
ar
X

iv
:1

50
1.

02
30

9v
1

 [
cs

.C
G

]
 1

0
Ja

n
20

15

Range Queries on Uncertain Data⋆

Jian Li1 and Haitao Wang2

1 Institute for Interdisciplinary Information Sciences
Tsinghua University, Beijing 100084, China.

lijian83@mail.tsinghua.edu.cn
2 Department of Computer Science

Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu

Abstract. Given a set P of n uncertain points on the real line, each represented by its one-dimensional
probability density function, we consider the problem of building data structures on P to answer range
queries of the following three types for any query interval I : (1) top-1 query: find the point in P that
lies in I with the highest probability, (2) top-k query: given any integer k ≤ n as part of the query,
return the k points in P that lie in I with the highest probabilities, and (3) threshold query: given any
threshold τ as part of the query, return all points of P that lie in I with probabilities at least τ . We
present data structures for these range queries with linear or nearly linear space and efficient query
time.

1 Introduction

With a rapid increase in the number of application domains, such as data integration, infor-
mation extraction, sensor networks, scientific measurements etc., where uncertain data are
generated in an unprecedented speed, managing, analyzing and query processing over such
data has become a major challenge and have received significant attentions. We study one
important problem in this domain, building data structures for uncertain data for efficiently
answering certain range queries. The problem has been studied extensively with a wide range
of applications [3,14,28,33,36,43,44]. We formally define the problems below.

Let R be any real line (e.g., the x-axis). In the (traditional) deterministic version of this
problem, we are given a set P of n deterministic points on R, and the goal is to build a data
structure (also called “index” in database) such that given a range, specified by an interval
I ⊆ R, one point (or all points) in I can be retrieved efficiently. It is well known that a
simple solution for this problem is a binary search tree over all points which is of linear size
and can support logarithmic (plus output size) query time. However, in many applications,
the location of each point may be uncertain and the uncertainty is represented in the form of
probability distributions [4,6,14,43,44]. In particular, an uncertain point p is specified by its
probability density function (pdf) fp : R → R

+ ∪{0}. Let P be the set of n uncertain points
in R (with pdfs specified as input). Our goal is to build data structures to quickly answer
range queries on P . In this paper, we consider the following three types of range queries,
each of which involves a query interval I = [xl, xr]. For any point p ∈ P , we use Pr[p ∈ I] to
denote the probability that p is contained in I.

Top-1 query: Return the point p of P such that Pr[p ∈ I] is the largest.

⋆ A preliminary version of this paper appeared in the Proceedings of the 25th International Symposium on Algorithms
and Computation (ISAAC 2014).

http://arxiv.org/abs/1501.02309v1

x1 x2 x3 x4 x5 x6 x7 x

f(x)

Fig. 1. The pdf of an uncertain point.

x1 x2 x3 x4 x5 x6 x7 x

F(x)

Fig. 2. The cdf of the uncertain point in Fig. 1.

Top-k query: Given any integer k, 1 ≤ k ≤ n, as part of the query, return the k points p
of P such that Pr[p ∈ I] are the largest.

Threshold query: Given a threshold τ , as part of the query, return all points p of P such
that Pr[p ∈ I] ≥ τ .

We assume fp is a step function, i.e., a histogram consisting of at most c pieces (or
intervals) for some integer c ≥ 1 (e.g., see Fig. 1). More specifically, fp(x) = yi for xi−1 ≤
x < xi, i = 1, . . . , c, with x0 = −∞, xc = ∞, and y1 = yc = 0. Throughout the paper,
we assume c is a constant. The cumulative distribution function (cdf) Fp(x) =

∫ x

−∞
fp(t)dt

is a monotone piecewise-linear function consisting of c pieces (e.g., see Fig. 2). Note that
Fp(+∞) = 1, and for any interval I = [xl, xr] the probability Pr[p ∈ I] is Fp(xr) − Fp(xl).
From a geometric point of view, each interval of fp defines a rectangle with the x-axis, and
the sum of the areas of all these rectangles of fp is exactly one. Further, the cdf value Fp(x) is
the sum of the areas of the subsets of these rectangles to the left of the vertical line through x
(e.g., see Fig. 3), and the probability Pr[p ∈ I] is the sum of the areas of the subsets of these
rectangles between the two vertical lines through xl and xr, respectively (e.g., see Fig. 4).

As discussed in [3], the histogram model can be used to approximate most pdfs with
arbitrary precision in practice. In addition, the discrete pdf where each uncertain point can
appear in a few locations, each with a certain probability, can be viewed as a special case of
the histogram model because we can use infinitesimal pieces around these locations.

We also study an important special case where the pdf fp is a uniform distribution
function, i.e., f is associated with an interval [xl(p), xr(p)] such that fp(x) = 1/(xr(p)−xl(p))
if x ∈ [xl(p), xr(p)] and fp(x) = 0 otherwise. Clearly, the cdf Fp(x) = (x − xl(p))/(xr(p) −
xl(p)) if x ∈ [xl(p), xr(p)], Fp(x) = 0 if x ∈ (−∞, xl(p)), and Fp(x) = 1 if x ∈ (xr(p),+∞).
Uniform distributions have been used as a major representation of uncertainty in some
previous work (e.g., [12,14,30]). We refer to this special case the uniform case and the more
general case where fp is a histogram distribution function as the histogram case.

Throughout the paper, we will always use I = [xl, xr] to denote the query interval. The
query interval I is unbounded if either xl = −∞ or xr = +∞ (otherwise, I is bounded). For
the threshold query, we will always use m to denote the output size of the query, i.e., the
number of points p of P such that Pr[p ∈ I] ≥ τ .

Range reporting on uncertain data has many applications [3,14,28,36,43,44], As shown
in [3], our problems are also useful even in some applications that involve only deterministic
data. For example, consider the movie rating system in IMDB where each reviewer gives
a rating from 1 to 10. A top-k query on I = [7,+∞) would find “the k movies such that
the percentages of the ratings they receive at least 7 are the largest”; a threshold query on

2

x
x

f(x)

Fig. 3. Geometrically, Fp(x) is equal to the sum of the
areas of the shaded rectangles.

xl xrI
x

f(x)

Fig. 4. Geometrically, the probability Pr[p ∈ I] is equal
to the sum of the areas of the shaded rectangles.

I = [7,+∞) and τ = 0.85 would find “all the movies such that at least 85% of the ratings
they receive are larger than or equal to 7”. Note that in the above examples the interval I
is unbounded, and thus, it would also be interesting to have data structures particularly for
quickly answering queries with unbounded query intervals.

1.1 Previous Work

The threshold query was first introduced by Cheng et al. [14]. Using R-trees, they [14] gave
heuristic algorithms for the histogram case, without any theoretical performance guarantees.
For the uniform case, if τ is fixed for any query, they proposed a data structure of O(nτ−1)
size with O(τ−1 log n + m) query time [14]. These bounds depend on τ−1, which can be
arbitrarily large.

Agarwal et al. [3] made a significant theoretical step on solving the threshold queries for
the histogram case: If the threshold τ is fixed, their approach can build an O(n) size data
structure in O(n logn) time, with O(m + logn) query time; if τ is not fixed, they built an
O(n log2 n) size data structure in O(n log3 n) expected time that can answer each query in
O(m + log3 n) time. Tao et al. [43,44] considered the threshold queries in two and higher
dimensions. They provided heuristic results and a query takes O(n) time in the worst case.
Heuristic solutions were also given elsewhere, e.g. [28,36,40]. Recently, Abdullah et al. [1]
extended the notion of geometric coresets to uncertain data for range queries in order to
obtain efficient approximate solutions.

Our work falls into the broad area of managing and analyzing uncertain data which
has attracted significant attentions recently in database community. This line of work has
spanned a range of issues from theoretical foundation of data models and data languages,
algorithmic problems for efficiently answering various queries, to system implementation is-
sues. Probabilistic database systems have emerged as a major platform for this purpose and
several prototype systems have been built to address different aspects/challenges in manag-
ing probabilistic data, e.g. MYSTIQ [18], Trio [6], ORION [13], MayBMS [29], PrDB [39],
MCDB [25]. Besides of the range queries we mentioned above, there has also been much
work on efficiently answering different types of queries over probabilistic data, such as con-
junctive queries (or the union of conjunctive queries) [18,19], aggregates [26,38], top-k and
ranking [16,30,31,37,41], clustering [17,24], nearest neighbors [7,12,35], and so on. We refer
interested readers to the recent book [42] for more information.

3

Four Problem Variations Top-1 Queries Top-k Queries Threshold Queries

Unbounded

Uniform
Preprocessing Time O(n log n) O(n log n) O(n log n)
Space O(n) O(n) O(n)
Query Time O(log n) O(log n+ k) O(log n+m)

Histogram
Preprocessing Time O(n log n) O(n log n) O(n log n)
Space O(n) O(n) O(n)
Query Time O(log n) T O(log n+m)

Bounded

Uniform
Preprocessing Time O(n log n) O(n log2 n) O(n log2 n)
Space O(n) O(n log n) O(n log n)
Query Time O(log n) T O(log n+m)

Histogram
Preprocessing Time O(n log3 n) O(n log3 n)∗ O(n log3 n)∗ [3]
Space O(n log2 n) O(n log2 n) O(n log2 n) [3]
Query Time O(log3 n) O(log3 n+ k) O(log3 n+m) [3]

Table 1. Summary of our results (the result for threshold queries of the histogram bounded case is from [3]): T is
O(k) if k = Ω(log n log log n) and O(log n + k log k) otherwise. For threshold queries, m is the output size of each
query. All time complexities are deterministic except the preprocessing times for top-k and threshold queries of the
histogram bounded case (marked with *).

