
The Beachcombers’ Problem:
Walking and Searching with Mobile Robots

Jurek Czyzowicz1, Leszek Gasieniec2, Konstantinos Georgiou3, Evangelos
Kranakis4, and Fraser MacQuarrie4

1 Université du Québec en Outaouais, Department d’Informatique, Gatineau,
Québec, Canada.

2 University of Liverpool, Department of Computer Science, Liverpool, UK.
3 University of Waterloo, Dept. of Combinatorics & Optimization, Waterloo,

Ontario, Canada.
4 Carleton University, School of Computer Science, Ottawa, Ontario, Canada.

Abstract. We introduce and study a new problem concerning the explo-
ration of a geometric domain by mobile robots. Consider a line segment
[0, I] and a set of n mobile robots r1, r2, . . . , rn placed at one of its end-
points. Each robot has a searching speed si and a walking speed wi, where
si < wi. We assume that each robot is aware of the number of robots
of the collection and their corresponding speeds. At each time moment
a robot ri either walks along a portion of the segment not exceeding its
walking speed wi or searches a portion of the segment with the speed not
exceeding si. A search of segment [0, I] is completed at the time when
each of its points have been searched by at least one of the n robots.
We want to develop mobility schedules (algorithms) for the robots which
complete the search of the segment as fast as possible. More exactly we
want to maximize the speed of the mobility schedule (equal to the ratio
of the segment length versus the time of the completion of the schedule).
We analyze first the offline scenario when the robots know the length of
the segment that is to be searched. We give an algorithm producing a
mobility schedule for arbitrary walking and searching speeds and prove
its optimality. Then we propose an online algorithm, when the robots do
not know in advance the actual length of the segment to be searched.
The speed S of such algorithm is defined as

S = inf
IL
S(IL)

where S(IL) denotes the speed of searching of segment IL = [0, L]. We
prove that the proposed online algorithm is 2-competitive. The compet-
itive ratio is shown to be better in the case when the robots’ walking
speeds are all the same.

Key words and phrases. Algorithm, Mobile Robots, On-line, Sched-
ule, Searching, Segment, Speed, Walking.

1 Introduction

A domain being a segment of known or unknown length has to be explored
collectively by n mobile robots initially placed in a segment endpoint. At every

ar
X

iv
:1

30
4.

76
93

v1
 [

cs
.D

S]
 2

9
A

pr
 2

01
3

time moment a robot may perform either of the two different activities of walking
and searching. While walking, each robot may traverse the domain with a speed
not exceeding its maximal walking speed. During searching, the robot performs
a more elaborate task on the domain. The bounds on the walking and searching
speeds may be different for different robots, but we always assume that each
robot can walk with greater maximal speed than it can search. Our goal is to
design the movement of all robots so that each point of the domain is being
searched by at least one robot and the time when the process is completed is
minimized (i.e. the speed of the process is maximized).

In many situations two-speed searching is a convenient way to approach ex-
ploration of various domains. For example foraging or harvesting a field may
take longer than walking across. Intruder searching activity takes more time
than uninvolved territory traversal. In computer science web pages indexing,
forensic search, code inspection, packet sniffing require more involved inspection
process. Similar problems arise in many other domains. We call our question
the Beachcombers’ Problem to show up the analogy to the situation when each
mobile searcher looking for an object of value in the one-dimensional domain
proceeds slower when searching rather than while simply performing an uncon-
cerned traversal of the domain.

In our problem, the searchers collaborate in order to terminate the searching
process as quickly as possible. Our algorithms generate mobility schedules i.e. se-
quences of moves of the agents, which assure that every point of the environment
is inspected by at least one agent while this agent was performing the searching
activity.

1.1 Preliminaries

Let IL denote the interval [0, L] for any positive integer L. Consider n robots
r1, r2, . . . , rn, each robot ri having searching speed si and walking speed wi, such
that si < wi. A searching schedule A of IL is defined by an increasing sequence
of time moments t0 = 0, t1, . . . , tz, such that in each time interval [tj , tj+1] every
robot ri either walks along some subsegment of IL not exceeding its walking
speed wi, or searches some subsegment of IL not exceeding its searching speed
si. The searching schedule is correct if for each point p ∈ IL there is some j ≥ 1
and some robot ri, such that during the time interval [tj , tj+1] robot ri searches
the subsegment of IL containing point p.

By the speed SA(IL) of schedule A searching interval IL we mean the value
of SA(IL) = L/tz. We call tz the finishing time of the searching schedule. The
searching schedule is optimal if there does not exist any other correct searching
schedule having a speed larger than S.

It is easy to see that the schedule speed maximization criterion is equivalent
to its finishing time minimization when the segment length is given or to the
searched segment length maximization when the time bound is set in advance.
However the speed maximization criterion applies better to the online problem
when the objective of the schedule is to perform searching of an unknown-length

segment or a semi-line. Such schedule successively searches the intervals IL for
the increasing values of L. The speed of such schedule is defined as

SA = inf
IL
SA(IL)

Observe that any searching schedule may be converted to another one, which
has the property that all subsegments which were being searched (during some
time intervals [tj , tj+1] by some robots) have pairwise disjoint interiors. Indeed,
if some subsegment is being searched by two different robots (or twice by the
same robot), the second searching may be replaced by the walk through it by
the involved robot. Since the walking speed of any robot is always larger than
its searching speed, the speed of such converted schedule is not smaller than the
original one. Therefore, when looking for the optimal searching schedule, it is
sufficient to restrict the consideration to schedules whose searched subsegments
may only intersect at their endpoints. In the sequel, all searching schedules in
our paper will have such property.

