
ar
X

iv
:1

41
1.

51
31

v1
 [

cs
.F

L
]

 1
9

N
ov

 2
01

4

A Complete Refinement Procedure for

Regular Separability of Context-Free Languages

Graeme Gangea, Jorge A. Navasb, Peter Schachtea, Harald Søndergaarda, Peter J. Stuckeya

a Department of Computing and Information Systems, The University of Melbourne, Vic. 3010, Australia
b NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract

Often, when analyzing the behaviour of systems modelled as context-free languages, we wish to know if two
languages overlap. To this end, we present an effective semi-decision procedure for regular separability of
context-free languages, based on counter-example guided abstraction refinement. We propose two refinement
methods, one inexpensive but incomplete, and the other complete but more expensive. We provide an
experimental evaluation of this procedure, and demonstrate its practicality on a range of verification and
language-theoretic instances.

Keywords: abstraction refinement, context-free languages, regular approximation, separability

1. Introduction

We address the problem of checking whether two given context-free languages L1 and L2 are disjoint.
This is a fundamental language-theoretical problem. It is of interest in many practical tasks that call for some
kind of automated reasoning about programs. This can be because program behaviour is modelled using
context-free languages, as in software verification approaches that try to capture a program’s control flow
as a (pushdown-system) path language. Or it can be because we wish to reason about string-manipulating
programs, as is the case in software vulnerability detection problems, where various types of injection attack
have to be modelled.

The problem of context-free disjointness is of course undecidable, but semi-decision procedures exist for
non-disjointness. For example, one can systematically generate strings w over the intersection Σ1 ∩ Σ2,
where Σ1 is the alphabet of L1 and Σ2 is that of L2. If some w belongs to both L1 and L2, answer “yes, the
languages overlap.” It follows that no semi-decision procedure exists for disjointness. However, semi-decision
procedures exist for the stronger requirement of being separable by a regular language. For example, one
can systematically generate (representations of) regular languages over Σ1 ∪Σ2, and, if some such language
R is found to satisfy L1 ⊆ R ∧ L2 ⊆ R, answer “yes, the languages are disjoint”.

A radically different approach, which we will follow here, uses so-called counter-example guided abstrac-
tion refinement (CEGAR) [5] of regular over-approximations. The scheme is based on repeated approxima-
tion refinement, like so:

1. Abstraction: Compute regular approximations R1 and R2 such that L1 ⊆ R1 and L2 ⊆ R2. (Here R1

and R2 are regular languages, represented using regular expressions, say.)
2. Verification: Check whether the intersection of R1 and R2 is empty using a decision procedure for

regular expressions. If R1 ∩ R2 = ∅ then L1 ∩ L2 = ∅, so answer “the languages are disjoint.” If
w ∈ (R1 ∩R2), w ∈ L1, and w ∈ L2 then L1 ∩L2 6= ∅, so answer “the languages overlap” and provide
w as a witness. Otherwise, go to step 3.

Email addresses: gkgange@unimelb.edu.au (Graeme Gange), jorge.a.navaslaserna@nasa.gov (Jorge A. Navas),
schachte@unimelb.edu.au (Peter Schachte), harald@unimelb.edu.au (Harald Søndergaard), pstuckey@unimelb.edu.au
(Peter J. Stuckey)

Preprint submitted to Elsevier June 8, 2018

http://arxiv.org/abs/1411.5131v1

3. Refinement: Produce new regular approximations R′
1 and R′

2 such that for each R′
i, i ∈ {1, 2}, we

have Li ⊆ R′
i ⊆ Ri, and R′

i ⊂ Ri for some i. Update the approximations R1 ← R′
1, R2 ← R′

2, and go
to step 2.

For the abstraction step, note that regular approximations exist, trivially. For the verification step, we
could also take advantage of the fact that the class of context-free languages is closed under intersection
with regular languages; however, this does not eliminate the need for a refinement procedure. For the
refinement step, note that there is no indication of how the tightening of approximations should be done;
indeed that is the focus of this paper. The step is clearly well-defined since, if L ⊂ R, there is always a
regular language R′ ⊂ R such that L ⊆ R′.

For a given language L there may well be an infinite chain R1 ⊃ R2 ⊃ · · · ⊃ L of regular approximations.
This is a source of possible non-termination of the CEGAR scheme. An interesting question therefore is: Are
there refinement techniques that can guarantee termination at least when L1 and L2 are regularly separable
context-free languages, that is, when there exists a regular language R such that L1 ⊆ R and L2 ⊆ R?

In this paper we answer this question in the affirmative. We propose a refinement procedure which
can ensure termination of the CEGAR-based loop assuming the context-free languages involved are regu-
larly separable. In this sense we provide a refinement procedure which is complete for regularly separable
context-free languages. Of course the question of regular separability of context-free languages is itself un-
decidable [18]. The method that we propose can also be used on language instances that are not regularly
separable, and it will often decide such instances successfully. However, in this case, it does not come with
a termination guarantee.

Contribution. The paper rests on regular approximation ideas by Nederhof [16] and we utilise the efficient
pre∗ algorithm [7] for intersecting (the language of) a context-free grammar with (that of) a finite-state
automaton. We propose a novel refinement procedure for a CEGAR inspired method to determine whether
context-free languages are disjoint, and we prove the procedure complete for determining regular separa-
bility. In the context of regular approximation, where languages must be over-approximated using regular
languages, separability is equivalent to regular separability, so the completeness means that the refinement
procedure is optimal. On the practical side, the method has important applications in software verification
and security analysis. We demonstrate its feasibility through an experimental evaluation.

Outline. Section 2 introduces concepts, notation and terminology used in the paper. It also recapitulates
relevant results about regular separability and language representations. Section 3 proposes a new procedure
for regular approximation of context-free languages and and shows that the procedure is complete, in the
sense that it proves the separability for any pair of regularly separable context-free languages. Section 4
provides an example. In Section 5 we place our method in context, comparing with previously proposed
refinement techniques. In Section 6 we evaluate the method empirically, comparing an implementation with
the most closely related tool. Section 7 concludes. The appendices contain more peripheral implementation
detail and a description of test cases used for the experimental evaluation.

2. Preliminaries

In this section we recall the notion of regular separability and introduce a concept of “star-contraction”
for regular expressions.

2.1. Regular and Context-Free Languages

We first recall some basic formal-language concepts. These are assumed to be well understood—the only
purpose here is to fix our terminology and notation. Given an alphabet Σ, Σ∗ denotes the set of all finite
strings of symbols from Σ. The string y is a substring of string w iff w = xyz for some (possibly empty)
strings x and z.

The regular expressions over an alphabet Σ = {a1, . . . , an} are ∅, ε, a1, . . . an, together with expressions
of form e1|e2, e1 · e2, and e∗, where e, e1 and e2 are regular expressions. Here | denotes union, · denotes

2

language concatenation, and ∗ is Kleene star. As is common, we will often omit ·, so that juxtaposition
of e1 and e2 denotes concatenation of the corresponding languages. Given a finite set E = {e1, . . . , ek} of
regular expressions, we let

f
E stand for the regular expression e1| · · · |ek (in particular,

f
∅ = ∅). We let

RegΣ denote the set of regular expressions over alphabet Σ.
A (non-deterministic) finite-state automaton is a quintuple 〈Q,Σ, δ, q0, F 〉 where Q is the set of states,

Σ is the alphabet, δ is the transition relation, q0 is the start state, and F is the set of accept states. The
presence of (q, x, q′) in δ ⊆ Q× Σ×Q indicates that, on reading symbol x while in state q, the automaton
may proceed to state q′. If δ is a total function, that is, if for all q ∈ Q, x ∈ Σ, |{q′ | (q, x, q′) ∈ δ}| = 1, then
the automaton is deterministic.

A language which can be expressed as a regular expression (or equivalently, has a finite-state automaton
that recognises it) is regular. The language recognised by automaton A is written as L(A). Similarly, L(e)
is the language denoted by regular expression e.

A context-free grammar, or CFG, is a quadruple G = 〈V,Σ, P, S〉, where V is the set of variables (non-
terminals), S is the start symbol, and P is the set of productions (or rules). Each production is of form
X → α with X ∈ V and α ∈ (V ∪ Σ)∗. If X → α is a production in P then, for all β, γ ∈ (V ∪ Σ)∗, we say
that βXγ yields βαγ, written βXγ ⇒ βαγ. The language generated by G is L(G) = {w ∈ Σ∗ | S ⇒∗ w},
where ⇒∗ is the reflexive transitive closure of ⇒. A set of strings is a context-free language (CFL) iff it is
generated by some CFG.

In algorithms we represent regular languages using finite-state automata, and CFLs using CFGs. When
there is little risk of confusion, we ignore the distinction between a language and its representation. Hence
we may, for example, apply set operations to (the transition relation of) a finite-state automaton.

2.2. Regular Separability

As our approach uses regular approximations to context-free languages, we cannot hope to prove separa-
tion for arbitrary disjoint pairs of context-free languages. Instead we focus on pairs of of regularly separable
languages.

Definition 1 (Regularly separable). Two context-free languages L1 and L2 are regularly separable iff there
exists a regular language R such that L1 ⊆ R and L2 ⊆ R where R is the complement of R.

It will be useful to have a slightly different view of separability:

Definition 2 (Separating pair). Given a pair (L1, L2) of context-free languages, a pair (R1, R2) of regular
languages form a separating pair for (L1, L2) iff L1 ⊆ R1, L2 ⊆ R2, and R1 ∩R2 = ∅.

Lemma 1. Context-free languages L1 and L2 are regularly separable iff there exists some separating pair
(R1, R2) for (L1, L2).

Proof. If (R1, R2) is a separating pair then L1 ⊆ R1, and L2 ⊆ R2 ⊆ R1, so L1 and L2 are regularly
separable. Conversely, if the regular language R separates L1 and L2 then we have L1 ⊆ R, L2 ⊆ R, and
R ∩R = ∅. So (R,R) is a separating pair.