As discussed in [3], our uncertain model is an analogue of the attribute-level uncertainty
model in the probabilistic database literature. Another popular model is the tuple-level uncer-
tainty model [6,18,45], where a tuple has fixed attribute values but its existence is uncertain.
The range query under the latter model is much easier since a d-dimensional range searching
over uncertain data can be transformed to a (d + 1)-dimensional range searching problem
over certain data [3,45]. In contrast, the problem under the former model is more challenging,
partly because it is unclear how to transform it to an instance on certain data.

1.2 Our Results

Based on our above discussion, the problem has four variations: the uniform unbounded case
where each pdf fp is a uniform distribution function and each query interval I is unbounded,
the uniform bounded case where each pdf fp is a uniform distribution function and each
query interval I is bounded, the histogram unbounded case where each pdf fp is a general
histogram distribution function and each query interval I is unbounded, and the uniform
bounded case where each pdf fp is a general histogram distribution function and each query
interval I is bounded. Refer to Table 1 for a summary of our results on the four cases.

Note that we also present solutions to the most general case (i.e., the histogram bounded
case), which were originally left as open problems in the preliminary version of this paper
[32].

We say the complexity of a data structure is O(A,B) if can be built in O(A) time and
its size is O(B).

– For the uniform unbounded case, the complexities of our data structures for the three
types of queries are all O(n logn, n). The top-1 query time is O(logn); the top-k query
time is O(logn + k); the threshold query time is O(logn+m).

4

– For the histogram unbounded case, our results are the same as the above uniform un-
bounded case except that the time for each top-k query is O(k) if k = Ω(log n log log n)
and O(logn+k log k) otherwise (i.e., for large k, the algorithm has a better performance).

– For the uniform bounded case, the complexity of our top-1 data structure is O(n logn, n),
with query time O(logn). For the other two types of queries, the complexities of our data
structures are bothO(n log2 n, n logn); the top-k query time isO(k) if k = Ω(log n log logn)
and O(logn+ k log k) otherwise, and the threshold query time is O(logn +m).

– For the histogram bounded case, for threshold queries, Agarwal et al. [3] built a data
structure of size O(n log2 n) in O(n log3 n) expected time, with O(log3 n + m) query
time. Note that our results on the threshold queries for the two uniform cases and the
histogram unbounded case are clearly better than the above solution in [3]. For top-1
queries, we build a data structure of O(n log2 n) size in O(n log3 n) (deterministic) time,
with O(log3 n) query time. For top-k queries, we build a data structure of O(n log2 n)
size in O(n log3 n) expected time, with O(log3 n+ k) query time.

Note that all above results are based on the assumption that c is a constant; otherwise
these results still hold with replacing n by c · n except that for the histogram bounded case
the results hold with replacing n by c2n.

The rest of the paper is organized as follows. We first introduce the notations and some
observations in Section 2. We present our results for the uniform case in Section 3. The
histogram case is discussed in Section 4. We conclude the paper in Section 5.

2 Preliminaries

Recall that an uncertain point p is specified by its pdf fp : R → R
+ ∪ {0} and the corre-

sponding cdf is Fp(x) =
∫ x

−∞
fp(t)dt is a monotone piecewise-linear function (with at most

c pieces). For each uncertain point p, we call Pr[p ∈ I] the I-probability of p. Let F be the
set of the cdfs of all points of P . Since each cdf is an increasing piecewise linear function,
depending on the context, F may also refer to the set of the O(n) line segments of all cdfs.
Recall that I = [xl, xr] is the query interval. We start with an easy observation.

Lemma 1. If xl = −∞, then for any uncertain point p, Pr[p ∈ I] = Fp(xr).

Proof. Due to xl = −∞, Pr[p ∈ I] =
∫ xr

−∞
fp(t)dt, which is exactly Fp(xr). ⊓⊔

Let L be the vertical line with x-coordinate xr. Since each cdf Fp is a monotonically
increasing function, there is only one intersection between Fp and L. It is easy to know that
for each cdf Fp of F , the y-coordinate of the intersection of Fp and L is Fp(xr), which is the
I-probability of p by Lemma 1. For each point in any cdf of F , we call its y-coordinate the
height of the point.

In the uniform case, each cdf Fp has three segments: the leftmost one is a horizontal
segment with two endpoints (−∞, 0) and (xl(p), 0), the middle one, whose slope is 1/(xr(p)−
xl(p)), has two endpoints (xl(p), 0) and (xr(p), 1), and the rightmost one is a horizontal
segment with two endpoints (xr(p), 1) and (+∞, 1). We transform each Fp to the line lp

5

containing the middle segment of Fp. Consider an unbounded interval I with xl = −∞. We
can use lp to compute Pr[p ∈ I] in the following way. Suppose the height of the intersection
of L and lp is y. Then, Pr[p ∈ I] = 0 if y < 0, Pr[p ∈ I] = y if 0 ≤ y ≤ 1, Pr[p ∈ I] = 1
if y > 1. Therefore, once we know lp ∩ L, we can obtain Pr[p ∈ I] in constant time. Hence,
we can use lp instead of Fp to determine the I-probability of p. The advantage of using lp
is that lines are usually easier to deal with than line segments. Below, with a little abuse of
notation, for the uniform case we simply use Fp to denote the line lp for any p ∈ P and now
F is a set of lines.

Fix the query interval I = [xl, xr]. For each i, 1 ≤ i ≤ n, denote by pi the point of P
whose I-probability is the i-th largest. Based on the above discussion, we obtain Lemma 2,
which holds for both the histogram and uniform cases.

Lemma 2. If xl = −∞, then for each 1 ≤ i ≤ n, pi is the point of P such that L ∩ Fpi is
the i-th highest among the intersections of L and all cdfs of F . ⊓⊔

Suppose xl = −∞. Based on Lemma 2, to answer the top-1 query on I, it is sufficient to
find the cdf of F whose intersection with L is the highest; to answer the top-k query, it is
sufficient to find the k cdfs of F whose intersections with L are the highest; to answer the
threshold query on I and τ , it is sufficient to find the cdfs of F whose intersections with L
have y-coordinates ≥ τ .

Half-plane range reporting: As the half-plane range reporting data structure [11] is
important for our later developments, we briefly discuss it in the dual setting. Let S be a set
of n lines. Given any point q, the goal is to report all lines of S that are above q. An O(n)-size
data structure can be built in O(n logn) time that can answer each query in O(logn +m′)
time, where m′ is the number of lines above the query point q [11]. The data structure can
be built as follows.

Let US be the upper envelope of S (e.g., see Fig. 5). We represent US as an array of lines
l1, l2, . . . , lh ordered as they appear on US from left to right. For each line li, li−1 is its left
neighbor and li+1 is its right neighbor. We partition S into a sequence L1(S), L2(S), . . ., of
subsets, called layers (e.g., see Fig. 5). The first layer L1(S) ⊆ S consists of the lines that
appear on US. For i > 1, Li(S) consists of the lines that appear on the upper envelope of the
lines in S \

⋃i−1
j=1Lj(S). Each layer Li(S) is represented in the same way as US. To answer a

half-plane range reporting query on a point q, let l(q) be the vertical line through q. We first
determine the line li of L1(S) whose intersection with l(q) is on the upper envelope of L1(S),
by doing binary search on the array of lines of L1(S). Then, starting from li, we walk on the
upper envelope of L1(S) in both directions to report the lines of L1(S) above the point q, in
linear time with respect to the output size. Next, we find the line of L2(S) whose intersection
with l(q) is on the upper envelope of L2(S). We use the same procedure as for L1(S) to report
the lines of L2(S) above q. Similarly, we continue on the layers L3(S), L4(S), . . ., until no
line is reported in a certain layer. By using fractional cascading [9], after determining the
line li of L1(S) in O(logn) time by binary search, the data structure [11] can report all lines
above q in constant time each.

6

1

7 8

4

2

3

5

6

Fig. 5. Partitioning S into three layers: L1(S) = {1, 2, 3}, L2(S) = {4, 5, 6}, L3(S) = {7, 8}. The thick polygonal
chain is the upper envelope of S.

For any vertical line l, for each layer Li(S), denote by li(l) the line of Li(S) whose
intersection with l is on the upper envelope of Li(S). By fractional cascading [9], we have
the following lemma for the data structure [11].

Lemma 3. [9,11] For any vertical line l, after the line l1(l) is known, we can obtain the
lines l2(l), l3(l), . . . in this order in O(1) time each. ⊓⊔

3 The Uniform Distribution

In this section, we present our results for the uniform case. We first discuss our data structures
for the unbounded case in Section 3.1, which will also be needed in our data structures for
the bounded case in Section 3.2. Further, the results in Section 3.1 will also be useful in our
data structures for the histogram case in Section 4.

Recall that in the uniform case F is a set of lines.

3.1 Queries with Unbounded Intervals

We first discuss the unbounded case where I = [xl, xr] is unbounded and some techniques
introduced here will also be used later for the bounded case. Without loss of generality, we
assume xl = −∞, and the other case where xr = +∞ can be solved similarly. Recall that L
is the vertical line with x-coordinate xr.

For top-1 queries, by Lemma 2, we only need to maintain the upper envelope of F ,
which can be computed in O(n logn) time and O(n) space. For each query, it is sufficient to
determine the intersection of L with the upper envelope of F , which can be done in O(logn)
time.

Next, we consider top-k queries.
Given I and k, by Lemma 2, it suffices to find the k lines of F whose intersections with L

are the highest, and we let Fk denote the set of the above k lines. As preprocessing, we build
the half-plane range reporting data structure (see Section 2) on F , in O(n logn) time and
O(n) space. Suppose the layers of F are L1(F), L2(F), In the sequel, we compute the
set Fk. Let the lines in Fk be l1, l2, . . . , lk ordered from top to bottom by their intersections
with L.