Notice as well, that, when looking for the most efficient schedule, we may
restrict our consideration to schedules such that at any time moment a robot
ri is either searching using its maximal searching speed si, or walking with
maximal allowed speed wi. Indeed, whenever ri searches (or walks) during a time
interval [tj , tj+1] using a non-maximal and not necessarily constant searching
speed (resp. walking speed) we may replace it with a search (resp. walk) using
maximal allowed speed. It is easy to see that the search time of any point, for
such modified schedule, is never longer, so the speed of such schedule is not
decreased.

We assume that all the robots start their exploration at the same time and
that are able to cross over each other.

Definition 1 (Beachcombers’ Problem). Consider an interval IL = [0, L]
and n robots r1, r2, . . . , rn, initially placed at its endpoint 0, each robot ri having
searching speed si and walking speed wi, such that si < wi. The Beachcombers’
Problem consist in finding an efficient correct searching schedule A of IL. The
speed SA of the solution to the Beachcombers’ Problem equals SA = IL/tz, where
tz is the finishing time of A.

We also study the online version of this problem:

Definition 2 (Online Beachcombers’ Problem). Consider n robots
r1, r2, . . . , rn, initially placed at the origine of a semi-line I, each robot ri having
searching speed si and walking speed wi, such that si < wi. The Online Beach-
combers’ Problem consist in finding a correct searching schedule A of I. The cost
SA of the solution to the Online Beachcombers’ Problem, called the speed of A,
equals

SA = inf
IL
SA(IL) = inf

IL

IL
tz(IL)

where IL = [0, L] for any positive integer L and tz(IL) denotes the time when
the search of the segment IL = [0, L] is completed.

1.2 Related Work

The original text on graph searching started with the work of Koopman [1].
Many papers followed studying searching and exploration of graphs (e.g. [2,3])
or geometric environments, (e.g.[4,5,6,7,8]). The purpose of these studies was
usually either to learn (map) an unknown environment (e.g.[2]) or to search it,
looking for a target (motionless or mobile) (cf. [3]).

Many searching problems were studied from a game-theoretic viewpoint (see
[5]). [5] presented an approach to searching and rendezvous, when two mobile
players either collaborate in order to find each other, or they compete against
each other - one willing to meet and the other one to avoid each other. Searching
1-dimensional environments (segments, lines, semi-lines), similarly to the present
paper, despite the simplicity of the environment, often led to interesting results
(cf. [9,10,11]).

The efficiency of the searching or exploration algorithm is usually measured
by the time used by the mobile agent, often proportional to the distance trav-
elled. Many searching and especially exploration algorithms are online, i.e. they
concern a priori unknown environments, cf. [12,13]. Performance of such algo-
rithms is expressed by competitive ratio, i.e. the proportion of the time spent
by the online algorithm versus the time of the optimal offline algorithm, which
assumes the knowledge of the environment (cf. [14,15]). Most exploration algo-
rithms (e.g. [7,8,16] and several search algorithms (e.g. [11]) use the competitive
ratio to measure their performance.

Most of the above research concerned single robots. Collections of mobile
robots, collaborating in order to reduce the exploration time, were used, e.g., in
[17,18,19,20]. Most recently [16] studied tradeoffs between the number of robots
and the time of exploration showing how a polynomial number of agents may
search the graph optimally.

Some papers studying mobile robots assume distinct robot speeds. Varying
mobile sensor speed was used in [21] for the purpose of sensor energy efficiency.
[22] was utilizing distinct agent speeds to design fast converging protocols, e.g.
for gathering. [23,24] considered distinct speeds for robots patrolling boundaries.
However to the best of our knowledge, the present paper is the first one assuming
two-speed robots for the problem of searching or exploration.

1.3 Outline and Results of the Paper

In Section 2 we begin by studying the properties of optimal schedules. We
then propose ”comb” algorithm, an optimal algorithm for Beachcombers’ Prob-
lem which requires O(n log n) computational steps, and prove its correctness.
Section 3 is devoted to online searching, where the length of the segment to be
searched is not known in advance. In this section we propose the online searching
algorithm LeapFrog, prove its correctness and analyze its efficiency. We prove
that the LeapFrog algorithm is 2-competitive. The competitive ratio is shown to
be reduced to 1.29843 in the case when all robots’ walking speeds are the same.
Section 5 concludes the paper and proposes problems for further research. Any
proofs not given in the paper may be found in the Appendix.

2 Searching a Known Segment

We proceed by first identifying in Section 2.1 a number of structural properties
exhibited by every optimal solution to the Beachcombers’ Problem. This will
allow us to conclude in Section 2.2 that Beachcombers’ Problem can be solved
efficiently.

