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Abstract

The permutahedron is the convex polytope with vertex set consist-
ing of the vectors (w(1),...,m(n)) for all permutations (bijections) 7 over
{1,...,n}. We study a bandit game in which, at each step ¢, an adver-
sary chooses a hidden weight weight vector s¢, a player chooses a vertex
m¢ of the permutahedron and suffers an observed instantaneous loss of
> we(i)se(4).

We study the problem in two regimes. In the first regime, s; is a
point in the polytope dual to the permutahedron. Algorithm CombBand
of Cesa-Bianchi et al (2009) guarantees a regret of O(n+/T logn) after T
steps. Unfortunately, CombBand requires at each step an n-by-n matrix
permanent computation, a #P-hard problem. Approximating the per-
manent is possible in the impractical running time of O(nlo), with an
additional heavy inverse-polynomial dependence on the sought accuracy.
We provide an algorithm of slightly worse regret O(n3/2\/T) but with
more realistic time complexity O(n3) per step. The technical contribu-
tion is a bound on the variance of the Plackett-Luce noisy sorting process’s
‘pseudo loss’, obtained by establishing positive semi-definiteness of a fam-
ily of 3-by-3 matrices of rational functions in exponents of 3 parameters.

In the second regime, s; is in the hypercube. For this case we present
and analyze an algorithm based on Bubeck et al.’s (2012) OSMD approach
with a novel projection and decomposition technique for the permutahe-
dron. The algorithm is efficient and achieves a regret of O(n\/T)7 but for
a more restricted space of possible loss vectors.

1 Introduction

Consider a game in which, at each step, a player plays a permutation of some
ground set V = {1,...,n}, and then suffers (and observes) a loss. We model the
loss as a sum over the items of some latent quality of the item, weighted by its
position in the permutation. The game is repeated, and the items’ quality can
adversarially change over time. The game models many scenarios in which the
player is an online system (say, a search/recommendation engine) presenting a
ranked list of items (results/products) to a stream of users. A user’s experience
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is positive if she perceives the quality of the top items on the list as higher
than those at the bottom. The goal of the system is to create a total positive
experience for its users.

There is a myriad of methods for modelling ranking loss functions in the
literature, especially (but not exclusively) for information retrieval. Our choice
allows us to study the problem in the framework of online combinatorial opti-
mization in the bandit setting, and to obtain highly nontrivial results improving
on state of the art in either run time or regret bounds. More formally, we study
online linear optimization over the the n-permutahedron action set, defined as
the convex closure of all vectors in R™ consisting of n distinct coordinates taking
values in [n] := {1,...,n} (permutations). At each step ¢t =1,...,T, the player
outputs an action m, and suffers a loss s, = Y .| m(i)s.(i) , where s, € R is
the vector of “item qualities” chosen by some adversary who knows the player’s
strategy but doesn’t control their random coins. The performance of the player
is the difference between their total loss and that of the optimal static player,
who plays the best (in hindsight) single permutation 7* throughout. This dif-
ference is known as regret. Note that, given s1,..., sy, 7" can be computed by
sorting the coordinates of Z;‘ll s¢ in decreasing order. This is aligned with our
practical requirement that items with higher quality should be placed first, and
those with lower quality should be last.

2 Results, Techniques and Contribution

Our first of two results, stated as Theorem[I] is for the setting in which at each
step the loss is uniformly bounded (by 1 for simplicity) in absolute value for all
possible permutations. Equivalently, the vectors s; belong to the polytope that
is dual to the permutahedron. Our algorithm, BanditRank, plays permutations
from a distribution known as the Plackett-Luce model (see [12]) which is widely
used in statistics and econometrics (see eg [3]). It uses an inverse covariance
matrix of the distribution in order to obtain an unbiased loss vector estimator,
which is a standard technique [6]. The main technical difficulty (Lemma ) is in
bounding second moment properties of Plackett-Luce, by establishing positive
semidefiniteness of a certain family of 3 by 3 matrices. The lemma is interesting
in its own right as a tool for studying distributions over permutations. The ex-
pected regret of our algorithm is O(n/2y/T) for T steps, with running time of
O(n?) per time step. This result should be compared to CombBand of [6], where
a framework for playing bandit games over combinatorially structured sets was
developed. Their techniques extend that of [7]. In each step, it draws a permu-
tation from a distribution that assigns to each permutation 7 a probability of
enXra ’Tlgf, where §; is a pseudo-loss vector at time ¢, an unbiased estimator of
the loss vector s;. Their algorithm guarantees a regret of O(n+/T logn), which
is better than ours by a factor of ©(y/n/logn). However, its computational
requirements are much worse. In order to draw permutations, they need to
compute nonnegative n by n matrix permanents. Unfortunately, nonnegative
permanent computation is #P-hard, as shown by [I4]. On the other hand, a