To see that there are disjoint context-free languages that are not regularly separable, consider L =
{anbn | n ≥ 0}. Both L and L are non-regular context-free languages, and therefore not regularly separable.
The problem of checking whether a pair of context-free languages is regularly separable is undecidable [11].

2.3. Star-Contraction

Definition 3 (Union-free regular language). A regular expression is union-free iff it does not use the union
operation. A regular language is union-free regular if it can be written as a union-free regular expression.
We use Reg ′

Σ
to denote the set of union-free regular expressions.

Union-free regular languages are also known as star-dot regular languages [3].

Definition 4 (Union-free decomposition). A union-free decomposition [14] of a regular language R is a
finite set of union-free regular languages R1, . . . , Rn such that R = R1 ∪ . . . ∪Rn.

3

Theorem 1 (Nagy [14]). Every regular language R admits some finite union-free decomposition.

Theorem 1 is not surprising; it utilises the well-known equivalence (r1|r2)∗ = (r∗1r
∗
2)

∗.
The following concept is central to this paper’s ideas. For a given union-free language, it is convenient

to consider particular sets of sub-languages:

Definition 5 (Star-contraction). The star-contraction κ(P) of a union-free regular expression is the set of
languages obtained by replacing some subset of ∗-enclosed subterms in P with ε. The naive construction is
confounded by the presence of nested ∗ operators, as distinct portions of the subterms may occur in each
outer repetition. the star-contraction is defined as:

κ(a) = {a} for a ∈ Σ ∪ {ε}
κ(e∗) = {(

f
E)∗ | E ⊆ κ(e)}

κ(e1 · e2) = {r1 · r2 | r1 ∈ κ(e1) ∧ r2 ∈ κ(e2)}

Example 1. Consider the union-free regular expression e = (ab∗c∗)∗. The star-contraction of the paren-
thesised term is κ(ab∗c∗) = {a, ab∗, ac∗, ab∗c∗}.

The star-contraction of e (after elimination of equivalent languages) is then:

κ(e) = {ε, a∗, (ab∗)∗, (ac∗)∗, (ab∗|ac∗)∗, (ab∗c∗)∗}.

Note how the elements r ∈ κ(e) with r 6= e make particular subsets of L(e) explicit. For example, a∗ is the
subset that makes no use of b or c, whereas (ab∗|ac∗)∗ is the set of words in which b and c are not adjacent.

We later use κ(R), that is, κ applied to a regular language, to denote κ(e1)∪ . . .∪κ(em), where {e1, . . . , em}
is some (arbitrary) union-free decomposition of R. Note that the star-decomposition of a regular language
is not unique; different union-free decompositions give rise to different star-contractions. We assume, for a
regular language R, κ(R) deterministically returns some valid star-contraction of R.

κ(R) has several properties which will be useful in the following:

Proposition 1. For any regular language R:

1. κ(R) is finite.
2. For every regular expression e ∈ κ(R), L(e) ⊆ R.
3.

⋃
{L(e) | e ∈ κ(R)} = R

3. Refining Regular Abstractions

We now describe the main idea behind the refinement phase. We are interested in the intersection of a
finite set of languages, but without loss of generality, we consider the intersection of just two context-free
languages L1 and L2 (provided as context-free grammars).

We assume a decision procedure that returns “no” if L(A1) ∩ L(A2) = ∅ or returns a witness w if
w ∈ L(A1) ∩ L(A2) 6= ∅, where A1 and A2 are finite-state automata recognising regular languages R1 and
R2, respectively (that is, L(A1) = R1 and L(A2) = R2). Moreover, our refinement procedure will require
the solving of constraints of the form A = A1 \A2 where A, A1 and A2 are finite-state automata, that is, A
recognises L(A1) ∩ L(A2).

Assume that at some point we have regular approximations R1 ⊇ L1 and R2 ⊇ L2, and we have found
some witness w such that w ∈ R1 ∩R2, but w /∈ L1 ∩ L2. There are three cases to consider:

(1) w /∈ L1 ∧ w ∈ L2 (2) w ∈ L1 ∧ w /∈ L2 (3) w /∈ L1 ∧ w /∈ L2

For cases (1) and (2) we should refine R1 and R2, respectively. For case (3) we could choose to refine either
R1 or R2, or both. In our implementation, we always refine all the regular approximations.

If w /∈ Li then a straightforward refinement is to produce a new abstraction Ri \ {w} in place of Ri.
However, this refinement process will rarely converge, as we can exclude only finitely many strings in finite
time. We must instead formulate a refinement procedure which generalizes a counterexample to an infinite
set of words.

4

3.1. Star-generalizations

The refinement procedure in this section operates by taking the regular expression recognizing the single
counterexample w, and progressively augmenting it with ∗ operators while ensuring the counterexample and
query remain disjoint.

Definition 6 (Star-generalization). The star-generalizations of a word w is the set Ξ of regular expressions
given by

Ξ(ε) = {ε}
Ξ(x) = {x, x∗} for x ∈ Σ

Ξ(α1 . . . αn) = {α1 . . . αn, (α1 . . . αn)
∗} ∪






e1e2, (e1e2)

∗

∣
∣
∣
∣
∣
∣

e1 ∈ Ξ(α1 . . . αi),
e2 ∈ Ξ(αi+1 . . . αn),

i ∈ [1, n− 1]







A star-generalization of w is a language which can be constructed by adding (nested) unbounded repe-
tition of intervals in w.

We shall represent a star-generalization as a pair 〈w, S〉 of a word w = w1 . . . wn and the set S of ranges
covered by ∗-operators. We denote such a range by the pair (i, j) of the first and last index covered by the
operator. S must satisfy the constraints

∀(i, j) ∈ S . i, j ∈ [0, n], i < j
∀(i, j), (i′, j′) ∈ S . j ≤ i′ ∨ j′ ≤ j

(1)

This ensures the set of ∗-enclosed ranges are well-formed. We shall use L(〈w, S〉) to denote the language
that results from such a generalization.

Definition 7 (Star-generalization with respect to a language). The star-generalizations of w with respect to
some language L (denoted ΞL(w)) is the set of star-generalizations of w which are contained in L. Formally,
this can be expressed as

ΞL(w) = {r | r ∈ Ξ(w), L(r) ⊆ L}.

Definition 8 (Maximal star-generalization). A maximal star-generalization of w with respect to some
language L is a star-generalization r of w such that there is no other star-generalization r′ with L(r) ⊂
L(r′) ⊆ L.

A maximal star-generalization is not necessarily unique. Consider generalizing ab with respect to
(a∗b|ab∗) – both a∗b and ab∗ are incomparable maximal generalizations.

A greedy procedure for constructing a star-generalization is given in Figure 1. The algorithm takes as
input a witness w ∈ R1 ∩ R2, context-free language L such that w /∈ L, and L’s regular approximation A
(either R1 or R2). The procedure begins with a trivial star-generalization recognizing only w. P stores the
set of (i, j) pairs where a ∗-operation may be introduced without causing the generalization to be malformed.
At each step, we add one of the candidate operations to the generalization, then remove any pairs from P
which are no longer feasible (because they violate the nestedness requirement). Following (1), this is the set
of pairs (i′, j′) such that i < i′ < j < j′ ∨ i′ < i < j′ < j.

It is worth pointing out that this refinement procedure is anytime: If for some reason it would seem
necessary or advantageous, one can, without compromising correctness, interrupt the while loop having
considered only a subset of the possible ∗-augmentations, thereby settling for a smaller generalization.

Example 2. Let L = {aibi+1 | i ≥ 0} be (currently) approximated by a∗b∗, and let the witness w 6∈ L be
aab. To refine the regular approximation, refine(w,L, a∗b∗) begins with the trivial star-generalization 〈w, ∅〉.
We greedily augment the counterexample with ∗-operations, in this case following lexicographic order, with
the accumulated language here described with a regular expression:

5

refine(w, L,A)
1: let w be x1 · x2 · · ·xn

2: S := ∅
3: P := {(i, j) | i, j ∈ [0, n], i < j}
4: while P 6= ∅
5: choose (i, j) ∈ P
6: S′ := S ∪ {(i, j)}
7: P := P \ {(i, j)}
8: if (L(〈w,S′〉) ∩ L = ∅)

S := S′

P :=







(i′, j′)

∣

∣

∣

∣

∣

∣

(i′, j′) ∈ P
∧ (j ≤ i′ ∨ j′ ≤ j)
∧ (j′ ≤ i ∨ j ≤ j′)







9: return A \ L(〈w,S〉)

Figure 1: Refining a regular approximation greedily by removing a maximal star-generalization of some
counterexample w.

1

2 2 2

(a) (b) (c)

Figure 2: (a) A pair of context free languages L1, L2 and their initial approximationsA1, A2. The intersection
of the approximations is shaded. (b) A counterexample w ∈ A1 ∩ A2 has been identified. As w /∈ L2, we
build a generalization Rw such that {w} ⊆ Rw ⊆ L2. (c) L2’s new approximation is A′

2 = A2 \Rw.

∗-augmentation L(〈w, S〉)
aab

(0, 1) include, obtaining a∗ab

(1, 2) exclude, as b ∈ L
(2, 3) exclude, as abb ∈ L
(0, 2) exclude, as b ∈ L
(1, 3) include, obtaining a∗(ab)∗

(0, 3) include, obtaining (a∗(ab)∗)∗

The complement of the resulting language is (a∗ab)∗b(a|b)∗. The language returned by refine(w,L, a∗b∗) is
(represented by) the intersection automaton of this and the initial approximation a∗b∗, yielding bb∗|aa∗bbb∗.
This is the new, improved, regular approximation of L. By construction, it does not contain aab, but
more importantly, along with ab, infinitely many other strings have been discarded from the previous
approximation a∗b∗, namely all those strings containing at least one a and exactly one b.

6

The overall flow of the refinement step is illustrated in Figure 2. Figure 1’s refinement procedure has
these properties:

1. it is sound : Li ⊆ (Ri \ L(R)) ⊆ Ri.

2. it terminates : the while loop will be executed at most n(n+1)
2 times.

3. it is progressive: the same witness w cannot be produced again upon successive calls to refine.

