2⊃
T

)
T :θ2(ϕ⊃ψ)
T :ϕ,T :θ2(ψ)

R(B
θ1⊃
T

)
T :θ1(ϕ⊃ψ)

T :ϕ,T :θ1(ψ)|T :θ2(ϕ),T :θ1(ψ)
R(B

θ2∨
F

)
F :θ2(ϕ∨ψ)

F :θ2(ϕ),F :θ2(ψ)|T :ϕ,T :ψ

R(B
θ1∨
F

)
F :θ1(ϕ∨ψ)

F :θ1(ϕ),F :θ1(ψ)|T :ϕ,T :θ2(ϕ)|T :ψ,T :θ2(ψ)

R(B
θ1∧
F

)
F :θ1(ϕ∧ψ)

F :θ1(ϕ),F :θ1(ψ)|F :ϕ,F :θ1(ϕ),F :θ2(ϕ)|F :ψ,F :θ1(ψ),F :θ2(ψ)

R(B
θ2∧
F

)
F :θ2(ϕ∧ψ)

F :θ2(ϕ),F :θ2(ψ)|F :ϕ,F :θ2(ϕ)|F :ψ,F :θ2(ψ)

R(B
θ1∧
T

)
T :θ1(ϕ∧ψ)

T :ϕ,T :θ1(ψ)|T :θ1(ϕ),T :ψ|T :θ1(ϕ),T :θ1(ψ)|T :θ1(ϕ),T :θ2(ψ)|T :θ2(ϕ),T :θ1(ψ)

R(B
θ1∨
T

)
T :θ1(ϕ∨ψ)

F :ϕ,F :θ2(ϕ),T :θ1(ψ)|T :θ1(ϕ),F :ψ,F :θ2(ψ)

R(B
θ2∧
T

)
T :θ2(ϕ∧ψ)

T :ϕ,T :θ2(ψ)|T :θ2(ϕ),T :ψ|T :θ2(ϕ),T :θ2(ψ)
R(B

θ2∨
T

)
T :θ2(ϕ∨ψ)

F :ϕ,T :θ2(ψ)|T :θ2(ϕ),F :ψ

In accordance with our streamlining procedure, described in Remark 2.19, we
have chosen to omit above all tautological rules, namely those corresponding to
Ba1F , Ba2F , Bθ1a1T , Bθ2a2T , Bθ1a2F , Bθ2a1F , Bθ1¬F and Bθ2¬F . Also missing are the rules

corresponding to Bθ1a2T and Bθ2a1T as they in fact coincide with R(G(a1 ≡ a2)).

It is worth noting that for classical logic (no separator formulas needed be-
sides identity) our procedure will output essentially Smullyan’s analytic tableaux
(cf. [31]).

Tableaux develop as usual, by applying rules and building trees that start
from some root consisting of a given set of classically-labeled formulas. In prac-
tical terms, if the premises in the head of a rule R are jointly matched by
formulas in a certain branch of the tableau, then, through the application of R
the tableau is extended by ramifying that very branch into as many branches
as those in the conclusion of R, each such branch comprising the labeled for-
mulas in the original branch plus the suitably instantiated formulas from the
corresponding branch in the conclusion of R. A branch is said to be closed if
it contains >, and a closed tableau is one whose branches are all closed. If a
branch is not closed it is called open; analogously, an open tableau is a tableau
that has some open branch. As usual, a branch of a tableau is said to be ex-
hausted if all applicable rules have already been applied to it. An exhausted
tableau is one whose branches are all exhausted.

From the general definition of our tableau systems, it is easy to check the
following result with respect to the initially given truth-functional semantics.

Proposition 3.8 (Soundness). If an n-valued valuation in Sem satisfies some
initial root set of classically-labeled formulas, then it satisfies all the formulas
in some open branch of any tableau that develops from that root set.

Proof: We already know from Prop. 2.17, 2.5 and 3.5 that a valuation w :
S −→ V ∈ Sem satisfies all the characterizing tableau-like bivalent statements
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associated to L. As it is obvious that w also satisfies all instances of ABS, this
means that if w satisfies the premises of a tableau rule then w must also satisfy
one of its branches. In particular, w cannot satisfy the premises of any of the
closure rules.

If w satisfies an initial root set, then, by definition of tableau and repeated
application of R(Bθr⊙

X ) rules (or equivalent simplified versions thereof), the
result is immediate, as long as we show that the branch satisfied by w can never
be closed. Indeed, as w cannot satisfy the premises of any closure rule, this
means that no closure rule can be applied and the branch is always open. ✷

According to the latter result, if one is able to produce a closed tableau from
a given root set of labeled formulas, then the root set is unsatisfiable.

Example 3.9 (A closed tableau). For illustration, let us consider a well-
known theorem of  L3: ((p ⊃ ¬p) ⊃ p) ⊃ p. A closed tableau for an attempt at
falsifying this formula is depicted in Fig. 1. In this tableau ① denotes R(B⊃

F ),
② denotes R(B⊃

T ), ③ denotes R(ABS), ④ denotes R(Bθ¬F ), ⑤ denotes R(Bθ⊃F ),
⑥ denotes R(Bθ⊃T ), and ⑦ denotes R(U 〈T, F 〉). Note that the tableau is not
exhausted: there are indeed (closed) branches containing nonbasic formulas to
which ④ could still have been applied.

F :((p ⊃ ¬p) ⊃ p) ⊃ p

T :θ((p ⊃ ¬p) ⊃ p)

F :θ(p)

T :θ(p)

>

③

F :p ⊃ ¬p

T :θ(p)

F :θ(¬p)

>

③

T :p

F :¬p

>

⑦

①

⑥

T :(p ⊃ ¬p) ⊃ p

F :p

T :p

>

③

F :θ(p ⊃ ¬p)

T :p

F :θ(¬p)

>

③

⑤

F :p ⊃ ¬p

T :θ(p)

F :θ(¬p)

T :p

>

③

④

T :p

F :¬p

>

③

①

②

①

Figure 1: A closed tableau for F :((p ⊃ ¬p) ⊃ p) ⊃ p in T ( L3, θ).

Given some particular tableau branch, say that a binary print 〈Xr〉
s
r=0 agrees

with the information available in the branch if Xc
r :θr(p) does not occur in the

branch, for each 0 ≤ r ≤ s. Note that this means that either Xr:θr(p) is in the
branch, or else neither T :θr(p) nor F :θr(p) occur in the branch. The following
result may then be proven.

Proposition 3.10 (Completeness). From every open branch of an exhausted
tableau one may extract a valuation in Sem satisfying its root set.

Proof: Let us consider an open branch of an exhausted tableau. Clearly, by
definition, none of the tableau closure rules is applicable, i.e., the branch does
not contain the premises of any of the closure rules.
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Take any assignment e : A → Vn such that, for every p ∈ A, the binary
print θ(e(p)) = 〈Xr〉

s
r=0 agrees with the information available in that branch.

Clearly, such an assignment always exists. Just consider the (possibly partial)
binary print Xp = 〈Xp,r〉

s
r=0 where Xp,r = Xr if Xr:θr(p) is in the branch, and

Xp,r = ↑ otherwise. This sequence is clearly well-defined, given that the rule
R(ABS) is not applicable. Moreover, Xp is obtainable, for none of the rules
R(UY ), with minimally unobtainable Y , is applicable. Therefore, as θ(e(p))
extends Xp, we are done.