groundbreaking result of [TI1] presents a polynomial time approximation scheme
for permanent, which runs in time O(n'?) for fixed accuracy. To make things
worse, the dependence in the accuracy is inverse polynomial, implying that,
even if we could perform arbitrarily accurate floating point operations, the total
running time would be super linear in T, because a regret dependence of /T
over T steps requires accuracy inverse polynomial in 7. (Our algorithm does
not suffer from this problem.) From a practical point of view, the runtime de-
pendence of CombBand in both n and T is infeasible for even modest cases. For
example, our algorithm can handle online ranking of n = 100 items in an order
of few millions of operations per game iteration. In contrast, approximating the
permanent of a 100-by-100 positive matrix is utterly impractical.

We note that independently of our work, Hazan et al. [9] have improved
the state-of-the-art general purpose algorithm for linear bandit optimization,
implying an algorithm with regret O(n+/T) for our problem, but with worse
running time O(n4)

In our second result in Section Bl we further restrict s; to have ¢; norm of 1/n.
(Note that this restriction is contained in |mjs;| < 1 by Holder). We present
and analyze an algorithm OSMDRank based on the bandit algorithm OSMD
of [5] with projection and decomposition techniques over the permutahedron
([15, 13]). The projection is defined in terms of the binary relative entropy
divergence. The restriction allows us to obtain an expected regret bound of
O(nvT) (a v/Togn improvement over CombBand). The running time is O(n? +
n7(n)), where 7(n) is the time complexity for some numerical procedure, which
is O(n?) in a fixed precision machine.

We note previous work on playing the permutahedron online optimization
game in the full information case, namely, when s; is known for each ¢. As far as
we know, Helmbold et al. [10] were the first to study a more general version of
this problem, where the action set is the vertex set of the Birkhoff-von-Neumann
polytope (doubly-stochastic matrices). Suehiro et al. [I3] studied the problem
by casting it as a submodularly constrained optimization problem, giving near
optimal regret bounds, and more recently Ailon [I] both provided optimal regret
bounds with improved running time and established tight regret lower bounds.

3 Definitions and Problem Statement

Let V' be a ground set of n items. For simplicity, we identify V with [n] :=
{1,...n}. Let S, denote the set of n! permutations over V, namely bijections
over [n]. By convention, we think of w(v) for v € V as the position of v € V
in the ranking, where we think of lower numbered positions as more favorable.
For distinct u,v € V, we say that u <, v if 7(u) < 7(v) (in words: u beats v).
We use [u, v], as shorthand for the indicator function of the predicate u <, v.

IThe running time is a product of é(ns) number of Markov chain steps required for drawing
a random point from a convex set under a log-concave distribution, and O(nlogn) time to
test whether a point lies in the permutahedron. By O we hide poly-logarithmic factors.



The convex closure of S, is known as the permutahedron polytope. It will be
more convenient for us to consider a translated version of the permutahedron,
centered around the origin. More precisely, for 7 € S,, we let 7 denote

7= (n(1)—(n+1)/2,7(2) — (n+1)/2,...,7(n) — (n+1)/2) .

It will be convenient to define a symmetrized version of the permutation set
5'n :={#: 7€ S,}. The symmetrized n-permutahedron, denoted Pn is the con-
vex closure of S,,. Symmetrization allows us to work with a polytope that is cen-
tered around the origin. Generalization our result to standard (un-symmetrized)
permutations is a simple technicality that will be explained below. The notation
u <z v and [u,v]z is defined as for 7 € S,, in an obvious manner.

