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Abstract

A path in an edge-colored graph is called a proper path if no two adjacent

edges of the path are colored the same. For a connected graph G, the proper

connection number pc(G) of G is defined as the minimum number of colors

needed to color its edges, so that every pair of distinct vertices of G is con-

nected by at least one proper path in G. In this paper, we show that almost

all graphs have the proper connection number 2. More precisely, let G(n, p)

denote the Erdös-Rényi random graph model, in which each of the
(

n
2

)

pairs of

vertices appears as an edge with probability p independent from other pairs.

We prove that for sufficiently large n, pc(G(n, p)) ≤ 2 if p ≥ logn+α(n)
n

, where

α(n) → ∞.

Keywords: proper connection number; proper-path coloring; random graphs.
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1 Introduction

All graphs in this paper are undirected, finite and simple. We follow [4] for graph

theoretical notation and terminology not defined here. Let G be a nontrivial con-

nected graph with an edge-coloring c : E(G) → {1, 2, . . . , t}, t ∈ N, where adjacent

edges may have the same color. A path of G is called a rainbow path if no two edges

on the path have the same color. The graph G is called rainbow connected if for any

two vertices of G there is a rainbow path of G connecting them. An edge-coloring of a

∗Supported by NSFC No.11371205, “973” program No.2013CB834204, and PCSIRT.
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connected graph is called a rainbow connecting coloring if it makes the graph rainbow

connected. For a connected graph G, the rainbow connection number rc(G) of G is

the smallest number of colors that are needed in order to make G rainbow connected.

This concept of rainbow connection of graphs was introduced by Chartrand et al. [7]

in 2008. The interested readers can see [14, 13] for a survey on this topic.

Motivated by rainbow coloring and proper coloring in graphs, Andrews et al. [1]

introduced the concept of proper-path coloring. LetG be a nontrivial connected graph

with an edge-coloring. A path in G is called a proper path if no two adjacent edges of

the path are colored the same. An edge-coloring of a connected graph G is a proper-

path coloring if every pair of distinct vertices ofG are connected by a proper path inG.

For a connected graph G, the minimum number of colors that are needed to produce

a proper-path coloring of G is called the proper connection number of G, denoted by

pc(G). From the definition, it follows that 1 ≤ pc(G) ≤ min{rc(G), χ′(G)} ≤ m,

where χ′(G) is the chromatic index of G and m is the number of edges of G. And it

is easy to check that pc(G) = 1 if and only if G = Kn, and pc(G) = m if and only if

G = K1,m. For more details we refer to [1, 5].

The study on rainbow connectivity of random graphs has attracted the interest

of many researchers, see [6, 11, 12]. It is worth investigating the proper connection

number of random graphs, which is the purpose of this paper. The most frequently oc-

curring probability model of random graphs is the Erdös-Rényi random graph model

G(n, p) [9]. The model G(n, p) consists of all graphs with n vertices in which the

edges are chosen independently and with probability p. We say an event A happens

with high probability if the probability that it happens approaches 1 as n → ∞, i.e.,

Pr[A] = 1− on(1). Sometimes, we say w.h.p. for short. We will always assume that

n is the variable that tends to infinity.

Let G and H be two graphs on n vertices. A property P is said to be monotone

if whenever G ⊆ H and G satisfies P , then H also satisfies P . For any property P

of graphs and any positive integer n, define Prob(P, n) to be the ratio of the number

of graphs with n labeled vertices having P divided by the total number of graphs

with these vertices. If Prob(P, n) approaches 1 as n tends to infinity, then we say

that almost all graphs have the property P . Similarly, for a fixed integer r, we say

that almost all r-regular graphs have the property P if the ratio of the number of

r-regular graphs with n labeled vertices having P divided by the total number of

r-regular graphs with these vertices approaches 1 as n tends to infinity.

There are many results in the literature asserting that almost all graphs have

some property. Here we list some of them, which are related to our study on the

proper connection number of random graphs.
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Theorem 1.1 [3] Almost all graphs are connected with diameter 2.

Theorem 1.2 [3] For every nonnegative integer k, almost all graphs are k-connected.

Theorem 1.3 [16] For fixed integer r ≥ 3, almost all r-regular graphs are Hamilto-

nian.

In [5], Borozan et al. got the following result.