The refinement algorithm involves a check (line 8) to see if a regular and a context-free language overlap.
This problem is decidable in polynomial time1.

The following theorem is critical to the completeness result, showing the relationship between κ and Ξ.
Note that here we are intersecting sets of languages, rather than the languages themselves.

Lemma 2. Let e be a union-free regular expression, and κ and Ξ be the star-contraction and star-generalizations
given in Definitions 5 and 6. Then for all w ∈ L(e), κ(e) ∩ Ξ(w) 6= ∅.

Proof. Assume e = {a}, a ∈ Σ∪{ε}. Then w = a. From the definitions, we have {a} ∈ κ(e), and {a} ∈ Ξ(w).
Assume e = e1 ·e2, such that the induction hypothesis holds on e1 and e2. Consider some word w ∈ L(e).

We can partition w into w1 · w2, such that w1 ∈ L(e1), w2 ∈ L(e2). By the induction hypothesis, there is
some r1, r2 such that r1 ∈ κ(e1)∩Ξ(w1), r2 ∈ κ(e2)∩Ξ(w2). As r1 ∈ κ(e1) and r2 ∈ κ(e2), from Definition 5
we have r1 · r2 ∈ κ(e). By Definition 6, we also have r1 · r2 ∈ Ξ(w). Therefore r1 · r2 ∈ κ(e) ∩ Ξ(w).

Assume e = e′∗, for some e′ satisfying the induction hypothesis. Consider some word w ∈ e. We can
partition w into w1 . . . wk, such that each wi ∈ e′. By the induction hypothesis, each wi admits some
star-generalization ri ∈ κ(e′) ∩ Ξ(wi). Consider the generalization r given by

r = (r(w1)
∗ . . . r(wk)

∗)∗.

By Definition 6, r ∈ Ξ(w). r is equivalent to (r(w1) ∪ . . . ∪ r(wk))
∗, which is in κ(e). Therefore, r ∈

Ξ(w) ∩ κ(e).

Theorem 2. Let R be a regular language, and κ and Ξ be the star-contraction and star-generalizations
given in Definitions 5 and 6. Then for all w ∈ R, κ(R) ∩ Ξ(w) 6= ∅.

Proof. As noted in Section 2.3, the star-contraction of a regular language R is computed based on some
union-free decomposition E = {e1, . . . , en} of R. Consider w ∈ R. Therefore, there is some e ∈ E such that
w ∈ L(e). By Lemma 2, κ(e) ∩ Ξ(w) 6= ∅. As κ(e) ⊆ κ(R), we have κ(R) ∩ Ξ(w) 6= ∅.

3.2. Epsilon-generalization

The notion of star-generalization, while useful for reasoning, does not integrate well into existing au-
tomaton algorithms. In this section, we introduce a slightly different form of generalization.

Let ν(w) denote the automaton recognizing the single word w x1 · · ·xn. We have ν(x1 . . . xn) =
〈Q,Σ, δ, q0, {qn}〉, with Q = {q0, . . . , qn} and δ = {(qi−1, xi, qi) | i ∈ [1, n]}.

Definition 9 (Epsilon-generalization). An epsilon-generalization of w is any language obtained by augment-
ing the transition function of ν(w) with additional edges E ∪ P , given by:

E ⊆ {(qi, ε, qj) | i < j}

P ⊆ {(qj−1, wj , qi) | i < j}

1The algorithm pre∗ described in [6, 7] has a time complexity of O(|R|× |Q|3) and space complexity of O(|R|× |Q|2), where
|R| is the number of productions in the context-free grammar and |Q| is the number of states in the automaton. We use this
algorithm in our implementation.

7

That is, we may only introduce epsilon-transitions forwards; backwards transitions always consume the
same input character as the original outgoing transition from the source state. We shall use Gen(w) to
denote the set of epsilon-generalizations of w. Note that where Ξ(w) is a set of languages, Gen(w) is a set of
automata. Similarly, GenL(w) denotes the set of epsilon-generalizations with respect to some language L.

Lemma 3. Let A1 = 〈Q1,Σ, δ1, q10, {q1n}〉 and A2 = 〈Q2,Σ, δ2, q20, {q2n}〉 be (nondeterministic) finite-state
automata such that q1n has no outgoing edges.

Then the automaton A1 ◦ A2 = 〈(Q1 ∪ Q2) \ {q1n},Σ, δ1 ∪ δ2[q1n 7→ q20], {q2n}〉 recognizes the language
L(A1) · L(A2).

Proof. Let A = A1 ◦A2. Assume w ∈ L(A1) · L(A2). Then w = w1 · w2, for some w1 ∈ L(A1), w2 ∈ L(A2).
So there is some path from q10 to q20 matching w1 in A1 ◦ A2, and a path from q20 to q2n matching w2.
Therefore w is recognized by A.

Assume w is recognized by A. There are no transitions from states in Q1 to states in Q2 except q20;
therefore, any path from q10 to q2n in A must pass through q20. There are no transitions from states in Q2

to states in Q1 (as q1n had no outgoing edges). Therefore, once reaching a state in Q2, a path through A
must remain in Q2.

Hence we can divide the path through A into a prefix, following transitions exclusively in A1 and reaching
q20, and a suffix from q20 to q2n following transitions exclusively in A2. Therefore, w ∈ L(A1) · L(A2).

Theorem 3. For any word w, e ∈ Ξ(w), there is some A ∈ Gen(w) such that L(e) = L(A). That is,
star-generalization of w may be expressed by an equivalent epsilon-generalization.

Proof. Consider e ∈ Ξ(w).
Assume e = a, a ∈ Σ ∪ {ε}. ν(a) ∈ Gen(w), and L(ν(a)) = L(e). Also, the final state of ν(a) has no

outgoing transitions.
Assume that for all expressions e′ of up to depth k, if e′ ∈ Ξ(w) there is some A ∈ Gen(w) such that

L(A) = L(e′), and the accept state of A has no outgoing transitions. Consider some star-generalization
e ∈ Ξ(w) of depth k + 1.

Assume e = e′∗ for some generalization e′ ∈ Ξ(w). As e has depth k + 1, e′ is of depth k. Then there is
some automaton A = 〈Q,Σ, δ, q0, {qn}〉 ∈ Gen(w) such that L(A) = L(e′). We construct a new automaton
A′ with transition relation δ′

δ′ = δ ∪ {q0
ε
−→ qn} ∪ {(qj−1

wj

−−→ q0) | (qj
ε∗

−→ qn) ∈ δ}

The added transitions are of the form permitted by Definition 9. As A is an epsilon-generalization of w,
A′ is also a valid epsilon-generalization. As the accept state of A had no outgoing transitions, and we have
not added any transitions beginning at qn, the accept state of A′ also has no outgoing transitions. We
now consider the language recognized by A′. Assume some word w is in L(e′∗). Then either w = ε, or

w = w1 . . . wm such that wi ∈ L(e
′) \ {ε}. If w = ε, then w is recognized by A′ (by q0

ε
−→ qn). Otherwise,

each wi is recognized by some path pi from qj to qk in A, such that qn is reachable from qk by ε-transitions.
Let qk′ be the second-last state in pi. By construction, there must be some alternate transition from qk′ to
q0 in A′; then there must be some path following wi from q0 to q0 in A′. Therefore, w is recognized by A′.
Now assume there is some word w 6= ε recognized by A′. We can partition w into sub-words w1 . . . wm such
that the path of each wi with i < m starts at q0, makes its final transition via an introduced edge, and uses
no other introduced edges. As the path corresponding to wi finishes with an introduced edge, there must be
some corresponding path from q0 to qn in A. So wi ∈ L(e′) for i < m. And as the path corresponding to wm

starts at q0 and does not use any introduced edges, wm ∈ L(e
′). Therefore, w ∈ L(e′∗) = L(e). Therefore

L(A′) = L(e′∗) = L(e).
Assume e = e1 · e2 for e1 ∈ Ξ(w1), e2 ∈ Ξ(w2) and w = w1w2. As e1 and e2 have depth at most k, there

exists A1 ∈ Gen(w1) and A2 ∈ Gen(w2) satisfying the induction hypothesis. The automaton A′ = A1 ◦ A2

(with ◦ as defined in Lemma 3) is a valid epsilon-generalization. So A ∈ Gen(w). By Lemma 3, A′ = A1 ◦A2

recognizes L(A1) · L(A2) = L(e1) · L(e2). Therefore, L(A) = L(e). As the final state of A2 had no outgoing

8

0 1

23

a

a

b

a

a

b

ε ε

ε

ε

a

a

b

ε ε

a aε

ε

b

a

b
(a) (b) (c)

Figure 3: Construction of refineε(w,L), where w = aab and L = {aibi+1 | i ≥ 0}: (a) Initial automaton for
w; (b) the automaton after adding forward ε-transitions; (c) the final epsilon-generalization.

transitions, and we have not added any outgoing transitions from qn, the final state of A′ has no outgoing
transitions.

As we can construct epsilon-generalizations for trivial star generalizations (depth k = 1), epsilon-
generalizations of size k can be constructed from star generalizations of size k − 1, any element of Ξ(w)
must correspond to an equivalent element of Gen(w).

We can incrementally construct an epsilon-generalization with respect to some co-context-free language
L by adapting algorithms for the intersection of context-free languages and finite automata, such as the pre∗

algorithm described in [6].
Essentially, we maintain a table τ ⊆ Q × Γ × Q such that (qi, P, qj) ∈ τ iff the context-free production

P can be generated by some sub-word recognized by a path from qi to qj . Whenever a new transition is
added to the generalization, we update τ with any newly feasible productions; if the start production S
is ever generated on a path from q0 to qn, the generalization has ceased to be valid – in which case we
revert the table and discard the most recent augmentation. The pre∗ algorithm, as described in [7], exhibits
O(|Γ||Q|3) worst-case time complexity. In the worst case, where every generalization step fails after the
maximum number of steps, this gives the generalization procedure a worst-case complexity of O(|Γ||Q|5).