Let li(L) be the line of Li(F) which intersects L on the upper envelope of the layer
Li(F), for i = 1, 2, We first compute l1(L) in O(logn) time by binary search on the

7

upper envelope of L1(F). Clearly, l1 is l1(L). Next, we determine l2. Let the set H consist
of the following three lines: l2(L), the left neighbor (if any) of l1(L) in L1(F), and the right
neighbor (if any) of l1(L) in L1(F).

Lemma 4. l2 is the line in H whose intersection with L is the highest.

Proof. Note that l2 is the line of F \ {l1} whose intersection with L is the highest. We
distinguish two cases:

1. If l2 is in L1(F), since the slopes of the lines of L1(F) from left to right are increasing, l2

must be a neighbor of l1. Hence, l2 must be either the left neighbor or the right neighbor
of l1 in L1(F).

2. If l2 is not in L1(F), then l2(L) must be the line of F \ L1(F) whose intersection with L
is the highest. According to the definition of the layers of F the upper envelope of L2(F)
is also the upper envelope of F \ L1(F). Therefore, l2(L) is the line of F \ L1(F) whose
intersection with L is the highest. Hence, l2 must be l2(F).

The lemma thus follows. ⊓⊔

We refer to H as the candidate set. By Lemma 4, we find l2 in H in O(1) time. We
remove l2 from H , and below we insert at most three lines into H such that l3 must be in H .
Specifically, if l2 is l2(L), we insert the following three lines into H : l3(L), the left neighbor
of l2(L), and the right neighbor of l2(L). If l

2 is the left (resp., right) neighbor l of l1(L), we
insert the left (resp., right) neighbor of l in L1(F) into H . By generalizing Lemma 4, we can
show l3 must be in H (the details are omitted). We repeat the same algorithm until we find
lk. To facilitate the implementation, we use a heap to store the lines of H whose “keys” in
the heap are the heights of the intersections of L and the lines of H .

Lemma 5. The set Fk can be found in O(logn+ k log k) time.

Proof. According to our algorithm, there are O(k) insertions and “Extract-Max” operations
(i.e., finding the element of H with the largest key and remove the element from H) on the
heap H . The size of H is always bounded by O(k) during the algorithm. Hence all operations
on H take O(k log k) time. Further, after finding l1(L) in O(logn) time, due to Lemma 3,
the lines that are inserted into H can be found in constant time each. Hence, the total time
for finding Fk is O(k log k + logn). ⊓⊔

We can improve the algorithm to O(logn + k) time by using the selection algorithm in
[23] for sorted arrays. The key idea is that we can implicitly obtain 2k sorted arrays of O(k)
size each and Fk can be computed by finding the largest k elements in these arrays. The
details are given in Lemma 6.

Lemma 6. The set Fk can be found in O(logn+ k) time.

8

Proof. Consider any layer Li(F). Suppose the array of lines of Li(F) is l1, l2, . . . , lh and let lj
be the line li(L). The intersections of the lines lj , lj+1, . . . , lh with L are sorted in decreasing
order of their heights, and the intersections of the lines lj−1, lj−2, . . . , l1 with L are also sorted
in decreasing order of their heights. Once lj is known, we can implicitly obtain the following
two arrays Ar

i and Al
i: the t-th element of Ar

i (resp., Al
i) is the height of the intersection of

lt−j+1 (resp., lj−t) and L. Since these lines are explicitly maintained in the layer Li(F), given
any index t, we can obtain the t-th element of Ar

i (resp., A
l
i) in O(1) time.

To compute the set Fk, we first find the lines li(F) for i = 1, 2, . . . , k, which can be done
in O(logn) time due to Lemma 3. Consequently, we obtain the 2k arrays Ar

i and Al
i for

1 ≤ i ≤ k, implicitly. In fact we only need to consider the first k elements of each such array,
and below we let Ar

i and Al
i denote the arrays only consisting of the first k elements. An

easy observation is that the heights of the intersections of L and the lines of Fk are exactly
the largest k elements of A =

⋃k

i=1{A
r
i ∪Al

i}.
In light of the above discussion, to compute Fk, we do the following: (1) find the k-th

largest element τ of A; (2) find the lines of A whose intersections with L have heights at
least τ , which can be done in O(k) time by checking the above 2k sorted arrays with τ in
their index orders. Below, we show that we can compute τ in O(k) time.

Recall that A contains 2k sorted arrays and each array has k elements. Further, for any
array, given any index t, we can obtain its t-th element in constant time. Hence, we can find
the k-th largest element of A in O(k) time by using the selection algorithm given in [23] for
matrices with sorted columns (each sorted array in our problem can be viewed as a sorted
column of a k × 2k matrix).

The lemma thus follows. ⊓⊔

Hence, we obtain the following result.

Theorem 1. For the uniform case, we can build in O(n logn) time an O(n) size data struc-
ture on P that can answer each top-k query with an unbounded query interval in O(k+logn)
time.

For the threshold query, we are given I and a threshold τ . We again build the half-plane
range reporting data structure on F . To answer the query, as discussed in Section 2, we
only need to find all lines of F whose intersections with L have y-coordinates larger than or
equal to τ . We first determine the line l1(L) by doing binary search on the upper envelope of
L1(F). Then, by Lemma 3, we find all lines l2(L), l3(L), . . . , lj(L) whose intersections have
y-coordinates larger than or equal to τ . For each i with 1 ≤ i ≤ j, we walk on the upper
envelope of Li(F), starting from li(L), on both directions in time linear to the output size
to find the lines whose intersections have y-coordinates larger than or equal to τ . Hence, the
running time for answering the query is O(logn +m).

3.2 Queries with Bounded Intervals

Now we assume I = [xl, xr] is bounded. Consider any point p ∈ P . Recall that p is associated
with an interval [xl(p), xr(p)] in the uniform case. Depending on the positions of I = [xl, xr]

9

and [xl(p), xr(p)], we classify [xl(p), xr(p)] and the point p into the following three types with
respect to I.

L-type: [xl(p), xr(p)] and p are L-type if xl ≤ xl(p).
R-type: [xl(p), xr(p)] and p are R-type if xr ≥ xr(p).
M-type: [xl(p), xr(p)] and p are M-type if I ⊂ (xl(p), xr(p)).

Denote by PL, PR, and PM the sets of all L-type, R-type, and M-type of points of P ,
respectively. In the following, for each kind of query, we will build an data structure such
that the different types of points will be searched separately (note that we will not explicitly
compute the three subsets PL, PR, and PM). For each point p ∈ P , we refer to xl(p) as
the left endpoint of the interval [xl(p), xr(p)] and refer to xr(p) as the right endpoint. For
simplicity of discussion, we assume that no two interval endpoints of the points of P have
the same value.

3.2.1 Top-1 Queries

For any point p ∈ P , denote by Fr(p) the set of the cdfs of the points of P whose intervals
have left endpoints larger than or equal to xl(p). Again, as discussed in Section 2 we transform
each cdf of Fr(p) to a line. We aim to maintain the upper envelope of Fr(p) for each p ∈ P .
If we computed the n upper envelopes explicitly, we would have an data structure of size
Ω(n2). To reduce the space, we choose to use the persistent data structure [21] to maintain
them implicitly such that data structure size is O(n). The details are given below.

We sort the points of P by the left endpoints of their intervals from left to right, and let
the sorted list be p′1, p

′
2, . . . , p

′
n. For each i with 2 ≤ i ≤ n, observe that the set Fr(p

′
i−1) has

exactly one more line than Fr(p
′
i). If we maintain the upper envelope of Fr(p

′
i) by a balanced

binary search tree (e.g., a red-black tree), then by updating it we can obtain the upper
envelope of Fr(p

′
i−1) by an insertion and a number of deletions on the tree, and each tree

operation takes O(logn) time. An easy observation is that there are O(n) tree operations
in total to compute the upper envelopes of all sets Fr(p

′
1),Fr(p

′
2), . . . ,Fr(p

′
n). Further, by

making the red-black tree persistent [21], we can maintain all upper envelopes in O(n logn)
time and O(n) space. We use L to denote the above data structure.

We can use L to find the point of PL with the largest I-probability in O(logn) time,
as follows. First, we find the point p′i such that xl(p

′
i−1) < xl ≤ xl(p

′
i). It is easy to see

that Fr(p
′
i) = PL. Consider the unbounded interval I ′ = (−∞, xr]. Consider any point p

whose cdf is in Fr(p
′
i). Due to xl(p) ≥ xl, we can obtain that Pr[p ∈ I] = Pr[p ∈ I ′]. Hence,

the point p of Fr(p
′
i) with the largest value Pr[p ∈ I] also has the largest value Pr[p ∈ I ′].

This implies that we can instead use the unbounded interval I ′ as the query interval on the
upper envelope of Fr(p

′
i), in the same way as in Section 3.1. The persistent data structure

L maintains the upper envelope of Fr(p
′
i) such that we can find in O(logn) time the point

p of Fr(p
′
i) with the largest value Pr[p ∈ I ′].

Similarly, we can build a data structure R of O(n) space in O(n logn) time that can find
the point of PR with the largest I-probability in O(logn) time.

10

qI
ρl

ρu

q*

Fig. 6. Dragging a segment of slope 1 out of the corner at qI : q
∗ is the first point that will be hit by the segment.

To find the point of PM with the largest I-probability, the approach for PL and PR does
not work because we cannot reduce the query to another query with an unbounded interval.
Instead, we reduce the problem to a “segment dragging query” by dragging a line segment
out of a corner in the plane, as follows.

For each point p of P , we define a point q = (xl(p), xr(p)) in the plane, and we say that
p corresponds to q. Similar transformation was also used in [14]. Let Q be the set of the n
points defined by the points of P . For the query interval I = [xl, xr], we also define a point
qI = (xl, xr) (this is different from [14], where I defines a point (xr, xl)). If we partition the
plane into four quadrants with respect to qI , then we have the following lemma.

Lemma 7. The points of PM correspond to the points of Q that strictly lie in the second
quadrant (i.e., the northwest quadrant) of qI .