2.1 Properties of Optimal Schedules

Lemma 1. Any optimal schedule for the Beachcombers’ Problem may be con-
verted to another optimal schedule, such that

(a) every robot searches a contiguous subinterval;
(b) at no time during the execution of this schedule is a robot idle, just before the

finishing time all robots are searching, and they all finish searching exactly
at the schedule finishing time;

(c) all robots are utilized, i.e. each of them searches a non-empty subinterval;
(d) for any two robots ri, rj with wi < wj, robot ri searches a subinterval closer

to the starting point than the subinterval of robot rj.

By applying these properties, we determine a useful recurrence for the subin-
tervals robots search in an optimal schedule.

Lemma 2. Let the robots r1, r2, . . . , rn be ordered in non-decreasing walking
speed, and suppose that Topt is the time of the optimal schedule. Then,

1. The segment to be searched may be partitioned into successive subsegments
of lengths c1, c2, . . . , cn and the optimal schedule assigns to robot ri the i-th
interval of length ci, where

2. The length ci satisfies the following recursive formula, where we assume,
without loss of generality, that w0 = 0 and w1 = 1.5

c0 = 0; ck =
sk
wk

((
wk−1
sk−1

− 1

)
ck−1 + Topt(wk − wk−1)

)
, k ≥ 1 (1)

Proof. From Lemma 1(a) we know that all robots must search contiguous in-
tervals. Since by Lemma 1(c) we need to utilize all robots, it follows that the
optimal schedule defines a partition of the unit domain into n subintervals. Fi-
nally by Lemma 1(d), we know that if we order the robots in non-decreasing
walking speed, then robot ri will search the i-th in a row interval, showing the
first claim of the lemma.

Now, from Lemma 1(b), we know that all robots finish at the same time, say
T . Since all robots start processing the domain at the same time, robot k will

5 We set w0 = 0 and w1 = 1 for notational convenience, so that (1) holds. Note that
w0 does not correspond to any robot, while w1 is the walking speed of the robot
that will search the first subinterval, and so will never enter walking mode, hence,
w1 does not affect our solution.

walk its initial subinterval of length
∑k−1
i=1 ci in time proportional to 1/wk, and

in the remaining time it will search the interval of length ck. Hence

ck = sk

(
T −

∑k−1
i=1 ci
wk

)
,

from which we easily derive the desired recursion.

2.2 The Optimal Schedule for the Beachcombers’ Problem

As a consequence of Lemma 1 we have the following offline algorithm Comb pro-
ducing an optimal schedule. The algorithm is parameterized by the real values
ci equal to the sizes of intervals to be searched by each robot ri.

Algorithm Comb;
1. Sort the robots in non-decreasing walking speeds;
2. for i← 1 to n do
3. Robot ri first walks the interval of length

∑i−1
j=1 cj ,

and then searches interval of length ci

We can now prove the following theorem:

Theorem 1. The Beachcombers’ Problem can be solved optimally in O(n log n)
many steps.

Proof. By Lemma 2 we need to order the robots by non-decreasing walking
speed, which requires O(n log n) many steps). We then show how to compute all
ci in linear number of steps, modulo the arithmetic operations that depend on
the encoding sizes of wi, si.

Consider an imaginary unit time period. Starting with the slowest, for each
robot, we use (1) to compute (in constant time) the subinterval yi it would
search if it were to remain active for the unit time period. Consequently, we can
compute in n steps the total length

∑n
i=1 yi of the interval that the collection

of robots can search within a unit time period. This schedule, scaled to a unit
domain, will have finishing time T = 1/

∑n
i=1 yi. The length of the interval that

robot rk will search is then ck = yk/
∑n
i=1 yi.

2.3 Closed Formulas for the Optimal Schedule of the Beachcombers’
Problem

From the proof of Theorem 1 we can implicitly derive the time (and the speed) of
an optimal solution to the Beachcombers’ Problem. In what follows, we assume
that wi = 0, that the robots are ordered in non-decreasing walking speeds, and
that w1 = 1 (see Lemma 2 and Footnote 5).

Lemma 3. Consider a set of robots such that in the optimal schedule each robot
finishes searching in time Topt. Robot rk will search a subinterval of length ck,
such that

ck
Topt

= sk −
sk
wk

k−1∑
r=1

sr

k−1∏
j=r+1

(
1− sj

wj

)
(2)

Proof. To prove (2), we need to show that the values specified for ck satisfy
recurrence (1) which has a unique solution. Indeed,

wk
sk
ck

(2)
= Topt

sk − sk
wk

k−1∑
r=1

sr

k−1∏
j=r+1

(
1− sj

wj

)
= Topt(wk − sk−1)− Topt

k−2∑
r=1

sr

k−1∏
j=r+1

(
1− sj

wj

)

= Topt(wk − sk−1)− Topt
(

1− sk−1
wk−1

) k−2∑
r=1

sr

k−2∏
j=r+1

(
1− sj

wj

)
(2)
= Topt(wk − sk−1)−

(
1− sk−1

wk−1

)
wk−1
sk−1

(Toptsk−1 − ck−1)

= Topt(wk − wk−1) +

(
sk−1
wk−1

− 1

)
ck−1

which is exactly (1).