We will now show that the homomorphic extension we : S −→ V ∈ Sem

satisfies all the signed formulas in the branch, and consequently also the root set.
The proof is somewhat similar to the proof of Prop. 2.17, but using induction
on the formula complexity instead of on the formula depth.

The base case is actually the most interesting. There are three subcases.

1. IfX:θr(p) is in the branch for some p ∈ A and 0 ≤ r ≤ s then t(we(θr(p))) =
Xp,r = X , by the definition of e.

2. If X:θr(a) is in the branch for some a ∈ Σ0 and 0 ≤ r ≤ s then we just
need to note that R(Bθra

Y c ), where Y = t(we(a)), is a closure rule. As the
branch is exhausted yet open, we must have Y = X .

3. If X:ι(θr1⊙1, θr2⊙2) for some intersection formula then we just need to
note that R(G(ι(θr1⊙1, θr2⊙2))) is a closure rule. Again, as the branch is
exhausted yet open, we have that t(w(ι(θr1⊙1, θr2⊙2))) = X .

For the induction step, let X:θr⊙(ϕ1, . . . , ϕk) be a proper θr⊙-formula appear-
ing in the branch, where 0 ≤ r ≤ s, and ⊙ ∈ Σk for k 6= 0. As the branch
is exhausted, all the formulas in one of the conclusions of R(Bθr⊙

X ) are also in

the branch. By definition of Bθr⊙
X , all these formulas are of the form Xti:θt(ϕi)

with 0 ≤ t ≤ s and 1 ≤ i ≤ k. Clearly, cplx(θt(ϕi)) < cplx(θr⊙(ϕ1, . . . , ϕk)).
Therefore, by induction hypothesis, we satisfies all the formulas in the given
branch of the conclusion of the rule R(Bθr⊙

X ). Recall that the right-hand sides

of Bθr⊙
X and Bθr⊙

Xc are disjoint. So, we cannot satisfy any of the disjuncts in

the right-hand side of Bθr⊙
Xc . It follows that we falsifies Bθr⊙

Xc , meaning that
we(θr⊙(ϕ1, . . . , ϕk)) 6= Xc, thus we satisfies X:θr⊙(ϕ1, . . . , ϕk). ✷

Remark 3.11. In view of Remark 2.14, the reader with a proof-theoretic eye
will have noticed that our tableau rules obtained as counterparts ofB-statements
are invertible. This feature, interesting in itself and related to the desirable re-
duction of nondeterminism in proof-search, has played the expected role in our
completeness proof, above.

Example 3.12 (An infinite tableau.). By themselves, our tableau systems
do not ensure termination. Indeed, we need to go beyond the usual subformula
property in order to define a terminating proof procedure. Fig. 2 depicts a
simple example of an infinite proof in the system T ( L3, θ) of Ex. 3.7. In this
tableau, we refer to rule R(B⊃

T ) as ① and refer to rule R(B⊃
F ) as ②, and we

prune the derivation tree in order to concentrate only on the second branch of
each rule application. It should be clear that the illustrated unwise choice of
rules, alternating ① and ②, will indeed lead to a nonterminating tableau.
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T :θ(p)

i.e. T :¬p ⊃ p

T :p

.

.

.

F :θ(¬p)

i.e. F :¬¬p ⊃ ¬p

T :θ(¬¬p)

i.e. T :¬¬¬p ⊃ ¬¬p

.

.

.

F :θ(¬¬¬p)

i.e. F :¬¬¬¬p ⊃ ¬¬¬p

T :θ(¬¬¬¬p)

i.e. T :¬¬¬¬¬p ⊃ ¬¬¬¬p

.

.

.
.
.
.

.

.

.

①

.

.

.

②

.

.

.

①

T :¬¬p

F :¬p

.

.

.

②

F :¬p

T :θ(p)

.

.

.

①

Figure 2: Infinite tableau for T :θ(p) in T ( L3, θ).

3.3. Generalized analyticity

Though a completely unrestrained choice of rule applications in developing
tableaux may be inconclusive, as illustrated in Ex. 3.12, the very proof of the
completeness result, in Prop. 3.10, suggests that we can do much better by
wisely choosing the rule to be applied in each case. To help formulating a suit-
able strategy, given a labeled formula X:ϕ to which a number of different rules,
R1, R2, . . . , and Rk, might equally be applied, we will call Rj the most concrete
applicable rule in case it contains the most concrete head matching ϕ. Then:

Definition 3.13 (Analytic proof-strategy). When developing a tableau in
T (L, θ), first:

• apply a closure rule, if possible; or else

• use cplx to choose the most complex ϕ such that X:ϕ appears in an open
branch of the tableau, where ϕ is an analyzable formula whose most con-
crete applicable rule has not yet been applied, and then apply this rule.

A branch of a tableau is said to be analytic if it is either closed or all appli-
cable rules according to the analytic proof-strategy have already been applied
to it. An analytic tableau is a tableau containing only analytic branches. Glob-
ally speaking, a tableau system is called analytic if all the formulas that appear
in its branches are proper generalized subformulas of the formulas that appear
in the root set, and if there is an analytic proof strategy that guarantees the
construction of derivation trees to be a terminating procedure. We can here
prove that:

Proposition 3.14. Finite analytic tableaux exist for any given finite root set.

Proof: Recall that the lexicographic order on the naturals is well-founded. Let
us associate the triple (i, j, k) ∈ N × N × N to each tableau, where i is the
maximum complexity of a formula occurring in an open branch of the tableau
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whose corresponding most concrete applicable rule has not yet been applied,
j > 0 is the number of formulas in open branches of the tableau that have
complexity i and whose corresponding most concrete applicable rule has not yet
been applied, and k is the number of open branches of the tableau. We just
need to note that each rule application, according to the analytic proof strategy,
leads to a tableau whose associated triple (i′, j′, k′) is such that either i′ < i, or
i′ = i but j′ < j, or i′ = i and j′ = j but k′ < k.

Clearly, by applying a closure rule, we get k′ < k. If all the undeveloped
formulas of complexity i are in the branch being closed then i′ < i. Otherwise,
i′ = i and thus j′ ≤ j. By applying a rule R(Bθr⊙

X ) to a θr⊙-proper formula,
we either get i′ < i, or else i′ = i with j′ < j. ✷

The following result follows from the proof of Prop. 3.10.

Proposition 3.15 (Completeness by analyticity). From every open branch
of an analytic tableau one may extract a valuation in Sem satisfying its root set.

Corollary 3.16. For a given finite-valued logic L with semantics Sem, we have
that γ1, γ2, . . . , γk |=Sem ϕ if and only if there is a closed analytic tableau for the
root set {T :γ1, T :γ2, . . . , T :γk, F :ϕ}. Hence, the development of an analytic
tableau constitutes a decision procedure for L.

Example 3.17 (Fat tableaux). Given k ∈ N and A ⊆ {1, . . . , k}, let ϕA =

(
∨k
i=1 ϕA,i) with ϕA,i = pi if i ∈ A, and ϕA,i = ¬pi if i /∈ A. For each k ∈ N, let

Φk = (
∧
A⊆{1,...,k} ϕA) be the k-th fat formula of [14]. It is easy to check that all

fat formulas are unsatisfiable not only in Classical Logic but also in the logics
 Ln and Gn, for any n ∈ N. Fig. 3 shows a closed analytic tableau for T :Φ2

that could have been built not just in a tableau system for Classical Logic,
but also in any of the tableau systems T ( Ln, θ) or T (G+

n , θ). Note that the
label ① indicates two subsequent applications of the rule R(B∧

T ) in the tableau
systems T ( L3, θ) or T (G+

4 , θ) of Ex. 3.7. Similarly, the labels ② indicate an
application of the rule R(B∨

T ) in the same systems. The labels ③ indicate the
closure of a branch including T :ϕ and T :¬ϕ for any formula ϕ, namely by using
subsequently R(B¬

T ) and R(ABS). It is a simple corollary of our soundness
and completeness results that similar rules exist in the systems T ( Ln, θ) and
T (G+

n , θ) for arbitrary n.
Closed tableaux for other fat formulas can be similarly obtained. However,

a tableau for T :Φ3, for instance, has already hundreds of branches. Asymptoti-
cally, [14] shows that a closed tableau for T :Φk has more than k! branches.