Theorem 1.4 If the diameter of graph G is 2 and G is 2-connected, then pc(G) = 2.

The authors in [1] proved the following result.

Theorem 1.5 If G is not complete and has a Hamiltonian path, then pc(G) = 2.

From Theorem 1.1 and Theorem 1.2 and the formula that Pr[A ∩ B] = Pr[A] +

Pr[B]− Pr[A ∪ B], it is easy to derive that almost all graphs are 2-connected with

diameter 2. Hence, by Theorem 1.4, we have

Theorem 1.6 Almost all graphs have the proper connection number 2.

Even if we concentrate on regular graphs, from Theorem 1.3 and Theorem 1.5,

we also have the following result.

Theorem 1.7 For fixed integer r ≥ 3, almost all r-regular graphs have the proper

connection number 2.

Next, we study the value of the proper connection number of G(n, p), when p

belongs to different ranges. The following theorem is a classical result on the con-

nectedness of a random graph.

Theorem 1.8 [9] Let p = (logn + a)/n. Then

Pr[G(n, p) is connected] →











e−e−a

if |a| = O(1),

0 if a → −∞,

1 if a → +∞.

Since the concept of proper-path coloring only makes sense when the graph is

connected, we only study on the proper-path coloring of G(n, p) which is w.h.p.

connected. Our main result is as follows.

Theorem 1.9 For sufficiently large n, pc(G(n, p)) ≤ 2 if p ≥ logn+α(n)
n

, where

α(n) → ∞.

We prove Theorem 1.9 in Section 2. In Section 3, we give some results on the

proper connection number of general graphs.
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2 Proof of Theorem 1.9

In order to prove the first part of Theorem 1.9, we first present a classical result

on random graphs as follows.

Theorem 2.1 [2] Let ω(n) → ∞, p = 1
n
{logn + log log n + ω(n)}. Then, w.h.p.

G(n, p) is Hamiltonian.

Let p′ = 1
n
{log n + log log n + ω(n)}, where ω(n) → ∞. Since Hamiltonian is a

monotone property, combining with Theorem 1.5, we know that pc(G(n, p)) = 2 if

p′ ≤ p < 1. Thus in the sequel, we assume that p = logn+α(n)
n

, where α(n) = o(logn),

and α(n) → ∞.

For two disjoint vertex-subsets X and Y of G, let e(X, Y ) be the number of

the edges with one endpoint in X and the other in Y . For vertex-subsets U ⊂ S,

N(U, S) is the disjoint neighbor set of U in G[S], i.e., N(U, S) = {w ∈ S −U : ∃u ∈

S and {uw} ∈ G[S]} and dS(v) = |N(v) ∩ S| is the degree of v in S. For ease of

notation, let G ∈ G(n, p) and denote by V the vertex set of G(n, p).

It is known that w.h.p. the diameter of G(n, p) is asymptotically equal to D =
logn

log logn
[2]. We call a vertex u large if its degree d(u) ≥ logn

100
and small otherwise. Let

SMALL denote the vertex-subset consisting of all the small vertices. We first give

some properties of small vertices as follows.

Lemma 2.1 The following hold w.h.p. in G(n, p).

(1) |SMALL| ≤ n0.1.

(2) No pair of small vertices are adjacent or share a common neighbor.

Proof. (1) Let s = ⌈n0.1⌉. Let A denote the event that there exists a vertex-subset S

with order s such that each vertex v ∈ S is small. Then A happens with probability

Pr[A] ≤

(

n

s

)





log n

100
∑

k=0

(

n

k

)

pk(1− p)n−1−k





s

≤
(ne

s

)s

[

logn

100

(

100ne

log n

)
log n

100
(

log n+ α(n)

n

)
log n

100

e−
log n+α(n)

n (n−1− logn

100 )

]s

≤

(

ne

s
·
log n

100
(101e)

log n

100 e−(logn+α(n))+
log n+α(n)

n
+ log n

100
·
logn+α(n)

n

)s

≤

(

ne

s
·
log n

100
· n

6
100 · n−1 · O(1)

)s

≤ O(n−0.01·s).
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That implies that w.h.p. |SMALL| ≤ n0.1.