At each step t = 1,...,T, an adversary chooses and hides a nonnegative
vector s, € R" = RV which assigns an elementwise quality measure s;(v) for
any v € V. The player-algorithm chooses a permutation 7, € S‘m possibly
random, and suffers an instantaneous loss

=g =y w(v)si(v) - (3.1)

veV

The total loss L; is defined as Zthl £:. We will work with the notion of regret,
defined as the difference L; — L, where L}, = min_ ¢ Zthl 7'sy. We let 7*
denote any minimizer achieving L% in the RHS.

For any 7 € S, and s € R"™, the dot-product #’s can be decomposed over
pairs: #'s = %Zu;év [u,v]r(s(v) — s(u)). This makes the symmetrized per-
mutahedron easier to work with. Nevertheless, our results also apply to the
non-symmetrized permutahedron as well, as we shall see below.

Throughout, the notation 4, neans summation over distinct, ordered
pairs of elements u,v € V, and ), <, Means summation over distinct, unordered
pairsE The uniform distribution over S‘n will be denoted U,,.

The smallest eigenvalue of a PSD matrix A is denoted Apin(A4). The norm
|- |2 will denote spectral norm (Euclidean norm for a vector). To avoid notation
such as C,C’,C"”,(C, for universal constants, the expression C' will denote a
“general positive constant” that may change its value as necessary. For example,
we may write C' = 3C + 5.

4 Algorithm BanditRank and its Guarantee

For this section, we will assume that the instantaneous losses are uniformly
bounded by 1, in absolute value: For all t and # € S,,, |#’s;| < 1. Equivalently,
using geometric language, the loss vectors belong to a polytope which is dual to
the permutahedron.

Now consider Algorithm [l It maintains, at each time step ¢, a weight vector
wy € R™. At each time step, it draws a random permutation 7; from a mixture

2We will only use expressions of the form >

f(u7 v) = f(v7 u)

u<w f(u,v) for symmetric functions satisfying



D; of the uniform distribution over §n and a distribution PL, (w) which we
define shortly. The distribution mixture is determined by a parameter . The
algorithm then plays the permutation 7; and thereby suffers the instantaneous
loss defined in (B)). The weights are consequently updated by adding an un-
biased estimator §; of s; (computed using the pseudo-inverse covariance matrix
corresponding to D;), multiplied by another parameter n > 0.

The Plackett-Luce Random Sorting Procedure: The distribution PL,,(w)
over S,,, parametrized by w € R", is defined by the following procedure. To
choose the first (most preferred) item, the procedure draws a random item, as-
signing probability proportional to e®( for each u € V. It then removes this
item from the pool of available items, and iteratively continues to choose the
second item, then third and so on. As claimed in the introduction, this random
permutation model is well studied in statistics. An important well known prop-
erty of the distribution is that it can be equivalently defined as a Random Utility
Model (RUM) [12][16]: To draw a permutation, add a random iid noise variable
following the Gumbel distribution to each weight, and then sort the items of
V' in decreasing value of noisy-weightsﬁ The RUM characterization implies,
in particular, that for any two disjoint pairs of element (u,v) and (u/,v"), the
events u <, v and u' <, v are statistically independent if 7 is drawn from
PL,(w), for any w. This fact will be used later.

We are finally ready to state our main result, bounding the expected regret of
the algorithm.

Theorem 1. If algorithm BanditRank (Algorithm [l) is executed with param-
eters v = O(n3/2/\/T) and n = O(y/n), then the expected regret (with respect
to the game defined by the symmetrized permutahedron) is at most O(n3/?v/T).
The running time of each iteration is O(n3). Additionally, there exists an al-
gorithm with the same expected regret bound and running time with respect to
the standard permutahedron (assuming the vectors s; uniformly satisfy |7's;| <

1,Vm e Sp.)

The proof uses a standard technique used e.g. in Cesa-Bianchi et al.’s Comb-
Band [6], which is itself an adaptation of Auer et al.’s Exp3 [2] from the finite
case to the structured combinatorial case. The distribution from which the ac-
tions 7, are drawn in the algorithm differ from the distribution used in Comb-
Band, and give rise to the technical difficulty of variance estimation, resolved
in Lemma

Proof. Let Ty, denote the set of tournaments over [n]. More precisely, an element
A € T, is a subset of [n] X [n] with either (u,v) € A or (v,u) € A (but not both)
for all u < v. We extend our previous notation so that u <4 v is equivalent to
the predicate (u,v) € A.

