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Abstract

We prove that, for every integer d with d ≥ 3, there is an approximation algorithm for the

maximum induced matching problem restricted to {C3, C5}-free d-regular graphs with performance

ratio 0.7083̄d + 0.425, which answers a question posed by Dabrowski et al. (Theor. Comput. Sci.

478 (2013) 33-40). Furthermore, we show that every graph with m edges that is k-degenerate and

of maximum degree at most d with k < d, has an induced matching with at least m/((3k − 1)d−

k(k + 1) + 1) edges.

Keywords: induced matching; greedy algorithm; approximation algorithm; strong chromatic in-

dex; degenerate graph
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1 Introduction

A set M of edges of a graph G is an induced matching of G if the set of vertices of G that are incident

with the edges in M induces a 1-regular subgraph of G, or, equivalently, if M is an independent set of

the square of the line graph of G. The induced matching number ν2(G) of G is the maximum cardinality

of an induced matching of G. Induced matchings were introduced by Stockmeyer and Vazirani [15]

as a variant of classical matchings [11]. While classical matchings are structurally and algorithmically

well understood [11], it is hard to find a maximum induced matching [2,15] and efficient algorithms are

only known for special graph classes [1,3,5]. The problem to determine a maximum induced matching

in a given graph, called Maximum Induced Matching for short, is even APX-complete for bipartite

d-regular graphs for every d ≥ 3 [5, 7].

On the positive side, a natural greedy strategy applied to a d-regular graph G, which mimics the

well-known greedy algorithm for the maximum independent set problem applied to the square of the

line graph of G, produces an induced matching with at least m(G)
2d2−2d+1

edges. Since every induced

matching of a d-regular graph contains at most m(G)
2d−1 edges, this already yields an approximation

algorithm for Maximum Induced Matching in d-regular graphs with performance ratio d − 1
2 +

1
4d−2 as observed by Zito [18]. This was improved slightly by Duckworth et al. [7] who describe an

approximation algorithm with asymptotic performance ratio d − 1. The best known approximation

algorithm for Maximum Induced Matching restricted to d-regular graphs for general d is due to

Gotthilf and Lewenstein [9] who elegantly combine a greedy strategy with a local search algorithm to

obtain a performance ratio of 0.75d + 0.15. In [10] Joos et al. describe a linear time algorithm that

finds an induced matching with at least m(G)
9 edges for a given 3-regular graph G, which yields an

approximation algorithm for cubic graphs with performance ratio 9
5 .

At the end of [5] Dabrowski et al. propose to study approximation algorithms for regular bipartite

graphs, and to determine whether the above performance ratios can be improved in the bipartite case.

As our main result we show that this is indeed possible.

Theorem 1 For every integer d with d ≥ 3, there is an approximation algorithm for Maximum

Induced Matching restricted to {C3, C5}-free d-regular graphs with performance ratio 17
24d+

17d
48d−24 ≤

0.7083̄d+ 0.425.

Our proof of Theorem 1 builds on the approach of Gotthilf and Lewenstein [9], and all proofs are

postponed to Section 2.

Our second result, which also relies on a greedy strategy, is a lower bound on the induced matching

number of degenerate graphs. This result is related to recent bounds on the strong chromatic index

χ′
s(G) of a graph G [8], which is defined as the minimum number of induced matchings into which the

edge set of G can be partitioned. The most prominent conjecture concerning this notion was made by

Erdős and Nešetřil in 1985 and states that the strong chromatic index of a graph G of maximum degree

at most d is at most 5
4d

2. The most significant progress towards this conjecture is due to Molloy and

Reed [14] who proved χ′
s(G) ≤ 1.998d2 provided that d is sufficiently large. Again a natural greedy

edge coloring implies χ′
s(G) ≤ 2d2 − 2d+ 1.

Recall that a graph G is k-degenerate for some integer k, if every non-empty subgraph of G has

a vertex of degree at most k. Recently, Chang and Narayanan [4] studied the strong chromatic

index of 2-degenerate graphs and inspired the following results about the strong chromatic index of a
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k-degenerate graph G of maximum degree at most d with k ≤ d:

χ′
s(G) ≤































10d − 10 , if k = 2 [4]

8d− 4 , if k = 2 [13]

(4k − 1)d− k(2k + 1) + 1 , [6]

(4k − 2)d− k(2k − 1) + 1 , [16]

(4k − 2)d− 2k2 + 1 , [17].