Proof. Consider any point p ∈ P . Let q = (xl(p), xr(p)) be the point defined by p. On the
one hand, p is in PM if and only if I ⊂ (xl(p), xr(p)), i.e., xl > xl(p) and xr < xr(p). On the
other hand, xl > xl(p) and xr < xr(p) if and only if q is in the second quarter of qI = (xl, xr).
The lemma thus follows. ⊓⊔

Let ρu be the upwards ray originating from qI and let ρl be the leftwards ray originating
from qI . Imagine that starting from the point qI and towards northwest, we drag a segment
of slope 1 with two endpoints on ρu and ρl respectively, and let q∗ be the point of Q hit first
by the segment (e.g., see Fig. 6).

Lemma 8. The point of P that defines q∗ is in PM and has the largest I-probability among
all points in PM .

Proof. First of all, by Lemma 7, q∗ must be in PM .
Consider any point q in the second quadrant of qI , and let p be the point of P that defines

q. Since the interval of p contains the interval I, we have Pr[p ∈ I] = xr−xl

xr(p)−xl(p)
.

Based on the definition of q∗, q∗ is the point q of Q in the second quadrant of qI that has
the smallest value xr(p)− xl(p). Therefore, q

∗ is the point q of Q in the second quadrant of
qI that has the largest value xr−xl

xr(p)−xl(p)
. The lemma thus follows. ⊓⊔

Based on Lemma 8, to determine the point of PM with the largest I-probability, we
only need to solve the above query on Q by dragging a segment out of a corner. More
specifically, we need to build a data structure on Q to answer the following out-of-corner

11

segment-dragging queries: Given a point q, find the first point of Q hit by dragging a segment
of slope 1 from q and towards the northwest direction with the two endpoints on the two rays
ρu(q) and ρl(q), respectively, where ρu(q) is the upwards ray originating from q and ρl(q) is
the leftwards ray originating from q. By using Mitchell’s result in [34] (reducing the problem
to a point location problem), we can build an O(n) size data structure on Q in O(n logn)
time that can answer each such query in O(logn) time.

Theorem 2. For the uniform case, we can build in O(n logn) time an O(n) size data struc-
ture on P that can answer each top-1 query in O(logn) time. ⊓⊔

3.2.2 Top-k Queries

To answer a top-k query, we will do the following. First, we find the top-k points in PL (i.e.,
the k points of PL whose I-probabilities are the largest), the top-k points in PR, and the
top-k points in PM . Then, we find the top-k points of P from the above 3k points. Below we
build three data structures for computing the top-k points in PL, PR, and PM , respectively.

We first build the data structure for PL. Again, let p
′
1, p

′
2, . . . , p

′
n be the list of the points of

P sorted by the left endpoints of their intervals from left to right. We construct a complete
binary search tree TL whose leaves from left to right store the n intervals of the points
p′1, p

′
2, . . . , p

′
n. For each internal node v, let Pv denote the set of points whose intervals are

stored in the leaves of the subtree rooted at v. We build the half-plane range reporting data
structure discussed in Section 2 on Pv, denoted by Dv. Since the size of Dv is |Pv|, the total
size of the data structure TL is O(n logn), and TL can be built in O(n log2 n) time.

We use TL to compute the top-k points in PL as follows. By the standard approach and
using xl, we find in O(logn) time a set V of O(logn) nodes of TL such that PL =

⋃
v∈V Pv

and no node of V is an ancestor of another node. Then, we can determine the top-k points
of PL in similarly as in Section 3.1. However, since we now have O(logn) data structures
Dv, we need to maintain the candidate sets for all such Dv’s. Specifically, after we find the
top-1 point in Dv for each v ∈ V , we use a heap H to maintain them where the “keys” are
the I-probabilities of the points. Let p be the point of H with the largest key. Clearly, p is
the top-1 point of PL; assume p is from Dv for some v ∈ V . We remove p from H and insert
at most three new points from Dv into H , in a similar way as in Section 3.1. We repeat the
same procedure until we find all top-k points of PL.

To analyze the running time, for each node v ∈ V , we can determine in O(logn) time the
line in the first layer of Dv whose intersection with L is on the upper envelope of the first
layer, and subsequent operations on Dv each takes O(1) time due to fractional cascading.
Hence, the total time for this step in the entire algorithm is O(log2 n). However, we can do
better by building a fractional cascading structure [9] on the first layers of Dv for all nodes v
of the tree TL. In this way, the above step only takes O(logn) time in the entire algorithm,
i.e., do binary search only at the root of TL. In addition, building the heap H initially takes
O(logn) time. Note that the additional fractional cascading structure on TL does not change
the size and construction time of TL asymptotically [9]. The entire query algorithm has O(k)
operations on H in total and the size of H is O(logn+ k). Hence, the total time for finding
the top-k points of PL is O(logn+ k log(k+ log n)), which is O(logn+ k log k) by Lemma 9.

12

Lemma 9. log n+ k log(k + log n) = O(logn+ k log k).

Proof. To simplify the notation, let n′ = log n, and our goal is to prove k log(k + n′) + n′ =
O(k log k + n′). Depending on whether k ≥ n′

logn′
, there are two cases.

1. If k ≥ n′

logn′
, then log k ≥ log n′ − log log n′, implying that log logn′ = O(log k). Thus,

k log(k + n′) ≤ k log(k + k log n′) = O(k log(k logn′))

= O(k(log k + log log n′)) = O(k log k).

Hence, we obtain that k log(k + n′) + n′ = O(k log k + n′).
2. If k < n′

logn′
, then k log(k + n′) ≤ n′

logn′
log(n′

logn′
+ n′) = O(n′

logn′
log n′) = O(n′).

Hence, we obtain that k log(k + n′) + n′ = O(k log k + n′).

The lemma thus follows. ⊓⊔

If k = Ω(log n log logn), we have a better result in Lemma 10. Note that comparing
with Lemma 6, we need to use other techniques to obtain Lemma 10 since the problem here
involves O(logn) half-plane range reporting data structures Dv while Lemma 6 only needs
to deal with one such data structure.

Lemma 10. If k = Ω(log n log logn), we can compute the top-k points in PL in O(k) time.

Proof. We assume k = Ω(log n log logn). Recall that L is the vertical line with x-coordinate
xr. Let V be the set of O(logn) nodes of TL as defined before. Consider any node v ∈ V ,
which is associated with a half-plane range reporting data structure Dv on the cdfs of the
point set Pv. Let F(v) be the cdfs of the points of Pv. Let F(V) = ∪v∈V F(v). Our goal is to
find the k lines of F(V) whose intersections with L are the highest, and denote by Fk the
above k lines that we seek.

We let L1(v), L2(v), . . . be the layers of F(v), and for each layer Li(v), denote by li(v)
the line of Li(v) whose intersection with L is on the upper envelope of the layer Li(v). For
each layer Li(v), we define two arrays Ar

i (v) and Al
i(v) in the same way as in the proof of

Lemma 6 (we omit the details). For each node v, we define another array B(v) of size k as
follows: for each 1 ≤ i ≤ k, the i-th element of B(v) is the height of the intersection of li(v)
and L. Hence, the elements of B(v) are sorted in decreasing order.

Our algorithm for computing Fk has two main steps. In the first main step, we will find a
set B′ of the largest k elements in B(V) = ∪v∈V B(v). For each v ∈ V , let jv be the number
of elements of B(v) that are contained in B′, i.e., the first jv elements of B(v) are in B′. An
easy observation is that the heights of the intersections of L and the sought lines of Fk are
the largest k elements of A =

⋃
v∈V ∪jv

i=1{A
r
i (v) ∪ Al

i(v)}, which contains 2k sorted arrays.
In the second main step, we will find the largest k elements of A and thus obtain the set Fk.
Below, we show that the above two main steps can be done in O(k) time.

We consider the first main step. For simplicity of discussion, we assume no two elements
of B(V) are equal. First of all, as discussed above, in O(logn) time we can determine the lines
l1(v) for all v ∈ V , and thus the first elements of all arrays B(v) for v ∈ V are determined.

13

Further, for each array B(v), due to the fractional cascading, we can obtain the next element
in constant time each, and in other words, we can obtain the first i elements of B(v) in O(i)
time. To compute the set B′, i.e., the largest k elements of B(V), since B(V) contains |V |
sorted arrays, one may want to use the selection algorithm in [23] again, as in Lemma 6.
However, here we cannot use that algorithm because for each array in B(V), given any data
structure, we cannot obtain the corresponding element in constant time. Instead, we propose
the following approach.

Recall that k = Ω(log n log log n). For simplicity of discussion, we assume |V | = log n
and k ≥ logn log logn. Let h = log log n. Let H be a max-heap. Initially H = ∅. During
the algorithm, we will maintain a set S of elements. Initially S = ∅, and after the algorithm
stops, S contains at most k + h elements.

First of all, for each array B(v), we compute its first h elements and then insert only the
h-th element of B(v) into H . Now H contains |V | = logn elements. We do an “extract-max”
operation on H , i.e., remove the largest element from H . Suppose the element removed above
is from B(v) for a node v. Then, we add the first h elements of B(v) into S. If |S| ≥ k,
the algorithm stops; otherwise, we compute the next h elements of B(v) and insert only the
(2h)-th element of B(v) into H .

In general, suppose we do an “extract-max” operation on H and let the removed element
by the operation be the (i · h)-th element of the array B(v) for a node v. Then, we add the
elements of B(v) with indices from i · h − 1 to i · h to S. If |S| ≥ k, the algorithm stops;
otherwise, we compute the next h elements of B(v) and insert the [i · (h+ 1)]-th element of
B(v) into H .