Example 3.18 (An open tableau). Recall that the root of the non-analytic
infinite tableau of Ex. 3.12, Fig. 2, is a single formula, thus leading trivially to
an exhausted tableau. Part of a more interesting exhausted tableau with an
open branch in the system T (G+

4 , θ) of Ex. 3.7 is depicted in Fig. 4. The open
exhausted branch (the fifth branch from the left) yields a falsifying valuation
for ((p ⊃ ¬p) ⊃ p) ⊃ p with w(p) = 2

3 . The three rightmost unfinished branches
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T :(p ∨ q) ∧ (¬p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q)

T :p ∨ q

T :¬p ∨ q

T :p ∨ ¬q

T :¬p ∨ ¬q T :q

T :q

T :¬q

>

③

T :p

T :¬q

>

③

T :¬p

>

③

②

②

T :¬p

T :¬q

>

③

T :p

>

③

②

②

T :p

T :q

T :¬q

>

③

T :p

T :¬q

>

③

T :¬p

>

③

②

②

T :¬p

>

③

②

②

①

Figure 3: A branching closed tableau for T :Φ2.

can all be easily closed. The remaining falsifying valuation for the formula with
w(p) = 1

3 will be yielded by developing the leftmost unfinished branch of the
tableau. In this tableau we use ① to refer to rule R(B⊃

F ), ② to refer to rule
R(B⊃

T ), ③ to refer to rule R(ABS), ④ to refer to rule R(B¬
F ), and ⑤ to refer to

rule R(U 〈↑, T, T 〉).

F :((p ⊃ ¬p) ⊃ p) ⊃ p

.

.

.
.
.
.

T :(p ⊃ ¬p) ⊃ p

F :p

.

.

.
.
.
.

F :p ⊃ ¬p

T :θ2(p)

T :θ1(p)

F :¬p

F :θ1(¬p)

F :θ2(¬p)
>⑤

F :¬p

F :θ2(¬p)

T :θ2(p)T :θ1(p)

>

⑤

T :p

>

①

④

T :p

F :¬p

>

③

①

T :p

>

③

②

①

Figure 4: An open exhausted tableau in T (G+

4
, θ).

4. Uniform Analytic Classic-Like Cut-Based Tableaux

The tableau systems produced using the recipe in Section 3 may originate very
redundant and highly branching derivation trees, such as some of the tableau
proofs pictured above. This unpleasant fact is actually a common feature of
branching tableau systems, and an extreme case of the undesirable explosion
that might originate from accumulating such redundancies is provided by the
fat formulas of Ex. 3.17, which also show that branching tableaux cannot poly-
nomially simulate the truth-table method. The key point here is that while the
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complexity of truth-tables for finite-valued logics depends only on the number
of distinct atomic variables occurring in the formula to be decided, the size of
branching tableaux, in the worst cases, might depend essentially on the length
of such a formula.

To circumvent such problems, in the case of Classical Logic, D’Agostino and
Mondadori [15, 14] have introduced the cut-based ‘KE system’ of tableaux, and
shown that such system allows for much more efficient tableau proofs; namely,
they have proven that KE tableaux can polynomially simulate truth tables
(while the simulation does not work the other way round) and are therefore in
general more efficient than Smullyan’s analytic tableaux. The main feature of
the system is that it consists of linear rules for the connectives, and a unique
branching rule — the cut rule. We should note that an application of the KE
approach to the case of many-valued logics has been proposed in [20, Chapter
6.1], where a cut-based version of the sets-as-signs tableau systems is briefly
described.

In this section we show how one can adapt the approach of the previous
section in order to obtain, in the general case, more efficient cut-based classic-
like tableau systems for finite-valued logics, in which the only branching rule is
an analytic version of the cut rule. Generalizing D’Agostino and Mondadori’s
results, we will show that such cut-based systems allow in general to develop
tableaux that polynomially simulate n-valued truth-tables, thus providing fur-
ther evidence of their advantages over the branching systems.

4.1. Linear bivalent statements

We start by looking for a way of replacing the B-statements of Subsection 2.3 by
a collection of equivalent linear statements — that is, statements whose right-
hand sides are just conjunctions of labeled formulas. Let us here fix an n-valued
logic L with a set of constructors Σ and an appropriate separating sequence
θ = 〈θr〉

s
r=0. We are interested in exploiting to our advantage the information

carried by labeled formulas such as X:θr(⊙(ϕ1, . . . , ϕk)), where 0 ≤ r ≤ s and
⊙ ∈ Σk, X ∈ {F, T } and ϕ1, . . . , ϕk ∈ S, and on that quest we will be guided
by the following questions: given a certain amount of partial information about
a given valuation, can we conclude that the labeled formula is satisfied? and if
so, how much more information about that valuation can we gather?

Definition 4.1. A vector of partial binary prints is a finite sequence Y =
〈Y1, . . . , Yk〉 where Yi is a partial binary print, for each 1 ≤ i ≤ k. We add

an extra dimension to the definition of dom (Def. 3.1) and use here dom(Y ) to
denote the set {〈i, r〉 : 1 ≤ i ≤ k and r ∈ dom(Yi)} (the context of usage will
always take care that such overload of dom does not get us into trouble). Given

two k-long vectors Y and Z, we say that Y extends Z if Yi extends Zi for all
1 ≤ i ≤ k.

Let Y = 〈Y1, . . . , Yk〉 be a vector of partial binary prints, and recall from

Section 2 the definition of Rθr⊙X as {x ∈ (Vn)k : t(θ̂r(⊙̂(x))) = X}. Given
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x = 〈x1, . . . , xk〉 ∈ (Vn)k, we use θ(x) to denote the vector of binary prints

〈θ(x1), . . . , θ(xk)〉 and, by slightly abusing notation, Rθr⊙X ∩Y to denote the set

{x ∈ Rθr⊙X : θ(x) extends Y }. We say that X:θr(⊙(ϕ1, . . . , ϕk)) is satisfied by Y

ifRθr⊙X ∩Y 6= ∅. We can characterize the situation in whichX:θr(⊙(ϕ1, . . . , ϕk))

is not satisfied by Y using the following linear statement:

X:θr(⊙(ϕ1, . . . , ϕk)) & V (ϕ1, . . . , ϕk;Y ) =⇒ >. (Lθr⊙
XY

)

When X:θr(⊙(ϕ1, . . . , ϕk)) is indeed satisfied by Y we must look for additional

information. Let Z be another k-long vector such that dom(Y ) ∩ dom(Z) =

∅. We say that Y entails Z with respect to X:θr(⊙(ϕ1, . . . , ϕk)) just in case

Rθr⊙X ∩ Y ⊆ Rθr⊙X ∩ Z. Note that if Y entails both Z and W with respect

to X:θr(⊙(ϕ1, . . . , ϕk)) then Z and W are necessarily compatible, in the sense
that, for each 1 ≤ i ≤ k and 0 ≤ t ≤ s, if Zit 6= ↑ and Wit 6= ↑ then Zit = Wit.

