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Abstract

In this paper, we first introduce a novel class of graphs, haswpergrid. Supergrid graphs include grid graphs and
triangular grid graphs as their subgraphs. The Hamiltoojabe and path problems for grid graphs and triangular
grid graphs were known to be NP-complete. However, they mkaawn for supergrid graphs. The Hamiltonian cycle

(path) problem on supergrid graphs can be applied to catieadtitching traces of computerized sewing machines. In
this paper, we will prove that the Hamiltonian cycle probffemsupergrid graphs is NP-complete. It is easily derived
from the Hamiltonian cycle result that the Hamiltonian ppthblem on supergrid graphs is also NP-complete. We
then show that two subclasses of supergrid graphs, indudictangular (parallelism) and alphabet, always contain
Hamiltonian cycles.

Keywords: Hamiltonian properties, supergrid graph, rectangulaesgiid graph, alphabet supergrid graph, grid
graph, triangular grid graph, computerized sewing machine

1. Introduction

A Hamiltonian cyclén a graph is a simple cycle in which each vertex of the grajpfeaps exactly once. Hamil-
tonian pathin a graph is a simple path with the same property. Fheiltonian cyclgresp. path) probleminvolves
testing whether or not a graph contains a Hamiltonian cy@sp(, path). A graph is said to btamiltonianif it
contains a Hamiltonian cycle. Thdéamiltonian probleménclude Hamiltonian cycle and Hamiltonian path problems.
They have numerous applications irffdrent areas, including establishing transport routeslymton launching, the
on-line optimization of flexible manufacturing systems, [d@mputing the perceptual boundaries of dot patterns [30],
pattern recognition [2, 31, 34], and DNA physical mappind][1It is well known that the Hamiltonian problems
are NP-complete for general graphs [10, 20]. The same haldgdr bipartite graphs [23], split graphs [11], circle
graphs [8], undirected path graphs [3], grid graphs [194 @iangular grid graphs [12]. In this paper, we will study
the Hamiltonian problems on supergrid graphs which corgeohgraphs and triangular grid graphs as subgraphs.

Thetwo-dimensional integer grid Gis an infinite graph whose vertex set consists of all pointhefEuclidean
plane with integer coordinates and in which two verticesaatjacent if and only if the (Euclidean) distance between
them is equal to 1. Agrid graphis a finite, vertex-induced subgraph®@f. For a noder in the plane with integer
coordinates, lety andvy represent thet andy coordinates of node, respectively, denoted by = (vy, v). If vis a
vertex in a grid graph, then its possible adjacent vertiselide iy, vy — 1), (vx — 1, W), (vx + L V), and @y, vy + 1).
For example, Fig. 1(a) depicts a fragment of gr&hand Fig. 2(a) shows a grid grapRecently, the properties of
triangular grid graphs, which contain grid graphs as suffgsahave received much attentiorhe two-dimensional
triangular grid T* is an infinite graph obtained fro®> by adding all edges on the lines traced from up-left to
down-right. Atriangular grid graphis a finite, vertex-induced subgraph©f. The possible adjacent vertices of a
vertexv = (Vx, V) in a triangular grid graph contaim, vy — 1), (vx — 1, w), (vx + L, W), (Vx, Wy + 1), (vx — L vy — 1),
and @ + 1,w + 1). For instance, Fig. 1(b) depicts a fragment of graghand Fig. 2(b) shows a triangular grid
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Fig. 1: A fragment of infinite graph (&3*, (b) T*, and (c)S*.

v, v-1

AL Gy |t v)

v+

(2) (b) (c)

Fig. 2: (a) A grid graph, (b) a triangular grid graph, and (sugergrid graph, where solid lines indicate the edges ofttaphs.

graph. Note thal * is isomorphic to the original infinite triangular grid grajhthe literature [12] but these graphs
are diterent when considered as geometric graphs. By the samerwctitet of triangular grid graphs from grid
graphs, we propose a new class of graphs, naswghergrid graphsas follows. Thewo-dimensional supergrid °S

is an infinite graph obtained from™ by adding all edges on the lines traced from up-right to dés¥n-A supergrid
graphis a finite, vertex-induced subgraph®¥. The possible adjacent vertices of a ventex (vx, ) in a supergrid
graph containV, vy — 1), (vx — L, W), (vx + L wy), (v, Wy + 1), (vx — Lvy — 1), (v + Ly + 1), (vx + 1, vy — 1), and
(vx—1,w+1). Thus, supergrid graphs contain grid graphs and triamguld graphs as subgraphs. For example, Fig.
1(c) depicts a fragment of grai8t°® and Fig. 2(c) shows a supergrid graph. Obviously, all grapds are bipartite
[19] but triangular grid graphs and supergrid graphs arebigartite. The Hamiltonian cycle and path problems on
grid graphs and triangular grid graphs have been shown tabedwplete [12, 19]. However, they are unknown for
supergrid graphs. In this paper, we will prove that the Heomilin cycle and path problems for supergrid graphs are
NP-complete.

The possible application for the Hamiltonian cycle (pattglgpem on supergrid graphs is presented as follows.
Consider a computerized sewing machine given an image. dmputerized sewing software is used to compute
the sewing traces of a computerized sewing machine. Theyebeawo parts in a computerized sewing software.
The first part is to do image processing for the input imamge, reduce order of colors and image thinning. It then
produces some sets of lattices in which every set of lattiepsesents a color in the input image for sewing. The
second part is given by a set of lattices and then computesla (path) to visit the lattices of the set such that each
lattice is visited exactly once. Finally, the software sanits the stitching trace of the computed cycle (path) to the
computerized sewing machine, and the machine then perftvensewing work along the trace on the object, e.g.
clothes. For example, given an image in Fig. 3(a), the soé\iiast analyzes the image and then produces seven
colors of regions in which each region is filled with the saralcandmay consist of some disconnected blocks
shown in Fig. 3(b). Itthen produces seven sets of latticeich every set of lattices represents a region, where each
region is filled by a sewing trace with the same color and it imapartitioned into many non-contiguous blocks. Fig.
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Fig. 3: (a) An input image for the computerized sewing sofeydb) seven colors of regions produced by image proces@h@ set of lattices
for one region of color, (d) a possible sewing trace for thteo§éattices in (c), and (e) an overview after computing sepiraces of all regions of
colors.

3(c) shows a set of lattices for one region of color, and tlisvswe then computes a sewing trace for the set of lattices,
as depicted in Fig. 3(d). Since each stitch position of aisgwiachine can be moved to its eight neighbor positions
(left, right, up, down, up-left, up-right, down-left, andwn-right), one set of lattices forms a supergrid graph Whic
may be disconnected. Note that each lattice will be repteddyy a vertex of a supergrid graph, each region may be
separated into many blocks in which each block representetiaected supergrid graph. The desired sewing trace
of each set of adjacent lattices is the Hamiltonian cycléh(paf the corresponding connected supergrid graph when
it is Hamiltonian. Note that if the corresponding superguielph is not Hamiltonian, then the sewing trace contains
more than one paths and these paths must be concatenatdc@ftputing the sewing traces of all regions of colors,
the software then transmits the computed stitching tradkea@omputerized sewing machine. Fig. 3(e) depicts the
possible sewing result for the image in Fig. 3(a). In addittbe structure of supergrid graphs can be used to design
the network topology, and its network diameter is smallantthat of grid graphs.