Definition 3 (Search Power). Consider a set of n robots r1, r2, . . . , rn, with
si < wi, i = 1, . . . , n. We define the search power of any subset A of robots using
a real function g : 2[n] 7→ R+ as follows: For any subset A, first sort the items
in non-decreasing walking speeds wi, and let wA1 , . . . , w

A
|A| be that ordering (the

superscripts just indicate membership in A). We define the evaluation function
(search power of set A) as

g(A) :=

|A|∑
k=1

sAk

|A|∏
j=k+1

(
1−

sAj
wAj

)
,

Note that the search power of any subset of the robots is well defined, and that
it is always positive (since si < wi). By summing (2) for k = 1, . . . , n and using
the identity

∑n
k=1 ck = 1, we obtain the following theorem:

Theorem 2. The speed Sopt of the optimal schedule equals the search power of
the collection of robots. In other words, if N denotes the set of all robots, then

Sopt = g(N). (3)

From Theorem 2, we can obtain the speed of the optimal schedule when all
robots have the same walking speed.

Corollary 1. Let s1, . . . , sn be the speeds of robots where all walking speeds are
1. Then the speed Sopt of the optimal schedule is given by the formula

Sopt = 1−
n∏
i=1

(1− si). (4)

which is exactly the simplified expression of the search power of such set of robots.

3 The Online Search Algorithm

In this section we give an algorithm producing a searching schedule for a segment
of size not known in advance to the robots. Each robot execute the same sequence
of moves for each unit segment. Therefore, contrary to the offline case, in which
all robots complete their searching duties at the same finishing time (at different
positions), in the online algorithm the robots arrive all together at point 1 of the
unit segment. Therefore the speed of searching of each integer segment is the
same and we call it swarm speed. However, the robots which cannot contribute to
increase the overall swarm speed are not used in the schedule. Each used robot
ri (called a swarm robot) searches a subsegment of the unit segment of size ci
and walks along the remaining part of it. The subsegments ci, whose lengths are
chosen in order to synchronize the arrival of all robots at the same time at every
integer point, are pairwise interior disjoint and they altogether cover the entire
unit segment, i.e.

∑k
i=1 ci = 1.

Below we define the procedure SwarmSpeed which determines the speed of a
swarm in linear time and algorithm OnlineSearch which defines the swarm. Al-
gorithm OnlineSearch, defines the schedule for a swarm of k robots r1, r2, . . . , rk
out of the original n robots such that w1 ≥ w2 ≥ · · · ≥ wk.

real procedure SwarmSpeed();
1. var S ← 0, Snum ← 0, Sden ← 1, δ : real; i← 1 : integer;
2. while i ≤ n and S < wi do
3. δ ← 1/(1

si
− 1

wi
);

4. Snum ← Snum + δ; Sden ← Sden + δ/wi; S = Snum
Sden

;
5. i← i+ 1;
6. return S;

Once the swarm speed has been computed, it is possible to compute the
subsegments lengths ci, that we call the contribution of robot ri - the fraction
of the unit interval that ri is allotted to search.

Theorem 3. Consider a partition of the unit interval into k consecutive non-
overlapping segments C1, C2, . . . , Ck, from left to right, of lengths c1, c2, . . . , ck,

Algorithm LeapFrog(robot rj);
1. var S ← SwarmSpeed();
2. if wj ≤ S then
3. EXIT; {robot rj stays motionless}
4. else
5. for i← 1 to j − 1 do
6. WALK((1

s
− 1

wi
)/(1

si
− 1

wi
));

7. while not at line end do
8. SEARCH((1

s
− 1

wj
)/(1

sj
− 1

wj
));

9. WALK(1− (1
s
− 1

wj
)/(1

sj
− 1

wj
));

respectively. Assume that all the robots start (at endpoint 0) and finish (at end-
point 1) simultaneously. Further assume that the i-th robot ri searches the seg-
ment Ci with speed si and walks the rest of the interval I \Ci with speed wi such
that wi > si. Then the speed of the swarm satisfies

S =

∑k
i=1

1
δi

1 +
∑k
i=1

1
wiδi

, (5)

where δi := 1
si
− 1

wi
, for i = 1, 2, . . . , k.

Proof. The partition of the interval [0, 1] into segments as prescribed in the
statement of the lemma gives rise to the equation

c1 + c2 + · · ·+ ck = 1. (6)

Let s be the speed of the swarm of n robots. Since all the robots must reach
the other endpoint 1 of the interval at the same time, we have the following
identities.

ci
si

+
1− ci
wi

=
1

S
, for 1 ≤ i ≤ k, (7)

where ci
si

is the time spent searching and 1−ci
wi

the time spent walking by robot
ri. Using the notation

δi :=
1

si
− 1

wi
, (8)

and substituting into Equation (7), after simplifications we get

ci =
1

Sδi
− 1

wiδi
, for 1 ≤ i ≤ k. (9)

Using Equation (6) we see that

1 =

k∑
i=1

ci =

k∑
i=1

1

Sδi
−

k∑
i=1

1

wiδi
=

1

S

k∑
i=1

1

δi
−

k∑
i=1

1

wiδi
,

which implies Identity (5), as desired.

Lemma 4. Algorithm OnlineSearch is correct (i.e. every point of the semiline
[0,+∞) is searched by a robot).

Proof. Let Cj(i) denote the subsegment of [i, i+1] of length cj which is searched

by robot rj . The lemma follows from the observation that
⋃k
j=1 Cj(i) = [i, i+1],

for all i ≥ 0 and all j = 1, 2, . . . , k.