After the algorithm stops, we do the following. Consider any element in the current heap
H , and suppose it is the (j · h)-th element of the array B(v) for a node v. Then, according
to our algorithm, the elements of B(v) with indices from j · h− 1 to j · h are not in S, and
we call these h elements the red elements. Since the current H has at most |V | − 1 elements,
there are at most h · (|V | − 1) red elements, and we let S ′ be the union of S and all red
elements.

We claim that the largest k elements of B(V) must be in S ′, i.e., B′ ⊆ S ′. We prove
the claim as follows. Let a be the element that is removed from H in the last extract-max
operation on H in the above algorithm, i.e., after a is removed, the algorithm stops. Let H
be the heap after the algorithm stops. According to our algorithm, since each array B(v) is
sorted decreasingly, a is the smallest element in S. Since |S| ≥ k and |B′| = k, any element
of B′ must be larger than a. If B′ ⊆ S, then the claim is proved. Otherwise, suppose an
element b is in B′ \ S. Since b > a and all elements of H are smaller than a, b must be a red
element, and thus b is in S ′. The claim is proved.

In light of the above claim, B′ can be easily obtained after we find the k-th largest element
of S ′.

In the sequel, we analyze the running time of the above algorithm for the first main
step. Recall that h = log log n. First of all, the size of the heap H is at most |V | = log n
at any time during the algorithm. Clearly, the algorithm will stop after ⌈k

h
⌉ extract-max

operations. The number of insertions is at most ⌈k
h
⌉ + |V |. Therefore, the running time

14

of all operations on H in the entire algorithm is O((⌈k
h
⌉ + log n) log log n), which is O(k)

due to k = Ω(log n log logn). On the other hand, the number of red elements is at most
h · (logn − 1), and thus |S ′| ≤ h · (log n − 1) + |S| ≤ h · (log n − 1) + k + h, which is O(k)
due to k = Ω(log n log log n). Notice that the elements of B(V) that have been computed
during the entire algorithm are exactly those in S ′, and thus the time for computing these
elements is O(|S ′|) = O(k). Finally, since |S ′| = O(k), we can find the k-th largest element
in S ′ in O(k) time by using the well-known linear time selection algorithm.

As a summary, the first main step can find the set B′ in O(k) time.
The second main step is to compute the largest k elements in A, which contains 2k arrays.

As in the proof of Lemma 6, we can obtain any arbitrary element of these arrays in constant
time, without computing these arrays explicitly. Hence, by using the same approach as in
Lemma 6, we can compute the largest k elements of A in O(k) time. Consequently, the set
Fk can be obtained.

The lemma thus follows. ⊓⊔

To compute the top-k points of PR, we build a similar data structure TR, in a symmetric
way as TL, and we omit the details.

Finally, to compute the top-k points in PM , we do the following transformation. For each
point p ∈ P , we define a point q = (xl(p), xr(p), 1/(xr(p)−xl(p)) in the 3-D space with x-, y-,
and z-axes. Let Q be the set of all points in the 3-D space thus defined. Let the query interval
I define an unbounded query box (or 3D rectangle) BI = (−∞, xl)× (xr,+∞)× (−∞,+∞).
Similar to Lemma 7 in Section 3.1, the points of PM correspond exactly to the points of
Q ∩ BI . Further, the top-k points of PM correspond to the k points of Q ∩ BI whose z-
coordinates are the largest. Denote by QI the k points of Q ∩ BI whose z-coordinates are
the largest. Below we build a data structure on Q for computing the set QI for any query
interval I and thus finding the top-k points of PM .

We build a complete binary search tree TM whose leaves from left to right store all points
of Q ordered by the increasing x-coordinate. For each internal node v of TM , we build an
auxiliary data structure Dv as follows. Let Qv be the set of the points of Q stored in the
leaves of the subtree of TM rooted at v. Suppose all points of Qv have x-coordinates less than
xl. Let Q

′
v be the points of Qv whose y-coordinates are larger than xr. The purpose of the

auxiliary data structure Dv is to report the points of Q′
v in the decreasing z-coordinate order

in constant time each after the point of qv is found, where qv is the point of Q′
v with the

largest z-coordinate. To achieve this goal, we use the data structure given by Chazelle and
Guibas [10] (the one for Subproblem P1 in Section 5), and the data structure is a hive graph
[8], which can be viewed as the preliminary version of the fractional cascading techniques
[9]. By using the result in [10], we can build such a data structure Dv of size O(|Qv|) in
O(|Qv| log |Qv|) time that can first compute qv in O(log |Qv|) time and then report other
points of Q′

v in the decreasing z-coordinate order in constant time each. Since the size of Dv

is |Qv|, the size of the tree TM is O(n logn), and TM can be built in O(n log2 n) time.
Using TM , we find the set QI as follows. We first determine the set V of O(logn) nodes

of TM such that
⋃

v∈V Qv consists of all points of Q whose x-coordinates less than xl and no
point of V is an ancestor of another point of V . Then, for each node v ∈ V , by using Dv,

15

we find qv, i.e., the point of Qv with the largest z-coordinate, and insert qv into a heap H ,
where the key of each point is its z-coordinate. We find the point in H with the largest key
and remove it from H ; denote the above point by q′1. Clearly, q

′
1 is the point of QI with the

largest z-coordinate. Suppose q′1 is in a node v ∈ V . We proceed on Dv to find the point
of Qv with the second largest z-coordinate and insert it into H . Now the point of H with
the largest key is the point of QI with the second largest z-coordinate. We repeat the above
procedure until we find all k points of QI .

To analyze the query time, finding the set V takes O(logn) time. For each node v ∈ V ,
the search for qv on Dv takes O(logn) time plus the time linear to the number of points
of Dv in QI . Hence, the total time for searching qv for all vertices v ∈ V is O(log2 n) time.
Similarly as before, we can remove a logarithmic factor by building a fractional cascading
structure on the nodes of TM for searching such points qv’s, in exactly the same way as in
[8]. With the help of the fractional cascading structure, all these qv’s for v ∈ V can be found
in O(logn) time. Note that building the fractional cascading structure does not change the
construction time and the size of TM asymptotically [8]. In addition, building the heap H
initially takes O(logn) time. In the entire algorithm there are O(k) operations on H in total
and the size of H is always bounded by O(k + log n). Therefore, the running time of the
query algorithm is O(logn + k log(k + log n)), which is O(logn+ k log k) by Lemma 9.

Using similar techniques as in Lemma 10, we obtain the following result.

Lemma 11. If k = Ω(log n log log n), we can compute the top-k points in PM in O(k) time.

Proof. Consider any point v in V , which is associated with a set Qv and a data structure
Dv. Define an array B(v) of size k as follows: for each 1 ≤ i ≤ k, the i-th element of B(v)
is the i-th largest z-coordinate of the points of Qv. As discussed above, in O(logn) time we
can obtain the first elements of B(v) for all v ∈ V , and after that, we can obtain the next
element of each array B(v) in constant time each by using the data structure Dv. Our goal
is to find the point set QI .

Let B(V) = ∪v∈V B(v). An easy observation is that the z-coordinates of the points of
QI are exactly the largest k elements in B(V). Since k = Ω(log n log log n), computing the
largest k elements of B(V) can be done in O(k) time in the same way as the first main step
of the algorithm in the proof of Lemma 10, and we omit the details.

The lemma is thus proved. ⊓⊔

We summarize our results for the top-k queries below.

Theorem 3. For the uniform case, we can build in O(n log2 n) time an O(n logn) size data
structure on P that can answer each top-k query in O(k) time if k = Ω(log n log logn) and
O(k log k + logn) time otherwise. ⊓⊔

3.2.3 Threshold Queries

To answer the threshold queries, we build the same data structure as in Theorem 3, i.e.,
the three trees TL, TM , and TR. The tree TL is used for finding the points p of PL with

16

Pr[p ∈ I] ≥ τ ; TR is for finding the points p of PR with Pr[p ∈ I] ≥ τ ; TM is for finding the
points p of PM with Pr[p ∈ I] ≥ τ . The three trees TL, TR, and TM are exactly the same as
those for Theorem 3. We can compute them in O(n log2 n) time and O(n logn) space.

Below, we discuss the query algorithms on the three trees. Let mL, mR, and mM be the
number of points in PL, PR, and PM whose I-probabilities are at least τ , respectively. Hence,
m = mL +mR +mM .

To find the points p of PL with Pr[p ∈ I] ≥ τ , we first determine the set V of O(logn)
nodes of TL such that

⋃
v∈V Pv = PL and no node of V is an ancestor of another node of V .

Recall that each node v of TL is associated with a half-plane range reporting data structure
Dv. For each node v ∈ V , by using Dv, we can find the points p of Pv with Pr[p ∈ I] ≥ τ in
O(logn + mv) time, where mv is the output size. Note that Pv and Pu are disjoint for any
two nodes v and u of V . Hence,

∑
v∈V mv = mL. As there are O(logn) nodes in V , it takes

O(log2 n +mL) time to find all points p of PL with Pr[p ∈ I] ≥ τ , and again the O(log2 n)
time factor can be reduced to O(logn) by using fractional cascading [9]. Hence, the total
query time is O(logn+mL).

We can use the similar approach to find all points p of PR with Pr[p ∈ I] ≥ τ in
O(logn+mR) time, by using TR. We omit the details.

Finally, we find the points p of PM with Pr[p ∈ I] ≥ τ , by using TM . As in Section 3.2.2,
for each point p ∈ P , we define in the 3-D space a point (xl(p), xr(p), 1/(xr(p)− xl(p)). Let
Q be the set of all n points defined above. Let the interval I = [xl, xr] and τ together define
an unbounded 3-D box query BI = (−∞, xl)× (xr,+∞)× [τ,+∞). Let QI = Q∩BI . Hence,
the points p of PM with Pr[p ∈ I] ≥ τ correspond to the points of QI , and thus mM = |QI |.

