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The Hamiltonian properties of supergrid graphs
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Abstract

In this paper, we first introduce a novel class of graphs, namely supergrid. Supergrid graphs include grid graphs and
triangular grid graphs as their subgraphs. The Hamiltoniancycle and path problems for grid graphs and triangular
grid graphs were known to be NP-complete. However, they are unknown for supergrid graphs. The Hamiltonian cycle
(path) problem on supergrid graphs can be applied to controlthe stitching traces of computerized sewing machines. In
this paper, we will prove that the Hamiltonian cycle problemfor supergrid graphs is NP-complete. It is easily derived
from the Hamiltonian cycle result that the Hamiltonian pathproblem on supergrid graphs is also NP-complete. We
then show that two subclasses of supergrid graphs, including rectangular (parallelism) and alphabet, always contain
Hamiltonian cycles.

Keywords: Hamiltonian properties, supergrid graph, rectangular supergrid graph, alphabet supergrid graph, grid
graph, triangular grid graph, computerized sewing machine

1. Introduction

A Hamiltonian cyclein a graph is a simple cycle in which each vertex of the graph appears exactly once. AHamil-
tonian pathin a graph is a simple path with the same property. TheHamiltonian cycle(resp.,path) probleminvolves
testing whether or not a graph contains a Hamiltonian cycle (resp., path). A graph is said to beHamiltonian if it
contains a Hamiltonian cycle. TheHamiltonian problemsinclude Hamiltonian cycle and Hamiltonian path problems.
They have numerous applications in different areas, including establishing transport routes, production launching, the
on-line optimization of flexible manufacturing systems [1], computing the perceptual boundaries of dot patterns [30],
pattern recognition [2, 31, 34], and DNA physical mapping [14]. It is well known that the Hamiltonian problems
are NP-complete for general graphs [10, 20]. The same holds true for bipartite graphs [23], split graphs [11], circle
graphs [8], undirected path graphs [3], grid graphs [19], and triangular grid graphs [12]. In this paper, we will study
the Hamiltonian problems on supergrid graphs which containgrid graphs and triangular grid graphs as subgraphs.

The two-dimensional integer grid G∞ is an infinite graph whose vertex set consists of all points ofthe Euclidean
plane with integer coordinates and in which two vertices areadjacent if and only if the (Euclidean) distance between
them is equal to 1. Agrid graph is a finite, vertex-induced subgraph ofG∞. For a nodev in the plane with integer
coordinates, letvx andvy represent thex andy coordinates of nodev, respectively, denoted byv = (vx, vy). If v is a
vertex in a grid graph, then its possible adjacent vertices include (vx, vy − 1), (vx − 1, vy), (vx + 1, vy), and (vx, vy + 1).
For example, Fig. 1(a) depicts a fragment of graphG∞ and Fig. 2(a) shows a grid graph.Recently, the properties of
triangular grid graphs, which contain grid graphs as subgraphs, have received much attention.The two-dimensional
triangular grid T∞ is an infinite graph obtained fromG∞ by adding all edges on the lines traced from up-left to
down-right. A triangular grid graphis a finite, vertex-induced subgraph ofT∞. The possible adjacent vertices of a
vertexv = (vx, vy) in a triangular grid graph contain (vx, vy − 1), (vx − 1, vy), (vx + 1, vy), (vx, vy + 1), (vx − 1, vy − 1),
and (vx + 1, vy + 1). For instance, Fig. 1(b) depicts a fragment of graphT∞ and Fig. 2(b) shows a triangular grid
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(a) (b) (c)

Fig. 1: A fragment of infinite graph (a)G∞, (b) T∞, and (c)S∞.

( , )v vx y

( , 1)v vx y-

( +1, )v vx y( 1, )v vx y-

( , 1)v vx y+

(a) (b) (c)

Fig. 2: (a) A grid graph, (b) a triangular grid graph, and (c) asupergrid graph, where solid lines indicate the edges of thegraphs.

graph. Note thatT∞ is isomorphic to the original infinite triangular grid graphin the literature [12] but these graphs
are different when considered as geometric graphs. By the same construction of triangular grid graphs from grid
graphs, we propose a new class of graphs, namelysupergrid graphs, as follows. Thetwo-dimensional supergrid S∞

is an infinite graph obtained fromT∞ by adding all edges on the lines traced from up-right to down-left. A supergrid
graphis a finite, vertex-induced subgraph ofS∞. The possible adjacent vertices of a vertexv = (vx, vy) in a supergrid
graph contain (vx, vy − 1), (vx − 1, vy), (vx + 1, vy), (vx, vy + 1), (vx − 1, vy − 1), (vx + 1, vy + 1), (vx + 1, vy − 1), and
(vx− 1, vy+ 1). Thus, supergrid graphs contain grid graphs and triangular grid graphs as subgraphs. For example, Fig.
1(c) depicts a fragment of graphS∞ and Fig. 2(c) shows a supergrid graph. Obviously, all grid graphs are bipartite
[19] but triangular grid graphs and supergrid graphs are notbipartite. The Hamiltonian cycle and path problems on
grid graphs and triangular grid graphs have been shown to be NP-complete [12, 19]. However, they are unknown for
supergrid graphs. In this paper, we will prove that the Hamiltonian cycle and path problems for supergrid graphs are
NP-complete.

The possible application for the Hamiltonian cycle (path) problem on supergrid graphs is presented as follows.
Consider a computerized sewing machine given an image. The computerized sewing software is used to compute
the sewing traces of a computerized sewing machine. There may be two parts in a computerized sewing software.
The first part is to do image processing for the input image,e.g. reduce order of colors and image thinning. It then
produces some sets of lattices in which every set of latticesrepresents a color in the input image for sewing. The
second part is given by a set of lattices and then computes a cycle (path) to visit the lattices of the set such that each
lattice is visited exactly once. Finally, the software transmits the stitching trace of the computed cycle (path) to the
computerized sewing machine, and the machine then performsthe sewing work along the trace on the object, e.g.
clothes. For example, given an image in Fig. 3(a), the software first analyzes the image and then produces seven
colors of regions in which each region is filled with the same color andmay consist of some disconnected blocks, as
shown in Fig. 3(b). It then produces seven sets of lattices inwhich every set of lattices represents a region, where each
region is filled by a sewing trace with the same color and it maybe partitioned into many non-contiguous blocks. Fig.
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(a) (b)

(d)(c) (e)

Fig. 3: (a) An input image for the computerized sewing software, (b) seven colors of regions produced by image processing, (c) a set of lattices
for one region of color, (d) a possible sewing trace for the set of lattices in (c), and (e) an overview after computing sewing traces of all regions of
colors.

3(c) shows a set of lattices for one region of color, and the software then computes a sewing trace for the set of lattices,
as depicted in Fig. 3(d). Since each stitch position of a sewing machine can be moved to its eight neighbor positions
(left, right, up, down, up-left, up-right, down-left, and down-right), one set of lattices forms a supergrid graph which
may be disconnected. Note that each lattice will be represented by a vertex of a supergrid graph, each region may be
separated into many blocks in which each block represented aconnected supergrid graph. The desired sewing trace
of each set of adjacent lattices is the Hamiltonian cycle (path) of the corresponding connected supergrid graph when
it is Hamiltonian. Note that if the corresponding supergridgraph is not Hamiltonian, then the sewing trace contains
more than one paths and these paths must be concatenated. After computing the sewing traces of all regions of colors,
the software then transmits the computed stitching trace tothe computerized sewing machine. Fig. 3(e) depicts the
possible sewing result for the image in Fig. 3(a). In addition, the structure of supergrid graphs can be used to design
the network topology, and its network diameter is smaller than that of grid graphs.