(1)

The proofs of (1) all rely in some way on greedy colorings and (1) immediately implies that νs(G) ≥
m(G)
χ′

s(G) ≥
m(G)

4kd+O(k+d) for the considered graphs. We show that the factor 4 can be reduced to 3.

Theorem 2 If G is a k-degenerate graph of maximum degree at most d with k < d, then νs(G) ≥
m(G)

(3k−1)d−k(k+1)+1 .

Before we proceed to the proofs of Theorems 1 and 2 we collect some notation and terminology.

We consider finite, simple, and undirected graphs, and use standard terminology and notation.

For a graph G, we denote the vertex set, edge set, order, and size by V (G), E(G), n(G), and m(G),

respectively. If G has no cycle of length 3 or 5, then G is {C3, C5}-free. Let L(G) denote the line

graph of G and let G2 denote the square of G. For an edge e of G, let CG(e) = {e} ∪ NL(G)2(e) =

{f ∈ E(G) : distL(G)(e, f) ≤ 2} and let cG(e) = |CG(e)|. Note that a set of edges of G is an induced

matching if and only if it does not contain two distinct edges e and f with f ∈ CG(e), or, equivalently,

e ∈ CG(f). In a maximal induced matching M of a graph G, for every edge f in E(G) \M , there is

some edge e in M with f ∈ CG(e). For some edges f , the choice of e might be unique, which motivates

the following definition. For a set M of edges of G, let PCG(M,e) = CG(e) \
⋃

f∈M\{e} CG(f) and let

pcG(M,e) = |PCG(M,e)|. For two disjoint sets X and Y of vertices of G, let EG(X,Y ) be the set of

edges uv of G with u ∈ X and v ∈ Y , and let mG(X,Y ) = |EG(X,Y )|. For a set E of edges of G, let

G− E = (V (G), E(G) \ E). For a positive integer k, let [k] = {1, 2, . . . , k}.

2 Proofs

The greedy strategy for maximum induced matching relies on the following lemma.

Lemma 3 Let G be a graph. If G0, . . . , Gk are such that

• G0 = G, and

• for i ∈ [k], there is an edge ei of Gi−1 such that Gi = Gi−1 − CGi−1
(ei).

then,

(i) If e and f are edges of Gi for some i ∈ [k], then f ∈ CGi
(e) if and only if f ∈ CG(e).

(ii) The set {e1, . . . , ek} is an induced matching.

Proof: (i) Let e = uv and f = xy be edges of Gi for some i ∈ [k]. Since Gi is a subgraph of G, it

follows that f ∈ CGi
(e) immediately implies f ∈ CG(e). Hence, for a contradiction, we may assume

that f ∈ CG(e) \ CGi
(e). Since f 6∈ CGi

(e), the two edges e and f do not share a vertex. Since

f ∈ CG(e), we may assume that the graph G contains the edge ux. Since f 6∈ CGi
(e), the edge ux

does not belong to Gi, which implies ux ∈ CGj−1
(ej) for some j ≤ i. Note that e and f are edges of
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Gj−1. If ux is incident with ej , then one of e and f is incident with ej , and belongs to CGj−1
(ej). If

ux is not incident with ej , then, by symmetry, we may assume that Gj−1 contains an edge between u

and a vertex incident with ej , which implies that e belongs to CGj−1
(ej). In both cases we obtain the

contradiction that one of the two edges e and f does not belong to Gj and hence also not to Gi.

(ii) If ej ∈ CG(ei) for some i, j ∈ [k] with i < k, then, by (i), we have ej ∈ CGi−1
(ei), which implies

the contradiction that ej does not belong to Gi and hence also not to Gj−1. �

Algorithm 1, called Greedy(f), corresponds to the greedy algorithm used by Gotthilf and Lewenstein.

Greedy(f)

Input: A d-regular graph G.

Output: A pair (M,G′) such that M is an induced matching of G and G′ is a subgraph of G.

G0 ← G;

G′ ← G0;

i← 1;

M ← ∅;

while min{cGi−1
(e) : e ∈ E(Gi−1)} ≤ f do

Choose an edge ei of Gi−1 with cGi−1
(ei) ≤ f ;

M ←M ∪ {ei};

Gi ← Gi−1 − CGi−1
(ei);

G′ ← Gi;

i← i+ 1;

end

return (M,G′);

Algorithm 1: The greedy algorithm of Gotthilf and Lewenstein depending on f .