This means that Z and W may be merged into a single vector that extends both

and that is also entailed by Y with respect to X:θr(⊙(ϕ1, . . . , ϕk)). Hence, there

is a largest (i.e., most defined) vector entailed by Y with respect to such given

labeled formula, which we will denote by M(Rθr⊙X , Y ). Clearly, M(Rθr⊙X , Y )

contains all the new information (not in Y ) that is invariant among the elements

of Rθr⊙X ∩Y . Thus, we have that M(Rθr⊙X , Y )it = ↑ if 〈i, t〉 ∈ dom(Y ), or if there

exist u, v ∈ Rθr⊙X ∩Y such that t(θ̂t(ui)) 6= t(θ̂t(vi)). Otherwise M(Rθr⊙X , Y )it =

t(θ̂t(xi)) for any x ∈ Rθr⊙X ∩ Y .
We can finally describe the information extractible fromX:θr(⊙(ϕ1, . . . , ϕk))

satisfied by Y by means of the following linear statement:

X:θr(⊙(ϕ1, . . . , ϕk)) &V (ϕ1, . . . , ϕk;Y ) =⇒V (ϕ1, . . . , ϕk;M(Rθr⊙X , Y )). (Lθr⊙
XY

)

Lemma 4.2. Let b : S −→ {F, T } be a bivaluation, X ∈ {F, T }, 0 ≤ r ≤ s,

and ⊙ ∈ Σk. Then, b satisfies Bθr⊙X if and only if, for every k-long vector Y of

partial binary prints, b satisfies Lθr⊙
XY

.

Proof: Given a bivaluation b let us denote by B the vector of (total) binary
prints 〈〈b(θt(ϕ1))〉st=0, . . . , 〈b(θt(ϕk))〉st=0〉 induced by b.

Let b satisfy Bθr⊙X , and consider a vector Y . If b satisfies the left-hand side of

Lθr⊙
XY

then, in particular, b satisfies the left-hand side of Bθr⊙X and therefore also

one of the disjuncts on the right, i.e., b satisfies V(ϕ1, . . . , ϕk ; θ(x)) for some

x ∈ Rθr⊙X . Note that this means precisely that B = θ(x). As we also know that

B extends Y we then get x ∈ Rθr⊙X ∩ Y ⊆ Rθr⊙X ∩M(Rθr⊙X , Y ). In that case, B

also extends M(Rθr⊙X , Y ) and b satisfies thus the right-hand side of Lθr⊙
XY

.
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For the other direction, assume that b satisfies Lθr⊙
XY

for every k-long vector Y .

If b also satisfies the left-hand side of Bθr⊙X then b necessarily satisfies the left-

hand side of Lθr⊙
XB

. Thus, b must also satisfy the right-hand side of Lθr⊙
XB

, and

this implies that Rθr⊙X ∩B 6= ∅. Therefore, there exists x ∈ Rθr⊙X such that θ(x)

extends B, that is θ(x) = B, and so b satisfies the disjunct V(ϕ1, . . . , ϕk ; θ(x))
on the right-hand side of Bθr⊙X . ✷

Remark 4.3. One should note that, according to the above proof, it would

suffice to consider the statements Lθr⊙
XY

where Y is a total vector. However,

we shall see at the end of Subsection 4.3 that the additional statements will
allow, within our cut-based tableau systems, for the development of even more
economical derivation trees.

The following definition should be contrasted to the earlier Def. 3.4.

Definition 4.4. The set Blin
T (L, θ) of linear bivalent statements associated to L,

fixed a separating sequence θ = 〈θr〉
s
r=0, is formed by all instances of:

• U〈Y 〉, for each minimal unobtainable partial binary print Y ;

• Lθr⊙
XY

, for each X ∈ {F, T }, 0 ≤ r ≤ s, ⊙ ∈ Σk and each k-long vector Y

of partial binary prints; (L-statements)

• G(ι(θr1⊙1, θr2⊙2)), for each intersection formula ι(θr1⊙1, θr2⊙2) with 0 ≤
r1, r2 ≤ s and ⊙1,⊙2 ∈ Σ.

In what follows, recall that Sem2 is the bivalent semantics of the n-valued
logic L produced by Def. 2.1.

Proposition 4.5. Sem2 is the set of all bivaluations that satisfy Blin

T (L, θ).

Proof: Immediate from Prop. 3.5 and Lemma 4.2. ✷

Example 4.6 (Linear characterization of ¬ in  L3). Back to the example
of  L3, separated by θ = 〈id, θ〉, where θ = λp.(¬p ⊃ p), the bivalent statements
L¬

FY
are shown in Table 4.

(L¬
F 〈↑↑〉) F :¬ϕ =⇒ T :θ(ϕ)

(L¬
F 〈F↑〉) F :¬ϕ & F :ϕ =⇒ T :θ(ϕ)

(L¬
F 〈T↑〉) F :¬ϕ & T :ϕ =⇒ T :θ(ϕ)

(L¬
F 〈↑F 〉) F :¬ϕ & F :θ(ϕ) =⇒ >

(L¬
F 〈↑T〉) F :¬ϕ & T :θ(ϕ) =⇒ ⊤

(L¬
F 〈FF 〉) F :¬ϕ & F :ϕ & F :θ(ϕ) =⇒ >

(L¬
F 〈FT〉) F :¬ϕ & F :ϕ & T :θ(ϕ) =⇒ ⊤

(L¬
F 〈TF 〉) F :¬ϕ & T :ϕ & F :θ(ϕ) =⇒ >

(L¬
F 〈TT〉) F :¬ϕ & T :ϕ & T :θ(ϕ) =⇒ ⊤

Table 4: Some Blin

T ( L3, 〈id, λp.(¬p ⊃ p)〉) statements for ¬.
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Remark 4.7. The set of linear statements associated to a logic may often be
substantially simplified, again with no danger of spoiling the result of Prop. 4.5,
nor any of the subsequent results. The rationale is not to simplify each rule per
se, but the collection of all statements Lθr⊙

XY
for fixed X ∈ {F, T }, 0 ≤ r ≤ s

and ⊙ ∈ Σ. Indeed, such rules may contain a lot of redundancies. Consider
for instance the rule L¬

F 〈F↑〉 above. Clearly, it is implied by the rule L¬
F 〈↑↑〉, as

no new information is obtained by adding F :ϕ. Hence, L¬
F 〈F↑〉 may be safely

eliminated. Pick now the rule L¬
F 〈↑F 〉 above. Note that the right-hand side of

L¬
F 〈↑↑〉 contradicts F :θ(ϕ). Again, rule L¬

F 〈↑F 〉 may be safely dispensed with.

In general, a rule Lθr⊙
XZ

may be eliminated whenever there exists a distinct

vector Y such that Z extends Y and M(Rθr⊙X , Y ) extends M(Rθr⊙X , Z). Further,

a rule Lθr⊙
XZ

where X:θr(⊙(ϕ1, . . . , ϕk)) is not satisfied by Z may be eliminated

when there exists a distinct vector Y such that Z extends Y but Z is incom-
patible with M(Rθr⊙X , Y ). Such a simplification strategy may be systematically
applied to reach a streamlined (shorter but equivalent) version of the set of
linear statements. Again, we should note that none of the results in this paper
depends on (or is affected by) performing such a simplification.