4 Competitiveness of the Online Searching

In this section we discuss the competitiveness of the LeapFrog algorithm. Since
competitive ratio is naturally discussed more often for cost optimization (min-
imization) problems, we assume in this section that we compare the finishing
time (rather than speed) of the online versus offline solution. We show first that
in the general case the LeapFrog Algorithm is 2-competitive.

Theorem 4. Consider any set of robots r1, r2, . . . , rn, ordered by a non-
decreasing walking speed. If the completion time of the optimal schedule produced
by the Comb algorithm equals Topt then the completion time Tonline of the search-
ing schedule produced by the LeapFrog algorithm is such that Tonline < 2Topt.

Proof. As LeapFrog algorithm outputs schedules of the same speed for all
integer-length segments it is sufficient to analyze its competitiveness for a unit
segment. Assume, to the contrary, that the time Tonline of the schedule output
by LeapFrog is such that Tonline ≥ 2Tc. Note that, the swarm speed S of the
LeapFrog is then at most S ≤ 1/(2Tonline). Consider C1, C2, . . . , Cn - the sub-
segments searched by robots r1, r2, . . . , rn, respectively. Recall that each robot
ri of the Comb algorithm walks along segments C1, C2, . . . , Ci−1 and searches Ci
arriving at its right endpoint at time Tcopt. Let i∗ be the index such that the
midpoint 1/2 ∈ Ci∗ (or point 1/2 is a common endpoint of Ci∗ and Ci∗+1).
Observe, that in time 2Topt each robot ri, such that i ≥ i∗ could reach the right
endpoint of the unit segment, while searching its portion of length 2|Ci|. Note
that, as for each robot ri, such that i ≥ i∗, we have wi > 1/(2Tonline) ≥ S, each
such robot is used by LeapFrog in lines 5-9. However, since

∑n
i=i∗ 2|Ci| > 1 all

robots ri, for i ≥ i∗ search a segment longer than 1, arriving at its right endpoint
within time 2Topt, or Tonline < 2Topt for the unit segment. This contradicts the
earlier assumption.

Observe that, the competitive ratio of 2 may be approached as close as we
want. Indeed, we have the following

Proposition 1. For any ε > 0 there is a set of two robots for which the
LeapFrog algorithm produces a schedule of completion time Tonline such that
Tonline = (2− ε)Topt.

Proof. Let the speeds of the two robots be s1 = 1 − ε/2, w1 = 1, s2 = 1, w2 =
(2 − ε)/ε. As the swarm speed S computed in SwarmSpeed procedure equals 1,

the line 2 of the LeapFrog algorithm excludes r1 from the swarm, so the search
is performed uniquely by r1 with Tonline = 1. Using Theorem 2 we get

Sopt =

2∑
k=1

sk

2∏
j=k+1

(
1− sj

wj

)
=
(

1− ε

2

)(
1− ε

2− ε

)
+ 1 = 2− ε

Hence Topt = 1/(2− ε) and Tonline = 1 = (2− ε)Topt

The following theorem concerns the competitiveness of the LeapFrog algo-
rithm in the special case when all robot walking speeds are the same.

Theorem 5. Let be given the collection of robots r1, r2, . . . , rn with the same
walking speed w = w1 = . . . = wn. The LeapFrog algorithm has the competitive
ratio αn which is increasing in n. In particular, α2 = 1.115, α3 ≈ 1.17605,
α4 ≈ 1.20386 and limn→∞ αn ≈ 1.29843.

Our strategy towards proving Theorem 5 is to show that the competitive ratio
of LeapFrog -among all problem instances when walking speeds are the same - is
maximized when all robots’ searching speeds are also the same. Because of lack
of space, the section A.2 related to the proof of Theorem 5 is entirely deferred
to the Appendix.

5 Conclusion and Open Problems

In this paper, we proposed and analyzed offline and online algorithms for ad-
dressing the beachcombers’ problem. The offline algorithm, when the size of the
segment to search is known in advance is shown to produce the optimal schedule.
The online searching algorithm is shown to be 2-competitive in general case and
1.29843-competitive when the agents’ walking speeds are known to be the same.
We conjecture that there is no online algorithm with the competitive ratio of
(2− ε) for any ε > 0.

Other open questions concern different domain topologies, robots starting to
search from different initial positions or the case of faulty robots.

References

1. Koopman, B.O.: Search and screening. Operations Evaluation Group, Office of
the Chief of Naval Operations, Navy Department (1946)

2. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Foundations of
Computer Science, 1990. Proceedings., 31st Annual Symposium on, IEEE (1990)
355–361

3. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3) (2008) 236–245

4. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput.
29(4) (2000) 1164–1188

5. Alpern, S., Gal, S.: The theory of search games and rendezvous. Volume 55. Kluwer
Academic Publishers (2002)

6. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. In-
formation and Computation 106 (1993) 234–234

7. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Worst-case optimal exploration
of terrains with obstacles. Inf. Comput. 225 (2013) 16–28

8. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environ-
ment (extended abstract). In: FOCS. (1991) 298–303

9. Bellman, R.: An optimal search problem. Bull. Am. Math. Soc. (1963) 270
10. Beck, A.: on the linear search problem. Israel Journal of Mathematics 2(4) (1964)

221–228
11. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoretical

Computer Science 361(2) (2006) 342–355
12. Albers, S.: Online algorithms: a survey. Math. Program. 97(1-2) (2003) 3–26
13. Albers, S., Schmelzer, S.: Online algorithms - what is it worth to know the future?