Example 3. Consider again the star-generalization of aab described in Example 2. If we were instead
constructing an epsilon-generalization, we start with the automaton A recognizing w, shown in Figure 3(a).

We first try greedily adding forwards epsilon transitions. This yields the automaton shown in Figure 3(b),
corresponding to the language (a?(ab?)?)?.

The first backward transition we attempt is (q1−1, a, q0), followed by (q2−1, a, q1). The next transition,
(q3−1, b, q2), cannot be added as it would accept abb, which is in L. This process continues, resulting in the
final automaton shown in Figure 3(c). The language recognized by this automaton is (a∗ab)∗a∗), which is
equivalent to the language obtained by star-generalization in Example 2.

3.3. Maximum generalization

The procedure described in the previous section constructs some maximal element of ΞL(w) (or GenL(w)).
It is, however, undirected; the generalization is chosen blindly from the set of possible maximal generaliza-
tions.

Even if the query languages are regularly separable, it is possible that the refinement step may choose
an infinite sequence of generalizations which, though maximal, cannot separate the queries.

We can instead construct a generalization gen(L,w) which computes the union of all maximal star-
generalizations of w with respect to L. That is, it computes ξL(w) =

⋃
ΞL(w) directly. We shall refer to

this as the maximum star-generalization. A possible (though inefficient) method for computing this is given
in Figure 4.

9

maxgen(L,w)
1: let w be x1 · x2 · · ·xn

2: S := ∅
3: P := {(i, j) | i, j ∈ [0, n], i ≤ j}
4: return gen(L, 〈w,S〉, P)

maxgen(L, 〈w,S〉, ∅)
5: return L(〈w,S〉)

maxgen(L, 〈w,S〉, {(i, j)} ∪ P)
6: Rf := gen(L, 〈w,S〉, P)
7: S′ := S ∪ {(i, j)}
8: if (L ∩ L(〈w,S′〉) = ∅)

9: P ′ :=







(i′, j′)

∣

∣

∣

∣

∣

∣

(i′, j′) ∈ P
∧ (j ≤ i′ ∨ j′ ≤ j)
∧ (j′ ≤ i ∨ j ≤ j′)







10: Rf := Rf ∪ gen(L, 〈w,S′〉, P ′)
11: return Rf

Figure 4: Computing ξL(w), the maximum star-generalization of w with respect to L.

The proceduremaxgen carries around S, a partial generalization, and P , the set of candidate ∗-augmentations.
At each stage, an augmentation e is selected from P , and we recursively compute the set of valid further
generalizations of 〈w, S〉 both including and excluding e, finally taking the union of the sub-languages.

The maximum epsilon-generalization with respect to L – denoted by gL(w) – may be constructed by an
analogous procedure.

We now show that this generalization procedure is sufficiently powerful as to prove separability for any
pair of regularly separable languages.

Lemma 4. Consider a context-free language G, and regular language R such that G∩R = ∅. Then for any
word w ∈ R, there is some e′ ∈ κ(R) such that L(e′) ⊆ ξG(w).

Proof. By Lemma 2, there is some e ∈ Ξ(w) ∩ κ(R). As R ∩ G = ∅, we have e ∈ ΞG(w). Therefore
L(e) ⊆

⋃
{L(e′) | e′ ∈ ΞG(w)} = ξG(w).

Corollary 1. Consider a context-free language G, and regular language R such that G ∩ R = ∅. Then for
any word w ∈ R, there is some e′ ∈ κ(R) such that L(e′) ⊆ gG(w).

Proof. This follows immediately from Lemma 4 and Theorem 3.

Theorem 4. Given a pair of regularly separable context-free languages (L,L′) and initial regular approxi-
mations RL and RL′ with L ⊆ RL and L′ ⊆ RL′ , the refinement process described in Section 3 will construct
a separating pair (SL, SL′) in a finite number of steps when refining using the maximum star- or epsilon-
generalization.

Proof. Consider the (unknown) regular language S separating L and L′. Assume κ(S) and κ(S) are as given
in Theorem 2. Let Ki denote the elements of κ(S) ∪ κ(S) having non-empty intersection with the current
approximation Ri

L ∩Ri
L′ .

Assume that, at a given step, there is some word w ∈ Ri
L ∩ Ri

L′ . w must be in exactly one of S and
S; we assume w is in S (the case of S is symmetric). As w ∈ S, there must be some r ∈ κ(S) such that
L(r) ⊆ ξL′(w) ⊆ gL′(w). As w ∈ Ri

L ∩Ri
L′ , and w ∈ r, we have r ∈ Ki.

As Ri+1
L′ = Ri

L′ \ ξL′(w) (or Ri
L′ \ gL′(w)), we have L(r) ∩ Ri+1

L′ = ∅. Therefore, Ki+1 ⊂ Ki. As
[K1,K2, . . .] is a decreasing sequence, and K1 is finite, the refinement process must terminate after finitely
many steps.

10

witness w refineε(G1, w) refineε(G2, w)
ε ε ε

q0 q1
b

q0 q1
b,ε

b

q0 q1
b,ε

b

q0 q1
a

q0 q1
a, ε

a

q0 q1
a, ε

a

q0 q1

q2

a

b

q0 q1

q2

a

b

b

b

ε

ε
ε

q0 q1

q2

a

b

a

b

b

ε

q0 q1

q2

b

a
q0 q1

q2

b

a

b

a

a

ε
q0 q1

q2

b

a

a

a

ε

ε
ε

Figure 5: Relevant witnesses and generalizations obtained by greedy epsilon generalization.

4. Example

Consider the two context-free grammarsG1 = 〈{S1, A1, B1},Σ, P1, S1〉 andG2 = 〈{S2, A2, B2},Σ, P2, S2〉
where Σ = {a, b} and P1 and P2 are, respectively,

S1 → A1B1

A1 → aa | bb | aS1a | bS1b

B1 → abB1 | ab

S2 → A2B2

A2 → aa | bb | aS2a | bS2b

B2 → baB2 | ba

Note that L(G1) = {wwR(ab)+ | w ∈ Σ∗} and L(G2) = {wwR(ba)+ | w ∈ Σ∗}.
The first step of our method will approximate G1 and G2 with finite-state automata A1 and A2. The

only requirement is that L(G1) ⊆ L(A1) and L(G2) ⊆ L(A2). For simplicity, assume A1 = A2 = Σ∗. Next,
we check if L(A1)∩L(A2) 6= ∅. In this case, the intersection is trivially not empty. Furthermore, our regular
solver provides the witness w = ε. This cannot be generalized, so we eliminate ε from both approximations
and try again, this time obtaining w = b. In the third step we refine the regular approximations. We assume
the use of greedy epsilon refinement, preferring backwards transitions. We first generalize the witness by
calling refineε(G1, w) and refineε(G2, w) to produce new approximations L(A′

1) = L(A1) \ refineε(G1, w)
and L(A′

2) = L(A2) \ refineε(G2, w), respectively. We show the automata obtained from refineε(G1, b) and
refineε(G2, b) on the first row in Figure 5. In both cases, we obtain the language b∗.

Since G1 and G2 are regularly separable, using maximal refinement would be guaranteed to eventually
eventually halt proving that the languages are disjoint. While we have no such guarantee for greedy re-
finement, in this case it successfully proves separation after 5 refinement steps. Figure 5 depicts the rest of
witnesses obtained as well as their generalizations produced by the procedure refineε.

11

5. Previous Refinement Techniques

Several CEGAR-based approaches have been proposed for testing intersection of context-free languages.
In this section, we attempt to characterise the expressiveness of existing refinement methods. For these
comparisons we do not consider the effect of initial regular approximations, as they do not affect the ex-
pressiveness of the refinement method. For any fixed finite set of regularly-separable languages, there is
always some approximation scheme which allows the languages to be trivially proven separate; however it
is impossible to define such an approximation in general.

The idea of using CEGAR to check the intersection of CFGs was pioneered by Bouajjani et al . [2] for the
context of verifying concurrent programs with recursive procedures. They rely on the concept of refinable
finite-chain abstraction consisting of computing the series (αi)i≥1 which overapproximates the language of
a CFG L (i.e., L ⊆ αi(L)) such that α1(L) ⊃ α2(L) ⊃ · · · ⊇ L. The method is parameterized by the
refinable abstraction. [2] describe several possible abstractions but no experimental evaluation is provided.
Chaki et al . [4] extend [2] by, among other contributions, implementing and evaluating this method. The
experimental evaluation of Chaki et al . uses both the ith-prefix and ith-suffix abstractions. Given language
L, the ith-prefix abstraction αi(L) is the set of words of L of length less than i, together with the set of
prefixes of length i of L. The ith-suffix abstraction can be defined analogously. We next provide a theorem
about the expressiveness of the ith-prefix abstraction. A similar result holds for the ith-suffix abstraction.

Theorem 5. There exist regularly separable languages that cannot be proven separate by the ith-prefix
abstraction.

Proof. Consider the languages R1 = a∗b, R2 = a∗c. R1 ∩ R2 is empty. However, for a given length i, the
string ai forms a prefix to words in both R1 and R2. It follows that the intersection of the two abstractions
will always be non-empty, so the refinement method cannot prove the languages separate.

The lcegar method described by Long et al . [13] is based on a similar refinement framework, but
the approach differs radically. They maintain a pair of context-free grammars A1, A2 over-approximating
the intersection of the original languages. At each refinement step, an elementary bounded language Bi is
generated from each grammar Ai.

2 The refinement ensures Bi ∩Ai 6= ∅, but Bi is not necessarily either an
over- or under-approximation of Ai. They then compute I = Bi ∩L1 ∩L2. If I is non-empty, L1 ∩L2 must
also be non-empty. If I is empty, then the approximations can safely be refined by subtracting the Bi.

We now wish to characterise the set of languages for which lcegar can prove separation. Note that
we do not consider the initial approximation; for any fixed pair of regularly-separable languages, there
necessarily exists some approximation method which immediately proves separation without refinement.

Theorem 6. There exist non-regularly-separable languages which can be proven separate by lcegar.