Back to the example in Table 4, it is easy to check that the only strictly
necessary rule is L¬

F 〈↑↑〉.

Example 4.8 (Linear characterization of  L3). The (streamlined) set of lin-
ear bivalent statements characterizing  L3, separated by θ = 〈id, θ〉 where θ =
λp.(¬p ⊃ p), includes U〈T, F 〉 plus the statements shown in Table 5.

4.2. Cut-based systems

We still miss the basic ingredient of cut-based tableau systems, namely a state-
ment capturing the classical principle of excluded middle (this was carefully
discussed under the appellation ‘Principle of Bivalence’ in [12]):

=⇒ F :ϕ || T :ϕ. (CUT)

Definition 4.9. The classic-like cut-based tableau system Tcut(L, θ) associated
to L (and θ) is composed of the rule R(CUT), the rules R(S) for S ∈ Blin

T (L, θ)
and R(ABS). In such system, fixed a given branch of a given tableau, and
given some formula ϕ, an application of R(CUT) over ϕ in that branch is called
analytic in case ϕ is a generalized subformula of some formula already occurring
in that very branch.

Example 4.10 (A cut-based tableau system for  L3). A cut-based tableau
system Tcut( L3, θ), for θ = 〈id, θ〉, where θ = λp.(¬p ⊃ p), consists of the rules
R(CUT), R(ABS), R(U〈T, F 〉) and a rule R(Lθr⊙

XY
) for each statement Lθr⊙

XY
in

Table 5. An example of a cut-based derivation in this system may be found in
Fig. 5.
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(L¬
F 〈↑↑〉) F :¬ϕ =⇒ T :θ(ϕ)

(L¬
T〈↑↑〉) T :¬ϕ =⇒ F :ϕ & F :θ(ϕ)

(Lθ¬
F 〈↑↑〉) F :θ(¬ϕ) =⇒ T :ϕ & T :θ(ϕ)

(Lθ¬
T〈↑↑〉) T :θ(¬ϕ) =⇒ F :ϕ

(L⊃
F 〈↑↑↑↑〉) F :ϕ ⊃ ψ =⇒ T :θ(ϕ) & F :ψ

(L⊃
F 〈↑↑↑T〉) F :ϕ ⊃ ψ & T :θ(ψ) =⇒ T :ϕ & T :θ(ϕ) & F :ψ

(L⊃
F 〈F↑↑↑〉) F :ϕ ⊃ ψ & F :ϕ =⇒ T :θ(ϕ) & F :ψ & F :θ(ψ)

(L⊃
T〈↑↑↑F 〉) T :ϕ ⊃ ψ & F :θ(ψ) =⇒ F :ϕ & F :θ(ϕ) & F :ψ

(L⊃
T〈↑↑F↑〉) T :ϕ ⊃ ψ & F :ψ =⇒ F :ϕ

(L⊃
T〈↑↑T↑〉) T :ϕ ⊃ ψ & T :ψ =⇒ T :θ(ψ)

(L⊃
T〈↑F↑↑〉) T :ϕ ⊃ ψ & F :θ(ϕ) =⇒ F :ϕ

(L⊃
T〈↑FT↑〉) T :ϕ ⊃ ψ & F :θ(ϕ) & T :ψ =⇒ F :ϕ & T :θ(ψ)

(L⊃
T〈↑T↑↑〉) T :ϕ ⊃ ψ & T :θ(ϕ) =⇒ T :θ(ψ)

(L⊃
T〈↑TF↑〉) T :ϕ ⊃ ψ & T :θ(ϕ) & F :ψ =⇒ F :ϕ & T :θ(ψ)

(L⊃
T〈T↑↑↑〉) T :ϕ ⊃ ψ & T :ϕ =⇒ T :θ(ϕ) & T :ψ & T :θ(ψ)

(Lθ⊃
F 〈↑↑↑↑〉) F :θ(ϕ ⊃ ψ) =⇒ T :ϕ & T :θ(ϕ) & F :ψ & F :θ(ψ)

(Lθ⊃
T〈↑↑↑F 〉) T :θ(ϕ ⊃ ψ) & F :θ(ψ) =⇒ F :ϕ & F :ψ

(Lθ⊃
T〈↑↑T↑〉) T :θ(ϕ ⊃ ψ) & T :ψ =⇒ T :θ(ψ)

(Lθ⊃
T〈↑F↑↑〉) T :θ(ϕ ⊃ ψ) & F :θ(ϕ) =⇒ F :ϕ

(Lθ⊃
T〈↑FT↑〉) T :θ(ϕ ⊃ ψ) & F :θ(ϕ) & T :ψ =⇒ F :ϕ & T :θ(ψ)

(Lθ⊃
T〈T↑↑↑〉) T :θ(ϕ ⊃ ψ) & T :ϕ =⇒ T :θ(ϕ) & T :θ(ψ)

(L∨
F 〈↑↑↑↑〉) F :ϕ ∨ ψ =⇒ F :ϕ & F :ψ

(L∨
T〈↑↑↑F 〉) T :ϕ ∨ ψ & F :θ(ψ) =⇒ T :ϕ & T :θ(ϕ) & F :ψ

(L∨
T〈↑↑F↑〉) T :ϕ ∨ ψ & F :ψ =⇒ T :ϕ & T :θ(ϕ)

(L∨
T〈↑↑T↑〉) T :ϕ ∨ ψ & T :ψ =⇒ T :θ(ψ)

(L∨
T〈↑F↑↑〉) T :ϕ ∨ ψ & F :θ(ϕ) =⇒ F :ϕ & T :ψ & T :θ(ψ)

(L∨
T〈F↑↑↑〉) T :ϕ ∨ ψ & F :ϕ =⇒ T :ψ & T :θ(ψ)

(L∨
T〈T↑↑↑〉) T :ϕ ∨ ψ & T :ϕ =⇒ T :θ(ϕ)

(L∨
T〈T↑T↑〉) T :ϕ ∨ ψ & T :ϕ & T :ψ =⇒ T :θ(ϕ) & T :θ(ψ)

(Lθ∨
F 〈↑↑↑↑〉) F :θ(ϕ ∨ ψ) =⇒ F :ϕ & F :θ(ϕ) & F :ψ & F :θ(ψ)

(Lθ∨
T〈↑↑↑F 〉) T :θ(ϕ ∨ ψ) & F :θ(ψ) =⇒ T :θ(ϕ) & F :ψ

(Lθ∨
T〈↑↑T↑〉) T :θ(ϕ ∨ ψ) & T :ψ =⇒ T :θ(ψ)

(Lθ∨
T〈↑F↑↑〉) T :θ(ϕ ∨ ψ) & F :θ(ϕ) =⇒ F :ϕ & T :θ(ψ)

(Lθ∨
T〈T↑↑↑〉) T :θ(ϕ ∨ ψ) & T :ϕ =⇒ T :θ(ϕ)

(Lθ∨
T〈T↑T↑〉) T :θ(ϕ ∨ ψ) & T :ϕ & T :ψ =⇒ T :θ(ϕ) & T :θ(ψ)

(L∧
F 〈↑↑↑F 〉) F :ϕ ∧ ψ & F :θ(ψ) =⇒ F :ψ

(L∧
F 〈↑↑T↑〉) F :ϕ ∧ ψ & T :ψ =⇒ F :ϕ & T :θ(ψ)