In: Algorithms Unplugged. (2011) 361–366
14. Berman, P.: On-line searching and navigation. In Fiat, A., Woeginger, G., eds.:

Online Algorithms The State of the Art. Springer (1998) 232–241
15. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive

online approximation of the optimal search ratio. SIAM J. Comput. 38(3) (2008)
881–898

16. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collabo-
rative graph exploration. In: ICALP. Volume to appear. (2013)

17. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent
and oblivious robots. In: WG. (2010) 208–219

18. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1-3) (2007) 34–48

19. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3) (2006) 166–177

20. Higashikawa, Y., Katoh, N., Langerman, S., ichi Tanigawa, S.: Online graph ex-
ploration algorithms for cycles and trees by multiple searchers. J. Comb. Optim.
(2012)

21. Wang, G., Irwin, M.J., Fu, H., Berman, P., Zhang, W., Porta, T.L.: Optimizing
sensor movement planning for energy efficiency. ACM Transactions on Sensor
Networks 7(4) (2011) 33

22. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks
of mobile agents. In: Proceeding of the 29th ACM SIGACT-SIGOPS Symposium
on Principles of distributed computing, ACM (2010) 305–314

23. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by
mobile agents with distinct maximal speeds. In: ESA. (2011) 701–712

24. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. In: ISAAC. (2012) 598–608

A Appendix

A.1 Proof of Lemma 1

Proof. By the observation made in the preliminaries we assume that the segment
may be partitioned into subsegments, such that each subsegment is searched by
only one robot of the collection.

(a) Suppose a robot ri searches the non contiguous subintervals [a1, b1] and
[a2, b2] (with b1 < a2), of the unit interval [0, 1]. We modify the schedule so that
robot searches the interval [a2− (b1− a1), b2]. The time robot ri stops searching
remains the same, as do the finishing times for the rest of the robots, once we
shift the allocated searching intervals that fall between [a1, b1] and [a2, b2].

(b) Suppose some robot ri has an idle period before it searches its last
allocated point of the domain. We can eliminate this period by switching the
robot to a moving mode (either walking or searching) earlier, which reduces its
individual finishing time. Hence, we may assume that all robots have idle times
only after the time they finish searching. Now consider a robot ri that finishes
searching its unique (due to part (a)) interval [a, b] strictly earlier than the rest
of the robots, by, say, ε time units. We can then reschedule robot ri so as to
search [a − εsi/2, b + εsi/2]. Robots searching a preceding interval now search
a subinterval that may have been shortened (but not lengthened), and they do
not walk more. Robots that search succeeding intervals may have their searching
intervals shortened, in which case they may need to process some subinterval by
walking instead of searching. Since for each robot the walking speed is strictly
higher than the searching speed, this process can only reduce the total finishing
time. The argument is similar if [a, b] above lies in one of the endpoints of the
domain [0, 1].

(c) This is true, since otherwise a robot would have 0 searching time which
would contradict part (b).

(d) By part (a) and (c) above, the domain is partitioned into subintervals
of length c1, . . . , cn with the understanding that ci is searched by robot ri.

In what follows, we investigate the effect of switching the order of two robots
that search two consecutive subintervals, so that the union of the intervals re-
mains unchanged. In particular we will redistribute the portion of the union of
the two intervals that each robot will search, enforcing the optimality condition
of part (b). Since we will only redistribute the length of intervals i, j to robots
i, j, the rest of the subintervals will remain the same, and so will the finishing
search times of the remaining robots.

Without loss of generality, assume that interval ci lies in the leftmost part of
the domain from which all robots start (we may assume this since any preceding
robots will not be affected as we maintain the union of the intervals that both
robots ri, rj will search together). Note that robot ri searches ci while robot rj
walks ci and searches cj . By part (b) all robots have the same finishing time, so
we have

ci
si

=
ci
wj

+
cj
sj

(10)

If ci = λ(ci + cj) (in which case cj = (1− λ)(ci + cj)), then substituting in (10)
and solving for λ gives

λ =
1(

1
si

+ 1
sj
− 1

wi

)
sj
.

Hence, we conclude that the finishing time for both robots is

T =
λ(ci + cj)

si
=

ci + cj(
1
si

+ 1
sj
− 1

wi

)
sisj

.

We now reschedule the robots so that robot rj searches first, say a µ portion of
ci + cj , and robot ri searches the remaining (and second in order) subinterval of
length (1 − µ)(ci + cj). This means that robot ri will now walk the interval of
length µ(ci + cj). Since by part (b) the two robots must finish simultaneously,
the same calculations show that the new finishing time is

T ′ =
µ(ci + cj)

sj
=

ci + cj(
1
si

+ 1
sj
− 1

wj

)
sisj

.

It is easy to see then that T ′ < T whenever wi > wj , concluding what we need.