Related areas of investigation are summarized as follotaset al. [19] showed that the Hamiltonian cycle and
Hamiltonian path problems for grid graphs are NP-compléteey also gave the necessary anflisient conditions
for a rectangular grid graph having a Hamiltonian path betwisvo given vertices. Zamfiresat al. [35] gave the
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suficient conditions for a grid graph having a Hamiltonian cyeled proved that all grid graphs of positive width have
Hamiltonian line graphs. Later, Chemal. [6] improved the Hamiltonian path algorithm of [19] on remgalar grid
graphs and presented a parallel algorithm for the Hamd#topiath problem with two given endpoints in rectangular
grid graph (mesh). Also there is a polynomial-time algarittor finding Hamiltonian cycles in solid grid graphs [25].
In [33], Salman introduced alphabet grid graphs and detexthelasses of alphabet grid graphs which contain Hamil-
tonian cycles. Keshavarz-Kohjerdi and Bagheri [21] gaeertbcessary and Sicient conditions for the existence of
Hamiltonian paths in alphabet grid graphs, and presente@iitime algorithms for finding Hamiltonian paths with
two given endpoints in these graphs. Recently, Keshavaigdfdiet al. [22] presented a linear-time algorithm for
computing the longest path between two given vertices itarguilar grid graphs. The Hamiltonian cycle (path)
on triangular grid graphs has been shown to be NP-compl&ie Recently, Reay and Zamfirescu [32] proved that
all 2-connected, linear-convex triangular grid graphsegtone special case contain Hamiltonian cycles. They also
proved that all connected, locally connected triangulat graphs (with one exception) contain Hamiltonian cycles.
In addition, the Hamiltonian cycle problem on hexagonad gpiaphsvas known to be NP-complef&8]. For more
related works, we refer readers to [5, 7, 9, 13, 15, 16, 1722428, 29, 36].

The rest of the paper is organized as follows. In Sectionfesootations and basic terminologies are introduced.
Section 3 shows thalhe Hamiltonian cycle and Hamiltonian path problems foresgpad graphs are NP-completae
Section 4, we show that rectangular (parallelism) and dphsupergrid graphs are Hamiltonian. Finally, we make
some concluding remarks in Section 5.

2. Notations and terminologies

In this section, we will introduce fundamental terminolegjand symbols used in the paper. For graph-theoretic
terminology not defined in this paper, the reader is refetwdd]. LetG = (V, E) be a graph with vertex s&t(G) and
edge seE(G). Let S be a subset of vertices (B, and letu, v be two vertices irs. We writeG[S] for the subgraph of
G inducedby S, G - S for the subgrapl[V - S], i.e., the subgraph induced b— S. In general, we writé&s — v
instead ofG — {v}. If (u,v) is an edge inG, we say that is adjacentto v andu, v areincidentto edge @,v). The
notationu ~ v (resp.,u ~ v) means that verticasandv are adjacent (resp., non-adjacent)néighborof vin G is
any vertex that is adjacent to We useNg(v) to denote the set of neighborswfn G. The subscriptG’ of Ng(v)
can be removed from the notation if it has no ambiguity. @legreeof vertexv is the number of vertices adjacent
to the vertexv. Thedistancebetweenu andyv is the length of the shortest path between these two verticgsmth
P of length|P| — 1 in a graphG, denoted byw; — v, — -+ = Vjp.1 = Vjp, IS @ sequence/, Vo, - - - , Vip-1, Vjp|) Of
vertices such thaw(, vi;1) € E(G) for 1 < i < |P|. The first and last vertices visited by pa&tare denoted bgtart(P)
andendP), respectively. We will use; € P to denote P visits vertexv;” and use {;, vi;1) € P to denote P visits
edge ¥, Vvi;+1)". A path from vertexv; to vertexvi is denoted by\(;, vk)-path. In addition, we usP to refer to the
set of vertices visited by pathif it is understood without ambiguity. On the other hand, thpa called theeversed
path, denoted by re\R), of pathP if it visits the vertices o from endP) to start(P) in proper sequence; that is, the
reversed pathre) of P=v; > Vo — -+ = Vjp_1 = Vjp| iSVjp, = Vjp_1 — - -+ = V» — V1. A cycleis a patfC such
that|V(C)| > 3 andstart(C) ~ endC).

Let S* be the infinite graph whose vertex set consists of all poihth® plane with integer coordinates and in
which two vertices are adjacent if and only if théfdience of theik ory coordinates is not larger than 1.s&pergrid
graphis a finite, vertex-induced subgraph$f. For a vertew in a supergrid graph, let andv, denote respectively
x andy coordinates of its corresponding point. We color vesté® bewhiteif vy + vy, = 0 (mod 2); otherwisey is
colored to béblack Then there are eight possible neighbors of ventexcluding four white vertices and four black
vertices. Obviously, all grid graphs are bipartite [19] bupergrid graphs are not bipartite.

Rectangular grid graphs first appeared in [26], where Luecid Mugnia tried to solve the Hamiltonian path
problem on them. Itaét al. [19] gave necessary andfBaient conditions for the existence of Hamiltoniantf-path
in rectangular grid graphs, whesgt are two given vertices. In this paper, we expand them to alasdof supergrid
graphs, namely rectangular supergrid graphs.R(et n) be the supergrid graph whose vertex8&R(m, n)) = {v =
(VW) | 1 < vy < mand 1< vy < nj. Then,R(m, n) containsm columns andh rows of vertices inS®. A
rectangular supergrid graplis a supergrid graph that is isomorphicRm, n) for mn > 1. Thusm andn, the
dimensionsspecify a rectangular supergrid graph up to isomorphishe dize ofR(m, n) is defined to benn, and
R(m, n) is calledn-rectangle. The edge in the boundaryR{im, n) is calledboundary edgeFor example, Fig. 4(a)
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Fig. 4: Rectangular, parallelism, and alphabet supergagtts, where (a) a rectangular supergrid grefto, 11), (b) two parallelism supergrid
graphsP(5, 6) andP(6, 5), (c) anL-alphabet supergrid gragt(4, 3), (d) anC-alphabet supergrid gragl(4, 3), (e) anF-alphabet supergrid graph
F(4, 3), and (f) anE-alphabet supergrid grag(4, 3).

shows a rectangular supergrid graRf10, 11) which is called 11-rectangle and contains 2(20) = 38 boundary
edges.n the figures, we assume that {J is the coordinates of the up-left vertex, i.e. the leftmastex of the first
row, in a supergrid graphA parallelismsupergrid graph is defined similar R{m, n). Let P(m, n) be the supergrid
graph withm > n whose vertex se¥/(P(mn)) = {v = (v, ) | 1 < vy < nandvy < v < W+ m-— 1} or
v=(vi.W) | L < v < nand 2-v < v < M-V + 1). A parallelism supergrid graplis a supergrid graph which

is isomorphic toP(m, n). For example, Fig. 4(b) depicts two parallelism supergraphsP(5, 6) andP(6, 5). In the
above definition, there are two types of parallelism supeérgraphs. We can see that they are isomorphic although
they are diferent when considered as geometric grafNate that the boundary edgesRfm, n) andP(m, n) form a
rectangle and a parallelogram, respectively.