By using the tree TM , we can find QI in O(logn+mM) time, as follows. We first determine
the set V of O(logn) nodes of TM such that

⋃
v∈V Qv consists of all points of Q whose x-

coordinates are less than xl and no node of V is an ancestor of another node of V . Consider
any node v ∈ V . Let Q′

v be the points of Qv whose y-coordinates are larger than xr, and qv
be the point Q′

v with the largest z-coordinate. Recall that after qv is found Dv can report
other points of Q′

v in the decreasing z-coordinate order in constant time each. Hence after
qv is known we can report the points of Qv in the query box BI in time linear to the output
size. Again, with the help of fractional cascading, the nodes qv for all v ∈ V can be found in
O(logn) time. Therefore, we can find all points of QI in O(logn+mM) time. In other words,
with TM , we can find the points of of PM whose I-probabilities at least τ in O(logn+mM)
time.

Hence, we obtain Theorem 4.

Theorem 4. For the uniform case, we can build in O(n log2 n) time an O(n logn) size data
structure that can answer each threshold query in O(m+ log n) time, where m is the output
size of the query.

17

4 The Histogram Distribution

In this section, we present our data structures for the histogram case. In the histogram case,
the cdf of each point p ∈ P has c pieces; recall that we assumed c is a constant, and thus F
is still a set of O(n) line segments.

We first discuss our data structures for the unbounded case in Section 4.1 and then
present our results for the bounded case in Section 4.2.

4.1 Queries with Unbounded Intervals

Again, we assume w.l.o.g. that xl = −∞. Recall that L is the vertical line with x-coordinate
xr. Note that Lemmas 1 and 2 are still applicable.

4.1.1 Top-1 Queries

For the top-1 queries, as in Section 3.1 it is sufficient to maintain the upper envelope of F .
Although F now is a set of line segments, its upper envelope is still of size O(n) and can
be computed in O(n logn) time [5]. Given the query interval I, we can compute in O(logn)
time the cdf of F whose intersection with L is on the upper envelope of F .

Theorem 5. In the histogram case, we can build in O(n logn) time an O(n) size data struc-
ture on P that can answer each top-1 query with an unbounded query interval in O(logn)
time.

4.1.2 Threshold Queries

For the threshold query, as discussed in Section 2 we only need to find the cdfs of F whose
intersections with L have y-coordinates at least τ . Let qI be the point (xr, τ) on L. A line
segment is vertically above qI if the segment intersects L and the intersection is at least as
high as qI . Hence, to answer the threshold query on I, it is sufficient to find the segments of
F that are vertically above qI . Agarwal et al. [3] gave the following result on the segment-
below-point queries. For a set S of O(n) line segments in the plane, a data structure of O(n)
size can be computed in O(n logn) time that can report the segments of S vertically below
a query point q in O(m′ + log n) time, where m′ is the output size. In our problem, we need
a data structure on F to solve the segments-above-point queries, which can be solved by
using the same approach as [3]. Therefore, we can build in O(n logn) time an O(n) data
structure on P that can answer each threshold query with an unbounded query interval in
O(m+ logn) time.

Theorem 6. In the histogram case, we can build in O(n logn) time an O(n) size data
structure on P that can answer each threshold query with an unbounded query interval in
O(m+ logn) time, where m is the output size of the query.

18

4.1.3 Top-k Queries

For the top-k queries, we only need to find the k segments of F whose intersections with
L are the highest. To this end, we can slightly modify the data structure for the segment-
below-point queries given in [3].

The data structure in [3] is a binary tree structure that maintains a number of sets of
lines (each such line contains a segment of F). For each such set of lines, a half-plane range
reporting data structure similar to that in Section 2 is built, where the lower envelopes
(instead of the upper envelopes as we discussed in Section 2) of the layers of the lines are
maintained. For our purpose, we replace it by our half-plane range reporting data structure
in Section 2 (i.e., maintain the upper envelopes). With this modification, we can answer the
segments-above-point queries in the following way.

Consider a query point q = (xr,−∞) (i.e., the lower infinite endpoint of L), and suppose
we want to find the segments of F vertically above q, which are also the segments intersecting
L. By using the data structure [3] modified as above, the query algorithm works as follows.
First, with the help of fractional cascading, in O(logn) time, the query algorithm will find
O(logn) half-plane range reporting data structures such that for each such data structure
D the segment intersecting L on the upper envelope of D is known. Second, for each such
half-plane range reporting data structure D, from the above known segment intersecting L,
by using the fractional cascading and walking on the upper envelopes of the layers of D, we
can report all lines of D higher than q in constant time each. The first step takes O(logn)
time, and the second step takes O(m′) time, where m′ is the total output size.

For our problem, we only need to report the highest k segments of F that are vertically
above q. To this end, we will modify the query algorithm such that the segments of F
vertically above q will be reported in order from top to bottom, and once k segments are
reported, we will terminate the algorithm. We use a heap H in a similar way as in Section
3.1 for the uniform case. Specifically, in the first step, we find the O(logn) half-plane range
reporting data structures, and for each such data structure H , the highest segment of D
intersecting L is known. In the second step, we build a heap H on these O(logn) segments
where the keys are the y-coordinates of their intersections with L. The segment in H with the
largest key must be the highest segment of F intersecting L. We remove the segment from
H , and let D be the half-plane range reporting data structure that contains the segment. As
in Section 3.1 for the uniform case, we determine in constant time at most three segments
from D and insert them to H . Now the segment of H with the largest key is the second
highest segment of F intersecting L. We repeat the above procedure until we have reported
k segments.

To analyze the running time, the first step takes O(logn) time. In the second step,
we have O(k) operations on H and the segments that are inserted to H can be found in
constant time each by the range-reporting data structures. The size of the heap H in the
entire query algorithm is O(k + log n). Hence, the running time of the query algorithm is
O(k log(k + log n) + log n), which is O(k log k + log n) by Lemma 9.

Similarly, if k = Ω(log n log logn), we can answer the top-k query in O(k) time, as follows.
As discussed above, in O(logn) time we find the O(logn) half-plane range reporting data

19

structures, and for each such data structure D, the highest segment of D intersecting L is
known. The answer to the top-k query is the highest k intersections of L and the lines in
these O(logn) half-plane range reporting data structures. This is exactly the same situation
as in Lemma 10, where we also have O(logn) half-plane range reporting data structures.
Hence, the algorithm in Lemma 10 is applicable here, which runs in O(k) time.

In summary, we obtain the following results.

Theorem 7. We can build in O(n logn) time an O(n) size data structure on P that can an-
swer each top-k query with an unbounded query interval in O(k) time if k = Ω(log n log log n)
and O(k log k + log n) time otherwise.

4.2 Queries with Bounded Intervals

In this case, the query interval I = [xl, xr] is bounded.
For this case, Agarwal et al. [3] built a data structure of size O(n log2 n) in O(n log3 n)

expected time, which can answer each threshold query in O(log3 n+m) time. We first briefly
discuss this data structure (refer to Section 4 of [3] for more details) because our data
structures for top-1 and top-k queries also use some of their techniques.

Agarwal et al. [3] built a data structure (a binary search tree), denoted by T , which
maintains a family of canonical sets of planes in 3D (defined by the uncertain points of P).
Consider any query interval I = [xl, xr] with a threshold value τ . Let q(I) be the point
with coordinates (xl, xr, τ) in 3D, and let L(I) be the line through q and parallel to the
z-axis. Using T , one can determine a family F (I) of O(log2 n) canonical sets of T with the
following property: Each uncertain point p defines one and only one plane in F (I) such that
the z-coordinate of the intersection of the plane with L(I) is the probability Pr[p ∈ I]. Note
that the canonical sets of F (I) are pairwise disjoint.

To answer the threshold query on I and τ , it is sufficient to report the planes in each
canonical set of F (I) that lie above the point q(I). To this end, for each canonical set S of T ,
Agarwal et al. [3] constructed a halfspace range-reporting data structure given by Afshani
and Chan [2] on the planes in S in O(|S|) space and O(|S| log |S|) expected time, such that
given any point q, one can report the planes of S above q in O(log |S| + M) time, where
M is the output size. In this way, because there are O(log2 n) canonical sets in F (I), the
threshold query can be answered in O(log3 n+m) time. The total space of T including the
halfspace range-reporting data structures is O(n log2 n) and T can be built in O(n log3 n)
expected time.

4.2.1 Top-1 Queries

Consider the top-1 query on the above query interval I. To answer the query, it suffices to
find the plane in F (I) whose intersection with L(I) is the highest. To this end, it is sufficient
to know the intersection of L(I) with the upper envelope of each canonical set of F (I).
Therefore, for each canonical set S of T , instead of constructing a halfspace range-reporting
data structure, we compute the upper envelope of the planes of S [20] and build a point
location data structure [22,27] on the upper envelope, which can be done in O(|S|) space

20

and O(|S| log |S|) time. In this way, for each canonical set S of F (I), in O(logn) time we
can determine the plane intersecting L(I) in the upper envelope of S. Hence, the top-1 query
can be answered in O(log3 n) time since F (I) has O(log2 n) canonical sets.

Comparing with the original data structure in [3], since we spend O(|S|) space and
O(|S| log |S|) time on each canonical set S of T , the entire data structure can be constructed
in O(n log2 n) space and O(n log3 n) (deterministic) time. We summarize the result for the
top-1 queries in the follow theorem.

Theorem 8. In the histogram case, we can build in O(n log3 n) time an O(n log2) size data
structure on P that can answer each top-1 query with a bounded query interval in O(log3 n)
time.

4.2.2 Top-k Queries

Consider the top-k query on the query interval I. To answer the query, it suffices to find
the k planes in F (I) whose intersections with L(I) are the highest. To this end, for each
canonical set S of T , we build a t-highest plane data structure given by Afshani and Chan
[2] on the planes of S in O(|S|) space and O(|S| log |S|) expected time, such that given any
integer t and any query line L parallel to the z-axis, the t highest planes of S at L can
be found in O(log |S|+ t) time. Comparing with the original data structure in [3], since we
spend asymptotically the same space and time on each canonical set of T , our data structure
can be constructed in O(n log2 n) space and O(n log3 n) expected time.