(2) Let B denote the event that there exist two small vertices x, y and the distance

between x and y is at most 2. We have

Pr[B] ≤

(

n

2

)

{

p





log n

100
∑

i=1

(

n− 2

i

)

pi(1− p)n−2−i





2

+

(

n− 2

1

)

p2





log n

100
∑

i=1

(

n− 3

i

)

pi(1− p)n−3−i





2
}

≤ n2

[

log n+ α(n)

n
+ n

(

log n+ α(n)

n

)2
]

[

2

(

n
logn
100

)

p
log n

100 (1− p)n−2− logn

100

]2

≤
[

n(2 logn) + n(2 logn)2
]



2

(

ne
logn
100

)
logn

100

p
log n

100 (1− p)n−2− logn

100





2

≤
[

n(2 logn) + n(2 logn)2
]

n−1.9

≤ n−0.8.

�

From Lemma 2.1, we can obtain that every small vertex is adjacent to a large

vertex and there is at most one small vertex among the neighbors of a large vertex.

Thus, we can find a matching M consisting of |SMALL| edges in G such that for

every edge e in M , one endpoint of e is small and the other endpoint is large. Let

s = |M | = |SMALL|. Denote the large vertices in M by x1, x2, . . . , xs and denote

the small vertices in M by y1, y2, . . . , ys. Without loss of generality, we assume that

for every i ∈ {1, 2, · · · , s}, {xiyi} is an edge in M . If |V \SMALL| is odd, then we

take an arbitrary edge {uv} disjoint from M and let M ′ = M ∪{uv}. If |V \SMALL|

is even, just let M ′ = M . Denote the cardinality of M ′ by s′, that is,

s′ =

{

s if |V \SMALL| is even,

s+ 1 if |V \SMALL| is odd.

Let

V1 =

{

V \SMALL if |V \SMALL| is even,

V \(SMALL ∪ {u}) if |V \SMALL| is odd.

So |V1| is even.

The following is an important structural property of G.

Claim 2.1 The induced subgraph G[V1] of G is w.h.p. Hamiltonian.

5



Note that to prove pc(G) ≤ 2, it suffices to give G an edge-coloring with 2 colors

and verify that the edge-coloring is a proper-path coloring of G. Denote the Hamil-

tonian cycle of G[V1] by C. We color the edges of C consecutively and alternately

with color 1 and 2, and color all the edges in M ′ with color 1. It is easy to get that

under this partial coloring, every pair of large vertices have a proper path connecting

them, and there exists a proper path connecting a vertex in {y1, y2, . . . , ys, u} (if such

u exists) with a vertex in V1. The following claim helps us to take care of pairs of

vertices in {y1, y2, . . . , ys, u} .

Claim 2.2 There exists an edge-coloring of edges in E(G)\(E(C) ∪M ′) with 2 col-

ors such that w.h.p. every pair of vertices in {y1, y2, . . . , ys, u} have a proper path

connecting them in G.

Thus Theorem 1.9 follows from the above arguments. So all we need to do is to

prove Claims 2.1 and 2.2.

2.1 Proof of Claim 2.1

We will use the similar arguments of Cooper [8] and Frieze [10]. The following

lemma establishes some structural properties of G, which we will make use of in our

proof.

Lemma 2.2 The following hold in G w.h.p. :

(1) For any S ⊆ V , |S| ≤ n
375

implies |E(G[S])| < |S|np
250

.

(2) If U,W ⊆ V , U ∩W = ∅, |U |, |W | ≥ n
log logn

, then e(U,W ) > 0.

(3) There are at most n0.2 edges incident with vertices in SMALL.

Proof. (1) The number of edges in an induced subgraph G[S] with |S| = s is a

binomial random variable with parameters
(

s

2

)

and p. By Bollobás [2] we have for

large deviations of binomial random variables

Pr[the number of edges in G[S] ≥ γ

(

s

2

)

p] <

(

e

γ

)γ(s2)p
.

Setting γ = n
125s

, we obtain that

n
375
∑

s=1

(

n

s

)

(

e

γ

)γ(s2)p
= o(1).
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(2) Let A denote the event that there exist two subsets U,W ⊆ V , U ∩W = ∅,

|U |, |W | ≥ n
log logn

and e(U,W ) = 0. Then

Pr[A] ≤
∑

s≥ n
log logn

∑

t≥ n
log log n

(

n

s

)(

n− s

t

)

(1− p)st

≤
∑

s≥ n
log logn

∑

t≥ n
log log n

(

n

s

)(

n− s

t

)

e−
log n+α(n)

n
st

≤
∑

s≥ n
log logn

∑

t≥ n
log log n

(

n

s

)(

n− s

t

)

e−
log n

n
· n
log log n

· n
log log n

≤ o(n−1).