A.2 Online Searching with Robots of Equal Walking Speeds

We call w-uniform the instance of the Beachcombers’ Problem in which all agents
have the same walking speeds. Moreover if the searching speeds are the same
- the problem is totally uniform. Clearly all n robots participate in the swarm
of the LeapFrog algorithm. Considering the speeds of the schedules obtained by
the offline and online algorithms given by Theorem 2 and Theorem 3, the upper
bound on the competitive ratio C of the LeapFrog algorithm is given by

C = sup
R

Tonline
Topt

= sup
R

 n∑
k=1

sk

n∏
j=k+1

(
1− sj

wj

) /

(∑n
k=1

1
δk

1 +
∑n
k=1

1
wkδk

)

where the supremum of the ratio is taken over all configurations R of robots’
speeds and δi := 1

si
− 1

wi
, for i = 1, 2, . . . , k.

Observe that this ratio remains the same if the instance of the problem is
scaled down to all walking speeds equal to 1. Then the simple calculation shows
that the value of the competitive ratio is simplified to

C = sup
R

(
1−

n∏
k=1

(1− sk)

)(
1 +

1∑n
k=1

sk
1−sk

)
(11)

In what follows we compute a numeric upper bound for (11). Such a task
seems challenging as it involves n many parameters, i.e. the searching speeds.
As the expression is symmetric in the parameters, one should expect that it is

maximized when all parameters are the same. Effectively, this would mean that
competitive ratio of our algorithm is worst only for totally uniform instances,
i.e. where all searching speeds are the same and all walking speeds are the same.
This is what we make formal in the next technical lemma.

Lemma 5. Given some fixed n, expression (11) is maximized for totally uniform
instances of Beachcombers’ Problem.

Proof. Consider the function f : (0, 1)n 7→ R+ defined as

f(s1, s2, . . . , sn) =

(
1−

n∏
k=1

(1− sk)

)(
1 +

1∑n
k=1

sk
1−sk

)
.

A necessary condition for optimality is that ϑf
ϑsi

= 0 for i = 1, . . . , n. Towards
computing the partial derivatives we introduce the shorthands

Q :=

n∑
k=1

sk
1− sk

and P :=

n∏
k=1

(1− sk),

and we observe that

ϑ

ϑsi
Q =

ϑ

ϑsi

si
1− si

=
1

(1− si)2

and that
ϑ

ϑsi
P = −

n∏
k=1,...,n & k 6=i

(1− sk) = − 1

1− si
P.

Then, we easily get that

ϑf

ϑsi
=

1

(1− si)2
1

Q2
+

1

1− si
P −

− 1
1−siQ− P

1
(1−si)2

Q2
.

Requiring that the above partial derivative identifies with 0 and solving for si
gives

si = 1− 1 + P

Q2P +Q
.

Note that this already shows that all si are equal when f is maximized. In order
to complete the proof, we need to show that these values of si are indeed between
0 and 1. For this we first note that si < 1 since P,Q > 0, and hence it suffices
to show that si are positive when f is maximized.

In order to show that si > 0, we observe that if Q ≥ 1, then it can be easily
seen that 1 − 1+P

Q2P+Q ≥ 0 (independently of the value of P). This is because

si ≥ 0 if and only if −1− P +Q+ PQ2 ≥ 0. The later quadratic in Q has 1 as
the higher root and therefore is strictly positive for the values of Q that exceed
1.

It remains to show that si > 0 in the case when Q < 1. For this we do the
following trick. Since si = 1− 1+P

Q2P+Q , we also have 1− si = 1+P
Q2P+Q and so

si
1− si

=
1− 1+P

Q2P+Q

1+P
Q2P+Q

.

Summing the left-hand-side over i = 1, . . . , n gives exactly Q, so we conclude
that for the values of si that optimize f we have

Q = n
Q2P +Q− 1− P

1 + P
. (12)

Let then P = n(1−Q)+Q
n(Q2−1)+Q , i.e. the value as indicated after we solve for P in (12).

We get then that since si = (−1−P +Q+PQ2)/(Q2P +Q), its numerator can
be written as an expression in n,Q as

(1−Q)

(
n(1−Q) +Q

n(1−Q2) +Q
(1 +Q)− 1

)
One can easily see that n(1−Q)+Q

n(1−Q2)+Q decreases with n, and hence the expression

we want to show to be non negative is at least

(1−Q)

(
lim
n→∞

n(1−Q) +Q

n(1−Q2) +Q
(1 +Q)− 1

)
= 0

exactly as wanted.

To conclude, Lemma 5 says that in order to determine the competitive ratio
of our algorithm for general w-uniform case, it suffices to consider totally uniform
instances. This is what we do in the next subsection.

Online Searching for Totally Uniform Instances (Proof of Theorem 5)
For the sake of notation ease, we normalize all speeds so as to have uniform
walking speeds 1 and uniform searching speeds α.

Following the analysis for w-uniform case, we know that the competitive ratio
of our algorithm for the totally uniform instance as described above is

Tonline
Topt

≤ (α(n− 1) + 1) (1− (1− α)n)

αn
(:= fn(α)) (13)

As already indicated, we denote the above expression on α, n by fn(α). From now
on we think of fn(α) as the competitive ratio of the LeapFrog algorithm. Table 1
is easy to establish using elementary calculations and shows the competitive ratio
for small number of robots. In what follows we give a detailed analysis of the
competitive ratio. For this we need the next technical lemma.