To answer the top-k query on I, one straightforward way works as follows. For each
canonical set S of F (I), by using the t-highest plane data structure with t = k, we compute
the highest k planes of S at L(I). Since there are O(log2 n) canonical sets in F (I), the above
computes O(k log2 n) planes, and among them the highest k planes at L(I) are the answer
to the top-k query. The query time is O(log2 n(log n + k)). In the following, we present an
improved query algorithm with time O(log3 n + k).

In the following discussion, for simplicity, whenever we refer to the relative order the
planes (e.g., highest, lowest, higher, lower), we refer to their intersections with the line L(I).
For example, by “a plane is higher than another plane”, we mean that the first plane has a
higher intersection with L(I) than the second plane. For ease of exposition, we assume the
intersection points of the planes of F (I) with L(I) are distinct. Note that F (I) is a family
of canonical sets; but by slightly abusing the notation, when we say “a plane of F (I)”, we
really mean that the plane is in a canonical set of F (I).

We make use of some idea from Lemma 10 although the details are quite different. Our
algorithm has two steps: a main algorithm and a post-processing algorithm. We discuss the
main algorithm first.

Let f = |F (I)|, and thus f = O(log2 n). Let S1, S2, . . . , Sf be the canonical sets of F (I).
For each canonical set Si, let Sj

i denote the set of the highest 2j−1 · logn planes of Si for
j = 1, 2, . . ., and we let Sj

i = ∅ for j = 0. For each Si, our main algorithm maintains a

subset S ′
i ⊆ Si and an integer j(i), such that S ′

i = S
j(i)
i . We also maintain a max-heap

H that contains the lowest plane in the subset S ′
i for each Si ∈ F (I). Hence, the size of

21

H is O(log2 n). The “keys” of the planes in H are the z-coordinates of their intersections
with L(I). In addition, our algorithm maintains an integer r, which is the size of a set R of

planes. Before the main algorithm stops, R = ∪f
i=1S

j(i)−1
i (after the main algorithm stops, the

definition of R is slightly different; see the details below). Note that our algorithm does not
maintain R explicitly, and we use R only to argue the correctness of the algorithm. During
the main algorithm, r will get increased, and the main algorithm stops once r ≥ k (at which
moment we have identified a set of O(log3 n + k) planes, and among them the highest k
planes are the answer to our top-k query, which will be found later by the post-processing
algorithm).

Initially, for each canonical set Si of F (I), by using the t-highest plane data structure
with t = logn, we compute S ′

i = S1
i , and further we find the lowest plane in S ′

i and insert
it into H ; the above can be done in O(logn + |S ′

i|) time, which is O(|S ′
i|) time due to

|S ′
i| = |S1

i | = log n. Also, initially we set r = 0 (R is implicitly set to ∅), and set j(i) = 1 for
each i with 1 ≤ i ≤ f .

Next, we do an “extract-max” operation on H to find the highest plane in H and remove
it from H . Suppose the above plane is from a canonical set Si for some i. Then, we let
R = R ∪ S ′

i and set r = r + |S ′
i|. Further, by using the t-highest plane data structure with

t = 2 logn, we compute S ′
i = S2

i , and then we find the lowest plane in S ′
i and insert it into

H ; again, the above can be done in O(|S ′
i|) time. Finally, we update j(i) = 2.

In general, we do an extract-max operation on the current H and suppose the removed
plane is from a canonical set Si for some i. We let R = R∪S

j(i)
i \S

j(i)−1
i (note that S

j(i)−1
i ⊆

S
j(i)
i , and thus this just adds those planes of S

j(i)
i that are not in S

j(i)−1
i to R), and set

r = r + |Sj
i | − |Sj−1

i |. Again, we do not explicitly maintain R but explicitly maintain r.
If r ≥ k, then we stop the main algorithm. Otherwise, by using the t-highest plane data
structure with t = 2j(i) · log n, we compute S ′

i = S
j(i)+1
i (and the previous S ′

i is discarded),

and further we find the lowest plane in S
j(i)+1
i and insert it into H ; again, the above can be

done in O(|S ′
i|) time. Note that for ease of exposition, we assume |Si| ≥ 2j(i) ·logn (otherwise,

we can solve the problem by similar techniques with more tedious discussions). Finally, we
increase j(i) by one.

The above finishes the main algorithm. After it stops, let R′ = ∪f
i=1S

j(i)
i . Let B be the

set of k highest planes in F (I), i.e., B is the answer to our top-k query on I. We have the
following lemma.

Lemma 12. R ⊆ R′, B ⊆ R′, and |R′| = O(log3 n+ k).

Proof. We first show R ⊆ R′.
Suppose the last extract-max operation on H in the main algorithm removes a plane from

the canonical set Si for i = a. Hence, the algorithm stops after we have R = R∪S
j(a)
a \S

j(a)−1
a .

Thus, S
j(a)
a ⊆ R. Consider any other canonical set Si with i 6= a. According to our algorithm,

it always holds that S
j(i)−1
i ⊆ R. Therefore, we have the following:

R = Sj(a)
a ∪

⋃

1≤i≤f,i 6=a

S
j(i)−1
i and R′ =

⋃

1≤i≤f

S
j(i)
i .

22

Since S
j(i)−1
i ⊆ S

j(i)
i for any i, we obtain that R ⊆ R′.

Next, we show that |R′| = O(log3 n+ k).

Indeed, since the algorithm stops right after r = r + |S
j(a)
a | − |S

j(a)−1
a | ≥ k and R =

R ∪ S
j(a)
a \ S

j(a)−1
a , the original value of r before the above increasing is less than k. In

other words,
∑

1≤i≤f |S
j(i)−1
i | < k. For each Si of F (I), if j(i) = 1, then |Sj(i)

i | = log n

and |Sj(i)−1
i | = 0; otherwise, |Sj(i)

i | = 2|Sj(i)−1
i |. Therefore, we obtain |R′| = ∪1≤i≤fS

j(i)
i ≤

2·
∑

1≤i≤f |S
j(i)−1
i |+f ·logn = 2k+O(log3 n) = O(log3 n+k) because f = |F (I)| = O(log2 n).

Finally, we prove B ⊆ R′.
Let σ∗ denote the plane removed by the last extract-max operation on H in the main

algorithm. We claim that σ∗ is the lowest plane in R. We prove the claim below.
According to our algorithm, the planes removed by the extract-max operations on H

follow the order from high to low. Consider any plane σ ∈ R. To prove the claim, it is
sufficient to show that σ∗ is not higher than σ. According to our algorithm, the first time σ
is added in R must be due to an operation on R: R = R∪S

j(i)
i \S

j(i)−1
i after an extract-max

operation removes a plane σ′ from H and σ′ is from a canonical set Si. This implies that
σ ∈ S

j(i)
i \ S

j(i)−1
i . According to our algorithm, σ′ is the lowest plane in the above S

j(i)
i , and

thus, σ′ is not higher than σ. On the other hand, since σ∗ is the last plane removed by the
extract-min operations, σ∗ is not higher than σ′. Therefore, σ∗ is not higher than σ, and the
above claim is proved.

Consider any plane σ ∈ B. To show B ⊆ R′, it suffices to prove σ ∈ R′. If σ is in R, then
since R ⊆ R′, σ ∈ R′ is true. Below we assume σ 6∈ R, and thus σ 6= σ∗.

Note that σ ∈ B implies that there are at most k−1 planes of F (I) higher than σ. Since
r = |R| ≥ k and σ∗ is the lowest plane in R, σ must be higher than σ∗ since otherwise all
planes in R would be higher than σ, contradicting with that there are at most k − 1 planes
higher than σ.

Assume σ is in a canonical set Si for some i. Recall that σ∗ is from the canonical set Sa.
Note that all planes of Sa higher than σ∗ are in S

j(a)
a . By our definition of R, Sj

a(a) ⊆ R.
Since σ is higher than σ∗ and σ 6∈ R, we can obtain i 6= a. According to our algorithm,
after the algorithm stops, H contains a plane σi from Si, and σi is the lowest plane in S

j(i)
i .

Recall that, S
j(i)
i ⊆ R′. This implies that all planes of Si higher than σi are in R′. Since σ∗

is removed by an extract-min operation and after the operation σi is still in H , σ∗ must be
higher than σi. Because σ is higher than σ∗, σ is higher than σi.

In summary, the above discussion obtains the following: σ is in Si; σ is higher than σi;
all planes of Si higher than σi are in R′. Thus, we obtain that σ is in R′.

Therefore, we conclude that B ⊆ R′, and the lemma follows. ⊓⊔

Based on Lemma 12, if we have the set R′ explicitly, then we can compute B in additional
O(log3 n+k) time by using the linear time selection algorithm [15]. However, the above main
algorithm does not explicitly compute R′, but it has maintained j(i) for each Si ∈ F (I). Since

R′ = ∪1≤i≤fS
j(i)
i , we can compute R′ by using a t-highest plane query with t = 2j(i)−1 · log n

on each canonical set Si of F (I).
The following lemma gives the running time of our entire top-k query algorithm.

23

Lemma 13. The time complexity of our top-k query algorithm is O(log3 n+ k).

Proof. We first analyze the main algorithm, whose running time mainly depends on the time
of the t-highest plane queries and the time of the operations on the heap H . We first give a
bound on the time of the t-highest plane queries, with the help of Lemma 12.

Note that after each t-highest plane query in the main algorithm, we always find the
lowest plane in the output planes of the query, whose time is only linear to the number of
output planes and is upper bounded by the above query time. In the following, we focus on
analyzing the time of the t-highest plane queries.