(3) Since SMALL is an independent set, i.e., no edges in the induced subgraph

G[SAMLL], we have that the number of edges incident to SMALL is no more than

|SMALL| ·
log n

100
≤ n0.1 ·

log n

100
< n0.2.

�

Let H = {G ∈ G(n, p): the conditions of Lemmas 2.1 and 2.2 hold}. The

following lemma is an immediate consequence of Lemma 2.2(1).

Lemma 2.3 Let G ∈ H , U ⊆ S ⊂ V , |U | ≤ n
1500

, F ⊂ E(G[S]) and H = (S, F ). If

U is such that the degree of w in H is at least logn
101

for all w ∈ U , then |N(U, S)| ≥ 3|U |

in H.

We regard the edges in G as initially colored blue, but with the option of recoloring

a set R of the edges red. We require the set R of red edges is “deletable”, which is

defined as follows.

Definition 2.1 (1) R ⊆ E(G) is deletable if

(i) R is a matching.

(ii) No edge of R is incident with a small vertex.

(iii) |R| = ⌈n0.1⌉.

(2) Let GB[V1] denote the subgraph of G[V1] induced by blue edges.

(3) NB(U, V1) denotes the disjoint neighbor set of U in GB[V1].
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Lemma 2.4 Let G ∈ H and let U ⊆ V1, |U | ≤ n
1500

. Then |NB(U, V1)| ≥ 2|U |.

Proof. By Lemma 2.2(1), each vertex w ∈ U has at most one neighbor in SMALL.

We have dV1(w) ≥
logn
100

− 1 − 1 ≥ logn
101

. From Lemma 2.3, we obtain that there are

at least 3|U | neighbors of U in V1. Thus the removal of min{|R|, |U |} deletable edges

makes |NB(U, V1)| ≥ 2|U |. �

Lemma 2.5 For G ∈ H , G[V1] is connected.

Proof. If G[V1] is not connected, then by Lemma 2.4 the smallest component cannot

consist of less than n
1500

vertices.

On the other hand, by Lemma 2.2(2), any two sets of vertices of size at least
n

log logn
must be connected by an edge. So G[V1] is connected. �

To prove Claim 2.1, we also need some more definitions and results taken from

Pósa [15] and Frieze [10].

Definition 2.2 Let Γ = (V,E) be a non-Hamiltonian graph with a longest path of

length ℓ. A pair {u, v} /∈ E is called a hole if add {u, v} to Γ creates a graph Γ′ which

is Hamiltonian or contains a path longer than ℓ.

Definition 2.3 A graph Γ = (V,E) is called a (k, c)-expander if |N(U)| ≥ c|U | for

every subset U ⊆ V (G) of cardinality |U | ≤ k.

Lemma 2.6 [10] Let Γ be a non-Hamiltonian connected (k, 2)-expander. Then Γ has

at least k2

2
holes.

From Lemmas 2.4 and 2.6, we obtain that G[V1] is a ( n
1500

, 2)-expander, and it has

at least 1
2
( n
1500

)2 holes depending only on GB[V1]. We define the set F to be those

G ∈ H for which the subgraph G[V1] is not Hamiltonian. Our aim is to prove the

following result.

Lemma 2.7
|F |

|G(n,p)|
= o(1).

Proof. Let R be a set of red edges of G with the property P that

(i) R is deletable,

(ii) λ(G[V1]) = λ(GB[V1]),

where λ(H) is the length of a longest path in the graph H .
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Let C be the set of all red-blue colorings of F which satisfy P . Let λ = λ(G[V1]),

we have λ < |V1|. Recall that there are at most µ = ⌈n0.2⌉ edges incident with small

vertices. Set r = |R|. Since R is a matching, we can choose it in at least

1

r!
(m− λ− µ)(m− λ− µ− 2∆) . . . (m− λ− µ− 2(r − 1)∆)

≥
1

r!
(m− |V1| − µ)(m− |V1| − µ− 2∆) . . . (m− |V1| − µ− 2(r − 1)∆)

≥
(m− |V1|)

r

r!
(1− o(1))

ways, where m is the number of edges in G, and ∆ is the maximum degree of G. It

is known that ∆ is w.h.p. at most 3np (see e.g. [2]).