Obviously, Greedy(f) can be performed in polynomial time, and, by Lemma 3, it works correctly.

The intuitive idea behind Greedy(f) is to restrict the greedy choices to edges that are not too

expensive in the sense that their inclusion in the induced matching does not eliminate too many of the

remaining edges. In fact, Greedy(f) adds a fraction of at least 1
f
of the edges in E(G) \E(G′) to M ,

which is better than the trivial fraction 1
2d2−2d+1 for f < 2d2 − 2d+ 1. The drawback of Greedy(f)

is that it might not consume all edges of G, that is, E(G) \E(G′) might be small compared to E(G).

By Lemma 3, the union of M with any induced matching of G′ is an induced matching of G.

Therefore Gotthilf and Lewenstein combine Greedy(f) applied to G with Algorithm 2, called Local

Search, applied to G′. Local Search starts with an empty matching M ′ and performs the following

two simple augmentation operations as long as possible:

• Add an edge from E(G′) \M ′ to M ′ if this results in an induced matching.

• Replace one edge in M ′ with two edges from E(G′) \M ′ if this results in an induced matching.

Clearly, Local Seach can be performed in polynomial time, and, as observed above, the union of

M with its output M ′ is an induced matching of G. The crucial observation is that the graph G′

produced by Greedy(f) has an additional structural property. As a subgraph of G, it is trivially a

graph of maximum degree at most d but additionally each of its edges e satisfies cG′(e) > f , which

allows the improved analysis of Local Seach in the following two Lemmas 4 and 5.
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Local Search

Input: A graph G.

Output: An induced matching M of G.

M ← ∅;

repeat

if M ∪ {e} is an induced matching of G for some edge e ∈ E(G) \M then

M ←M ∪ {e};

end

if (M \ {e}) ∪ {e′, e′′} is an induced matching of G for some three distinct edges e ∈M and

e′, e′′ ∈ E(G) \M then

M ← (M \ {e}) ∪ {e′, e′′};

end

until M does not increase during one iteration;

return M ;

Algorithm 2: The local search algorithm of Gotthilf and Lewenstein.

Lemma 4 Let G be a {C3, C5}-free graph of maximum degree at most d for some d ≥ 3 such that

min{cG(e) : e ∈ E(G)} > 17
12d

2. If M is an induced matching of G produced by Local Search applied

to G, then, for every edge e ∈M , pcG(M,e) ≤ 5
6d

2 + 1.

Proof: Since M is produced by Local Search, it has the following properties.

(a) For every edge e of G, there is some edge e′ in M with e ∈ CG(e
′); because otherwise e 6∈M and

M ∪ {e} is an induced matching of G.

(b) If e is in M and e′ and e′′ are two distinct edges in PCG(M,e), then e′′ ∈ CG(e
′); because otherwise

e′, e′′ 6∈M and (M \ {e}) ∪ {e′, e′′} is an induced matching of G.

Let e = xy ∈M .

Let X be the set of neighbors u of x distinct from y such that xu ∈ PCG(M,e). Let Y be the

set of neighbors u′ of y distinct from x such that yu′ ∈ PCG(M,e). Since G is {C3, C5}-free, the sets

X and Y are disjoint. Let X2 be the set of vertices v in V (G) \ ({x, y} ∪X ∪ Y ) such that there is

some vertex u in X with uv ∈ PCG(M,e). Let Y2 be the set of vertices v′ in V (G) \ ({x, y} ∪X ∪ Y )

such that there is some vertex u′ in Y with u′v′ ∈ PCG(M,e). Since G is {C3, C5}-free, the sets X2

and Y2 are disjoint. Let X1 be the set of vertices in X that have a neighbor in X2. Let Y1 be the set

of vertices in Y that have a neighbor in Y2. Since G is {C3, C5}-free, the sets X, Y , X2, and Y2 are

independent, and there are no edges between X2 and Y as well as between Y2 and X.

By definition, {x, y}∪EG({x},X)∪EG({y}, Y ) is the set of edges in PCG(M,e) that are identical

or adjacent with e.