In [33], Salman first introduced alphabet grid graphs, wHiamim a subclass of grid graphs, and studied some
properties of these graphs. Recently, Keshavarz-KohgrdiBagheri [21] determined the necessary arfticéent
conditions for the existence of Hamiltoniag {)-path in alphabet grid graphs, whesg are two given vertices. In
this paper, we extend them to form a subclass of supergrighgranamely alphabet supergrid graphs. aphabet
supergrid graphs a finite vertex-induced subgraph of the rectangular sirgegraph of a certain type, as follows.
Form, n > 3, anL-alphabet supergrid gragt{m, n), C-alphabet supergrid grafg(m, n), F-alphabet supergrid graph
F(m, n), andE-alphabet supergrid gragi(m, n) are subgraphs d¥(3m- 2, 5n - 4). These alphabet supergrid graphs
are defined as shown in Fig. 4(c) — (f), whene= 4 andn = 3.

3. NP-completeness

In this section, we will prove that the Hamiltonian cycle ttpaproblem for supergrid graphs is NP-complete.
In [19] and [12], the authors showed the Hamiltonian cyclelyem for grid graphs and triangular grid graphs to be
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Fig. 5: (a) A planar bipartite grapB with maximum degree 3, and (b) a parity-preserving embepeink{B) of B, where solid lines indicate the
edges in the embedding paths.

NP-complete. We apply the idea of these proofs to show tlegtiimiltonian cycle problem remains NP-complete for
supergrid graphs. By using similar arguments, we can piteaethe Hamiltonian path problem on supergrid graphs
is still NP-complete. Notice that grid graphs and triangglad graphs are not subclasses of supergrid graphs; these
classes of graphs have common elements (vertices) but erglghey are distinct.

To prove the Hamiltonian cycle problem on supergrid graphset NP-complete, we establish a polynomial-time
reduction from the Hamiltonian cycle problem for planardriie graphs with maximum degree 3. The following
theorem was given in [19].

Theorem 3.1. (See [19].) The Hamiltonian cycle problem for planar bipgrtgraphs with maximum degree 3 is
NP-complete.

Let B = (Vo U V1, E) be a planar bipartite graph with maximum degree 3 anlebe a rectangular supergrid
graph, where/y andV; are the bipartition sets d8 in which every edge joins a vertex My and a vertex irv;.
Similarly to the parity-preserving embedding [19] of a bifte graph into a rectangular grid graph, let us introduce
the following parity-preserving embeddiegbof B into G; (a one-to-one function froidy U V; to the vertices o653
and fromE to paths inG;):

1. The vertices o¥/y are mapped to white vertices Gf, i.e., if v e Vo, thenemiqv) is colored by white.

2. The vertices o¥/; are mapped to black vertices@t, i.e., if v e Vi, thenemlgv) is colored by black.

3. The edges dB are mapped to vertex-disjoint paths®f, i.e., ife = (u, V) € E, thenemi{e) is a pathP from emku)
to emiv), and the intermediate vertices®fdo not belong to any other path.

For example, Fig. 5(a) shows a planar bipartite grBphith maximum degree 3, and a parity-preserving em-
beddingemi{B) of B is depicted in Fig. 5(b). The following lemma is given in [1&)d shows that the above
parity-preserving embedding can be done in polynomial time

Lemma 3.2. (See [19].) Let B be a planar bipartite graph with n verticesdamaximum degree 3. Then, a parity-
preserving embedding erf®) of B into a rectangular grid (supergrid) graph(k, kn) can be done in polynomial
time, where k is a constant.

Now given a planar bipartite graghwith n vertices and maximum degree 3, we shall construct a supeygph
Gs such thatB has a Hamiltonian cycle if and only @&s contains a Hamiltonian cycle. L& = (Vo U V4, E). The
construction of5s from B is sketched as follows. First, we embed gr&ihto a rectangular supergrid graptkn, kn)
for some constark, as described in Lemma 3.2. Let the embedding supergrichdra;. In the second step, we
enlarge the supergrid graj@y such that each edge (B; is transformed into a path with 9 edges. Let the enlarged
supergrid graph b&,. For example, Fig. 6 shows the supergrid gr&henlarged from the supergrid gra@i in
Fig. 5(b) for the planar bipartite graghin Fig. 5(a). In the third step, each vertex of grapls transformed into a
clusterwhich is a small supergrid graph. The vertexBis calledcritical vertexin G,. Finally, each path i, is
simulated by dentaclewhich is a series of 2-rectangles, and the resultant graplsigergrid grapts.

Now, we introduce clusters and tentacles as follows. Wesfoam each vertex of into awhite clusterand each
vertex ofV; into ablack cluster A white cluster is a supergrid graph with 17 vertices andazklcluster is also a
supergrid graph with 13 vertices. Fig. 7 shows the white dadkxclusters. The center of a white cluster (resp., black
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Fig. 6: The enlarged supergrid grah from the embedding supergrid gra@i in Fig. 5(b), where solid lines indicate the edge&in

cluster) is a white critical vertex (resp., black criticartex). For example, critical vertex(resp..y) is the center of

a white cluster (resp., a black cluster) in Fig. 7(a) (reBfy, 7(b)). The distance between any vertex and center in a
cluster is at most 2. The verticas, a,, as, a4 (resp.,bs, by, bs, bs) in Fig. 7(a) (resp., Fig. 7(b)) are called tberner
verticesof cluster, and the edges, e, €3, &4 in Fig. 7 are calledritical edges In our construction, the corner vertices
together with critical edges of a cluster are used to conedtte other cluster. The following two propositions show
the properties of clusters.

Proposition 3.3. Let C;7 be a white cluster, aay, as, a4 be its corner vertices, and let g, e3, &4 be its critical
edges, asin Fig. 7(a). Then far< i < j < 4, there exists a Hamiltonia(a;, a;)-path of G7 which contains all four
critical edgesie;, e, €3, €4}.