Related areas of investigation are summarized as follows. Itai et al. [19] showed that the Hamiltonian cycle and
Hamiltonian path problems for grid graphs are NP-complete.They also gave the necessary and sufficient conditions
for a rectangular grid graph having a Hamiltonian path between two given vertices. Zamfirescuet al. [35] gave the
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sufficient conditions for a grid graph having a Hamiltonian cycle, and proved that all grid graphs of positive width have
Hamiltonian line graphs. Later, Chenet al. [6] improved the Hamiltonian path algorithm of [19] on rectangular grid
graphs and presented a parallel algorithm for the Hamiltonian path problem with two given endpoints in rectangular
grid graph (mesh). Also there is a polynomial-time algorithm for finding Hamiltonian cycles in solid grid graphs [25].
In [33], Salman introduced alphabet grid graphs and determined classes of alphabet grid graphs which contain Hamil-
tonian cycles. Keshavarz-Kohjerdi and Bagheri [21] gave the necessary and sufficient conditions for the existence of
Hamiltonian paths in alphabet grid graphs, and presented linear-time algorithms for finding Hamiltonian paths with
two given endpoints in these graphs. Recently, Keshavarz-Kohjerdiet al. [22] presented a linear-time algorithm for
computing the longest path between two given vertices in rectangular grid graphs. The Hamiltonian cycle (path)
on triangular grid graphs has been shown to be NP-complete [12]. Recently, Reay and Zamfirescu [32] proved that
all 2-connected, linear-convex triangular grid graphs except one special case contain Hamiltonian cycles. They also
proved that all connected, locally connected triangular grid graphs (with one exception) contain Hamiltonian cycles.
In addition, the Hamiltonian cycle problem on hexagonal grid graphswas known to be NP-complete[18]. For more
related works, we refer readers to [5, 7, 9, 13, 15, 16, 17, 24,27, 28, 29, 36].

The rest of the paper is organized as follows. In Section 2, some notations and basic terminologies are introduced.
Section 3 shows thatthe Hamiltonian cycle and Hamiltonian path problems for supergrid graphs are NP-complete. In
Section 4, we show that rectangular (parallelism) and alphabet supergrid graphs are Hamiltonian. Finally, we make
some concluding remarks in Section 5.

2. Notations and terminologies

In this section, we will introduce fundamental terminologies and symbols used in the paper. For graph-theoretic
terminology not defined in this paper, the reader is referredto [4]. LetG = (V,E) be a graph with vertex setV(G) and
edge setE(G). Let S be a subset of vertices inG, and letu, v be two vertices inG. We writeG[S] for the subgraph of
G inducedby S, G − S for the subgraphG[V − S], i.e., the subgraph induced byV − S. In general, we writeG − v
instead ofG − {v}. If (u, v) is an edge inG, we say thatu is adjacentto v andu, v are incident to edge (u, v). The
notationu ∼ v (resp.,u ≁ v) means that verticesu andv are adjacent (resp., non-adjacent). Aneighborof v in G is
any vertex that is adjacent tov. We useNG(v) to denote the set of neighbors ofv in G. The subscript ‘G’ of NG(v)
can be removed from the notation if it has no ambiguity. Thedegreeof vertexv is the number of vertices adjacent
to the vertexv. Thedistancebetweenu andv is the length of the shortest path between these two vertices. A path
P of length|P| − 1 in a graphG, denoted byv1 → v2 → · · · → v|P|−1 → v|P|, is a sequence (v1, v2, · · · , v|P|−1, v|P|) of
vertices such that (vi , vi+1) ∈ E(G) for 1 6 i < |P|. The first and last vertices visited by pathP are denoted bystart(P)
andend(P), respectively. We will usevi ∈ P to denote “P visits vertexvi” and use (vi , vi+1) ∈ P to denote “P visits
edge (vi , vi+1)”. A path from vertexv1 to vertexvk is denoted by (v1, vk)-path. In addition, we useP to refer to the
set of vertices visited by pathP if it is understood without ambiguity. On the other hand, a path is called thereversed
path, denoted by rev(P), of pathP if it visits the vertices ofP from end(P) to start(P) in proper sequence; that is, the
reversed path rev(P) of P = v1→ v2→ · · · → v|P|−1→ v|P| is v|P| → v|P|−1→ · · · → v2→ v1. A cycle is a pathC such
that |V(C)| > 3 andstart(C) ∼ end(C).

Let S∞ be the infinite graph whose vertex set consists of all points of the plane with integer coordinates and in
which two vertices are adjacent if and only if the difference of theirx or y coordinates is not larger than 1. Asupergrid
graphis a finite, vertex-induced subgraph ofS∞. For a vertexv in a supergrid graph, letvx andvy denote respectively
x andy coordinates of its corresponding point. We color vertexv to bewhite if vx + vy ≡ 0 (mod 2); otherwise,v is
colored to beblack. Then there are eight possible neighbors of vertexv including four white vertices and four black
vertices. Obviously, all grid graphs are bipartite [19] butsupergrid graphs are not bipartite.

Rectangular grid graphs first appeared in [26], where Luccioand Mugnia tried to solve the Hamiltonian path
problem on them. Itaiet al. [19] gave necessary and sufficient conditions for the existence of Hamiltonian (s, t)-path
in rectangular grid graphs, wheres, t are two given vertices. In this paper, we expand them to a subclass of supergrid
graphs, namely rectangular supergrid graphs. LetR(m, n) be the supergrid graph whose vertex setV(R(m, n)) = {v =
(vx, vy) | 1 6 vx 6 m and 1 6 vy 6 n}. Then,R(m, n) containsm columns andn rows of vertices inS∞. A
rectangular supergrid graphis a supergrid graph that is isomorphic toR(m, n) for m, n > 1. Thusm andn, the
dimensions, specify a rectangular supergrid graph up to isomorphism. The size ofR(m, n) is defined to bemn, and
R(m, n) is calledn-rectangle. The edge in the boundary ofR(m, n) is calledboundary edge. For example, Fig. 4(a)
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Fig. 4: Rectangular, parallelism, and alphabet supergrid graphs, where (a) a rectangular supergrid graphR(10, 11), (b) two parallelism supergrid
graphsP(5,6) andP(6, 5), (c) anL-alphabet supergrid graphL(4,3), (d) anC-alphabet supergrid graphC(4, 3), (e) anF-alphabet supergrid graph
F(4, 3), and (f) anE-alphabet supergrid graphE(4, 3).

shows a rectangular supergrid graphR(10, 11) which is called 11-rectangle and contains 2(9+ 10) = 38 boundary
edges.In the figures, we assume that (1, 1) is the coordinates of the up-left vertex, i.e. the leftmost vertex of the first
row, in a supergrid graph.A parallelismsupergrid graph is defined similar toR(m, n). Let P(m, n) be the supergrid
graph withm > n whose vertex setV(P(m, n)) = {v = (vx, vy) | 1 6 vy 6 n and vy 6 vx 6 vy + m − 1} or
{v = (vx, vy) | 1 6 vy 6 n and 2− vy 6 vx 6 m− vy + 1}. A parallelism supergrid graphis a supergrid graph which
is isomorphic toP(m, n). For example, Fig. 4(b) depicts two parallelism supergridgraphsP(5, 6) andP(6, 5). In the
above definition, there are two types of parallelism supergrid graphs. We can see that they are isomorphic although
they are different when considered as geometric graphs.Note that the boundary edges ofR(m, n) andP(m, n) form a
rectangle and a parallelogram, respectively.