Note that is f ∈ PCG(M,e) is not identical or adjacent with e, then G contains an edge g that

is adjacent with e and f . If g 6∈ PCG(M,e), then g ∈ CG(e
′) for some edge e′ in M distinct from

e, which implies the contradiction f ∈ CG(e
′). Hence g ∈ PCG(M,e). This implies that all edges in

PCG(M,e) \ {e} are incident with a vertex in X ∪ Y .

If uv is an edge such that u ∈ X1 and v ∈ X2, then, by definition, xu ∈ PCG(M,e) and u′v ∈

PCG(M,e) for some u′ ∈ X. Clearly, uv ∈ CG(e). If uv 6∈ PCG(M,e), then uv ∈ CG(e
′) for some

edge e′ in M distinct from e, which implies the contradiction that one of the two edges xu and u′v
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belongs to CG(e
′). Hence, by symmetry, all edges in EG(X1,X2) ∪ EG(Y1, Y2) belong to PCG(M,e).

Similarly, it follows that all edges in EG(X,Y ) belong to PCG(M,e), and hence

PCG(M,e) = {x, y} ∪EG({x},X) ∪ EG({y}, Y )

∪EG(X1,X2) ∪ EG(Y1, Y2) ∪ EG(X,Y ). (2)

If u ∈ X1 and u′ ∈ Y , then there is some v ∈ X2 such that uv ∈ PCG(M,e) and, by definition,

yu′ ∈ PCG(M,e). Since G is {C3, C5}-free, property (b) implies that u and u′ are adjacent, that is,

every vertex in X1 is adjacent to every vertex in Y , and, by symmetry, every vertex in Y1 is adjacent

to every vertex in X.

If u1, u2 ∈ X1 and v1, v2 ∈ X2 are four distinct vertices such that u1v1 and u2v2 are edges of G,

then, by (2), u1v1, u2v2 ∈ PCG(M,e) and, since G is {C3, C5}-free, property (b) implies that v2 is a

neighbor of u1 or v1 is a neighbor of u2, that is, the bipartite graph between X1 and X2 is 2K2-free.

This implies that the sets NG(u)∩X2 for u in X1 are ordered by inclusion. Hence, if X1 is non-empty,

then X1 contains a vertex ux that is adjacent to all vertices in X2. By symmetry, if Y1 is non-empty,

then the set Y1 contains a vertex uy that is adjacent to all vertices in Y2.

We consider three cases.

Case 1 X1 and Y1 are both non-empty.

Since ux is adjacent to each vertex in {x} ∪X2 ∪ Y , we obtain |X2|+ |Y | ≤ d− 1, and, by symmetry,

|Y2|+ |X| ≤ d− 1. Now (2) implies

pcG(M,e) = 1 +mG({x},X) +mG({y}, Y ) + (mG({ux},X2) +mG(X1 \ {ux},X2))

+ (mG({uy}, Y2) +mG(Y1 \ {uy}, Y2)) +mG(X,Y )

= 1 + |X|+ |Y |+ (|X2|+mG(X1 \ {ux},X2))

+ (|Y2|+mG(Y1 \ {uy}, Y2)) +mG(X,Y )

≤ 2d− 1 +mG(X1 \ {ux},X2) +mG(Y1 \ {uy}, Y2) +mG(X,Y ) (3)

Note that ux is adjacent to all vertices in X2 ∪ Y and that x is adjacent to all vertices in {y} ∪ (X \

{ux}). There are |Y | edges between y and Y , mG(X,Y ) − |Y | edges between X \ {ux} and Y , and

mG(X1 \ {ux},X2) edges between X2 and X \ {ux}. This implies

cG(xux) ≤ 2d2 − 2d+ 1−mG(NG(x) \ {ux}, NG(ux) \ {x})

≤ 2d2 − 2d+ 1− |Y | − (mG(X,Y )− |Y |)−mG(X1 \ {ux},X2)

= 2d2 − 2d+ 1− (mG(X,Y ) +mG(X1 \ {ux},X2)).

Since, by assumption, cG(xux) >
17
12d

2, we obtain

mG(X,Y ) +mG(X1 \ {ux},X2) ≤
7

12
d2 − 2d+ 1, and, by symmetry, (4)

mG(X,Y ) +mG(Y1 \ {uy}, Y2) ≤
7

12
d2 − 2d+ 1.