Hence,

|C | ≥ |F |
(m− |V1|)

r

r!
(1− o(1)).

Consider that we fix the blue subgraph. Then, by the definition of holes, we have

to avoid replacing at least 1
2
( n
1500

)2 edges when adding back the red edges in order to

construct a red-blue coloring satisfying property P . Thus

|C | ≤

(
(

n

2

)

m− r

)(
(

n

2

)

− (m− r)− 1
2
( n
1500

)2

r

)

.

It follows that

|F |

|G(n, p)|
≤

(n2)
∑

m= 1
100(

n

2)p

[

( (n2)
m−r

)((n2)−(m−r)− 1
2
( n
1500

)2

r

)

/

(m−|V1|)r

r!
(1− o(1))

]

( (n2)
(n2)p

)

≤ n2O(e
− r

15002
+ nr

(n−1) log n )

= o(n−1).

�

2.2 Proof of Claim 2.2

We still assume that G ∈ H which defined in the previous subsection. Recall

that a t-ary tree with a designated root is a tree whose non-leaf vertices all have

exactly t children. For any tree Tw rooted at w and any vertex x ∈ Tw\{w}, we use

PTw
(w, x) to denote the only path from w to x in Tw. We say that x is at depth k of

Tw if PTw
(w, x) is of length k. For any tree Tw, denote by Lw the set of leaves of Tw.

9



Let E1 = E(G[V1])\E(C) and H = (V1, E1) be a subgraph of G. Remember that

x1, . . . , xs are the large vertices in M . Let xs+1 = v and ys+1 = u, if M ′ = M ∪ {uv}.

For every xi ∈ {x1, x2, . . . , xs, xs+1}, we will build vertex-disjoint logn
101

-ary trees Txi
of

depth (1
2
+ ǫ)D = (1

2
+ ǫ) logn

log logn
in H . Hereafter, let 0 < ǫ < 1 be a sufficiently small

real constant.

Note that if we successfully build such vertex-disjoint trees, then the number of

leaves of each tree Txi
is |Lxi

| = ( logn
101

)(
1
2
+ǫ)D, for i = 1, 2, . . . , s+ 1. Thus, we have

Pr[there exist distinct i, j such that e(Lxi
, Lxj

) = 0]

≤

(

s+ 1

2

)

(1− p)(
log n

101
)(1+2ǫ)D

≤ n0.2e−
log n

n
( log n

101
)(1+2ǫ)D

≤ n0.2 · n−nǫ

≤ n− 1
2
nǫ

= o(1).

Hence, for every i 6= j, there exists a path from xi to xj of length (1 + 2ǫ)D + 1

(these paths are not necessarily vertex-disjoint). Denote that path by Pij. For every

tree Txi
, we color the edges between the vertices at depth 2ℓ− 1 to 2ℓ with color 2,

and color the edges between the vertices at depth 2ℓ to 2ℓ + 1 with color 1, where

ℓ = 1, 2, . . . , ⌊
( 1
2
+ǫ)D

2
⌋. Color the edges between each Lxi

and Lxj
(i 6= j) with the color

different from the color used in the edges between the vertices at depth (1
2
+ ǫ)D− 1

to (1
2
+ ǫ)D. That is, if the edges between the vertices at depth (1

2
+ ǫ)D−1 to leaves

are colored with color 1, then we color the edges between Lxi
and Lxj

with color 2;

if the edges between the vertices at depth (1
2
+ ǫ)D − 1 to leaves are colored with

color 2, then we color the edges between Lxi
and Lxj

with color 1. Recalling that

we color edges in M ′ with color 1, then for every i 6= j the path formed by the two

edges {xiyi}, {xjyj} combining with the path Pij is a proper path connecting yi and

yj. Thus our claim follows.

Now we prove that these ( logn
101

)-ary trees can be constructed successfully w.h.p..

Realize first that every vertex x in H has degree dH(x) ≥
logn
100

− 2− 2, since there

are two edges incident with x in C and x can be adjacent to at most one small vertex

plus u in G.