In [33], Salman first introduced alphabet grid graphs, whichform a subclass of grid graphs, and studied some
properties of these graphs. Recently, Keshavarz-Kohjerdiand Bagheri [21] determined the necessary and sufficient
conditions for the existence of Hamiltonian (s, t)-path in alphabet grid graphs, wheres, t are two given vertices. In
this paper, we extend them to form a subclass of supergrid graphs, namely alphabet supergrid graphs. Analphabet
supergrid graphis a finite vertex-induced subgraph of the rectangular supergrid graph of a certain type, as follows.
Form, n > 3, anL-alphabet supergrid graphL(m, n), C-alphabet supergrid graphC(m, n), F-alphabet supergrid graph
F(m, n), andE-alphabet supergrid graphE(m, n) are subgraphs ofR(3m− 2, 5n− 4). These alphabet supergrid graphs
are defined as shown in Fig. 4(c) – (f), wherem= 4 andn = 3.

3. NP-completeness

In this section, we will prove that the Hamiltonian cycle (path) problem for supergrid graphs is NP-complete.
In [19] and [12], the authors showed the Hamiltonian cycle problem for grid graphs and triangular grid graphs to be
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x1 x3y1

(a) (b)

y3

y1

y2

y3

x2

y2

Fig. 5: (a) A planar bipartite graphB with maximum degree 3, and (b) a parity-preserving embedding emb(B) of B, where solid lines indicate the
edges in the embedding paths.

NP-complete. We apply the idea of these proofs to show that the Hamiltonian cycle problem remains NP-complete for
supergrid graphs. By using similar arguments, we can prove that the Hamiltonian path problem on supergrid graphs
is still NP-complete. Notice that grid graphs and triangular grid graphs are not subclasses of supergrid graphs; these
classes of graphs have common elements (vertices) but in general they are distinct.

To prove the Hamiltonian cycle problem on supergrid graphs to be NP-complete, we establish a polynomial-time
reduction from the Hamiltonian cycle problem for planar bipartite graphs with maximum degree 3. The following
theorem was given in [19].

Theorem 3.1. (See [19].) The Hamiltonian cycle problem for planar bipartite graphs with maximum degree 3 is
NP-complete.

Let B = (V0 ∪ V1,E) be a planar bipartite graph with maximum degree 3 and letG1 be a rectangular supergrid
graph, whereV0 andV1 are the bipartition sets ofB in which every edge joins a vertex inV0 and a vertex inV1.
Similarly to the parity-preserving embedding [19] of a bipartite graph into a rectangular grid graph, let us introduce
the following parity-preserving embeddingembof B into G1 (a one-to-one function fromV0∪V1 to the vertices ofG1

and fromE to paths inG1):
1. The vertices ofV0 are mapped to white vertices ofG1, i.e., if v ∈ V0, thenemb(v) is colored by white.
2. The vertices ofV1 are mapped to black vertices ofG1, i.e., if v ∈ V1, thenemb(v) is colored by black.
3. The edges ofB are mapped to vertex-disjoint paths ofG1, i.e., if e= (u, v) ∈ E, thenemb(e) is a pathP from emb(u)
to emb(v), and the intermediate vertices ofP do not belong to any other path.

For example, Fig. 5(a) shows a planar bipartite graphB with maximum degree 3, and a parity-preserving em-
beddingemb(B) of B is depicted in Fig. 5(b). The following lemma is given in [19]and shows that the above
parity-preserving embedding can be done in polynomial time.

Lemma 3.2. (See [19].) Let B be a planar bipartite graph with n vertices and maximum degree 3. Then, a parity-
preserving embedding emb(B) of B into a rectangular grid (supergrid) graph R(kn, kn) can be done in polynomial
time, where k is a constant.

Now given a planar bipartite graphB with n vertices and maximum degree 3, we shall construct a supergrid graph
Gs such thatB has a Hamiltonian cycle if and only ifGs contains a Hamiltonian cycle. LetB = (V0 ∪ V1,E). The
construction ofGs from B is sketched as follows. First, we embed graphB into a rectangular supergrid graphR(kn, kn)
for some constantk, as described in Lemma 3.2. Let the embedding supergrid graph beG1. In the second step, we
enlarge the supergrid graphG1 such that each edge inG1 is transformed into a path with 9 edges. Let the enlarged
supergrid graph beG2. For example, Fig. 6 shows the supergrid graphG2 enlarged from the supergrid graphG1 in
Fig. 5(b) for the planar bipartite graphB in Fig. 5(a). In the third step, each vertex of graphB is transformed into a
clusterwhich is a small supergrid graph. The vertex ofB is calledcritical vertex in G2. Finally, each path inG2 is
simulated by atentaclewhich is a series of 2-rectangles, and the resultant graph isa supergrid graphGs.

Now, we introduce clusters and tentacles as follows. We transform each vertex ofV0 into awhite clusterand each
vertex ofV1 into a black cluster. A white cluster is a supergrid graph with 17 vertices and a black cluster is also a
supergrid graph with 13 vertices. Fig. 7 shows the white and black clusters. The center of a white cluster (resp., black
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y1 x3

y3

x1

y2

x2

Fig. 6: The enlarged supergrid graphG2 from the embedding supergrid graphG1 in Fig. 5(b), where solid lines indicate the edges inG2.

cluster) is a white critical vertex (resp., black critical vertex). For example, critical vertexx (resp.,y) is the center of
a white cluster (resp., a black cluster) in Fig. 7(a) (resp.,Fig. 7(b)). The distance between any vertex and center in a
cluster is at most 2. The verticesa1, a2, a3, a4 (resp.,b1, b2, b3, b4) in Fig. 7(a) (resp., Fig. 7(b)) are called thecorner
verticesof cluster, and the edgese1, e2, e3, e4 in Fig. 7 are calledcritical edges. In our construction, the corner vertices
together with critical edges of a cluster are used to connectto the other cluster. The following two propositions show
the properties of clusters.

Proposition 3.3. Let C17 be a white cluster, a1, a2, a3, a4 be its corner vertices, and let e1, e2, e3, e4 be its critical
edges, as in Fig. 7(a). Then for1 6 i < j 6 4, there exists a Hamiltonian(ai, a j)-path of C17 which contains all four
critical edges{e1, e2, e3, e4}.

Proof. By inspection, the lemma can be verified. For example,Fig. 8(a) and Fig. 8(b) depict a Hamiltonian (a1, a3)-
path and a Hamiltonian (a1, a4)-path ofC17, respectively, which contain all critical edges{e1, e2, e3, e4}. �

Proposition 3.4. Let C13 be a black cluster, b1, b2, b3, b4 be its corner vertices, and let e1, e2, e3, e4 be its critical
edges, as in Fig. 7(b). Then for1 6 i < j 6 4, there exists a Hamiltonian(bi, b j)-path of C13 which contains all four
critical edges{e1, e2, e3, e4}.
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Fig. 7: (a) A white clusterC17, and (b) a black clusterC13, where the centers ofC17 andC13 are critical verticesx andy, respectively, the critical
edges includee1,e2,e3, e4, and the corner vertices includea1,a2, a3, a4 or b1, b2, b3, b4.
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Fig. 8: (a) A Hamiltonian (a1, a3)-path of a white clusterC17, (b) a Hamiltonian (a1,a4)-path of a white cluster, (c) a Hamiltonian (b1,b3)-path of
a black clusterC13, and (d) a Hamiltonian (b1, b4)-path of a black cluster, where arrow lines indicate the edges in such a path and each critical edge
is contained in the Hamiltonian path.
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a d4 3=

b4

c3
b c5 4=a5

c5 d5

(b)

d4

Fig. 9: (a) A stripS(a, b; c, d) with cornersa, b, c, d, and (b) a square tentacleT′(a1, b1; c5, d5) consisting of 5 strips.