(L∧
F 〈↑F↑↑〉) F :ϕ ∧ ψ & F :θ(ϕ) =⇒ F :ϕ

(L∧
F 〈↑F↑F 〉) F :ϕ ∧ ψ & F :θ(ϕ) & F :θ(ψ) =⇒ F :ϕ & F :ψ

(L∧
F 〈T↑↑↑〉) F :ϕ ∧ ψ & T :ϕ =⇒ T :θ(ϕ) & F :ψ

(L∧
T〈↑↑↑↑〉) T :ϕ ∧ ψ =⇒ T :ϕ & T :θ(ϕ) & T :ψ & T :θ(ψ)

(Lθ∧
F 〈↑↑↑F 〉) F :θ(ϕ ∧ ψ) & F :θ(ψ) =⇒ F :ψ

(Lθ∧
F 〈↑↑↑T〉) F :θ(ϕ ∧ ψ) & T :θ(ψ) =⇒ F :ϕ & F :θ(ϕ)

(Lθ∧
F 〈↑↑T↑〉) F :θ(ϕ ∧ ψ) & T :ψ =⇒ F :ϕ & F :θ(ϕ) & T :θ(ψ)

(Lθ∧
F 〈↑F↑↑〉) F :θ(ϕ ∧ ψ) & F :θ(ϕ) =⇒ F :ϕ

(Lθ∧
F 〈↑F↑F 〉) F :θ(ϕ ∧ ψ) & F :θ(ϕ) & F :θ(ψ) =⇒ F :ϕ & F :ψ

(Lθ∧
F 〈↑T↑↑〉) F :θ(ϕ ∧ ψ) & T :θ(ϕ) =⇒ F :ψ & F :θ(ψ)

(Lθ∧
F 〈T↑↑↑〉) F :θ(ϕ ∧ ψ) & T :ϕ =⇒ T :θ(ϕ) & F :ψ & F :θ(ψ)

(Lθ∧
T〈↑↑↑↑〉) T :θ(ϕ ∧ ψ) =⇒ T :θ(ϕ) & T :θ(ψ)

Table 5: The streamlined L-statements in Blin

T ( L3, 〈id, λp.(¬p ⊃ p)〉).
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It is worth remarking that for Classical Logic we obtain precisely the KE
system of [15, 14].

We will now check soundness and completeness of our cut-based tableau
system Tcut(L, θ). In particular, the completeness proof will show that it is
possible to restrict the use of the rule R(CUT) to analytic applications only.

Proposition 4.11 (Soundness). If an n-valued valuation satisfies some ini-
tial root set of classically-labeled formulas, then it satisfies all the formulas in
some open branch of any tableau proof that originates from that root set in the
system Tcut(L, θ).

Proof: Consider an n-valued valuation w : S −→ V in Sem. We know from
Prop. 4.5 that such a valuation satisfies all the linear bivalent statements asso-
ciated to L. Clearly, w also satisfies all instances of ABS and CUT. It follows
that if w satisfies the premises of a Tcut(L, θ) rule then w must also satisfy one
of the branches in its conclusion. In particular, this means that w cannot satisfy
the premises of any closure rule.

By iterating the argument above, we conclude that if w satisfies an initial
root set, then there exists a branch of the tableau proof where all the formulas
are satisfied by w. Since w cannot satisfy the premises of a closure rule, such a
branch must be open. ✷

Proposition 4.12 (Completeness). From every open branch of an exhausted
tableau derived in the system Tcut(L, θ), where we allow only analytic applica-
tions of R(CUT), one may extract a valuation in Sem satisfying its root set.

Proof: The following argument is similar to the one used the proof of Prop. 3.10.
Given an open branch of an exhausted tableau, we can consider an assignment
w : A −→ V ∈ Sem such that, for every p ∈ A, the binary print θ(e(p)) =
〈Xr〉

s
r=0 agrees with the information available in that branch, i.e., Xc

r :θr(p)
does not occur in the branch, for each 0 ≤ r ≤ s. In Prop. 3.10, we proved that
such an assignment always exists for tableaux derived in T (L, θ), by observing
that otherwise a closure rule could have been applied, thus contradicting the
fact that the branch is open and exhausted. Since each closure rule of T (L, θ)
is also a rule of Tcut(L, θ), the same proof applies here. We need to show that
we : S −→ V ∈ Sem, the homomorphic extension in Sem of the assignment w,
satisfies all the signed formulas in the branch, and consequently also the root
set. We proceed by induction on the formula complexity. For the base case,
we refer the reader again to the proof of Prop. 3.10, which applies here without
any modification. Now consider the induction step. Let X:θr⊙(ϕ1, . . . , ϕk) be
a proper θr⊙-formula appearing in the branch, where 0 ≤ r ≤ s and ⊙ ∈ Σk for
k 6= 0. As the branch is exhausted, all the immediate generalized subformulas
of X:θr⊙(ϕ1, . . . , ϕk) also occur in the branch, i.e., for 1 ≤ i ≤ k, 0 ≤ t ≤ s,
either F :θt(ϕi) occurs in the branch or T :θt(ϕi) occurs in the branch (other-
wise an analytic application of R(CUT) would be possible). Let us denote

such formulas by Xti:θt(ϕi) and let Y = 〈〈Xti〉
s
t=0〉

k
i=1 be the corresponding
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vector of (total) binary prints. We observe that the right-hand side of Lθr⊙
XY

cannot be >, otherwise an application of R(Lθr⊙
XY

) would close the branch. It

follows that the right-hand side of Lθr⊙
XcY

is necessarily >. As we satisfies Lθr⊙
XcY

,

it must be the case that we does not satisfy its left-hand side. Clearly, we
have cplx(θt(ϕi)) < cplx(θr⊙(ϕ1, . . . , ϕk)). Therefore, by induction hypothesis,
we satisfies all the formulas Xti:θt(ϕi). As we does not satisfy the left-hand
side of Lθr⊙

XcY
, we conclude that we(θr⊙(ϕ1, . . . , ϕk)) 6= Xc; thus we satisfies

X:θr⊙(ϕ1, . . . , ϕk). ✷

As a lesson to be learned from the previous proof, one might now propose:

Definition 4.13 (Analytic proof-strategy for cut-based systems). When
developing a tableau in Tcut(L, θ), first:

• apply a closure rule, if possible; or else

• use cplx to choose the most complex ϕ such that X:ϕ appears in an open
branch of the tableau, where ϕ is an analyzable proper θr⊙-formula to
which L-rules of the form R(Lθr⊙

X,Y
) have not yet been applied, and then:

– apply R(CUT) to all the immediate generalized subformulas of ϕ;

– on each branch that develops from that, apply all the L-rules R(Lθr⊙
X,Y

)

that happen to be applicable.

As in the cut-free case, also in the cut-based approach an analytic tableau is
a tableau containing only analytic branches (those that are either closed or such
that all applicable rules according to the analytic proof-strategy have already
been applied to them). The notion of analyticity for a cut-based tableau system
extends the concept used in the cut-free case by commanding the exclusive use
of analytic cuts, that is, cuts involving generalized subformulas of the formulas
occurring in a given branch, following the proof-strategy explained above. With
that in mind, we can now prove that:

Proposition 4.14. Finite analytic tableaux exist in Tcut(L, θ) for any given
finite root set.