Proof. Consider the languages L and L, where L = {anbn | n ≥ 0}. These are not regularly separable. Still,
lcegar will find that they do not overlap. Assume initial approximations A1 = L1 and A2 = L2. At the
first iteration, lcegar may choose bounded approximation B = a∗b∗. It will find B ∩ L1 ∩ L2 = ∅, then
update A1 = A1 \B = ∅. As A1 = ∅, the refinement process has successfully proven separation.

Lemma 5. For any bounded regular language B = w∗
1 · · ·w

∗
k, there is some word p that is not a substring

of any word in B.

Proof. For each word w1, we pick some character c1 which differs from the last character of w1. We then
construct p = p1 · · · pk, such that:

pi = ci . . . ci
︸ ︷︷ ︸

|wi|

2 An elementary bounded language is some language of the form B = w∗

1
. . . w∗

k
, where each wi is a (finite) word in Σ∗.

12

Assume there is some word t = up1 . . . pkv ∈ B. t must consist of some number of occurrences of w1

through wk, in order. Since p1 differs from the last character of w1, up1 cannot consist only of occurrences
of w1; therefore, p2 · · · pk must be made up of occurrences of w2 through wk.

Similarly, since no occurrence of w2 may end in p2, so p3 · · · pk must consist only of w3 through wk. By
induction, we find that pk must be an occurrence of wk. However, no occurrence of wk may occur in pk.
Therefore, there can be no word t ∈ B such that t ∈ Σ∗pΣ∗.

Corollary 2. For any finite set of bounded regular languages {B1, . . . , Bn}, we can construct some substring
p that is not a substring of B1 ∪ · · · ∪Bn.

Proof. By Lemma 5, we can find p1, . . . , pn such that pi is not a substring in Bi. Then p = p1 · · · pn cannot
occur as a substring in B1 ∪ . . . ∪Bn.

Theorem 7. There exist regularly separable languages for which the lcegar refinement method cannot
prove separability.

Proof. Consider an lcegar process with L1 = A1 = (a|b)∗a, and L2 = A2 = (a|b)∗b. These languages
are disjoint, and regularly separable. After some finite number of steps, the approximations have been
refined with bounded languages {B1, . . . , Bn}. By Corollary 2, there is some substring p such that Σ∗pΣ∗ ⊆
(B1∩. . .∩Bn). The updated approximation A′

1 is non-empty, as it contains pa. Similarly, the approximation
A′

2 is non-empty, as it contains pb.
Since after any finite sequence of refinement steps neither A′

1 nor A′
2 is empty, the refinement process

will never prove separation of L1 and L2.

From Theorems 4, 6 and 7, we conclude that the classes of languages which can be proven separate by
lcegar and covenant are incomparable.

6. Experimental Evaluation

We have implemented the CEGAR method proposed in this paper in a prototype tool called covenant3.
The tool is implemented in C++ and parameterized by the initial approximation and the refinement proce-
dure. covenant implements the method described in [16] for approximating CFGs with strongly regular
languages as well as the coarsest abstraction Σ∗ for comparison purposes. For refinement, the tool im-
plements both the greedy and maximum star-epsilon generalizations (described in Sections 3.1 and 3.3,
respectively). covenant currently implements only the classical product construction for solving the inter-
section of regular languages but other regular solvers (e.g., [8, 10]) can be easily integrated4.

To assess the effectiveness of our tool, we have conducted two experiments. First, we used covenant

for proving safety properties in recursive multi-threaded programs. Second, we crafted pairs of challenging
context free grammars and intersected them using covenant. The motivation for this second experiment
was to exercise features of covenant that were not required during the first experiment. All experiments
were run on a single core of a 2.4GHz Core i5-M520 with 7.8Gb memory.

Safety verification of recursive multi-threaded programs. Bouajjani et al . [2] was pioneered showing
that the safety verification problem of recursive multi-threaded programs can be reduced to check whether the
intersection of context free languages is empty. Since then, several encodings have been described [2, 4, 13].
As a result, we can use covenant to prove certain safety properties in recursive multi-threaded programs
assuming the programs have been translated accordingly. We briefly exemplify the translation of a concurrent
program to context-free grammars, using the approach of [13].

For simplicity, we assume a concurrency model in which communication is based on shared memory.
Shared memory is modelled via a set of global variables. We assume that each statement is executed

3Publicly available at https://bitbucket.org/jorgenavas/covenant together with all the benchmarks used in this section.
4In fact, an initial implementation of covenant was tested using Revenant [8], an efficient regular solver based on bounded

model checking with interpolation, though the released version does not incorporate it.

13

https://bitbucket.org/jorgenavas/covenant

x = 0; y = 0;

p1 () {
n0: x = not y ;
n1: if(∗) p1();
n2: x = not y ;
n3: }

p2 () {
m0: y = not x ;
m1: if(∗) p2();
m2: y = not x ;
m3: }

if (x and y)
error();

CFG1

// control flow of thread p1

N0 → Jx = not yK N1

N1 → N0 N2 | N2

N2 → Jx = not yK N3

N3 → JxK
//encoding of instructions for p1

Jx = not yK→ Sp2
y at 0 set x 1 Sp2

|
Sp2

y at 1 set x 0 Sp2

JxK → x at 1

//synchronization with p2’s actions

Sp2
→ x at 0 Sp2

|
x at 1 Sp2

|
set y 0 Sp2

|
set y 1 Sp2

| ε

CFG2

//Control flow of thread p2

M0 → Jy = not xK M1

M1 → M0 M2 | M2

M2 → Jy = not xK M3

M3 → JyK
//Encoding of instructions for p2

Jy = not xK→ Sp1
x at 0 set y 1 Sp1

|
Sp1

x at 1 set y 0 Sp1

JyK → y at 1

//Synchronization with p1’s actions

Sp1
→ y at 0 Sp1

|
y at 1 Sp1

|
set x 0 Sp1

|
set x 1 Sp1

| ε

CFG3

//Modelling variable x

Xfalse→ x at 0 Xfalse |
set x 0 Xfalse |
set x 1 Xtrue |
Sx Xtrue | ε

Xtrue→ x at 1 Xtrue |
set x 1 Xtrue |
set x 0 Xfalse |
Sx Xtrue | ε

//Synchronization with y

Sx → y at 0 Sx |
set y 0 Sx |
y at 1 Sx |
set y 1 Sx | ε

CFG4

//Modelling variable y

Yfalse→ y at 0 Yfalse |
set y 0 Yfalse |
set y 1 Ytrue |
Sy Ytrue | ε

Ytrue → y at 1 Ytrue |
set y 1 Ytrue |
set y 0 Yfalse |
Sy Ytrue | ε

//Synchronization with x

Sy → x at 0 Sy |
set x 0 Sy |
x at 1 Sy |
set x 1 Sy | ε

Figure 6: A concurrent Boolean program (SharedMem) and its translation to CFGs.

atomically. We will consider only Boolean programs. Any program P can be translated into a Boolean
program B(P) using techniques such as predicate abstraction [9]. A key property is that B(P) is an over-
approximation of P preserving the control flow of P but the only type available in B(P) is Boolean. There-
fore, if B(P) is correct then P must be correct but, of course, if B(P) is unsafe P may be still safe. Each
(possibly recursive) procedure in B(P) is modelled as a context-free grammar as well as each shared variable
specifying the possible values that the variable can take. In addition, extra production rules are added to
specify the synchronization points.

The left hand column of Figure 6 shows a small program SharedMem [13]. It consists of two symmetric,
recursive procedures p1 and p2 which are executed by two different threads. The communication between
the threads is done through the global variables x and y which are initially set to 0. Note that the program
is already Boolean since x and y can only take values 0 and 1. We would like to prove that after p1 and p2
terminate, x and y cannot be true simultaneously.

The rest of Figure 6 describes the corresponding translation to context-free grammars. The four resulting

14

grammars, which we explain shortly, are

CFG1 : 〈{N0, N1, N2, N3, Jx = not yK, JxK, Sp2
},Σ, P1, N0〉

CFG2 : 〈{M0,M1,M2,M3, Jy = not xK, JyK, Sp1
},Σ, P2,M0〉

CFG3 : 〈{Xfalse, Xtrue, Sx},Σ, P3, Xfalse〉
CFG4 : 〈{Yfalse, Ytrue, Sy},Σ, P4, Yfalse〉

where Σ = {x at 0, x at 1, y at 0, y at 1, set x 0, set x 1, set y 0, set y 1} and P1, P2, P3, and P4 are
the respective sets of productions, as shown in Figure 6.

Procedures p1 and p2 are translated into CFG1 and CFG2, respectively. First, we need to encode the
control flow of the procedures. For instance, “p1 reaches location n0 and it executes the statement x = not y”
is translated into the grammar production N0 → Jx = not yK N1, where N1 represents the next program
location n1. We use the notation JsK ∈ V to refer to the corresponding translation of statement s. A function
call such as “p1 calls itself recursively after location n1 is executed” is translated through the production
N1 → N0N2 where N0 is the entry location of the callee function and N2 is the continuation of the caller
after the callee returns. The non-terminal symbol Jx = not yK models the execution of negating y and storing
its result in x. We create a terminal symbol for each possible action on x (and analogously for y): x at 0

(the value of x is 0), x at 1 (the value of x is 1), set x 0 (x is updated to 0), and set x 1 (x is updated
to 1). For instance, the grammar production Jx = not yK → Sp2

y at 0 set x 1 Sp2
represents that if we

read 0 as the value of y then it must be followed by writing 1 to x. The rest of logical operations are encoded
similarly.

Note that whenever a global variable is read or written we need to consider the synchronization between
threads. For this purpose, we define the non-terminal symbols Sp2

(Sp1
) which loops zero or more times

with all possible actions of p2 (p1): value of x is 0 (value of y is 0), value of x is 1 (value of y is 1), y is
updated to 0 (x is updated to 0), and y is updated to 1 (x is updated to 1).