Proof. By inspection. For example, For example,Fig. 8(c) and Fig. 8(d) depict a Hamiltonian (b1, b3)-path and a
Hamiltonian (b1, b4)-path ofC13, respectively, which contain all critical edges{e1, e2, e3, e4}. �

In our construction, the path inG2 is simulated by a series of 2-rectangles, calledtentacle. We will use the similar
technique in [19] to make it. Astrip is a rectangular supergrid graph with at least 2 squares (seeFig. 9(a)), i.e., it
is isomorphic toR(m, 2) with m > 3. The strip with cornersa, b, c, d (the degree of every corner is 3), as in Fig.
9(a), is denoted byS(a, b; c, d). A square in a strip is calledterminal if it contains corners. Asquare tentacle T′ is a
supergrid graph which is either a strip or a union of a series of strips stuck together by the edges of terminal squares.
Let T′ = S(a1, b1; c1, d1) ∪ S(a2, b2; c2, d2) ∪ · · · ∪ S(ak, bk; ck, dk). We defineT′ to satisfy the following conditions:
(1) bothci , di ∈ V(S(ai+1, bi+1; ci+1, di+1)) for 1 6 i 6 k− 1,
(2) one ofai+1, bi+1 ∈ V(S(ai, bi; ci , di)) for 1 6 i 6 k− 1, and
(3) there is no other intersection between the vertex sets ofthe strips.
The verticesa1, b1, ck, dk are called the corners ofT′, and denote this square tentacle byT′(a1, b1; ck, dk). For example,
Fig. 9(b) shows a square tentacle with 5 strips and cornersa1, b1, c5, d5.

In the construction of an enlarged supergrid graphG2 (see Fig. 6) from a planar bipartite graphB (see Fig. 5(a)),
the path inG2 is a combination of four possible types of subpaths, as shownin Fig. 10(a). The corresponding square
tentacles for these types of subpaths are depicted in Fig. 10(b). A tentacleis then constructed from a square tentacle
by attaching a triangle to its terminal square. For instance, Fig. 10(c) depicts the possible tentacles for the square
tentacle of type I in Fig. 10(b). We call the attached triangle of a tentacle to be thetail of the tentacle. Letu, v be two
vertices of the first square in a tentacleT such that their degrees are 3, and letw be a vertex of the tail in a tentacleT
such that its degree 2. Since each strip of a tentacle is isomorphic to a 2-rectangleR(m, 2) with m > 3, the vertices
u, v exist. Then we denote the tentacle byT(u, v; w). The verticesu, v are called thetwin cornersof T(u, v; w), and
the vertexw is said to be thetail corner of T(u, v; w). Fig.10(c) also depicts the corners of tentacles. The following
lemma shows the Hamiltonian property of a tentacle.

Lemma 3.5. Let T(u, v; w) be a tentacle. Then for any two corners s, t ∈ {u, v,w}, there exists a Hamiltonian(s, t)-path
of T(u, v; w).

Proof. Let T′(a1, b1; cη, dη) = S(a1, b1; c1, d1) ∪ S(a2, b2; c2, d2) ∪ · · · ∪ S(aη, bη; cη, dη) be the corresponding square
tentacle ofT(u, v; w). That is,T(u, v; w) is constructed fromT′(a1, b1; cη, dη) by attaching a triangle with vertices
cη, dη,w. Then,u, v ∈ {a1, b1} andw is adjacent to both ofcη anddη. We claim thatT′(a1, b1; cη, dη) contains a
Hamiltonian (s′, t′)-path fors′, t′ ∈ {a1, b1} such that edge (cη, dη) is in the Hamiltonian path, and has a Hamiltonian
(s′, t′)-path fors′ ∈ {a1, b1} andt′ ∈ {cη, dη}. Sinceu, v ∈ {a1, b1} andw is adjacent to both ofcη anddη, the lemma
hence holds true.

We prove the above claim by induction onη, the number of strips in square tentacleT′(a1, b1; cη, dη). Initially,
let η = 1. Then,T′(a1, b1; c1, d1) = S(a1, b1; c1, d1). By inspection, it is easy to verify that there exists a Hamil-
tonian (a1, b1)-path of stripS(a1, b1; c1, d1) such that edge (c1, d1) is in it. That is, the Hamiltonian path contains
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u v
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Fig. 10: (a) The possible types of subpaths in an enlarged supergrid graphG2, (b) the corresponding square tentacles for these subpathsin (a), and
(c) the possible tentacles for the square tentacle of type I in (b), where the solid lines indicate the edges in paths.
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a c3 2=

d2

b3

a dk k=
-1
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ck-1
bk+1=ckak+1

ck+1 dk+1
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...

r

p q

P1

1

P1

2
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a1 b1

a c2 1= d1

b2

a c3 2=

d2
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a dk k=
-1

bk

ck-1
bk+1=ckak+1

ck+1 dk+1
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...

r

p q
P2

Q2

(c)

Fig. 11: (a) A schematic diagram for the relative location ofak+1, bk+1, dk, r, p, q, ck+1, dk+1, (b) the Hamiltonian (a1,b1)-path of
T′(a1,b1; ck+1, dk+1), and (c) the Hamiltonian (a1, ck+1)-path ofT′(a1,b1; ck+1, dk+1), where arrow lines indicate the edges in the Hamiltonian
paths.

its all boundary edges except edge (a1, b1). In addition, for s′ ∈ {a1, b1} and t′ ∈ {c1, d1} we can easily con-
struct a Hamiltonian (s′, t′)-path of S(a1, b1; c1, d1). Now, assume that the claim holds true whenη = k > 1.
Then, there exists a Hamiltonian (a1, b1)-pathP1 of T′(a1, b1; ck, dk) such that edge (ck, dk) is in P1, and there ex-
ists a Hamiltonian (s′, t′)-path P2 of T′(a1, b1; ck, dk) for s′ ∈ {a1, b1} and t′ ∈ {ck, dk}. Consider thatη = k + 1.
Then, T′(a1, b1; ck+1, dk+1) = T′(a1, b1; ck, dk) ∪ S(ak+1, bk+1; ck+1, dk+1). By definition of square tentacle, one of
ak+1, bk+1 ∈ {ck, dk} and bothck, dk ∈ V(S(ak+1, bk+1; ck+1, dk+1)). Without loss of generality, suppose thatbk+1 = ck

and the first square ofS(ak+1, bk+1; ck+1, dk+1) contains verticesak+1, bk+1 = ck, dk, r. Let S′ = S(p, q; cτ, dτ) be a
strip obtained fromS(ak+1, bk+1; ck+1, dk+1) by removingthe vertices ofthe first square. Since each strip contains at
least two squares, we have thatS′ , ∅, cτ = ck+1, anddτ = dk+1. Note that ifS(ak+1, bk+1; ck+1, dk+1) contains only
two squares, thenp = ck+1 andq = dk+1. The relative location ofak+1, bk+1, dk, r, p, q, ck+1, dk+1 is depicted in Fig.
11(a). Then,dk, r, p, q forms the second square ofS(ak+1, bk+1; ck+1, dk+1). Note that each square of a strip is a clique.
Consider the following two cases:

Case1: s′, t′ ∈ {a1, b1}. By the induction hypothesis, there exists a Hamiltonian (a1, b1)-pathP1 of T′(a1, b1; ck, dk)
such that edge (ck, dk) is in P1. Without loss of generality, suppose thatP1 = P1

1 → ck → dk → P2
1, i.e.,ck appears

beforedk in P1, wherestart(P1
1), end(P2

1) ∈ {a1, b1}. The case thatck appears afterdk in P1 can be verified similarly. By
inspection, we can construct a Hamiltonian (p, q)-pathQ1 of S′ = S(p, q; ck+1, dk+1) such that edge (ck+1, dk+1) ∈ Q1.
Let P∗ = P1

1 → ck → ak+1 → r → Q1 → dk → P2
1. Then,P∗ is a Hamiltonian (a1, b1)-path ofT′(a1, b1; ck+1, dk+1)

such that edge (ck+1, dk+1) is in P∗. The construction of such a Hamiltonian (a1, b1)-pathP∗ is depicted in Fig. 11(b).
Case2: s′ ∈ {a1, b1} andt′ ∈ {ck+1, dk+1}. By the induction hypothesis, there exists a Hamiltonian (s′, dk)-pathP2
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T u v w( , ; )

C17 C13

Fig. 12: The connection of two clusters via a tentacle, wheredashed lines represent the edges between cluster and tentacle.

of T′(a1, b1; ck, dk). By inspection, we can construct a Hamiltonian (p, t′)-pathQ2 of S′ = S(p, q; ck+1, dk+1), where
t′ ∈ {ck+1, dk+1}. Let P′ = P2→ ak+1→ r → Q2. Then,P′ is a Hamiltonian (s′, t′)-path ofT′(a1, b1; ck+1, dk+1), where
s′ ∈ {a1, b1} andt′ ∈ {ck+1, dk+1}. The construction of such a Hamiltonian (a1, ck+1)-pathP′ is shown in Fig. 11(c).

It immediately follows from the above cases that the claim holds true. This completes the proof of the lemma.�

Let B = (V0 ∪ V1,E) be a planar bipartite graph withn vertices and maximum degree 3,G1 be the embedding
supergrid graph fromB, and letG2 be the enlarged supergrid graph by multiplying the scale ofG1 by 9. We have
simulated the critical vertices ofG2 by clusters and the paths ofG2 by tentacles. The remaining care is taken as to
how the tentacle is connected to the clusters correspondingto two critical vertices ofG2. Let x ∈ V0 andy ∈ V1 with
(x, y) ∈ E(B). Then, we simulatex andy by a white clusterC17 and a black clusterC13, respectively, such thatC17

contains the white vertexx as center and four critical edgese1, e2, e3, e4, andC13 contains the black vertexx as center
and four corner verticesb1, b2, b3, b4, as shown in Fig. 7. The path betweenx andy in G2 is then simulated by a
tentacleT(u, v; w). TentacleT(u, v; w) is used to connect clustersC17 andC13 in the following way. The twin corners,
u andv, of T(u, v; w) are adjacent to the vertices of one critical edge inC17, and the other corner,w, of T(u, v; w)
is adjacent to one corner vertex ofC13. For example, Fig. 12 depicts such a connection between white clusterC17

and black clusterC13 via a tentacleT(u, v; w). Since the maximum degree of the original planar bipartitegraph is 3,
the number of tentacles connecting to each cluster is at most3. For a white cluster (resp., black cluster), there are
four critical edges (resp., corner vertices) (see Fig. 7) and the number of critical edges (resp., corner vertices) usedto
connect tentacles is at most 3 since the maximum degree of theoriginal planar bipartite graph is 3. Thus, it is enough
to make such a connection.On the other hand, the paths in embedding supergrid graphG1 are vertex disjoint and
hence they are vertex disjoint paths in the enlarged supergrid graphG2. Since we enlarge the scale ofG1 by 9, i.e.,
each edge inG1 is transformed into a path with 9 edges, it is easy to construct tentacles from the paths ofG2 such that
tentacles are disjoint.

Let T(u, v; w) be a tentacle with twin cornersu, v and tail cornerw. By Lemma 3.5, there exists a Hamiltonian
(s, t)-path ofT(u, v; w) for s, t ∈ {u, v,w}. By the definition of tentacle,u, v are adjacent andw is adjacent to neitheru
nor v. We can easily observe that there are only two types of Hamiltonian (s, t)-paths inT(u, v; w). The path can be
either areturnpath if s, t are twin corners or acrosspath if one ofs, t is tail corner. For example, Fig. 13 depicts these
two types of Hamiltonian paths inT(u, v; w) shown in Fig. 12. Note that there are many return paths and cross paths.

We have introduced how to construct a supergrid graphGs from a planar bipartite graphB with maximum degree
3. The construction algorithm is formally presented as follows.

Algorithm SupergridConstruction
Input: B = (V0 ∪ V1,E), a planar bipartite graph with maximum degree 3.
Output: Gs, a supergrid graph constructed fromB.
Method:

1. embed graphB into a rectangular supergrid graphR(kn, kn) for some constantk [19], and let the embedding
supergrid graph beG1;

2. enlargeG1 to a supergrid graphG2 such that each edge inG1 is transformed into a path with 9 edges;
3. for each white critical vertexx of G2 (x ∈ V0), x is transformed into a white clusterC17 with centerx;
4. for each black critical vertexy of G2 (y ∈ V1), y is transformed into a black clusterC13 with centery;
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Fig. 13: (a) A return path, and (b) a cross path in a tentacleT(u, v; w) shown in Fig. 12, where arrow lines indicate the paths.

5. for each path between white critical vertexx and black critical vertexy, construct a tentacleT(u, v; w) to connect
the corresponding clusters ofx andy such thatu, v are adjacent to two vertices of one critical edges in white
cluster andw is adjacent to one corner vertex of black cluster;

6. let the constructed supergrid graph beGs andoutput Gs.

For example, given a planar bipartite graphB = (V0 ∪ V1,E) with maximum degree 3 shown in Fig. 5(a), the
embedding supergrid graphG1 is shown in Fig. 5(b). The enlarged supergrid graphG2 by multiplying the scale of
G1 by 9 is shown in Fig. 6. The constructed supergrid graphGs is depicted in Fig. 14. By Lemma 3.2, line 1 of
Algorithm SupergridConstruction can be done in polynomialtime. Clearly, lines 2–6 of the algorithm can be done in
polynomial time. Then, Algorithm SupergridConstruction runs in polynomial time and hence the following lemma
holds true.

Lemma 3.6. Given a planar bipartite graph B= (V0∪V1,E) with maximum degree 3, Algorithm SupergridConstruc-
tion constructs a supergrid graph Gs in polynomial time.

Next, we will prove that supergrid graphGs has a Hamiltonian cycle if and only if there exists a Hamiltonian
cycle in the planar bipartite graphB. Before proving the above property, we first give the relation between tentacle
and Hamiltonian cycle ofGs. For a cycleC of a graphG and a subgraphH of G, we denote the restriction ofC to H
by C|H . Then,C|H is a set of subpaths ofC. We then have the following lemma.

Lemma 3.7. Let Gs be the supergrid graph constructed from a planar bipartite graph B by Algorithm Supergrid-
Construction, and let T= T(u, v; w) be a tentacle of Gs. If Gs has a Hamiltonian cycleHC, then there exists a
Hamiltonian cycleHC∗ in Gs such that HC∗

|T is a Hamiltonian(s, t)-path of T for s, t ∈ {u, v,w}.