Consider any canonical set Si ∈ F (I). According to our algorithm, for each j with
1 ≤ j ≤ j(i), the main algorithm performs a t-highest plane query on Si with t = 2j−1 · log n
to compute Sj

i , which takes O(|Sj
i |) time (we ignore the logn factor in the query time because

log n ≤ |Sj
i |). Hence, the total time of the t-highest plane queries on Si in the main algorithm

is O(
∑j(i)

j=1 |S
j
i |). Note that

j(i)∑

j=1

|Sj
i | = logn ·

j(i)∑

j=1

2j−1 ≤ log n · 2j(i) = 2 · |S
j(i)
i |.

Recall that |R′| =
∑

1≤i≤f |S
j(i)
i |. Hence, the total time on the t-highest plane queries in

the entire main algorithm is O(|R′|), which is O(log3 n+ k) by Lemma 12.
Next, we analyze the time we spent on the heap H . Recall that the size of H is O(log2 n).

Initially, we build H on O(log2 n) planes, which can be done in O(log2 n) time. Later in the
algorithm, the operations on H include the extract-max and insertion operations. We need
to figure out how many operations were performed on H in the main algorithm.

Consider any extract-max operation on H , and suppose the removed plane is from set Si.
Then, after the operation, we have R = R∪S

j(i)
i \S

j(i)−1
i , and since |S

j(i)
i |− |S

j(i)−1
i | ≥ log n,

the above increases R by at least logn planes. After that, there is at most one insertion
operation on H . Since the main step stops once |R| ≥ k, the total number of extract-max
operations is at most k

logn
. The number of insertion operations is also at most k

logn
. Since

|H| = O(log2 n), each operation on H takes O(log log n) time. The total time on H is
O(log2 n + k

logn
· log logn) = O(log2 n+ k).

Therefore, the total time of the main algorithm is O(log3 n+ k).
Finally, we analyze the running time of the post-processing step, which computes R′ and

finds the highest k planes in R′. Computing R′ is done by doing a t-highest plane query
with t = j(i) on each set Si. Therefore, as above, the total time is at most |R′|, which is
O(log3 n+ k). Finding the highest k planes in R′ takes O(|R′|) time by using the linear time
selection algorithm [15].

Thus, the total time of our top-k query algorithm is O(log3 n+ k). ⊓⊔

The above discussion leads to the following theorem.

Theorem 9. We can build in O(n log3 n) expected time an O(n log2 n) size data structure
on P that can answer each top-k query with a bounded query interval in O(log3 n+ k) time.

Note that the planes reported by our top-k query algorithm are not in any sorted order.

24

5 Conclusions

In this paper we present a number of data structures for answering a variety of range queries
over uncertain data in one dimensional space. In general, our data structures have linear or
nearly linear sizes and can support efficient queries. While it would be interesting to develop
better solutions, an interesting but challenging open problem is whether we can generalize
our techniques to solve the corresponding problems in higher dimensions, for which only
heuristic results have been proposed [43,44].

Acknowledgments

The authors would like to thank Sariel Har-Peled for several insightful comments, and for
suggesting us the canonical set idea (somewhat similar to that in [3]), which leads us to the
solutions for the histogram bounded case of the problem.

References

1. A. Abdullah, S. Daruki, and J.M. Phillips. Range counting coresets for uncertain data. In the 29th Symposium
on Computational Geometry, pages 223–232, 2013.

2. P. Afshani and T.M. Chan. Optimal halfspace range reporting in three dimensions. In Proc. of the 20th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 180–186, 2009.

3. P.K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi. Indexing uncertain data. In Proc. of the 28th Symposium on
Principles of Database Systems, pages 137–146, 2009.

4. P.K. Agarwal, A. Efrat, S. Sankararaman, and W. Zhang. Nearest-neighbor searching under uncertainty. In
Proc. of the 31st Symposium on Principles of Database Systems (PODS), pages 225–236, 2012.

5. P.K. Agarwal and M. Sharir. Red-blue intersection detection algorithms, with applications to motion planning
and collision detection. SIAM Journal on Computing, 19:297–321, 1990.

6. P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T. Sugihara, and J. Widom. Trio: a system
for data, uncertainty, and lineage. In Proc. of the 32nd International Conference on Very Large Data Bases,
pages 1151–1154, 2006.

7. G. Beskales, M.A. Soliman, and I.F. IIyas. Efficient search for the top-k probable nearest neighbors in uncertain
databases. In Proc. of the VLDB Endowment, pages 326–339, 2008.

8. B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal on Computing, 15(3):703–724,
1986.

9. B. Chazelle and L.J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica, 1(1):133–162,
1986.

10. B. Chazelle and L.J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1(1):163–191, 1986.
11. B. Chazelle, L.J. Guibas, and D.T. Lee. The power of geometric duality. BIT, 25:76–90, 1985.
12. R. Cheng, J. Chen, M. Mokbel, and C. Chow. Probabilistic verifiers: Evaluating constrained nearest-neighbor

queries over uncertain data. In IEEE International Conference on Data Engineering (ICDE), pages 973–982,
2008.

13. R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In ACM
SIGMOD International Conference on Management of Data (SIGMOD), pages 551–562, 2003.

14. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J.S. Vitter. Efficient indexing methods for probabilistic threshold
queries over uncertain data. In Proc. of the 30th International Conference on Very Large Data Bases, pages
876–887, 2004.

15. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 3nd edition, 2009.
16. G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic data and expected ranks. In IEEE

International Conference on Data Engineering (ICDE), pages 305–316, 2009.
17. G. Cormode and A. McGregor. Approximation algorithms for clustering uncertain data. In ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages 191–200. ACM, 2008.

25

18. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. The VLDB Journal, pages 523–544,
2006.

19. N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. Journal of the
ACM, 59(6):30, 2012.

20. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry — Algorithms and Appli-
cations. Springer-Verlag, Berlin, 3rd edition, 2008.

21. J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan. Making data structures persistent. Journal of Computer and
System Sciences, 38(1):86–124, 1989.

22. H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision. SIAM Journal on
Computing, 15(2):317–340, 1986.

23. G. Frederickson and D. Johnson. The complexity of selection and ranking in X + Y and matrices with sorted
columns. Journal of Computer and System Sciences, 24(2):197–208, 1982.

24. S. Guha and K. Munagala. Exceeding expectations and clustering uncertain data. In ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), pages 269–278. ACM, 2009.

25. R. Jampani, F. Xu, M. Wu, L.L. Perez, C. Jermaine, and P.J. Haas. MCDB: a monte carlo approach to managing
uncertain data. In ACM SIGMOD International Conference on Management of Data (SIGMOD), pages 687–700.
ACM, 2008.

26. T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating statistical aggregates on probabilistic
data streams. In ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS),
pages 243–252, 2007.

27. D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12(1):28–35, 1983.
28. A. Knight, Q. Yu, and M. Rege. Efficient range query processing on uncertain data. In Proce of IEEE International

Conference on Information Reuse and Integration, pages 263–268, 2011.
29. C. Koch. MAYBMS: a system for managing large probabilistic databases. Managing and Mining Uncertain Data,

pages 149–183, 2009.
30. J. Li and A. Deshpande. Ranking continuous probabilistic datasets. Proceedings of the VLDB Endowment,

3(1):638–649.
31. J. Li, B. Saha, and A. Deshpande. A unified approach to ranking in probabilistic databases. The VLDB Journal,

20(2):249–275, 2011.
32. J. Li and H. Wang. Range queries on uncertain data. In Proc. of the 25th International Symposium on Algorithms

and Computation (ISAAC), pages 326–337, 2014.
33. V. Ljosa and A. K. Singh. APLA: Indexing arbitrary probability distributions. In IEEE International Conference

on Data Engineering (ICDE), pages 946–955, 2007.
34. J.S.B. Mitchell. L1 shortest paths among polygonal obstacles in the plane. Algorithmica, 8(1):55–88, 1992.
35. M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. k-Nearest neighbors in uncertain graphs. Proceedings of the

VLDB Endowment, 3(1):997–1008, 2010.
36. Y. Qi, R. Jain, S. Singh, and S. Prabhakar. Threshold query optimization for uncertain data. In ACM SIGMOD

International Conference on Management of Data (SIGMOD), pages 315–326, 2010.
37. C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data. In IEEE International

Conference on Data Engineering (ICDE), pages 886–895, 2007.
38. C. Ré and D. Suciu. Efficient evaluation of HAVING queries on a probabilistic database. In Proc. of the 11th

International Conference on Database Programming Languages, pages 186–200, 2007.
39. P. Sen, A. Deshpande, and L. Getoor. Prdb: managing and exploiting rich correlations in probabilistic databases.

The VLDB Journal, 18(5):1065–1090, 2009.
40. S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S.E. Hambrusch. Indexing uncertain categorical data. In

IEEE International Conference on Data Engineering (ICDE), pages 616–625, 2007.
41. M.A. Soliman, I.F. Ilyas, and C.C. Chang. Top-k query processing in uncertain databases. In IEEE International

Conference on Data Engineering (ICDE), pages 896–905. IEEE, 2007.
42. D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic databases. Synthesis Lectures on Data Management,

3(2):1–180, 2011.
43. Y. Tao, R. Cheng, X. Xiao, W.K. Ngai, B. Kao, and S. Prabhakar. Indexing multi-dimensional uncertain data

with arbitrary probability density functions. In Proc. of the 31st International Conference on Very Large Data
Bases (VLDB), pages 922–933, 2005.

44. Y. Tao, X. Xiao, and R. Cheng. Range search on multidimensional uncertain data. ACM Transactions on
Database Systems (TODS), 32, 2007.

45. M.L. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis. Efficient evaluation of probabilistic advanced spatial
queries on existentially uncertain data. IEEE Transactions of Knowledge Data Engineering (TKDE), 21:108–122,
2009.

26

	Range Queries on Uncertain Data