For every i = 1, 2, . . . , s + 1, we build the tree Txi
level by level from xi to the

leaves. Suppose that we are growing the tree Txj
from vertex w at depth k to vertices

at depth k+1. Note that the construction halts if we cannot expand by the required

amount. That is, we cannot find enough neighbors of w in H to add into the tree

Txj
, since w may point to vertices already in Txi

, i ≤ j. We call such edges as bad

edges emanating from w. We claim that the number of bad edges emanating from

10



w is small. It is easy to get that at any stage, the number of vertices we used to

construct trees is less than

(s+ 1) · (
1

2
+ ǫ)

logn

log log n

(

logn

101

)( 1
2
+ǫ) logn

log log n

≤ (
1

2
+ ǫ)

log n

log log n
· n

1
2
+ ǫ

2 · n0.1

≤ n0.65.

For any fixed vertex w, the bad edges from w is stochastically dominated by the

random variable X ∼ Bin(n0.65, p). Thus,

Pr[there are at least 10 bad edges emanating from w]

≤ Pr[X ≥ 10] ≤

(

n0.65

10

)

p10

≤

(

en0.65

10
·
logn + α(n)

n

)10

≤ (n−0.34)10

= n−3.4.

Using the Union Bound taking over all vertices, we have that with probability at

least 1 − n−2.4, any current vertex w has at most 9 bad edges emanating from it.

Therefore, there are at least logn
100

− 4 − 9 − 1 ≥ logn
101

neighbors of w in H that can

be used to continue our construction of Txj
. Hence, w.h.p. we can successfully build

such logn
101

-ary trees we required. The proof is thus complete.

3 Proper connection number of general graphs

In this section, we use a different method to derive an upper bound for the proper

connection number of general graphs.

Theorem 3.1 Let G = (V,E) be a graph. If there are two connected spanning

subgraphs G1 = (V,E1) and G2 = (V,E2) of G such that |E1 ∩ E2| ≤ t. Then

pc(G) ≤ t+ 4.

Proof. We first color the edges in E1∩E2 with distinct colors. For the remaining edges

in E1 ∪ E2, we color them with four new colors different from the colors appeared

in E1 ∩ E2. We use 1, 2, 3, 4 to denote those new colors. For any two vertices u

11



and v, denote the distance between them in Gi by di(u, v), where i = 1, 2. Take

an arbitrary vertex x ∈ V , define the vertex sets Uj = {y ∈ V : d1(x, y) = j},

Wj = {y ∈ V : d2(x, y) = j}. Color the edges between U2k−1 and U2k with color

1, color the edges between U2k and U2k+1 with color 2, for 1 ≤ k ≤ ⌊1
2
diam(G1)⌋.

Similarly, color the edges betweenW2ℓ−1 andW2ℓ with color 3, color the edges between

W2ℓ and W2ℓ+1 with color 4, for 1 ≤ ℓ ≤ ⌊1
2
diam(G2)⌋. For the edges in E\(E1∪E2),

we can color them with any colors appeared before. Clearly, this coloring uses at

most t+ 4 colors.

Now we verify that this edge-coloring is a proper-path coloring of G. Let u, v

be any two vertices in V . Choose a shortest u-x path P1 in G1, and a shortest v-x

path P2 in G2. Note that P1 and P2 are proper paths. If they are edge-disjoint, then

P1 ∪P2 is a proper path connecting u and v. Otherwise, P1 and P2 intersect in edges

in E1 ∩ E2. We can go from u along P1 till the first common edges, then turn to P2

to reach v. �

If G has two edge-disjoint connected spanning subgraphs, then we have |E1∩E2| =

0, and therefore, pc(G) ≤ 4. The following result is a straightforward consequence of

Theorem 3.1.

Corollary 3.1 If G has two edge-disjoint spanning trees, then pc(G) ≤ 4.

We remark that we cannot apply Corollary 3.1 to random graph G(n, p) when p

is not large enough. It is shown (see [2]) that if p = logn+ωn

n
, where ωn → ∞ and

ωn ≤ log log logn, then w.h.p. G(n, p) has the minimum degree 1. Therefore, G(n, p)

does not have two edge-disjoint spanning trees.

Acknowledgement. We are grateful to Dr. Asaf Ferber for his suggestion which

helped to improve our early result pc(G(n, p)) ≤ 4 into pc(G(n, p)) ≤ 3. Although
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