Lemma 6. Let αn = argmax fn(α). Then fn(αn) increases with n.

n maxα fn(α) argmaxα fn(α)

2 9
8

= 1.125 1
2

= 0.5

3 172+7
√

7
162

≈ 1.17605 5−
√
7

6
≈ 0.392375

4 ≈ 1.20386 1
12

(
11− 9

(85−4
√
406)1/3

−
(
85− 4

√
406
)1/3) ≈ 0.322472

Table 1. Competitive ratio of the LeapFrog Algorithm for the collections of robots of
size 2,3,4.

Proof. Note that Table 1 already shows the lemma for n ≤ 4. Hence, below we
may assume that n ≥ 5. First we show that fn(a) has a unique maximizer when

α ∈ (0, 1). For this we examine the critical points of fn(a) by solving d fn(α)
d α = 0,

i.e.
rn(α) := (1− α)n−1

(
1 + α(n− 1) + α2n(n− 1)

)
− 1 = 0. (14)

To show that rn(α) has a unique solution in (0, 1) we again take the derivative

with respect to α to find that d rn(α)
d α = (1−α)n−2αn(n− 1)(1−α(n+ 1)). This

means that rn(α) increases when α < 1/(n+ 1) and decreases otherwise. Noting
also that rn(0) = 0 and rn(1) = −1, we conclude that rn(α) has a unique root
in (0, 1), i.e. fn(α) has a unique maximizer αn over α ∈ (0, 1), and in particular
αn >

1
n+1 . Next we will provide a slightly better bound on the roots of rn(α).

For this we observe that

rn

(
1

n− 1

)
=

(
n−2
n−1

)n
(3n− 2)

n− 2
− 1

which can be seen to be positive for n ≥ 5. Hence, by the monotonicity we have
already shown for rn(α), we may assume that its root αn satisfies

1

n− 1
< αn < 1. (15)

Now we turn our attention to fn(an). Since αn satisfies rn(αn) = 0, it is easy to
see that

fn(an) =
(1 + αn(n− 1))2

1 + αn(n− 1) + α2
nn(n− 1)

simply by substituting (1− α)n−1 from (14) into (13). Recalling that an is also
a function on n we get that

d fn(αn)

d n
=

αn(1− αn)

(1 + αn(n− 1) + α2
nn(n− 1))

2

(
1− α2

n(n− 1)2
) d αn
d n

Due to (15) we conclude that d fn(αn)
d n has the opposite sign of d αn

d n , i.e. for
n ≥ 5 we have that fn(αn) increases with n if and only if αn decreases with n.
So it remains to show that the roots αn of rn(α) = 0 decrease with n. Observe
here that at this point we may restrict consideration to integral values of n.

To conclude the lemma we argue that αn+1 < αn. For this we observe that

rn+1(α) + 1

rn(α) + 1
=

(1− α)(1 + αn+ α2n(n+ 1))

1 + α(n− 1) + α2n(n− 1)

which is clearly less than 1 for α > 1
n+1 (just by solving for α). Effectively this

means that the graph of rn(α) + 1 is above the graph of rn+1(α) + 1 for every
α > 1

n+1 , and hence

rn(αn+1) > rn+1(αn+1) = 0 = rn(αn) > rn+1(αn).

But then, from the monotonicity we have shown for rn(α) this implies that
αn+1 < αn as wanted.

The next lemma in combination with Lemma 5 prove Theorem 5.

Lemma 7. For the totally uniform instances of the Beachcombers’ Problem, the
LeapFrog algorithm has competitive ratio at most 9/8 for two robots, and the
competitive ratio of at most maxc{(1 + 1/c)(1− e−c)} ≈ 1.29843 for any number
of robots.

Proof. By the proof of Lemma 6, a2 satisfies (1− α2)(1 + α2 + 2α2
2) = 1, which

has the unique solution α2 = 1/2. It is easy to see then f2(1/2) = 9/8.
Next, by Lemma 6, the bigger is the number of robots, the higher is the

competitive ratio of our algorithm. Hence, we need to determine limn→∞ fn(an).
To that end we note that if an = o(1/n), then 1− (1− α)n ≈ αn, and so

lim
n→∞

(α(n− 1) + 1) (1− (1− α)n)

αn
= lim
n→∞

αn− α+ 1

αn
αn = 1.

Similarly, if an = ω(1/n), then 1 − (1 − α)n tends to 1 as n goes to infinity.
Consequently,

lim
n→∞

(α(n− 1) + 1) (1− (1− α)n)

αn
= lim
n→∞

αn− α+ 1

αn
= 1.

It remains to check what happens when α = c/n for some c ∈ R+. But then

lim
n→∞

(α(n− 1) + 1) (1− (1− α)n)

αn
= (1 + 1/c)(1− e−c).

The last expression is maximized when c ≈ 1.79328 and the value it attains
approaches 1.29843.

A picture for the rate of growth of the competitive ratio of the crawling
algorithm is depicted in Figure A.2.

Fig. 1. Competitive ratio of the LeapFrogAlgorithm as a function of the number of
robots

	The Beachcombers' Problem: Walking and Searching with Mobile Robots