Proof: As in the corresponding proof of Prop. 3.14 for branching tableaux, we
may associate the triple 〈i, j, k〉 ∈ N × N × N to each tableau, where i is the
maximum complexity of a formula occurring in an open branch of the tableau
whose corresponding L-rules have not yet been applied, j > 0 is the number
of formulas in open branches of the tableau that have complexity i and whose
corresponding L-rules have not yet been applied, and k is the number of open
branches of the tableau. After each application of a closure rule or after each
sequence of applications corresponding to the second option in Def. 4.13, the
procedure leads to a tableau whose associated triple 〈i′, j′, k′〉 is such that either
i′ < i, or i′ = i but j′ < j, or i′ = i and j′ = j but k′ < k.
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In the application of closure rules, the same arguments used in Prop. 3.14
go through. Otherwise, note that after applying R(CUT) on all the immediate
subformulas of an analyzable proper θr⊙-formula and then applying all the
corresponding L-rules, we either get i′ < i, or i′ = i but j′ < j. ✷

The following result may be proved as in Prop. 4.12.

Proposition 4.15 (Completeness by analyticity). From every open branch
of an analytic tableau of Tcut(L, θ) one may extract a valuation in Sem satisfying
its root set.

Corollary 4.16. Let L be a finite-valued logic separated by θ. The analytic
tableau development for Tcut(L, θ) constitutes a decision procedure for L.

4.3. Proof complexity

We already know from Coroll. 4.16 that cut-analyticity guarantees that the cut-
based tableau system Tcut(L, θ) may be used as a decision procedure for L. Since
finite-valued logics are known to be decidable by the ‘brute force’ truth-table
method, it would seem interesting to compare the computational complexity of
the two methods. As in the case of the KE system for Classical Logic (see [12]),
it is expectable that our cut-based tableaux for finite-valued logics fare signif-
icantly better than conventional tableaux in terms of proof complexity, and in
general not worse than the truth-table method. We adapt from [14] the defini-
tion of some typical complexity measures to be used below.

Definition 4.17. The size of a tableau π, denoted by |π|, is the total number
of labeled formulas occurring in π. The λ-complexity of a tableau π, denoted
by λ(π), is the number of nodes in π. The ρ-complexity of a tableau π, denoted
by ρ(π), is the maximum number of labeled formulas in a node of π.

Clearly, the following relation holds in general: |π| ≤ λ(π · ρ(π)). Note that
in the case of a tableau π developed within Tcut(L, θ), the ρ-complexity of π
is bounded by ρ(π) ≤ r(s + 1), where s + 1 is the length of the separating
sequence θ and r is the maximum arity of any connective of L.

The following result shows that the cut-based tableau systems from Def. 4.9
can polynomially simulate (p-simulate) the truth-table method. We use sz(ϕ)
to denote the size of the set sbf(ϕ).

Proposition 4.18. Given a valid labeled formula X:ϕ(p1, . . . , pk) of L there is
a closed tableau π of Xc:ϕ in Tcut(L, θ) with λ(π) = O(sz(ϕ) · (s+ 1) · 2k(s+1)).

Proof: Here we follow a very simple procedure, different from the one described
in Def. 4.13. First we apply R(CUT) to all the basic proper generalized sub-
formulas of ϕ. This will generate a tree with 2k(s+1) branches. Then, for each
such branch, we proceed by applying R(CUT) to an immediate generalized sub-
formula ϕi of ϕ such that all of its immediate generalized subformulas already
occur in the branch. By construction, such a ϕi exists. We note that at least
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one of the two branches thereby generated gives rise to a contradiction and may
be closed by applying at most one L-rule and one closure rule. Indeed, by the
definition of the system, either the system contains an L-rule for ϕi whose appli-
cation gives rise to a contradiction on one of the proper generalized subformulas
of ϕi, which we close by means of R(ABS), or, as a trivial case, ϕi is not satis-
fiable by any vector of partial binary prints and we can apply an L-closure rule,
that is, either F :ϕi =⇒ > or T :ϕi =⇒ >. If one of the branches does not close,
we can reiterate on it the same procedure, by applying R(CUT) to a further
proper generalized subformula of ϕ such that all its immediate proper general-
ized subformulas are in the branch. We conclude by noticing that all the initial
2k(s+1) branches may be closed by following the above described procedure, i.e.,
by applying R(CUT) to at most all the proper generalized subformulas of ϕ,
and so linearly in sz(ϕ) · (s+ 1). ✷

It is worth noting, here, that the latter result shows that cut-based tableaux
are able to p-simulate the truth-table method. Indeed, in general, an n-valued
truth-table for ϕ(p1, . . . , pk) will have nk rows and sz(ϕ) columns, each entry
containing a value in Vn represented by log2(n) bits. But we have also seen
in Remark 2.8 that, in optimal cases, the number of necessary separating for-
mulas is s+ 1 = log2(n), which renders precisely the λ-complexity obtained in
Prop. 4.18.

We can further show that Tcut(L, θ) is never worse than T (L, θ). Intuitively,
we must be able to reproduce efficiently in Tcut(L, θ) any tableau developed
within T (L, θ).

Proposition 4.19. For every proof π in the system T (L, θ), there exists a proof
πcut with the same root in the system Tcut(L, θ) such that |πcut| ≤ |π|.

Proof: It is enough to show that each branching rule of T (L, θ) may be ef-
ficiently derived in the cut-based system; the nonbranching rules of T (L, θ)
are already primitive rules of Tcut(L, θ). Let us consider an arbitrary such a
branching rule R(Bθr⊙X ):

X:θr(⊙(ϕ1, . . . , ϕk)) =⇒ ||
Z∈Rθr⊙

X

V(ϕ1, . . . , ϕk ;Z)

Starting with root X:θr(⊙(ϕ1, . . . , ϕk)), in Tcut(L, θ) we can follow a pro-
cedure consisting in: (i) applying linear elimination rules of the form R(Lθr⊙

XY
)

whenever possible; (ii) if there is no Y for which the rule R(Lθr⊙
XY

) may be ap-

plied, then there exist 1 ≤ i ≤ k and 0 ≤ t ≤ s such that both F :θt(ϕi) and
T :θt(ϕi) are present in (at least one branch of) the conclusion of R(Bθr⊙X ); then
we apply R(CUT) on θt(ϕi) and repeat the procedure. It is easy to see that,
by construction, the amount of information in the simulating tree is not bigger
than the one produced by the given rule, i.e., each formula in such a simulating
tree also occurs in at least one branch of the rule R(Bθr⊙X ). ✷

The decision procedure proposed in Def. 4.13 is based on an analytic proof
strategy that guarantees termination. However, in general there might be better
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heuristics for guiding the development of a tableau. For example, the canonical
procedure given in [12] for the KE system for classical logic is, in essence, a
generalization of the procedure we adopt in the proof of Theorem 4.19, where
we apply linear rules as long as possible and use R(CUT) on some proper
generalized subformula only when no other rule is applicable.

Example 4.20 (Slim tableaux for fat formulas). Recalling the fat formu-
las defined in Ex. 3.17, and adopting the optimal proof strategy established
above, Fig. 5 depicts a slim closed tableau for T :Φ3 in the system Tcut( L3, θ).
The label ① denotes seven consecutive applications of R(L∧

T 〈↑↑↑↑〉), ② an ana-
lytic application of R(CUT), and ③ the closure of the branch using R(L¬

T 〈↑↑↑↑〉)
and R(CUT). Labels ④ and ⑤ correspond respectively to four and to two
applications of R(L∨

T 〈↑↑〉) .