By symmetry, we may assume that |X1| ≥ |Y1|.

Since every vertex in Y1 is adjacent to y and to all vertices in X1, it has at most d − 1 − |X1|

neighbors in Y2, which implies mG(Y1 \ {uy}, Y2) ≤ (|Y1| − 1)(d− 1− |X1|) ≤ (|Y1| − 1)(d− 1− |Y1|).

6



Note that regardless of the value of |Y1|, we have −|Y1|
2 + d|Y1| ≤

d2

4 . Together with (3) and (4) we

obtain

pcG(M,e) ≤ 2d− 1 +mG(X1 \ {ux},X2) +mG(Y1 \ {uy}, Y2) +mG(X,Y )

≤ 2d− 1 +
7

12
d2 − 2d+ 1 + (|Y1| − 1)(d− 1− |Y1|)

=
7

12
d2 − |Y1|

2 + d|Y1| − d+ 1

≤
7

12
d2 +

1

4
d2 − d+ 1

=
5

6
d2 − d+ 1.

Case 2 X1 is non-empty but Y1 is empty.

As in Case 1, we have |X2|+ |Y | ≤ d− 1. Clearly, |Y | ≤ d− 1. Now (2) implies

pcG(M,e) = 1 +mG({x},X) +mG({y}, Y ) +mG({ux},X2) +mG(X1 \ {ux},X2)

+mG(X,Y )

= 1 + |X|+ |Y |+ |X2|+mG(X1 \ {ux},X2) +mG(X,Y )

≤ 2d− 1 +mG(X1 \ {ux},X2) +mG(X,Y ).

Exactly as Case 1, we obtain

mG(X,Y ) +mG(X1 \ {ux},X2) ≤
7

12
d2 − 2d+ 1,

and hence

pcG(M,e) ≤ 2d− 1 +mG(X1 \ {ux},X2) +mG(X,Y )

≤ 2d− 1 +
7

12
d2 − 2d+ 1

≤
7

12
d2.

Since d ≥ 3, it follows that pcG(M,e) ≤ 5
6d

2 − d+ 1.

Case 3 X1 and Y1 are both empty.

Note that in this case also both sets X2 and Y2 are empty. Now (2) implies

pcG(M,e) = 1 +mG({x},X) +mG({y}, Y ) +mG(X,Y )

≤ 2d− 1 +mG(X,Y ).

If mG(X,Y ) ≤ 5
6d

2 − 2d + 2, then pcG(M,e) ≤ 5
6d

2 + 1. Hence, we may assume that mG(X,Y ) >
5
6d

2 − 2d+ 2. Since |X| ≤ d− 1, this implies the existence of a vertex ũx in X with at least

5
6d

2 − 2d+ 2

d− 1
=

5

6
d−

7

6
+

5

6(d− 1)
≥

5

6
d−

7

6

7



neighbors in Y . Let Ỹ be the set of neighbors of ũx in Y . Since |Y | ≤ d − 1, we have |Y \ Ỹ | ≤

(d− 1)−
(

5
6d−

7
6

)

= 1
6d+

1
6 and thus

mG(X \ {ũx}, Ỹ ) = mG(X,Y )−mG({ũx}, Y )−mG(X \ {ũx}, Y \ Ỹ )

≥

(

5

6
d2 − 2d+ 2

)

− (d− 1)− (d− 2)

(

1

6
d+

1

6

)

=
2

3
d2 −

17

6
d+

10

3
.

Note that ũx is adjacent to all vertices in Ỹ and that x is adjacent to all vertices in {y} ∪ (X \ {ũx}).

There are |Ỹ | edges between y and Ỹ , and mG(X \ {ũx}, Ỹ ) edges between X \ {ũx} and Ỹ . This

implies

cG(xũx) ≤ 2d2 − 2d+ 1−mG(NG(x) \ {ũx}, NG(ũx) \ {x})

≤ 2d2 − 2d+ 1− |Ỹ | −mG(X \ {ũx}, Ỹ )

≤ 2d2 − 2d+ 1−

(

5

6
d−

7

6

)

−

(

2

3
d2 −

17

6
d+

10

3

)

≤
4

3
d2 −

7

6
,

contradicting the assumption cG(xux) >
17
12d

2.