Proof. By inspection, the lemma can be verified. For examipig, 8(a) and Fig. 8(b) depict a Hamiltoniaay (az)-
path and a Hamiltoniara{, a4)-path ofC,7, respectively, which contain all critical edggs, e, €3, €4}. O

Proposition 3.4. Let C3 be a black cluster, fyb,, bs, by be its corner vertices, and let g, e, &4 be its critical
edges, asin Fig. 7(b). Then far< i < j < 4, there exists a Hamiltonia(b;, bj)-path of Gz which contains all four
critical edgesie;, e, €3, €4}.
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Fig. 7: (a) A white clusteC;7, and (b) a black cluste;3, where the centers @37 andCj3 are critical verticesx andy, respectively, the critical
edges include;, e, €3, &4, and the corner vertices include, az, ag, a4 or by, by, b, by.
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Fig. 8: (a) A Hamiltonian &;, az)-path of a white cluste€,7, (b) a Hamiltonian &;, a4)-path of a white cluster, (c) a Hamiltoniah;( bs)-path of
a black clusteC13, and (d) a Hamiltonianky, bs)-path of a black cluster, where arrow lines indicate theesdg such a path and each critical edge
is contained in the Hamiltonian path.
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Fig. 9: (a) A stripS(a, b; ¢, d) with cornersa, b, ¢, d, and (b) a square tentaclé(as, bs; cs, ds) consisting of 5 strips.

Proof. By inspection. For example, For examplég. 8(c) and Fig. 8(d) depict a Hamiltoniah; (bs)-path and a
Hamiltonian b1, bs)-path ofC,3, respectively, which contain all critical edgis, e, €3, €4}. O

In our construction, the path i@; is simulated by a series of 2-rectangles, catiatacle We will use the similar
technique in [19] to make it. Atrip is a rectangular supergrid graph with at least 2 squaresHigeed(a)), i.e., it
is isomorphic toR(m, 2) with m > 3. The strip with corners, b, c,d (the degree of every corner is 3), as in Fig.
9(a), is denoted b$(a, b; c,d). A square in a strip is callegdrminalif it contains corners. Aquare tentacle Tis a
supergrid graph which is either a strip or a union of a serfestrips stuck together by the edges of terminal squares.
Let T’ = S(ay, by; c1,d1) U S(ap, by; ¢, dp) U - - - U S(a, by; ¢k, dk). We definel”’ to satisfy the following conditions:

(1) bothc;, di € V(S(ay41, bit1; Ciy1, dizg)) for L <i < k-1,

(2) one ofaj;1, biy1 € V(S(a, bi; i, d)) forl <i <k-1,and

(3) there is no other intersection between the vertex setseddtrips.

The verticesy, by, ¢, dk are called the corners @f, and denote this square tentaclelbyay, bs; ¢, di). For example,
Fig. 9(b) shows a square tentacle with 5 strips and commels, cs, ds.

In the construction of an enlarged supergrid gr&gh{see Fig. 6) from a planar bipartite grapt{see Fig. 5(a)),
the path inG; is a combination of four possible types of subpaths, as shiowig. 10(a). The corresponding square
tentacles for these types of subpaths are depicted in F{ip).1A tentacleis then constructed from a square tentacle
by attaching a triangle to its terminal square. For instaf@g 10(c) depicts the possible tentacles for the square
tentacle of type | in Fig. 10(b). We call the attached trigngfl a tentacle to be thail of the tentacle. Let, v be two
vertices of the first square in a tentad@lesuch that their degrees are 3, andidie a vertex of the tail in a tentacle
such that its degree 2. Since each strip of a tentacle is iguiwto a 2-rectangl®&m, 2) with m > 3, the vertices
u,v exist. Then we denote the tentacle Bu, v; w). The verticesl, v are called thewin cornersof T(u, v; w), and
the vertexw is said to be théail corner of T(u,v; w). Fig.10(c) also depicts the corners of tentacles. Theotig
lemma shows the Hamiltonian property of a tentacle.

Lemma 3.5. Let T(u, v; w) be a tentacle. Then for any two corners s {u, v, w}, there exists a Hamiltoniafs, t)-path
of T(u, v; w).

Proof. LetT’(as, by; c,, d;) = S(as, by; €1, di) U S(ap, by; ¢z, d2) U - - - U S(a,, by; ¢,, d,) be the corresponding square
tentacle ofT (u,v;w). That is, T(u,v;w) is constructed fronT’(a, bs; c,, d;) by attaching a triangle with vertices
C,;,dy,w. Then,u,v € {as,bs} andw is adjacent to both of, andd,. We claim thatT’(ay, b; c,, d,) contains a
Hamiltonian €, t')-path fors,t" € {a;, b1} such that edgecf, d,) is in the Hamiltonian path, and has a Hamiltonian
(s.t')-path fors' e {as, bi} andt’ € {c,,d,}. Sinceu,v € {a;, b1} andw is adjacent to both of, andd,, the lemma
hence holds true.

We prove the above claim by induction gnthe number of strips in square tentagle€ay, by; c,, d,). Initially,
letn = 1. Then,T’(ag, bs;c1,d1) = S(ag, by;c1,d1). By inspection, it is easy to verify that there exists a Hami
tonian @, b)-path of stripS(as, bs; ¢1,d;) such that edgec{, d;) is in it. That is, the Hamiltonian path contains
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Fig. 10: (a) The possible types of subpaths in an enlargeergtig graphG,, (b) the corresponding square tentacles for these subijpafay and
(c) the possible tentacles for the square tentacle of typg€H); where the solid lines indicate the edges in paths.

d
4 q
Cnr iy

(a) (b)

Fig. 11: (a) A schematic diagram for the relative location ef:1,bk:+1,dk,r, P, 0, Ck+1, dkt1, (D) the Hamiltonian &, bs)-path of
T’(a1, b1; €1, dks1), and (c) the Hamiltonianag, c.1)-path of T”(ag, b1; ck+1, dk+1), Where arrow lines indicate the edges in the Hamiltonian
paths.

its all boundary edges except edgm,b1). In addition, fors € {a;,b:} andt’ € {ci,d;} we can easily con-
struct a Hamiltonian €, t')-path of S(ay, by; c1,d;). Now, assume that the claim holds true when= k > 1.
Then, there exists a Hamiltoniaa;(b;)-path P; of T’(ay, by; ¢k, dk) such that edgecg, di) is in P1, and there ex-
ists a Hamiltonian €, t")-path P, of T’(as, bs; ¢, dk) for s € {ay, b} andt’ € {c, dk}. Consider thay = k + 1.
Then, T’(a1, b1; Cki1, A1) = T'(a1, by Ck, dk) U S(ak+1, bre1; Cke1, dki1). By definition of square tentacle, one of
a1, b1 € {Ck, dk} and bothey, dx € V(S(aki1, bki1; Cki1, dki1)). Without loss of generality, suppose thmti = ¢k
and the first square d(ay,1, bis1; Cks1, k1) CONtains verticesy, 1, bs1 = Ck. Ok, r. Let S’ = S(p,q;c., d;) be a
strip obtained fronS(ay. 1, bk+1; Ck+1. dkr1) by removingthe vertices othe first square. Since each strip contains at
least two squares, we have ti&it# 0, ¢, = Ck1, andd; = dy,1. Note that ifS(ax. 1, bki1; Cks1, dki1) CONtains only
two squares, thep = c.1 andq = dx,1. The relative location o8y, 1, bxi1, dk, I, P, 0, Ck+1, dks 1 IS depicted in Fig.
11(a). Thengdy,r, p, q forms the second square $fax, 1, bk:1; Ck+1, dir1). Note that each square of a strip is a clique.
Consider the following two cases:

Casel: s, t' € {a1, by}. By the induction hypothesis, there exists a Hamiltonanltt;)-pathP; of T’(ag, by; ¢k, dk)
such that edgect, di) is in P1. Without loss of generality, suppose that = Pi - C — Ok — Pi, i.e.,cx appears
beforedy in Py, Wherestart(Pi), enc{Pi) € {a1, b1}. The case thai, appears afted in P; can be verified similarly. By
inspection, we can construct a Hamiltonign @)-pathQ, of S’ = S(p, g; Ck+1, dk+1) such that edgect,1, dys1) € Qs.
LetP* = P} > cx - a1 = r > Q1 — d¢ — P2 Then,P* is a Hamiltonian &, by)-path of T’(a1, by; Cir1, dii1)
such that edgect, 1, dks1) is in P*. The construction of such a Hamiltoniaa (b;)-pathP* is depicted in Fig. 11(b).

Case2: s € {ag, b} andt’ € {cki1, dks1). By the induction hypothesis, there exists a Hamiltongind()-pathP,

10
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Fig. 12: The connection of two clusters via a tentacle, widahed lines represent the edges between cluster andeentac

of T'(ay, by; ¢k, dk). By inspection, we can construct a Hamiltonigmt()-pathQ, of S” = S(p, q; Ck+1, dks+1), Where

t' € {Cks1, Oks1}. LELP = P2 = a1 — 1 — Q. Then,P’ is a Hamiltonian §,t')-path of T’ (a1, b; Cks1, dkr1), Where

S € {a, by} andt’ € {ck+1, dki1}. The construction of such a Hamiltoniaey (c.1)-pathP’ is shown in Fig. 11(c).
Itimmediately follows from the above cases that the claifdftrue. This completes the proof of the lemmal

Let B = (Vo U V1, E) be a planar bipartite graph withvertices and maximum degree G; be the embedding
supergrid graph fronB, and letG, be the enlarged supergrid graph by multiplying the scal&oby 9. We have
simulated the critical vertices @, by clusters and the paths 6% by tentacles. The remaining care is taken as to
how the tentacle is connected to the clusters corresponalitvgp critical vertices of3,. Let x € Vp andy € V; with
(x,y) € E(B). Then, we simulate andy by a white clusteC;17 and a black cluste€,s, respectively, such th&l;;
contains the white vertexas center and four critical edges e, €3, &4, andCj 3 contains the black vertexas center
and four corner verticely, by, bs, by, as shown in Fig. 7. The path betwermndy in G, is then simulated by a
tentacleT (u, v; w). TentacleT (u, v; w) is used to connect cluste€s; andC, 3 in the following way. The twin corners,

u andv, of T(u,v;w) are adjacent to the vertices of one critical edg€in, and the other cornew, of T(u,v;w)

is adjacent to one corner vertex ©f;. For example, Fig. 12 depicts such a connection betweerewhisterC;;
and black cluste€;3 via a tentacler (u, v; w). Since the maximum degree of the original planar bipagitph is 3,
the number of tentacles connecting to each cluster is at & 10sbr a white cluster (resp., black cluster), there are
four critical edges (resp., corner vertices) (see Fig. d)tae number of critical edges (resp., corner vertices) tsed
connect tentacles is at most 3 since the maximum degree ofitfieal planar bipartite graph is 3. Thus, it is enough
to make such a connectio©n the other hand, the paths in embedding supergrid geapdre vertex disjoint and
hence they are vertex disjoint paths in the enlarged suipeggaphG,. Since we enlarge the scale®f by 9, i.e.,
each edge i is transformed into a path with 9 edges, it is easy to constemtacles from the paths &, such that
tentacles are disjoint.

Let T(u,v; w) be a tentacle with twin cornergv and tail cornew. By Lemma 3.5, there exists a Hamiltonian
(s, t)-path of T(u, v; w) for s,t € {u, v, w}. By the definition of tentacley, v are adjacent andg is adjacent to neithar
norv. We can easily observe that there are only two types of Hamdéh (s, t)-paths inT(u, v; w). The path can be
either areturn path if s, t are twin corners or arosspath if one ofs, t is tail corner. For example, Fig. 13 depicts these
two types of Hamiltonian paths ifi(u, v; w) shown in Fig. 12. Note that there are many return paths asssgaths.

We have introduced how to construct a supergrid gapfrom a planar bipartite grapB with maximum degree
3. The construction algorithm is formally presented asfed.

Algorithm SupergridConstruction

Input: B = (Vo U Vy, E), a planar bipartite graph with maximum degree 3.
Output: Gg, a supergrid graph constructed frdn

Method:

1. embed grapiB into a rectangular supergrid grajikn, kn) for some constarit [19], and let the embedding
supergrid graph b&;;

2. enlarges; to a supergrid grapB, such that each edge @y is transformed into a path with 9 edges;

3. for each white critical vertex of G, (x € V), x is transformed into a white clust€s; with centerx;

4. for each black critical vertey of G, (y € V1), y is transformed into a black clust€; with centery;

11
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Fig. 13: (a) A return path, and (b) a cross path in a tenté¢lev; w) shown in Fig. 12, where arrow lines indicate the paths.

5. for each path between white critical verteand black critical vertey, construct a tentaclg(u, v; w) to connect
the corresponding clusters gfandy such thatu, v are adjacent to two vertices of one critical edges in white
cluster andv is adjacent to one corner vertex of black cluster;

6. let the constructed supergrid graphGaeandoutput Gs.

For example, given a planar bipartite graBh= (Vo U V1, E) with maximum degree 3 shown in Fig. 5(a), the
embedding supergrid gragby is shown in Fig. 5(b). The enlarged supergrid gr&zhby multiplying the scale of
G; by 9 is shown in Fig. 6. The constructed supergrid gr&glis depicted in Fig. 14. By Lemma 3.2, line 1 of
Algorithm SupergridConstruction can be done in polynorimak. Clearly, lines 2—6 of the algorithm can be done in
polynomial time. Then, Algorithm SupergridConstructiams in polynomial time and hence the following lemma
holds true.

Lemma 3.6. Given a planar bipartite graph B (Vo U V3, E) with maximum degree 3, Algorithm SupergridConstruc-
tion constructs a supergrid graphd{n polynomial time.