Proof. By the construction ofGs, tentacleT satisfies the following properties:
(1) only three verticesu, v,w of T are adjacent to vertices ofGs − T, i.e., no vertex ofT − {u, v,w} is adjacent to
vertices ofGs − T,
(2) each of twin cornersu, vof T is adjacent to only two verticesp, q of Gs−T, i.e.,N(u)∩(Gs−T) = N(v)∩(Gs−T) =
{p, q} andu, v, p, q forms a clique, and
(3) the tail cornerw of T is adjacent to only one vertexr of Gs − T, i.e.,N(w) ∩ (Gs− T) = {r}.

Since only three verticesu, v,w of T are adjacent to vertices ofGs − T, Gs − T andT − {u, v,w} are disjoint.
Then, the number of paths inHC|T is not larger than 2, i.e.,|HC|T | 6 2. If |HC|T | = 1, i.e.,HC|T is either a return
path or a cross path ofT, then the lemma is clearly true. Assume that|HC|T | = 2 below. Letu1, u2, u3 ∈ {u, v,w}
and letHC = P1 → u1 → Q1 → u2 → P2 → u3 → Q2, whereHC|T = {u1 → Q1 → u2, u3 → Q2} andP2 , ∅.
Suppose thatP1 = ∅. SinceHC is a Hamiltonian cycle ofGs, u1 ∼ end(Q2) and henceHC|T = {u2 → rev(Q1) →
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Fig. 14: A supergrid graphGs constructed from a planar bipartite graphB = (V0 ∪ V1, E) with maximum degree 3 shown in Fig. 5(a), where solid
lines indicate the edges in the constructed supergrid graph.
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u1 → rev(Q2) → u3}, a contradiction. Thus,P1 , ∅. On the other hand, suppose thatQ2 , ∅. SinceHC is a cycle,
end(Q2) ∼ start(P1) and hence there exist four vertices,u1, u2, u3, end(Q2), of T which are adjacent to vertices of
Gs−T, a contradiction. Thus,Q2 = ∅. Then,HC = P1→ u1→ Q1 → u2→ P2→ u3, whereP1 , ∅, start(P1) ∼ u3,
andHC|T = {u1→ Q1→ u2, u3}. Sinceu3 ∼ start(P1) andu3 ∼ end(P2), |N(u3)∩(Gs−T)| > 2 and henceu3 ∈ {u, v}.
Then,start(P1), end(P2) ∈ {p, q} andstart(P1) ∼ end(P2). Let P = P2 → P1. Then,start(P)(= start(P2)) ∼ u2 and
end(P)(= end(P1)) ∼ u1. By Lemma 3.5, there exists a Hamiltonian (u1, u2)-pathQ of T for u1, u2 ∈ {u, v,w}. Let
HC∗ = P → Q. Then,HC∗ is the desired Hamiltonian cycle ofGs such thatHC∗

|T = {Q} andQ is a Hamiltonian
(s, t)-path ofT for s= u1 andt = u2. In fact,Q is a cross path ofT. Thus, the lemma holds true. �

By using the above lemma, we will prove the following lemma.

Lemma 3.8. Let B= (V0 ∪ V1,E) be a planar bipartite graph with maximum degree 3 and let Gs be the supergrid
graph constructed from B by Algorithm SupergridConstruction. Then, graph Gs has a Hamiltonian cycle if and only
if there exists a Hamiltonian cycle in graph B.

Proof. If part: In this part, we will prove that if graphB has a Hamiltonian cycle, then graphGs contains a Hamilto-
nian cycle. Assume that the planar bipartite graphB = (V0 ∪ V1,E) has a Hamiltonian cycleHCB. We will construct
the corresponding Hamiltonian cycleHC of Gs as follows. Let (x, y) be an edge of graphB such thatx ∈ V0 and
y ∈ V1, and let the edge be simulated by a tentacleTxy = T(u, v; w) in Gs. Starting to formHC, we will coverTxy by a
cross path if (x, y) ∈ HCB, and by a return path otherwise. By Lemma 3.5, there exists a cross path or return path of
tentacleTxy. The clusters themselves are covered as in Propositions 3.3and 3.4. The partial paths can be connected
to constitute a Hamiltonian cycle. Note that some critical edges ofei

′s for connecting to a return path in Fig. 7(a)
must be deleted in the constructed Hamiltonian cycle. For example, for the planar bipartite graphB = (V0 ∪ V1,E)
shown in Fig. 5(a),HCB = x1 → y1 → x2 → y2 → x3 → y3 is a Hamiltonian cycle ofB. Then, Fig. 15 depicts its
corresponding Hamiltonian cycleHC in the constructed supergrid graphGs as shown in Fig. 14.

Only If part: In this part, we will prove that if graphGs has a Hamiltonian cycle, then graphB contains a Hamil-
tonian cycle. Assume now that supergrid graphGs has a Hamiltonian cycleHC. By Lemma 3.7, we may assume that
for any tentacleT = T(u, v; w) in Gs, the restrictionHC|T of HC to T is a Hamiltonian (s, t)-path fors, t ∈ {u, v,w}.
Then, by our construction ofGs each tentacle is covered by either a cross path or a return path. In our construction of
Gs, each tentacle is connected to only one critical edge of a white cluster, and each white cluster is attached to at most
three tentacles. On the other hand, each tentacle is connected to only one corner vertex of a black cluster, and each
black cluster is connected to at most three tentacles. We cansee that inHC each white or black cluster is incident upon
exactly two cross paths. Note that each vertex ofB is transformed into a cluster, and every edge ofB is simulated by
a tentacle. To construct a Hamiltonian cycleHCB of graphB, we include inHCB all edges corresponding to tentacles
covered by cross paths. And each vertex ofHCB is a center of one cluster inGs. Then,HCB is a Hamiltonian cycle of
graphB because each cluster (white or black) ofGs can not be covered byHC unless it is incident upon exactly two
cross paths. �

Clearly, the Hamiltonian cycle problem for supergrid graphs is in NP. By Lemmas 3.6 and 3.8, we conclude the
following theorem.

Theorem 3.9. The Hamiltonian cycle problem for supergrid graphs is NP-complete.

By similar arguments in proving the above theorem, we can prove the Hamiltonian path problem on supergrid
graphs to be also NP-complete, as in the following theorem.

Theorem 3.10. The Hamiltonian path problem for supergrid graphs is NP-complete.

Proof. We give a reduction from the Hamiltonian cycle problem on planar bipartite graphs with maximum degree 3.
Given a planar bipartite graphB with maximum degree 3, we construct a supergrid graphG′s as follows:

1. construct a supergrid graphGs by Algorithm SupergridConstruction;
2. letCb be a black cluster ofGs such that its one critical edge (s′, t′) is not attached to any tentacle;
3. two new verticess andt are added to be adjacent tos′ andt′, respectively, such that the degree of each new

vertex is 1;
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y1 x3

x2

(x   y HC1 1, ) Î B

a cross path

y3

y2

( , )x   y HC3 1 Ï B

a return path

x1

Fig. 15: A Hamiltonian cycleHC of a supergrid graphGs constructed from a Hamiltonian cycleHCB = x1 → y1 → x2 → y2 → x3 → y3 of
a planar bipartite graphB shown in Fig. 5(a), where solid lines indicate the edges in the cycle and⊗ represents the destruction of an edge while
constructing such a cycle.
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s

t

critical edge
not attached by any tentacle

attached tentacles

t'

s'

Fig. 16: A black clusterCb in G′s with two terminalss andt.

4. let the resultant supergrid graph beG′s.