This completes the proof. �

Lemma 5 Let G be a {C3, C5}-free graph of maximum degree at most d for some d ≥ 3 such that

min{cG(e) : e ∈ E(G)} > 17
12d

2. If M is an induced matching of G produced by Local Search applied

to G, then |M | ≥ m(G)
17

12
d2−d+1

.

Proof: We consider the number p of pairs (e, f) where e ∈M and f ∈ CG(e). Since cG(e) ≤ 2d2−2d+1,

we have p ≤ (2d2− 2d+1)|M |. In order to obtain a lower bound on p, we observe that the edges f of

G for which there is exactly one edge e in M with f ∈ CG(e) are exactly those in
⋃

e∈M PCG(M,e).

Hence, by Lemma 4, p ≥ 2m(G) −
∑

e∈M pcG(M,e) ≥ 2m(G) −
(

5
6d

2 + 1
)

|M |. Both estimates for p

together yield the desired bound. �

ApproxBip(d)

Input: A {C3, C5}-free d-regular graph G.

Output: An induced matching M ∪M ′ of G.

Apply Greedy
(

17
12d

2
)

to G and denote the output by (M,G′);

Apply Local Search to G′ and denote the output by M ′;

return M ∪M ′;

Algorithm 3: An approximation algorithm for {C3, C5}-free d-regular graphs.

Lemma 6 Let G be a {C3, C5}-free graph of maximum degree at most d for some d ≥ 3. The

algorithm ApproxBip(d) (cf. Algorithm 3) applied to G produces an induced matching M ∪M ′ of G

with |M ∪M ′| ≥ 12m(G)
17d2 = m(G)

1.416̄d2
.

Proof: By Lemma 3, the set M ∪M ′ produced by ApproxBip(d) applied to G is an induced matching

of G. If m = m(G)−m(G′), then |M | ≥ m
17

12
d2
. By Lemma 5, |M ′| ≥ m(G′)

17

12
d2−d+1

≥ m(G)−m
17

12
d2

. Altogether,

we obtain |M ∪M ′| ≥ m(G)
17

12
d2

. �
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We are now in a position to prove Theorem 1.

Proof of Theorem 1: For the sake of completeness, we give the argument for the upper bound. If

N is some induced matching of the d-regular graph G, then, for each edge e in N , the two vertices

incident with e are incident with exactly 2d − 1 edges of G. Since N is induced, these sets of 2d − 1

edges are disjoint, which implies |N | ≤ m(G)
2d−1 . By Lemma 6, this implies that the performance ratio of

ApproxBip(d) applied to a {C3, C5}-free d-regular graph is at most 17d2

12(2d−1) = 17
24d + 17d

48d−24 , which

completes the proof. �

For the proof of Theorem 2, we need the following lemma.

Lemma 7 If G is a non-empty k-degenerate graph of maximum degree at most d with k < d, then G

has an edge e with cG(e) ≤ (3k − 1)d− k(k + 1) + 1.

Proof: Let X denote the set of vertices of G of degree at most k and let Y = V (G)\X. If two vertices

u and v in X are adjacent, then cG(e) ≤ 1 + 2(k − 1)d. If X is an independent set, then, since the

graph G[Y ] has a vertex v of degree at most k in G[Y ] but degree more than k in G, some vertex u in

X is adjacent to this vertex v in Y . Each of the at most k neighbors of u has degree at most d. Since

v has degree at most k in G[Y ], it has r neighbors in Y for some r ≤ k, which have degree at most d.

The remaining at most d− r neighbors of v are all in X and hence have degree at most k. Altogether

this implies that

cG(uv) ≤ 1 + (k − 1)d + rd+ (d− 1− r)k

= 1 + 2kd+ r(d− k)− d− k

≤ 1 + 2kd+ k(d− k)− d− k

= 1 + (3k − 1)d− k(k + 1).

Since 2(k − 1)d ≤ (3k − 1)d − k(k + 1), the proof is complete. �

Proof of Theorem 2: By definition, every subgraph of G is k-degenerate and of maximum degree at

most d. Therefore, by Lemma 7, the algorithm Greedy((3k−1)d−k(k+1)+1) applied to the graph

G outputs a pair (M,G′) where M is an induced matching of G and the graph G′ has no edges. This

implies that |M | ≥ m(G)
(3k−1)d−k(k+1)+1 , which completes the proof. �
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