3The Gumbel distribution, also known as doubly-exponential, has a cdf of e—¢ "



Algorithm 1 Algorithm BanditRank(n,n,v,T) (assuming |7's;| < 1 for all ¢
and 7 € S’n)
1: given: ground set size n, positive parameters 7,y (v < 1), time horizon T'
2: set wo(u) =0 for all w € V = [n]
3: fort=1.T do
4: et distribution D; over S,, denote a mixture of U, (with probability v)
and PL,(wi—1) (with probability 1 — )

5. draw and output 7 ~ Dy

6:  observe and suffer loss ¢; (= 7t}st)
7 §t = étPtJrfrt where Pt = E&ND,L [[76’]
8  set wy =wy—1 + 108

9: end for

For any pair 7 € S, and w € R™, p(7|w) denotes the probability assigned
to @ € S, by PL,(w). Slightly abusing notation, we define the following short-
hand:

w(w)

e
Z p(7r|w) = ew(u) +ew(v)

TU<4z0

p(u < v|w) :

. ew(u)er(v)
Z p(7r|w) = (e“’(“) +ew(v) +ew(z))(ew(v) _|_ew(z)) :

TU<z0<r2

plu < v < zlw) =

The last two right hand sides are easily derived from the definition of the
distribution PL,(w), see also e.g. [12]. We also define the following abbrevia-
tions:

ew(u)

plu < Yw) :==plu < v < zlw) +plu < z < v|w) = (@) 4 w0 5 gn

(4.1)
(o < zlw) :==plu < v < zlw) +p(v < u < z|w)

ew(u)-i—w('u) 1 1
ew(u) + ew(v) + ew(z) \ ew(v) + ew(z) ew(u) + ew(z)

We will also need to define a distribution over the set of tournaments 7,,. The
distribution, BT L, (w) is parametrized by a weight vector w € R™. Drawing
A ~ BT L, (w) is done by independently setting, for all u < v in V|

w(u)
(u,v) € A with probability p(u < vjw) = ————
ew(u) + ew('u)

ew(v)

(v,u) € A with probability p(v < u|w) = w1 ow )

(Note that the distribution is equivalently defined as the product distribution,
over all u < v in V, of the Bradley-Terry-Luce pairwise preference model, hence



the name BT L,. We refer to [I2] for definition and history of the Bradley-
Terry-Luce model.)

For A € T,, we denote by p(A|w) the probability [[, ., p(u < vw) of
drawing A from BT L, (w). The proof of the theorem proceeds roughly as the
main result upper bounding the expected regret of CombBand in [6]. The fol-
lowing technical lemma is required in anticipation of a major hurdle (inequality
@3). We believe the inequality is interesting in its own right as a probabilistic
statement on permutation and tournament distributions.

Lemma 2. Let s,w € R". Let # ~ PLy(w) and A ~ BT L, (w) be drawn inde-
pendently. D@ﬁ?’l@ X1 = Zu,v: u<,}v(8(v)_s(u)) = ﬁJS? Xo = Zu,v: u<Av(S(U)_
s(u)). Then E[X3] < E[X?).

(Note that clearly, E[X5] = E[X;], so the lemma in fact upper bounds the
variance of X3 by that of X;.) The proof of the lemma is deferred to Section A1l

Continuing the proof of Theorem [I we let g(7|w) denote the probability of
drawing 7 from the mixture of the uniform distribution (with probability )
and PL,(w) (with probability (1 — ). Similarly to above, g(u < v|w) denotes
Y iuxsv A(7lw). By these definitions,

(7 |w) = (1= )p(F|w) + - qlu< vjw) = (1= 7)p(u < v|w) +

1 . (4.3)

o2

The analysis proceeds by defining a potential function: W;(u,v) := ez(we(w)=we(v)) 4

e2n(we(v)=we(w)  The quanatity of interest will be E [Zu<v > log %},

where the expectation is taken over all random coins used by the algorithm
throughout T steps. This quantity will be bounded from above and from below,
giving rise to a bound on the expected total loss, expressed using the optimal
static loss. On the one hand,

Zl Wt u ’U Zlog ez (we(u)—we (v)) N e%(wn(v)—wt(u))
Wt 1 u, U Wi_ l(u 'U) Wt_l(u,v)
<e§(wt1(u)wtl(v))egﬁ(§t(u)§t(v)) e%(wt(v)wt(u))e%n@t(v)gt(u)))