Next, we need to model which are the possible values that x and y can take. For this we use CFG3 and
CFG4, respectively. Ignoring synchronization, the set of values that x and y can take are indeed expressed
by regular automata:

Xfalse Xtrue

x at 0

set x 0

set x 1

x at 1

set x 1

set x 0

Yfalse Ytrue

y at 0

set y 0

set y 1

y at 1

set y 1

set y 0

Finally, we need to synchronize x and y by allowing them to loop zero or more times while new values
from the other variable can be generated. We use non-terminal symbols (and their productions) Sx and Sy

for that.
Once we have obtained the CFGs described in Figure 6 we are ready to ask reachability questions. For

this example, we would like to prove that when threads start at n0 and m0, respectively, error cannot be
reachable simultaneously by both threads. This question can be answered by checking if the intersection of
the above CFGs is empty. If the intersection is not empty then covenant will return a witness w ∈ Σ∗

containing the sequence of reads and writes to x and y. Otherwise, covenant will return either “yes”
(that is, the program is safe) if the languages of the CFGs are regularly separable or run until resources are
exhausted.

We have tested covenant with the programs used in [13] and compared with lcegar [13]. There are
two classes of programs: textbook Erlang programs and several variants of a real Bluetooth driver. The
Bluetooth variants labelled W/ Heuri are encoded with an unsound heuristic that permits context switches

15

Program covenant lcegar

PDC CB

SharedMem safe 0.01 14.37 24.75
Mutex safe 0.04 6.12 0.14
RA safe 0.01 ∞ 0.39
Modified RA safe 0.03 ∞ 27.90
TNA unsafe 0.01 0.02 0.25
Banking unsafe 0.01 ∞ 3.36

(a) Verification of multi-thread Erlang programs

Program covenant lcegar

PDC CB

Version 1 unsafe 0.84 19.74 21.04
Version 2 unsafe 0.25 5560.00 4852.00
Version 2 w/ Heuri unsafe 0.11 44.68 38.89
Version 3 (1A2S) unsafe 0.12 217.74 217.27
Version 3 (1A2S) w/ Heuri unsafe 0.05 6.68 11.37
Version 3 (2A1S) safe 0.27 4185.00 3981.00

(b) Verification of multi-thread Bluetooth drivers

covenant lcegar

Σ∗ [16] PDC CB
Greedy Gen Greedy Gen

C1 ∩ C7 sat 8 (0.01) 11 (7.88) 5 (0.01) 8 (6.20) ∞ –
C7 ∩ C1 0 (0.13) 0 (0.32)
C1 ∩ C8 sat 8 (0.01) 13 (8.36) 7 (0.01) 9 (2.22) 0 (20.28) –
C8 ∩ C1 ∞ ∞
C2 ∩ C3 sat 10 (0.01) 13 (9.10) 2 (0.01) 2 (0.02) 0 (0.03) 0 (0.01)
C3 ∩ C2 0 (0.03) 0 (0.01)
C2 ∩ C4 unsat 15 (0.02) ∞ 3 (0.01) 3 (0.80) 1 (0.01) 0 (0.01)
C4 ∩ C2 ∞ 0 (0.01)
C3 ∩ C4 unsat 11 (0.01) ∞ 2 (0.01) 2 (0.04) 0 (0.01) 0 (0.01)
C4 ∩ C3 0 (0.01) 0 (0.01)
C5 ∩ C6 unsat 6 (0.01) ∞ 5 (0.01) ∞ ∞ 0 (0.01)
C6 ∩ C5 ∞ 0 (0.01)
C5 ∩ C7 sat 14 (0.04) ∞ 11 (0.02) ∞ ∞ –
C7 ∩ C5 0 (0.33) ∞
C5 ∩ C8 sat 7 (0.01) 9 (2.81) 5 (0.01) 5 (3.54) ∞ –
C8 ∩ C5 0 (0.04) ∞
C6 ∩ C7 sat 14 (0.04) ∞ 11 (0.02) ∞ ∞ –
C7 ∩ C6 0 (0.10) ∞
C6 ∩ C8 sat 8 (0.01) 9 (2.86) 5 (0.01) 5 (3.46) 0 (1.21) –
C8 ∩ C6 ∞ ∞
C7 ∩ C8 sat 4 (0.01) 4 (0.01) 3 (0.01) 3 (0.01) 0 (0.70) –
C8 ∩ C7 ∞ –

(c) Interesting/challenging grammars (∞ indicates time-out at 60 sec and “-” a raised exception.)

Table 1: Comparison of covenant with lcegar, on several classes of context free grammars; times in
seconds.

16

only at basic block boundaries. We refer readers to Appendix C for a detailed description of the programs
as well as the safety properties.

Table 1(a) and Table 1(b) show the times in seconds for both solvers when proving the Erlang programs
and the Bluetooth drivers. The symbol ∞ indicates that the solver failed to terminate after 2 hours. We
ran lcegar using the settings suggested by the authors and tried with the two available initial abstractions:
pseudo-downward closure (PDC) and cycle breaking (CB). For our tool, we used as the initial abstraction the
one described in [16] which is described in Appendix A. We also tried Σ∗ but covenant did not converge
for any of the programs in a reasonable amount of time.

It is somewhat surprising that all properties were successfully proven by lcegar using the initial reg-
ular approximation, including Bluetooth instances. The same is true for covenant, except for Version 1
which required 12 refinements using the greedy strategy. Nevertheless, these programs show cases in which
covenant can significantly outperform lcegar. Since almost no refinements were required by any of the
tools, it also suggests that the approximation of all CFGs at once and the use of a regular solver is often a
more efficient choice than relying on computing intersection of CFLs and regular languages as lcegar does.

Other interesting CFLs. The verification instances [13] are in fact all solved with no use of refinement,
by lcegar as well as by covenant (with the exception of one instance). To explore more interesting
cases that exercise the refinement procedures, we have added experiments involving the following languages
(Σ = {a, b}∗; note that C5 is L(G1) from Section 4 and C6 is L(G2)):

C1 : {wwR | w ∈ Σ∗} C5 : {wwR(ab)+ | w ∈ Σ∗}
C2 : {wcwR | w ∈ Σ∗} C6 : {wwR(ba)+ | w ∈ Σ∗}
C3 : {ancan | n > 0} C7 : {w ∈ Σ∗ | w has equal numbers of as and bs}
C4 : {ancbn | n > 0} C8 : {ww′ | |w| = |w′|, w 6= w′}

Table 1(c) shows the pairs of languages whose disjointness can be proven or a counterexample can be found
requiring at least one refinement for covenant. We ignore pairs of languages which are disjoint but not
regularly separable.

We ran covenant using two initial abstractions: Σ∗ and the more precise one described by Nederhof [16].
For each one, we used our greedy (Greedy) refinement described in Section 3.1 and the complete refinement
(Gen) from Section 3.3. We compared again with lcegar using its two abstractions PDC and CB. For
a given Ci ∩ Cj lcegar checks first whether L(Ci) ∩ L(α(Cj)) = ∅ and then, only if it is not empty a
refinement is triggered. Therefore, lcegar fixes a priori that the first input grammar will not be abstracted
while the second will (that is, the order in which the grammars are given to lcegar matters). That is
why we test both Ci ∩ Cj and Cj ∩ Ci. In covenant the order is irrelevant. We use the format #R (T)
to indicate that the tool needed #R refinements to prove disjointness or to find a counterexample, in T
seconds. We set a timeout (∞) of 60 seconds.

Table 1(c) indicates that, generally, the more precise the initial abstraction, the fewer refinements are
necessary. This claim was also made in [13] although we were not able to fully confirm it because lcegar

raised an exception with many of the instances while using CB (denoted by the symbol –). Interestingly,
Greedy performs quite well, terminating for all instances. This suggests that Greedy might be a good
practical choice in cases where Gen spends too much time computing the generalization of the witnesses.

Regarding lcegar either a timeout is reached or the tool can either prove disjointness or find a witness
without any refinement except for one instance (C2 ∩C4). It is worth noticing that even if both tools would
start with the same initial abstraction lcegar might not refine at all while covenant might do. The
reason is that lcegar does not abstract all the CFLs which forced us try with both pair orderings. On the
other hand, this gives some unpredictability to lcegar because depending on the ordering, the tool can
behave very differently (for example, (C2 ∩ C4) versus (C4 ∩ C2)).

7. Conclusions and Future Work

We have presented a CEGAR-based semi-decision procedure for regular separability of context-free lan-
guages. We have described two refinement strategies; an inexpensive greedy approach, and a more expensive

17

exhaustive strategy. We have implemented these approaches in a prototype solver, covenant. The method
outperforms lcegar on a range of verification and language-theoretic instances. The greedy approach often
requires more refinement steps, but tends to quickly find witnesses in cases with non-empty intersections;
the exhaustive method performs substantially more expensive refinement steps, but can prove separation of
some instances not solved by other methods.

The maximum ε-generalization algorithm can become extremely expensive for large witnesses. It would
be fruitful to consider whether we can find a cheaper generalization which still ensures completeness. Sim-
ilarly, it may be possible to develop a specialized intersection algorithm for computing ε-generalizations,
rather than relying on the standard regular/context-free intersection algorithm.

Visibly pushdown languages (VPLs) [1] have become popular and possess closure and decidability prop-
erties very similar to those of the class of regular languages. It would be interesting to explore algorithms
for approximation by VPLs. (Of the languages C1–C8 in Section 6, only C4 is a VPL.)

Acknowledgments

We wish to thank Georgel Calin for providing the test programs and the implementation of lcegar. We
also thank Pierre Ganty for fruitful discussions about this topic. We acknowledge support of the Australian
Research Council through Discovery Project Grant DP140102194.

References

[1] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the 36th Annual ACM Symposium on

the Theory of Computing, pages 202–211. ACM Publ., 2004.
[2] Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. A generic approach to the static analysis of concurrent programs

with procedures. In Proceedings of the 30th Annual SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 62–73. ACM Publ., 2003.
[3] Janusz A. Brzozowski and Rina S. Cohen. On decompositions of regular events. Journal of the ACM, 16(1):132–144,

1969.
[4] S. Chaki, E. Clarke, N. Kidd, T. Reps, and T. Touili. Verifying concurrent message-passing C programs with recursive

calls. In H. Hermanns and J. Palsberg, editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 3920 of Lecture Notes in Computer Science, pages 334–349. Springer, 2006.