Since the degree of each vertex inB is at most 3, each tentacle is connected to one critical edges, and there are
four critical edges in each black cluster, black clusterCb of Gs does exist. The construction for attaching two new
vertices is depicted in Fig. 16. By similar arguments in proving Lemma 3.8, we can verify that

graphG′s has a Hamiltonian (s, t)-path if and only if there exists a Hamiltonian cycle in graph B.

Then, Lemma 3.8 and NP-completeness of the Hamiltonian cycle problem for planar bipartite graphs with maximum
degree 3 complete the proof of this theorem. �

4. The Hamiltonian cycle problem on rectangular and alphabet supergrid graphs

In this section, we will study the Hamiltonian cycle property of rectangular and alphabet supergrid graphs. We
show that these two subclasses of supergrid graphs always contain Hamiltonian cycles. In the literature, Chenet
al. [6] and Salman [33] showed the Hamiltonian properties of rectangular and alphabet grid graphs, respectively, as
shown in the following two lemmas.

Lemma 4.1. (See [6].) Let R′(m, n) with m, n > 2 be a rectangular grid graph which is a subgraph of R(m, n), where
V(R′(m, n)) = {v = (vx, vy) | 1 6 vx 6 m and1 6 vy 6 n}. Then, R′(m, n) contains a Hamiltonian cycle if and only if
mn is even.

Lemma 4.2. (See [33].) Let L′(m, n) with m, n > 3 be an L-aphabet grid graph which is a subgraph of L(m, n), where
L′(m, n) is defined similar to L(m, n). Then, L′(m, n) has a Hamiltonian cycle if and only if mn is even.

Since any rectangular grid graphR′(m, n) is a subgraph of a rectangular supergrid graphR(m, n), R(m, n) contains
a Hamiltonian cycle ifmn is even. However, we will show thatR(m, n) contains a Hamiltonian cycle even ifmn
is odd. Obviously, 1-rectangle contains no Hamiltonian cycle. Without loss of generality, assume thatm > n for
R(m, n). For a 2-rectangleR(m, 2), we can construct a Hamiltonian cycle by visiting all boundary edges ofR(m, 2). In
the following, considerR(m, n) to satisfy thatm > n > 3. By definition,R(m, n) consists ofm columns andn rows
of vertices. Letai j be the vertex locating ati-th row and j-th column ofR(m, n). That is, (i, j) is the coordinates of
ai j whena11 is coordinated as (1, 1). LetC be a cycle ofR(m, n) and letH be a boundary ofR(m, n), whereH is a
subgraph ofR(m, n). Recall that the restriction ofC to H is denoted byC|H . If |C|H | = 1, i.e. C|H visits all boundary
edges ofH, thenC|H is calledflat faceon H. If |C|H | > 1 andC|H contains at least one boundary edge ofH, thenC|H
is calledconcave faceon H.

We first consider 3-rectangleR(m, 3). A Hamiltonian cycle ofR(m, 3) is calledcanonicalif it contains three flat
faces on two shorter boundaries and one longer boundary, andit contains one concave face on the other boundary,
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an2
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(b)

a11 a12 a13 a14 a15 a1( 1)m-
a1m

a2m

a22

a( 2)n m-

a( 1)2n-

a23

a33

a( 1)3n-

an3

a23a21

a31

a( 1)1n-

an1

a21

a32

a( 1)1n-

an2 an3an1

a( 1)n m-

anm anm

flat face

a( 1)2n-

a( 2)2n-

a( 3)2n-
a( 3)3n-

a( 2)1n-

a( 3)n m-

a( 3)1n-

concave
face

a( 1)3n-

a( 2)3n-

Fig. 17: The canonical Hamiltonian cycle of rectangular supergrid graphR(m, n) for (a) n is even, and (b)n is odd, wherem> n > 4, solid arrow
lines indicate the edges in the cycle, and dashed arrow linesindicate the flat faces in the cycle.

where the shorter boundary contains three vertices. The following lemma shows thatR(m, 3) contains a canonical
Hamiltonian cycle.

Lemma 4.3. Let R(m, 3) be a 3-rectangle with m> 3. Then, R(m, 3) contains a canonical Hamiltonian cycle.

Proof. We prove this lemma by constructing a Hamiltonian cycle ofR(m, 3) such that it contains all boundary edges
of two shorter boundaries and one longer boundary, and it contains at least one boundary edge in the other longer
boundary. By inspection, the lemma can be easily verified for4 > m > 3. In the following, assume thatm > 5. Let
Pℓ1 = a11→ a12→ · · · → a1(m−1) → a1m, and letPι = a2ι → a3ι for m > ι > 1. Depending on whetherm is even or
not, we consider the following two cases:

Case1: m is even. LetPℓ2 = rev(P2) → P3 → · · · → rev(P j) → P j+1 → · · · → rev(Pm−2) → Pm−1, where j is
even and 26 j 6 m− 2. Then,Pℓ1 → Pm→ rev(Pℓ2)→ rev(P1) is a canonical Hamiltonian cycle ofR(m, 3).

Case2: m is odd. LetPℓ2 = rev(P2) → P3 → · · · → rev(P j) → P j+1 → · · · → rev(Pm−3) → Pm−2 → rev(Pm−1),
where j is even and 26 j 6 m− 3. Then,Pℓ1 → Pm → rev(Pℓ2) → rev(P1) is a canonical Hamiltonian cycle of
R(m, 3).

It immediately follows from the above cases that the lemma holds true. �

We have constructed Hamiltonian cycles for 2-rectangles and 3-rectangles. In the following, letR(m, n) satisfy
m> n > 4. A Hamiltonian cycle ofR(m, n) with m> n > 4 is calledcanonicalif it contains three flat faces on three
boundaries, and it contains one concave face on the other boundary. The following lemma shows the Hamiltonian
property ofR(m, n) with m> n > 4.

Lemma 4.4. Let R(m, n) be a rectangular supergrid graph with m> n > 4. Then, R(m, n) contains four canonical
Hamiltonian cycles with concave faces being on different boundaries.

Proof. Depending on whethern is even or not, we consider the following two cases to construct a canonical Hamil-
tonian cycle ofR(m, n):

Case1: n is even. LetP1 = a11 → a12 → · · · → a1m, Pι = aι2 → aι3 → · · · → aιm for n > ι > 2, and let
Pn+1 = a21 → a31 → · · · → a(n−1)1 → an1. Let P∗ = rev(P2) → P3 → rev(P4) → P5 → · · · → P j → rev(P j+1) →
· · · → rev(Pn−2) → Pn−1, where j is even and 26 j 6 n− 2. LetCeven= P1 → P∗ → rev(Pn) → rev(Pn+1). Then,
Ceven is a canonical Hamiltonian cycle ofR(m, n). The construction of such a canonical Hamiltonian cycle isdepicted
in Fig. 17(a).