Next, we will prove that supergrid grapghs has a Hamiltonian cycle if and only if there exists a Hamiiléon
cycle in the planar bipartite gragh Before proving the above property, we first give the retati@tween tentacle
and Hamiltonian cycle oBs. For a cycleC of a graphG and a subgrapHhl of G, we denote the restriction & to H
by Cn. Then,Cy is a set of subpaths &. We then have the following lemma.

Lemma 3.7. Let Gs be the supergrid graph constructed from a planar bipartitapgh B by Algorithm Supergrid-
Construction, and let T= T(u,v; w) be a tentacle of @ If G5 has a Hamiltonian cyclédC, then there exists a
Hamiltonian cycleHC* in Gg such that Hq is a Hamiltonian(s, t)-path of T for st € {u, v, w}.

Proof. By the construction o6, tentacleT satisfies the following properties:

(1) only three vertices,, v,w of T are adjacent to vertices &s — T, i.e., no vertex ofl — {u,v,w} is adjacent to
vertices ofGg - T,

(2) each of twin cornerg, v of T is adjacent to only two verticgs qof Gs—T, i.e.,N(U)N(Gs—T) = N(V)N(Gs—T) =
{p,q} andu, v, p, g forms a clique, and

(3) the tail cornew of T is adjacent to only one vertexof Gs— T, i.e.,N(w) N (Gs—T) = {r}.

Since only three vertices, v,w of T are adjacent to vertices &s — T, Gs— T andT — {u,v,w} are disjoint.
Then, the number of paths HCr is not larger than 2, i.e|HCr| < 2. If [HCr| = 1, i.e.,HCyy is either a return
path or a cross path df, then the lemma is clearly true. Assume thaC;r| = 2 below. Letus, up, uz € {u, Vv, w}
and letHC = P; - ug » Q1 — U —» P2 — uz = Q2, whereHCr = {ug —» Q1 — U, Uz — Q2} andPy # 0.
Suppose thaP; = 0. SinceHC is a Hamiltonian cycle 06, u; ~ end Q) and henceHCr = {u; — rev(Q) —
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lines indicate the edges in the constructed supergrid graph
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u; — rev(Qz) — ug}, a contradiction. Thus?; # 0. On the other hand, suppose tlagt # 0. SinceHC is a cycle,
endQ,) ~ start(P1) and hence there exist four vertices, u,, us, endQ,), of T which are adjacent to vertices of
Gs—T, a contradiction. ThuQ, = 0. Then,HC = P; — u; — Q; — U — Py — ug, whereP; # 0, start(P;) ~ us,
andHCit = {u; — Q1 — Uy, uz}. Sinceuz ~ start(P;) anduz ~ endPy), IN(us)N(Gs—T)| > 2 and hences € {u, v}.
Then,start(P;), endP,) € {p, q} andstart(P;) ~ endP;). LetP = P, — P;. Then,start(P)(= start(P,)) ~ u, and
endP)(= endP;)) ~ u;. By Lemma 3.5, there exists a Hamiltonian ,(uz)-pathQ of T for uz, uz € {u,v,w}. Let
HC* = P — Q. Then,HC" is the desired Hamiltonian cycle & such thaﬂ-|Cfir = {Q} andQ is a Hamiltonian
(s, t)-path of T for s = u; andt = u,. In fact, Q is a cross path of . Thus, the lemma holds true. O

By using the above lemma, we will prove the following lemma.

Lemma 3.8. Let B= (Vo U V1, E) be a planar bipartite graph with maximum degree 3 and lgt® the supergrid
graph constructed from B by Algorithm SupergridConstruttiThen, graph Ghas a Hamiltonian cycle if and only
if there exists a Hamiltonian cycle in graph B.

Proof. If part: In this part, we will prove that if grapB has a Hamiltonian cycle, then gra3 contains a Hamilto-
nian cycle. Assume that the planar bipartite gr&h (Vo U V4, E) has a Hamiltonian cyclelCg. We will construct
the corresponding Hamiltonian cyck¢C of Gs as follows. Let &, y) be an edge of grapB such thatx € V, and

y € V4, and let the edge be simulated by a tentdgle= T(u, v; w) in Gs. Starting to formHC, we will coverTy, by a
cross path if ,y) € HCg, and by a return path otherwise. By Lemma 3.5, there existess @ath or return path of
tentacleT,y. The clusters themselves are covered as in Propositioren8.3.4. The partial paths can be connected
to constitute a Hamiltonian cycle. Note that some criticdyes ofg’s for connecting to a return path in Fig. 7(a)
must be deleted in the constructed Hamiltonian cycle. Fanmete, for the planar bipartite grah= (Vo U V1, E)
shown in Fig. 5(a)HCg = x; —» y1 — X2 — Y2 — X3 — Y3 is a Hamiltonian cycle oB. Then, Fig. 15 depicts its
corresponding Hamiltonian cycteC in the constructed supergrid gra@h as shown in Fig. 14.

Only If part In this part, we will prove that if graps has a Hamiltonian cycle, then grapicontains a Hamil-
tonian cycle. Assume now that supergrid gr&thas a Hamiltonian cyclelC. By Lemma 3.7, we may assume that
for any tentaclel' = T(u, v; w) in Gs, the restrictiorHC;r of HC to T is a Hamiltonian § t)-path fors, t € {u, v, w}.
Then, by our construction @ each tentacle is covered by either a cross path or a retunn ljpadur construction of
Gs, each tentacle is connected to only one critical edge of gevehister, and each white cluster is attached to at most
three tentacles. On the other hand, each tentacle is cathtecbnly one corner vertex of a black cluster, and each
black cluster is connected to at most three tentacles. Wsamthat irHC each white or black cluster is incident upon
exactly two cross paths. Note that each verteB @ transformed into a cluster, and every edg®adé simulated by
a tentacle. To construct a Hamiltonian cyEl€g of graphB, we include inHCg all edges corresponding to tentacles
covered by cross paths. And each verteki@fg is a center of one cluster ;. Then,HCg is a Hamiltonian cycle of
graphB because each cluster (white or black)&fcan not be covered biyC unless it is incident upon exactly two
cross paths. O

Clearly, the Hamiltonian cycle problem for supergrid grajhin NP. By Lemmas 3.6 and 3.8, we conclude the
following theorem.

Theorem 3.9. The Hamiltonian cycle problem for supergrid graphs is NPaptete.

By similar arguments in proving the above theorem, we cawngtbe Hamiltonian path problem on supergrid
graphs to be also NP-complete, as in the following theorem.

Theorem 3.10. The Hamiltonian path problem for supergrid graphs is NP-ptete.

Proof. We give a reduction from the Hamiltonian cycle problem omplebipartite graphs with maximum degree 3.
Given a planar bipartite grapghiwith maximum degree 3, we construct a supergrid gi@phs follows:

1. construct a supergrid graf by Algorithm SupergridConstruction;

2. letCy be a black cluster dBs such that its one critical edg€ (t’) is not attached to any tentacle;

3. two new vertices andt are added to be adjacent$oandt’, respectively, such that the degree of each new
vertex is 1;

14
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Fig. 16: A black clusteCy in G5 with two terminalss andt.