[5] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided abstraction
refinement. In E. A. Emerson and A. P. Sistla, editors, Computer Aided Verification, volume 1855 of Lecture Notes in

Computer Science, pages 154–169. Springer, 2000.
[6] Javier Esparza and Peter Rossmanith. An automata approach to some problems on context-free grammars. In C. Freksa,

M. Jantzen, and R. Valk, editors, Foundations of Computer Science: Potential, Theory, Cognition, volume 1337 of Lecture
Notes in Computer Science, pages 143–152. Springer, 1997.

[7] Javier Esparza, Peter Rossmanith, and Stefan Schwoon. A uniform framework for problems on context-free grammars.
Bulletin of the EATCS, 72:169–177, 2000.

[8] Graeme Gange, Jorge A. Navas, Peter J. Stuckey, Harald Søndergaard, and Peter Schachte. Unbounded model-checking
with interpolation for regular language constraints. In N. Piterman and S. Smolka, editors, Tools and Algorithms for

the Construction and Analysis of Systems, volume 7795 of Lecture Notes in Computer Science, pages 277–291. Springer,
2013.

[9] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS. In CAV, pages 72–83, 1997.
[10] Pieter Hooimeijer and Westley Weimer. StrSolve: Solving string constraints lazily. Automated Software Engineering,

19(4):531–559, 2012.
[11] H. B. Hunt, III. On the decidability of grammar problems. Journal of the ACM, 29(2):429–447, 1982.
[12] Nicholas Kidd. Bluetooth protocol. http://pages.cs.wisc.edu/~kidd/bluetooth.
[13] Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. Language-theoretic abstraction refinement. In

J. de Lara and A. Zisman, editors, Fundamental Approaches to Software Engineering, volume 7212 of Lecture Notes in

Computer Science, pages 362–376, 2012.
[14] Benedek Nagy. A normal form for regular expressions. In Supplemental Papers for the Eighth International Conference

on Developments in Language Technology, CDMTCS Research Report Series, pages 53–62. CDMTCS, 2004.
[15] Mark-Jan Nederhof. Practical experiments with regular approximation of context-free languages. Computational Linguis-

tics, 26(1):17–44, 2000.
[16] Mark-Jan Nederhof. Regular approximation of CFLs: A grammatical view. In H. Bunt and A. Nijholt, editors, Advances

in Probabilistic and Other Parsing Technologies, volume 16 of Text, Speech and Language Technology, pages 221–241.
Springer, 2000.

[17] Shaz Qadeer and Dinghao Wu. KISS: keep it simple and sequential. In PLDI, pages 14–24, 2004.
[18] Thomas G. Szymanski and John H. Williams. Non-canonical parsing. In Conference Record of the 14th Annual Symposium

on Switching and Automata Theory, pages 122–129. IEEE Comp. Soc., 1973.

18

http://pages.cs.wisc.edu/~kidd/bluetooth

Appendix A. Regular Abstractions of Context-Free Grammars

Nederhof [15, 16] proposed a transformation that converts a context-free grammar into a finite automaton.
We present the algorithmNederhofApproximation in Figure A.7 that performs the whole transformation
in two steps. The first, StronglyRegGrammar, describes how to convert a context-free grammar into a
strongly regular grammar. The second step, MakeFA, builds a finite-state automaton from a given strongly
regular grammar.

NederhofApproximation(G)
let SCC be the strongly connected components of G
G′ ≡ (V ′,Σ, P ′, S′) := StronglyRegGrammar(G,SCC)
Q = {q0, qF } where q0 and qF are new fresh states;
F := {qF }; ∆ := ∅
MakeFA(q0, S

′, qF , G
′, SCC)

return R ≡ (Q,Σ,∆, q0, F)

Figure A.7: Approximating a context-free grammar G with a finite automaton R such that L(G) ⊆ L(R)

Prior to describing the procedures StronglyRegGrammar and MakeFA we present some useful
definitions. Consider partitions of the set of non-terminal symbols V . We define A and B to be part of the
same partition if A and B are mutually recursive. That is, A⇒∗ αBβ and B ⇒∗ α′Aβ′ for some sentential
forms α, β, α′ and β′.

Definition 10 (Left- and Right-Linearity). A production is left-linear iff it is of the form A → B w or
A→ w, where w ∈ Σ∗. It is right-linear iff it is of the form A→ w B or A→ w, where w ∈ Σ∗.

Definition 11 (Strongly regular grammars). A strongly regular grammar is a grammar in which the pro-
ductions are either all left-linear or all right-linear.

Definition 12 (Left- and Right-Generating). A set of mutually recursive nonterminals S is left (right)
generating if there exists a grammar production A→ αBγ, α 6= ε (A→ αBγ, γ 6= ε) and A ∈ S.
Assuming that we have a strongly regular grammar G we can classify each mutually recursive set S as5:

“left” if S is not left and right generating
“right” if S is left and not right generating
“cyclic” if S is neither left nor right generating

Figure A.8 shows the transformation, suggested by Nederhof, to convert an arbitrary context-free grammar
to a strongly regular grammar. This transformation is based on the following observation. A context-
free grammar consisting of productions of the form A →∗ αAβ with both α, β non-empty might not be
represented as a strongly regular grammar. The intuition is that α and β might be related through an
“unbounded” communication (i.e. some correlation between the occurrences of a’s and b’s) no expressible
by regular languages.

The procedure StronglyRegGrammar takes a context-free grammar G and SCC, the set of strongly
connected components that identify the set of mutually recursive nonterminal symbols of G. The algorithm
identifies in a conservative manner situations where an unbounded communication can arise and breaks it
by adding instead either left or right linear productions.

The procedure iterates over all strongly connected components in an arbitrary order and checks if all
productions of the nonterminals in each component are either left or right linear. If yes, no transformation
needs to be applied (line 19). Otherwise, it applies some transformations in order to convert all productions
in the same strongly connected component into either left or right linear, as described at lines 7 and 12-17.
The transformation assumes that nonterminals that do not belong to SCCi are considered as terminals here,

5The case where S is both “left” and “right” is not applicable here since the grammar G is strongly regular

19

StronglyRegGrammar(〈V,Σ, P, S〉, SCC)
1: V ′ := V ; S′ := S ; P ′ := ∅
2: foreach i ∈ {0, . . . , |SCC|}
3: if there exists a production with lhs in SCCi neither left- nor right- linear
4: foreach A ∈ SCCi do

5: create a fresh nonterminal A′ /∈ V
6: V ′ := V ′ ∪ {A′}
7: P ′ := P ′ ∪ {A′ → ε}
8: foreach A→ α ∈ P with α ∈ (Σ ∪ (V \ SCCi))

∗
do

9: P ′ := P ′ ∪ {A→ αA′}
10: foreach A→ α0B1α1B2α2 · · ·Bmαm ∈ P with m ≥ 0
11: B1, . . . , Bm ∈ SCCi, and α0, . . . , αm ∈ (Σ ∪ (V \ SCCi))

∗
do

12: P ′ := P ′ ∪ { A→ α0B1

13: B′

1 → α1B2

14: B′

2 → α2B3

15: . . .
16: B′

m−1 → αm−1Bm

17: B′

m → αmA′}
18: else

19: foreach A ∈ SCCi and A→ X ∈ P do P ′ := P ′ ∪ {A→ X}
20:return (V ′,Σ, P ′, S′)

Figure A.8: Converting a context-free grammar into a strongly regular grammar

for determining if a production of SCCi is right-linear or left-linear. This allows traversing the strongly
connected components in any order. We show next how the transformation works through an example.

Example 4 (Conversion to strongly regular grammar). Let G = ({a, b, c}, {A,B}, A, P), where P is the
set of productions:

(P1) A → aBb

(P2) A → c

(P3) B → A

The set of strongly connected components is {{A,B}}. Therefore there is only one set {A,B} of mutually
recursive nonterminals. Line 7 adds to P ′ the rules:

A′ → ε
B′ → ε

From P1 and executing lines 12-17 we add to P ′ the rules:

A → aB
B′ → bA′

From P2 and executing line 9 we add to P ′ the rule:

A → cA′

From P3 and executing lines 12-17 we add to P ′ the rule:

B → A
A′ → B′

Finally, putting all rules of P ′ together and after some trivial simplifications:

A → aA | cA′

A′ → ε | bA′

20

MakeFA(q0, A, q1, G ≡ (V,Σ, P, S), SCC)
Global variables: set of states Q, transition relation ∆

1: if A = ε then ∆← ∆ ∪ {(q0, ε, q1)}
2: else if A = a ∈ Σ then ∆← ∆ ∪ {(q0, a, q1)}
3: else if A = XY,X ∈ V, Y ∈ V +

then

4: Q = Q ∪ {q} where q is a new fresh state;
5: MakeFA(q0, X, q, G, SCC);
6: MakeFA(q, Y, q1, G, SCC)
7: else // A is a nonterminal
8: if A ∈ SCCi and |SCCi| > 1 then

9: if SCCi is “left” then

10: foreach C → X1 · · ·Xm ∈ P such that C ∈ SCCi and X1 · · ·Xm /∈ SCCi

11: qC = lookup(C,Q);
12: MakeFA(q0, X1 · · ·Xm, qC , G, SCC)
13: foreach C → DX1 · · ·Xm ∈ P such that C,D ∈ SCCi and X1 · · ·Xm /∈ SCCi

14: qC = lookup(C,Q); qD = lookup(D,Q);
15: MakeFA(qD, X1 · · ·Xm, qC , G, SCC)
16: ∆ = ∆ ∪ {(qA, ε, q1)}
17: else // SCCi is either “right” or “cyclic”
18: foreach C → X1 · · ·Xm ∈ P such that C ∈ SCCi and X1 · · ·Xm /∈ SCCi

19: qC = lookup(C,Q);
20: MakeFA(qC , X1 · · ·Xm, q1, G, SCC)
21: foreach C → X1 · · ·XmD ∈ P such that C,D ∈ SCCi and X1 · · ·Xm /∈ SCCi

22: qC = lookup(C,Q); qD = lookup(D,Q);
23: MakeFA(qC , X1 · · ·Xm, qD, G, SCC)
24: ∆ = ∆ ∪ {(q0, ε, qA)}
25: else

26: foreach A→ X ∈ P do

27: MakeFA(q0, X, q1, G, SCC)

Figure A.9: Converting a strongly regular grammar into a finite automata)

The resulting strongly regular grammar is G′ = ({a, b, c}, {A,A′}, A, P ′). Note that L(G′) = a∗cb∗ while
L(G) = {ancbn | n ≥ 0}. Therefore, it is easy to see that L(G) ⊆ L(G′). The transformation broke the
synchronization between the number of a’s and b’s (#a’s = #b’s) by allowing an arbitrary number of a’s
and b’s.