T :(p ∨ q ∨ r) ∧ (¬p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ ¬q ∨ ¬r)

T :p ∨ q ∨ r

T :¬p ∨ q ∨ r

T :p ∨ ¬q ∨ r

T :p ∨ q ∨ ¬r

T :¬p ∨ ¬q ∨ r

T :¬p ∨ q ∨ ¬r

T :p ∨ ¬q ∨ ¬r

T :¬p ∨ ¬q ∨ ¬r

F :p

T :q ∨ r

T :¬q ∨ r

T :q ∨ ¬r

T :¬q ∨ ¬rF :q

T :r

T :¬r

>

③

⑤

T :q

F :¬q

T :r

T :¬r

>

③

⑤

T :¬q

>

③

②

②

④

T :p

F :¬p

T :q ∨ r

T :¬q ∨ r

T :q ∨ ¬r

T :¬q ∨ ¬rF :q

T :r

T :¬r

>

③

⑤

T :q

F :¬q

T :r

T :¬r

>

③

⑤

T :¬q

>

③

②

②

④

T :¬p

>

③

②
②

①

Figure 5: A cut-based closed tableau for T :Φ3.

5. Final remarks

The literature of the area abounds with approaches to the study of finite-valued
logics based on providing general recipes for producing application-tailored proof
systems that could serve as alternative, in supplying decision procedures, to the
inefficient truth-table computation. Here we have described fresh approaches to
that study that aim both at being generic and at being efficient. Our approaches
are roughly based on exploiting the logical two-valuedness of the meta-theory
of finite-valued logics and on describing their truth-tables in a uniform classic-
like fashion, and alongside that quest we expose the non-obvious computational
content from the so-called ‘Suszko’s Thesis’. Writing every single logic with
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the help of an adequate bivalent semantics or an appropriate classically-labeled
(two-signed) tableau system has the obvious advantage of making it easier to
compare some given logic to another. In particular, on what concerns the com-
parison of different logics, once there is some agreement concerning the language
of these logics, one might use our classic-like tableaux to check whether a rule
of a certain logic is derivable in another logic (cf. [27]), and the task of concoct-
ing convenient proof tactics that allow for the automation of reasoning within
these logics may indeed be easily implemented (cf. [24]). Another advantage
of setting up a classic-like framework for a given logic lies in the possibility of
dualizing any rule or operator from this logic simply by exchanging truth for
falsity, and vice-versa (cf. [26]). From the proof-theoretical perspective, differ-
ently from the path trodden on early predecessors of the present study, such
as [11], in the present paper we have first presented canonical cut-free tableau
systems (as in [8]), and have presented the underlying results in full detail,
fixing earlier shortcomings of our own approach. Another great advantage of
the present study was the detailed presentation also of an alternative approach
based on analytic cut-based tableau systems that allow in general for an ex-
ponential speed-up on what concerns proof complexity — more precisely, that
allow for the p(olynomial)-simulation of the brute force truth-tabular procedure.
It might be useful to further extend our complexity-oriented study in order to ac-
count for the very cost of the axiom-extraction mechanisms, and even to extend
the customary studies on proof complexity in order to measure the apparently
non-negligible cost of unifying with long rule premises in the context of large
collections of axioms/rules. We shall leave such extensions, however, as matter
for future research.

The received approach to the subject of representation and automation of
reasoning in finite-valued logics, in standard references such as [3, 21], based on
the so-called ‘signed logic’, employs labeled proof formalisms known as ‘sets-as-
signs’, which introduce in the language of a given genuinely n-valued logic L
syntactic resources to deal with collections of signs representing the n truth-
values of L. However, sets-as-signs tableaux seem to enjoy a narrower range
of applicability than classic-like tableaux, and in particular their use in logic
comparison or dualization is far from obvious.

In labeled deductive systems (cf. [19]) the role of internalizing important
semantic information at the syntactical level is routinely played by the use of
labels. A similar goal is often attained by the use of negation in non-signed
tableaux for classical and for several non-classical logics. For instance, in stan-
dard references such as [31], a labeled bivalent statement such as

F :ϕ ∧ ψ =⇒ F :ϕ || F :ψ

is often replaced by a non-labeled statement like

¬(ϕ ∧ ψ) =⇒ ¬(ϕ) || ¬(ψ).

The second statement above clearly goes counter the canonical subformula prop-
erty, and ¬ in this case obviously plays the role of a separator. In our current
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approach we simultaneously utilize labels and separators, in an approach that
presupposes generalized notions of subformula, formula complexity and analyt-
icity. While other recent approaches (cf. [4]) have been based on extending the
classes of rules that might be called ‘canonical’ in order to accommodate larger
sets of labels while insisting on the usual notion of analyticity, our own approach
guarantees effectiveness by extending instead the reach of analyticity within a
2-signed labeled environment.

A comment is due here also on our use of the cut rule. On the one hand, in a
many-valued setting, different realizations of cut are definable, all corresponding
to the fact that a formula can only be assigned a single truth-value in a given
interpretation. While in the sets-as-signs approach, one obvious version of the
cut rule will typically consist in expanding the tree with as many branches as
the number of truth-values, it is worth noting that in our classic-like framework
cut will always be binary branching. On the other hand, on what concerns
cut-based tableaux, some initial advances toward extending them from classical
logic to finite-valued logics were sketched in [12], and in [20, Chapter 6.1] the
sets-as-signs approach is claimed (without proof) to produce, in terms of proof
complexity, the same improvements obtained in the classical case (p-simulation
of truth tables). To the best of our knowledge, however, the proof of such claim
and in fact the first full-fledged approaches to the matter have been done in [33],
having the present paper as a sequel.

There are many directions along which the current line of research may be
pursued. For instance, as it has been remarked above, the general axiom/rule
extraction mechanisms that we propounded produces statements that may often
be streamlined into contracted forms (using standard tools of classical logic at
the metalinguistic level). Instead of first extracting statements in a long form
and only simplifying them later, however, one may also propose mechanisms for
extracting equivalent sets of rules already in contracted form. The task of opti-
mizing the rules produced by our mechanism is worth investigating, but we leave
it to a future opportunity. Another interesting line of research concerns other
proof formalisms. While we have chosen to concentrate on tableaux for their
relatively unbureaucratic proof theory, choosing sequent systems instead would
straightforwardly require us to read closure rules as sequent axioms, and rewrite
our B-statements contrapositively, rearranging their new left-hand sides in con-
junctive normal form (contrast this with Remark 2.16). As sequent systems
allow in general for a more flexible meta-theory and a possibly wider applica-
tion as a logical framework, it would seem appealing to venture an independent
study of them. An adaptation of our algorithms in order to output natural
deduction systems, as witnessed by [17], may of course also be the subject of
investigation. The study of other proof formalisms such as reasoning mecha-
nisms based on satisfiability checking or resolution, as it has been done for the
sets-as-signs approach in [18], would seem equally welcome.

While one might think that the present study is too limited in the sense of
being applicable only to finite-valued logics (while many important non-classical
logics are known to be infinite-valued), it should here be observed that the
main results from Section 3 also apply when the bivalent statements are not
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obtained through the method explained in Subsection 2.3, as soon as these
statements are based on a generalized notion of compositionality analogous to
the one studied in Subsection 2.4. In that case, deductive formalisms based
on a generalized form of analyticity would naturally ensue. Having reached
the current milestone, in future work we intend to explore extensions of our
present mechanisms to cover other classes of non-classical logics, in particular
those defined by genuinely infinite-valued logics, by nondeterministic semantics
(cf. [2]) and by other semantics that presuppose broadening the notion of truth-
functionality.
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