4. let the resultant supergrid graph®g

Since the degree of each vertexBris at most 3, each tentacle is connected to one critical edgesthere are
four critical edges in each black cluster, black clusigrof Gs does exist. The construction for attaching two new
vertices is depicted in Fig. 16. By similar arguments in jimg\_emma 3.8, we can verify that

graphGj has a Hamiltoniang t)-path if and only if there exists a Hamiltonian cycle in gndp

Then, Lemma 3.8 and NP-completeness of the Hamiltoniareqycblem for planar bipartite graphs with maximum
degree 3 complete the proof of this theorem. O

4. The Hamiltonian cycle problem on rectangular and alphabet sipergrid graphs

In this section, we will study the Hamiltonian cycle propyeof rectangular and alphabet supergrid graphs. We
show that these two subclasses of supergrid graphs alwapaicddamiltonian cycles. In the literature, Cheh
al. [6] and Salman [33] showed the Hamiltonian properties ofanregular and alphabet grid graphs, respectively, as
shown in the following two lemmas.

Lemma 4.1. (See [6].) Let Rm, n) with m n > 2 be a rectangular grid graph which is a subgraph qhfkn), where
V(R(mn)) ={v=(vxV)|1l<vy<mandl < v, < n). Then, Rim, n) contains a Hamiltonian cycle if and only if
mn is even.

Lemma 4.2. (See[33].) Let ({m, n) with m n > 3 be an L-aphabet grid graph which is a subgraph @fl_n), where
L’(m, n) is defined similar to (m, n). Then, L(m, n) has a Hamiltonian cycle if and only if mn is even.

Since any rectangular grid grapt(m, n) is a subgraph of a rectangular supergrid gr&fh, n), R(m, n) contains
a Hamiltonian cycle ifmnis even. However, we will show th&(m, n) contains a Hamiltonian cycle evenrnfn
is odd. Obviously, 1-rectangle contains no HamiltonianleydVithout loss of generality, assume thmat> n for
R(m, n). For a 2-rectangl®(m, 2), we can construct a Hamiltonian cycle by visiting all bdary edges oR(m, 2). In
the following, consideR(m, n) to satisfy thatm > n > 3. By definition,R(m, n) consists oim columns and rows
of vertices. Leta;; be the vertex locating atth row andj-th column ofR(m,n). That is, {, j) is the coordinates of
aj whenay is coordinated as (1). LetC be a cycle oR(m, n) and letH be a boundary oR(m, n), whereH is a
subgraph oR(m, n). Recall that the restriction & to H is denoted byCy. If |Ciu| = 1, i.e. Cy visits all boundary
edges oH, thenCyy is calledflat faceonH. If |[Cn| > 1 andCy contains at least one boundary edgéiofthenCy
is calledconcave facen H.

We first consider 3-rectangk(m, 3). A Hamiltonian cycle oR(m, 3) is calledcanonicalif it contains three flat
faces on two shorter boundaries and one longer boundaryif andtains one concave face on the other boundary,
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Fig. 17: The canonical Hamiltonian cycle of rectangular supergrabgR(m, n) for (a) nis even, and (bh is odd, wherem > n > 4, solid arrow
lines indicate the edges in the cycle, and dashed arrowiligiisate the flat faces in the cycle.

where the shorter boundary contains three vertices. Thewfiolg lemma shows theR(m, 3) contains a canonical
Hamiltonian cycle.

Lemma 4.3. Let Rm, 3) be a 3-rectangle with i 3. Then, Rm, 3) contains a canonical Hamiltonian cycle.

Proof. We prove this lemma by constructing a Hamiltonian cycl®gh, 3) such that it contains all boundary edges
of two shorter boundaries and one longer boundary, and tiagmnat least one boundary edge in the other longer
boundary. By inspection, the lemma can be easily verifiedform > 3. In the following, assume that > 5. Let

Py =a11 = aip = -+ = aym-1) — aim, and letP, = ay, — ag form > ¢ > 1. Depending on whethenis even or
not, we consider the following two cases:

Casel: mis even. LetP,, = rev(P,) - Pz — --- = rev(P;) = Pjz1 — -+ = rev(Pm-2) — Pm-1, Wherej is
evenand X j < m-2. ThenP, — Py — rev(P,) — rev(P1) is a canonical Hamiltonian cycle &m, 3).

Case2: mis odd. LetP,, = rev(P2) —» P3 — --- = rev(P;) = Pj;1 — -+ = rev(Pm-3) = Pm2 — rev(Pm-1),
wherej is even and X j < m- 3. Then,P,, —» Py — rev(P,,) — rev(P;) is a canonical Hamiltonian cycle of
R(m, 3).

It immediately follows from the above cases that the lemniddiwue. O

We have constructed Hamiltonian cycles for 2-rectangles3rectangles. In the following, 1&(m, n) satisfy
m > n > 4. A Hamiltonian cycle oR(m, n) with m > n > 4 is calledcanonicalif it contains three flat faces on three
boundaries, and it contains one concave face on the otherdaoy The following lemma shows the Hamiltonian
property ofR(m, n) withm>n > 4.

Lemma 4.4. Let Rm, n) be a rectangular supergrid graph with s n > 4. Then, Rm, n) contains four canonical
Hamiltonian cycles with concave faces being offedeént boundaries.

Proof. Depending on whetharis even or not, we consider the following two cases to corsticanonical Hamil-
tonian cycle ofR(m, n):

Casel: niseven. LetP1 =ay1 > a;p —» - > am P, =a2 > az — - > amforn > > 2, and let
Phpi=ap1 > az —» - — An-1)1 — an1. LetP* = rev(Pz) - P3 - rev(P4) - P5s— .- Pj e rev(PHl) i

- — rev(Pn-2) — Pn_1, wherejis evenand X j < n- 2. LetCepen= P1 — P* — rev(P,) — rev(P,;1). Then,

Cevenis a canonical Hamiltonian cycle &m, n). The construction of such a canonical Hamiltonian cycléegicted
in Fig. 17(a).