Next, we show in Figure A.9 the procedure to convert a strongly regular grammar to a finite-state
automaton. The algorithm is presented as described in [15]. The main procedure MakeFA takes five inputs:
the initial state, the string, the final state reached on reading the string, the strongly regular grammar,
and the mutually recursive nonterminals. We assume a helper function lookup that maps nonterminals to
automata states. If the nonterminal A is not in the map then a new fresh state q is returned and the pair
(A, q) is inserted in the map. Moreover, we add q into Q. Otherwise if there exists already a pair (A, q)
then q is returned. Note that since lookup can add new states into Q we pass it as an argument.

Starting from the start symbol of the grammar, the procedure MakeFA descends the grammar (by
triggering lines 3-6) until terminals are found (lines 1 and 2), and it creates automata transitions labelled
with those terminals. While descending if it encounters a non-recursive nonterminalA it continues recursively
for each right-hand side of a production for which A is the left-hand side (lines 26-27). The nontrivial case
is when the algorithm encounters a recursive nonterminal symbol A. We describe the case when the set of
mutually recursive nonterminals where A belongs to is classified as “left”. The other case when it is either
“right” or “cyclic” is symmetric.

Since the set of mutually recursive nonterminals SCCi is “left” all its productions must be of the form
(1) C → α or (2) C → Dα, where C,D ∈ SCCi and α ∈ (Σ ∪ (V \ SCCi))

+. The foreach loop at

21

lines 10-12 covers case (1) by descending recursively the right-hand side of the productions whose left-hand
side is denoted by C (i.e. α) and passing to the recursive call qC as final state, an automata state assigned
to C. The next foreach loop at lines 13-15 handles the other case (2) in a similar manner but the first
symbol D appearing at the right-hand side is another nonterminal symbol from the same strongly connected
component than C. We descend again the right-hand side but providing to the recursive call qD and qC
(states assigned to D and C) as the initial and final states, respectively.

22

Appendix B. Intersection of a Context-Free and a Regular Language

The algorithm to check intersection between a CFL and a regular language works on context-free gram-
mars with rules of these forms:

A→ BC | a | B | ε (B.1)

An arbitrary CFG can be converted to a grammar of this form by a linear increase in terms of the size of the
original grammar. Let⇒∗ be the reflexive transitive closure of⇒. For a grammar G in the above form and
a set L ⊆ Σ∗

V we denote by pre∗
G
(L) the set of predecessors of elements in L with respect to the grammar

G. That is,
pre∗

G
(L) = {α ∈ Σ∗

V | ∃ α′ ∈ L : α⇒∗ α′}

Starting from a finite-state automaton A = 〈Q,Σ,∆, q0, F 〉 that recognises a language L, and a context-free
grammar G = (V,Σ, P, S), we produce an automaton Apre∗

G
(L) recognizing pre∗

G
(L) by adding transitions

to A according to the following saturation rule:

If A→ β ∈ P and 〈q, β, q′〉 ∈ ∆ in the current automaton, add 〈q, A, q′〉 to ∆.

Given the specific form of our input context-free grammar, we can split the saturation rule into four cases:

1. for each rule A→ ε ∈ P and for each qi ∈ Q add 〈qi, A, qi〉 to ∆.
2. for each rule A→ a ∈ P , if there exists 〈q0, a, q1〉 ∈ ∆, then add 〈q0, A, q1〉 to ∆.
3. for each rule A→ B ∈ P (B ∈ V), if there exists 〈q0, B, q1〉 ∈ ∆ then add 〈q0, A, q1〉 to ∆.
4. for each rule A→ BC ∈ P , if there exists 〈q0, B, q1〉 ∈ ∆ and 〈q1, C, q2〉 ∈ ∆ then add 〈q0, A, q2〉 to ∆.

The intersection of a regular language and a context-free grammar can be found by computing first pre∗
G
(L)

and then checking if there is a transition 〈q0, S, qF 〉 ∈ ∆A
pre∗

G
(L)

. The latter check can be done in constant

time so the complexity is the same as the complexity of the pre∗ algorithm.

Example 5. Consider the palindrome grammar G = 〈{a, b}, {A}, A, P 〉 where P is the set of productions:
A → aAa | bAb | a | b | ε, and the finite automaton shown in Figure B.10(a) recognizing the language
L = abba. We would like to check if abba ∈ L(G).

First, we generate the automaton that recognizes pre∗
G
(L) depicted in Figure B.10(b) and then we check

if there is a transition from the initial to the final state labelled with A (that is, A→∗ abba).
In fact, rather than computing pre∗

G
(L) directly we normalize our input grammar obtaining G′ =

〈{a, b}, {A,B,C,D,E}, A, P 〉 where P is the set of productions:

A → CB | DE | a | b | ε
B → AC

C → a
D → b

E → AD

and compute pre∗
G′(L) instead. Note that since there exists a transition from q0 to q4 with label A in the

automaton shown in Figure B.10(b) we have proven that abba ∈ L(G′).

q0 q1 q2 q3 q4
a b b a

q0 q1 q2 q3 q4
a|A|B|C b|A|D|E b|A|D|E a|A|B|C

A

A

A

A

AE B

A|E

B

A

(a) (b)

Figure B.10: Two finite automata recognizing L = abba and pre∗
G′(L), respectively. The transition 〈q0, A, q4〉

means that abba ∈ L(G′).

23

Appendix C. Recursive Multithreaded Programs

Detailed descriptions of the programs used in Section 6’s experimental evaluation, as well as their safety
properties, can be found in [13, 4, 17]. This appendix is intended as a self-contained short description.

There are two classes of programs: Erlang programs extracted from textbook algorithms and several
variants of a real Bluetooth driver implementation. Table C.2 shows the sizes of the programs after each
context-free grammar has been normalized (that is, they satisfy the form in Equation B.1):

• #CFGs: the number of context-free grammars

• |Σ| number of terminal symbols

• |N |: total number of nonterminal symbols

• |P |: total number of grammar productions

Program #CFGs |Σ| |N | |P | Program #CFGs |Σ| |N | |P |

SharedMem 4 8 138 234 Version 1 7 17 471 804
Mutex 4 22 297 512 Version 2 9 26 1055 1847
RA 2 20 127 205 Version 2 w/ Heuri 9 26 807 1351
Modified RA 5 22 323 530 Version 3 (1A2S) 9 22 746 1292
TNA 3 17 134 204 Version 3 (1A2S) w/ Heuri 8 22 569 938
Banking 3 13 144 244 Version 3 (2A1S) 9 25 1053 1052

Table C.2: Sizes of the programs shown in Table 1(a-b)

Erlang programs. SharedMem is the shared memory program shown in detail in Figure 6. Mutex is an
implementation of the Peterson mutual exclusion protocol where two processes try to acquire a lock. The
checked property is that at most one process can be in the critical section at any one time. RA is a resource
allocator manager that handles “allocate” and “free” requests. We check that the manager cannot allocate
more resources to clients than there are currently free resources in the system. Modified RA adds some new
functionality to the logic of the resource allocator manager. We check the same property used in RA. TNA
is a telephone number analyzer that serves “lookup” and “add number” requests. The property to check is
that some programming errors cannot happen. Finally, Banking is a toy banking application where users
can check a balance as well as deposit and withdraw money. We check that deposits and withdrawals of
money are done atomically.

Bluetooth driver [12]. This is a simplified implementation of a Windows NT Bluetooth driver and
several variants discussed originally in [17]. The driver keeps track of how many threads are executing in
the driver. The driver increments (decrements) atomically a counter whenever a thread enters (exits) the
driver. Any thread can try to stop the driver at any time, and after that new threads are not supposed to
enter the driver. When the driver checks that no threads are currently executing the driver, a flag is set
to true to establish that the driver has been stopped. Other threads must assert this flag is false before
they start their work in the driver. There are two dispatch functions that can be executed by the operative
system: one that performs I/O in the driver and another to stop the driver. Assuming that threads can
asynchronously execute both dispatch functions we check the following race condition: no thread can enter
in the driver after the driver has been stopped. Version 1 and Version 2 [17] are two buggy versions of the
driver implementation. Version 2 w/ Heuri is an alternative encoding of Version 2 introduced by [13] to limit
context switches only at basic block boundaries. This makes the verification task easier but it is, in general,
unsound as it does not cover all possible behaviours of the driver. Version 3 (2A1S) [4] is a safe version after
blocking the counterexample found in Version 2 where two adder and one stopper processes are considered,
Version 3 (1A2S) is a buggy version with one adder and two stopper processes, and finally, Version 3 (1A2S)
w/ Heuri is an alternative encoding with the unsound heuristics used in Version 2 w/ Heuri.

24

	1 Introduction
	2 Preliminaries
	2.1 Regular and Context-Free Languages
	2.2 Regular Separability
	2.3 Star-Contraction

	3 Refining Regular Abstractions
	3.1 Star-generalizations
	3.2 Epsilon-generalization
	3.3 Maximum generalization

	4 Example
	5 Previous Refinement Techniques
	6 Experimental Evaluation
	7 Conclusions and Future Work
	Appendix A Regular Abstractions of Context-Free Grammars
	Appendix B Intersection of a Context-Free and a Regular Language
	Appendix C Recursive Multithreaded Programs