Case2: n is odd. In this case,n > 5. Let P1 = a11 → a12 → · · · → a1m, Pι = aι2 → aι3 → · · · → aιm
for n − 3 > ι > 2, Pn = an2 → an3 → · · · → anm, and letPn+1 = a21 → a31 → · · · → a(n−1)1 → an1. Let
P∗ = rev(P2) → P3 → rev(P4) → P5 → · · · → rev(P j) → P j+1 → · · · → rev(Pn−5) → Pn−4 → rev(Pn−3), where j is
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(a) (b)

Fig. 18: The Hamiltonian cycle for (a) parallelism supergrid graphP(5, 6), and (b) parallelism supergrid graphP(5,5), where arrow lines indicate
the edges in such cycles.

even and 26 j 6 n−5. If m is even, then letP′ = a(n−2)2→ a(n−1)2→ a(n−1)3→ a(n−2)3→ · · · → a(n−2)τ1 → a(n−1)τ1 →

a(n−1)(τ1+1) → a(n−2)(τ1+1) → · · · → a(n−2)(m−2) → a(n−1)(m−2) → a(n−1)(m−1) → a(n−2)(m−1) → a(n−2)m → a(n−1)m;
otherwise, letP′ = a(n−2)2 → a(n−1)2 → a(n−1)3 → a(n−2)3 → · · · → a(n−2)τ2 → a(n−1)τ2 → a(n−1)(τ2+1) → a(n−2)(τ2+1) →

· · · → a(n−2)(m−3) → a(n−1)(m−3) → a(n−1)(m−2) → a(n−2)(m−2) → a(n−2)(m−1) → a(n−1)(m−1) → a(n−2)m → a(n−1)m, where
τ1, τ2 are even, 26 τ1 6 m− 2, and 26 τ2 6 m− 3. LetCodd = P1 → P∗ → P′ → rev(Pn) → rev(Pn+1). Then,
Codd is a canonical Hamiltonian cycle ofR(m, n). The construction of such a canonical Hamiltonian cycle isdepicted
in Fig. 17(b).

By the above cases, we construct a canonical Hamiltonian cycle of R(m, n) such that its concave face is on the right
boundary. By symmetry, we can construct a canonical Hamiltonian cycle ofR(m, n) such that its concave face is on
the left boundary. Consider thatm is even or not. By symmetry and the same constructions in Case1 and Case 2, we
can construct two canonical Hamiltonian cycles ofR(m, n) such that their concave faces are respectively placed at the
upper and down boundaries. Thus there are four canonical Hamiltonian cycles ofR(m, n) such that their concave faces
are on the different boundaries (left, right, upper, and down boundaries). This completes the proof of the lemma.�

By similar constructions in the proofs of Lemmas 4.3 and 4.4,we can construct a Hamiltonian cycle of a paral-
lelism supergrid graph. For instance, Fig. 18 shows the Hamiltonian cycles of parallelism supergrid graphsP(5, 6)
andP(5, 5).

Next, we will investigate the Hamiltonian cycle property ofalphabet supergrid graphs. By Lemma 4.2, anL-
alphabet grid graphL′(m, n) has a Hamiltonian cycle only ifmn is even. However, for anL-alphabet supergrid graph
L(m, n) we will show that it always contains a Hamiltonian cycle.Two distinct edgese1 = (u1, v1) ande2 = (u2, v2) of
a graphG are calledparallel if (u1 ∼ v1 andu2 ∼ v2) or (u1 ∼ v2 andu2 ∼ v1), denote this bye1 ≈ e2. Let C1 and
C2 be two vertex-disjoint cycles of a graphG. If there exist two edgese1 ∈ C1 ande2 ∈ C2 such thate1 ≈ e2, thenC1

andC2 can be combined into a cycle ofG. Thus we have the following proposition.

Proposition 4.5. Let C1 and C2 be two vertex-disjoint cycles in graph G. If there exist two edges e1 ∈ C1 and e2 ∈ C2

such that e1 ≈ e2, then C1 and C2 can be combined into a cycle C.

To construct a Hamiltonian cycle of anL-alphabet supergrid graphL(m, n), we partition it into two adjacent
rectangular supergrid subgraphs. Note thatL(m, n) is a subgraph ofR(3m− 2, 5n− 4) for m, n > 3. TheL-alphabet
supergrid graphL(m, n) is separated into two disjoint rectangular supergrid subgraphsL1 and L2 such thatL1 =

R(m, 5n−4) andL2 = R(2m−2, n). The partition is depicted in Fig. 19(a). Sincem, n > 3, we obtain that 5n−4 > 11
and 2m− 2 > 4. By Lemmas 4.3 and 4.4,L1 andL2 contain canonical Hamiltonian cyclesC1 andC2, respectively.
We can place one flat face ofC1 to face the neighboring rectangular supergrid subgraphL2 and place one flat face of
C2 to faceL1. Thus, there exist two parallel boundary edgese1 ∈ C1 ande2 ∈ C2. By Proposition 4.5,C1 andC2 can
be combined into a Hamiltonian cycle ofL(m, n). For example, Fig. 19(b) shows a Hamiltonian cycle ofL(4, 3). We
then have the following lemma.

Lemma 4.6. Let L(m, n) be an L-alphabet supergrid graph with m, n > 3. Then, L(m, n) contains a Hamiltonian
cycle.

By similar partition, we can separate the other types of alphabet supergrid graphs below.
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L R m n1 = ( , 5 4)- L R m n2 = (2 2, )-

(a)

4

3

L R1 = (4, 11) L R2 = (6, 3)

(b)

C1

C2

parallel boundary edges

m

n

4 4n-

2 2m-

Fig. 19: (a) The partition ofL-alphabet supergrid graphL(m,n), where dashed line indicates the separation, and (b) a Hamiltonian cycle ofL(4, 3),
where arrow lines indicate the edges in the cycle and⊗ represents the destruction of an edge while constructing such a Hamiltonian cycle.
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Fig. 20: The partitions of alphabet supergrid graphs for (a)C-alphabet, (b)F-alphabet, and (c)E-alphabet, where dashed lines indicate the
separations.

Definition 4.1. The partitions ofC-, F-, andE-alphabet supergrid graphs are defined as follows:
(1) A partition of an C-alphabet supergrid graphC(m, n) is a separation ofC(m, n) into an L-alphabet supergrid
subgraphC1 = L(m, n) and a rectangular supergrid subgraphC2 = R(2m− 2, n).
(2) A partition of an F-alphabet supergrid graphF(m, n) is a separation ofF(m, n) into an L-alphabet supergrid
subgraphF1 = L(m, n) and a rectangular supergrid subgraphF2 = R(m, n).
(3) A partition of an E-alphabet supergrid graphE(m, n) is a separation ofE(m, n) into an F-alphabet supergrid
subgraphE1 = F(m, n) and a rectangular supergrid subgraphE2 = R(2m− 2, n).

Fig. 20 depicts the partitions of the above alphabet supergrid graphs. By similar arguments in proving Lemma
4.6, the following lemma can be easily verified.

Lemma 4.7. Let C(m, n), F(m, n), and E(m, n) be an C-alphabet, an F-alphabet, and an E-alphabet supergrid graph,
respectively, for m, n > 3. Then, C(m, n), F(m, n), and E(m, n) contain Hamiltonian cycles.

We have proved that rectangular, parallelism, and alphabetsupergrid graphs are Hamiltonian. The following
theorem concludes these results.

Theorem 4.8. Let A(m, n) be a rectangular or parallelism supergrid graph with m, n > 2, and let B(m, n) be an L-
alphabet, C-alphabet, F-alphabet, or E-alphabet supergrid graph with m, n > 3. Then, A(m, n) and B(m, n) contain
Hamiltonian cycles.
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5. Concluding remarks

In this paper, we first proposed a novel class of graphs, namely supergrid graphs. The supergrid graphs contain
grid graphs and triangular grid graphs as subgraphs. We alsogive an application to the Hamiltonian properties of
supergrid graphs. Then, we prove that the Hamiltonian cycleand Hamiltonian path problems for supergrid graphs
are NP-complete. Furthermore, we construct Hamiltonian cycles on some subclasses of supergrid graphs, including
rectangular, parallelism, and alphabet supergrid graphs.It is interesting to see whether the Hamiltonian problems for
the other subclasses of supergrid graphs, including solid and linear convex, are polynomial solvable. We would like
to post it as an open problem to interested readers.
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