Case2: nis odd. In thiscasen > 5. LetP1 = ay1 > ago —» - > am P, = a2, - az — -+ - anm
forn-3>¢>2,Py=ap — ag — -+ = am and letPp1 = a1 — a3 — -+ — an-11 — an1. Let
P* =rev(P;) - Pz = rev(Ps) - Ps - --- - rev(P}) = Pj;1 — -+ — rev(Pn_s) = Pns — rev(Pn_3), wherej is
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Fig. 18: The Hamiltonian cycle for (a) parallelism supedgyraphP(5, 6), and (b) parallelism supergrid gragi5, 5), where arrow lines indicate
the edges in such cycles.

evenand X j < n-5. If mis even, then e’ = an-22 = ap-12 = an-1)3 = an-2)3 = *** = An-2)r; — An-1)r; —
An-1)r1+1) = dn-2)@+1) — 0 7 An-2)(m-2) — An-1)m-2) — An-1)m-1) — n-2)(m-1) — Yn-2m — dYn-1)m;
otherwise, leP’ = ap 22 = an-12 = An-1)3 = n-2)3 = *** = An-2)r, = An-L)r, = An-1)(ro+1) = An-2)(rp+1) =

© = Ape2)m-3) = An-1)m-3) = An-1)Mm-2) = n-2)m-2) = An-2)m-1) — An-1)m-1) — &n-2)m — an-1m, Where
T, T2areeven, X 13 < m-2,and 2< o < m-3. LetCygg = P1 - P* > P - rev(P,) — rev(Pn,1). Then,
Codd is a canonical Hamiltonian cycle &m, n). The construction of such a canonical Hamiltonian cyclgepicted
in Fig. 17(b).

By the above cases, we construct a canonical Hamiltonide of&(m, n) such that its concave face is on the right
boundary. By symmetry, we can construct a canonical Hanidtocycle ofR(m, n) such that its concave face is on
the left boundary. Consider thatis even or not. By symmetry and the same constructions in Casel Case 2, we
can construct two canonical Hamiltonian cycles(in, n) such that their concave faces are respectively placeeat th
upper and down boundaries. Thus there are four canonicalltdaran cycles oR(m, n) such that their concave faces
are on the diferent boundaries (left, right, upper, and down boundarigss completes the proof of the lemmall

By similar constructions in the proofs of Lemmas 4.3 and #d can construct a Hamiltonian cycle of a paral-
lelism supergrid graph. For instance, Fig. 18 shows the Hanian cycles of parallelism supergrid grapP, 6)
andP(5,5).

Next, we will investigate the Hamiltonian cycle propertyalphabet supergrid graphs. By Lemma 4.2,lan
alphabet grid graph’(m, n) has a Hamiltonian cycle only ihnis even. However, for ah-alphabet supergrid graph
L(m, n) we will show that it always contains a Hamiltonian cyclevo distinct edges; = (uz, v1) ande; = (Up, V,) of
a graphG are calledoarallelif (u; ~ v; andup ~ V) or (U ~ Vv, andu, ~ Vv;), denote this by =~ e,. LetC; and
C, be two vertex-disjoint cycles of a grah If there exist two edges; € C; ande, € C, such thae;, = e, thenC;
andC, can be combined into a cycle Gf Thus we have the following proposition.

Proposition 4.5. Let C; and G, be two vertex-disjoint cycles in graph G. If there exist twiges ¢ € C; and e € C,
such that ¢ = e, then G and G, can be combined into a cycle C.

To construct a Hamiltonian cycle of dnalphabet supergrid graph(m, n), we partition it into two adjacent
rectangular supergrid subgraphs. Note th@m, n) is a subgraph oR(3m - 2,5n — 4) form,n > 3. TheL-alphabet
supergrid graph.(m, n) is separated into two disjoint rectangular supergrid sajplgsL; and L, such thatL; =
R(m,5n—4) andL, = R(2m- 2, n). The partition is depicted in Fig. 19(a). Sincen > 3, we obtain thatb-4 > 11
and 2n- 2 > 4. By Lemmas 4.3 and 4.4,; andL, contain canonical Hamiltonian cycl€; andC,, respectively.
We can place one flat face 6f to face the neighboring rectangular supergrid subgtapmnd place one flat face of
C, to facel;. Thus, there exist two parallel boundary edges C; ande, € C,. By Proposition 4.5C; andC, can
be combined into a Hamiltonian cycle bfm, n). For example, Fig. 19(b) shows a Hamiltonian cyclé_@f, 3). We
then have the following lemma.

Lemma 4.6. Let L(m,n) be an L-alphabet supergrid graph with,m> 3. Then, I{m, n) contains a Hamiltonian
cycle.

By similar partition, we can separate the other types ofaibgh supergrid graphs below.
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Fig. 19: (a) The partition oE-alphabet supergrid grapgt{m, n), where dashed line indicates the separation, and (b) altdéamn cycle ofL(4, 3),
where arrow lines indicate the edges in the cycle @mdpresents the destruction of an edge while constructing auiHamiltonian cycle.

Ei=F(m,n)k

Fig. 20: The partitions of alphabet supergrid graphs forGalphabet, (b)F-alphabet, and (cE-alphabet, where dashed lines indicate the
separations.

Definition 4.1. The partitions ofc-, F-, andE-alphabet supergrid graphs are defined as follows:

(1) A partition of an C-alphabet supergrid grapb(m, n) is a separation o€(m, n) into an L-alphabet supergrid
subgrapiC; = L(m, n) and a rectangular supergrid subgré&ph= R(2m- 2, n).

(2) A partition of an F-alphabet supergrid graph(m, n) is a separation oF(m, n) into an L-alphabet supergrid
subgraph~; = L(m, n) and a rectangular supergrid subgrdph= R(m, n).

(3) A partition of an E-alphabet supergrid grapa(m, n) is a separation oE(m, n) into an F-alphabet supergrid
subgraple; = F(m, n) and a rectangular supergrid subgrdph= R(2m - 2, n).

Fig. 20 depicts the partitions of the above alphabet sujgbgyaphs. By similar arguments in proving Lemma
4.6, the following lemma can be easily verified.

Lemma 4.7. Let C(m, n), F(m, n), and Em, n) be an C-alphabet, an F-alphabet, and an E-alphabet supégyaph,
respectively, for ym > 3. Then, Gm, n), F(m, n), and Em, n) contain Hamiltonian cycles.

We have proved that rectangular, parallelism, and alphsingergrid graphs are Hamiltonian. The following
theorem concludes these results.

Theorem 4.8. Let Alm, n) be a rectangular or parallelism supergrid graph with m> 2, and let Em, n) be an L-
alphabet, C-alphabet, F-alphabet, or E-alphabet supetgpiaph with mn > 3. Then, Am, n) and Bm, n) contain
Hamiltonian cycles.
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5. Concluding remarks

In this paper, we first proposed a novel class of graphs, nasuglergrid graphs. The supergrid graphs contain
grid graphs and triangular grid graphs as subgraphs. Wegalsocan application to the Hamiltonian properties of
supergrid graphs. Then, we prove that the Hamiltonian cgol Hamiltonian path problems for supergrid graphs
are NP-complete. Furthermore, we construct Hamiltoniatlesyon some subclasses of supergrid graphs, including
rectangular, parallelism, and alphabet supergrid grapisinteresting to see whether the Hamiltonian problems fo
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the other subclasses of supergrid graphs, including saolidiaear convex, are polynomial solvable. We would like
to post it as an open problem to interested readers.
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