+

= Wi—1(u,v) Wi—1(u,v)
= Z log (p(u =< ’U|wt_1)€%n(§t(u)_§‘(v)) +p(v =< u|wt_1)e%n(§t(v)_§t(u)))
u<v
= log < Z ﬁ(A|wt1)6%772“<A“(§t(")§t(v))> .
A€eT,

We will now assume that 7 is small enough so that for all A € 7,, and for all ¢,

n| > Be(u) —F(v)| <1 (44)

(u,v)€A



(This will be shortly enforced.) Using e® < 1+ z + 22 Vx € [-1/2,1/2],

Zl Wt (u v) < log [ > BlAwis) (1 D CIOEENG)

A€eT, u<Av

- , 9
= IOg 1+ gEANBTL:n(wtfl) Z (§t(u) — 515(1))) + nz < Z (§t(u) — 51&(”)))

u<Av

9 2
<log 1+ gEﬁNPcn(wt,l) Z (8(u) — 5¢(v)) + % < Z (Se(u) — §t(v))>

U<zv

where we used Lemma [2]in the last inequality (together with the fact that the
marginal probability of the event “u <y v” is identical for both Y ~ PL,, (wtfl)
and Y ~ BTL,(w;_1)). Henceforth, for any # € S, we let £y(7) := 7’3, =
> uza0(8(v) =3(u)). Using[L3 and the fact that log(1 +x) < x for all z, we get

Zl Wtuv
Wt 1uv)

u<v
n qu < vlwi_1) — 5 5 2 o) — 2
=3 - — Sl bt VA
<5 1=~ (3¢(u) = 8e(0)) + Z T (%)
uFv ord
—n ) 2 -
< T RV AP RV
> 2(1 — 7) ﬁg qt(77|wt 1)€t(77) + 4(1 — /y) ﬁ; qt(7T|wt 1)€t(7'r)

We now note that (1) > . ¢ qi(7|wy_1)0; = £, (following the properties of
matrix pseudo-inverse in Line[lin Algorithml[I), and (2) > . .¢ g (F|lwi_1)l(m)?] <
n (see top of page 31 together with Lemma 15 in [6]). Applying these inequal-
ities, and then taking expectations over the algorithm’s randomness and sum-
ming for t =1,...,T, we get




On the other hand,
Wi (u,v
ZE l;lo Wt 1 u U)]
>y E [log ([u V] e 3 T =wr @) 4 [y 4] 3 (0T (@ —wr @) )] Zlog2

u,v

= 5 2 (B st 4) = )+ s )~ wr )]~ <2> log2
2 (E [[uvvh* D203 0) = 510) + el 3 (5 - s:t<v>>D - (5) 0w

U n
= T (") 10g2
2 T (2) 0g 2,

where L7 is the total loss of a player who chooses the best permutatation 7% €

S,, in hindsight. Combining, we obtain ﬁE[Lt] < %L*T—i—%z log 2+ 4(177—j7)”T'
Multiplying both sides by 2(1 — «v)/n yields
2log?2
E[Lr] < L +9|L5| + 2=+ InT . (4.6)

We shall now work to impose (4.

(n—1)/2
max Aglﬁ()é) Z (8¢(u) — 5 (v))| < max Z 5¢(v)? |
(u,v)€EA veV i=—(n—1)/2

where the left inequality is Cauchy-Schwartz. We now note that |52 <
||| P2 || 7¢||l2. Clearly |72 is bounded above by Cn3/2. Also || P;"||2 equals
1/Amin(P;). By Weyl’s inequality Amin(P:) > YAmin(Ernyy, [777]). It is an ex-
ercise to check that Amin(Es, [77']) > Cn?. We conclude (also recalling that
|6;] < 1) that max; ||5|l2 < C/(n'/?v). Combining, we shall satisfy @7) by
imposing n < v/(Cn). Plugging in ([@6]), we get

C 3
E[Ly(Alg)] < L% + 4| L% + T” L OAT (4.7)

Choosing v = \/CT”3 gives E[Lr(Alg)] < L% + 0%2 |L| +n3/2/T.

This concludes the required result for the symmetrized case, because |L%| <
T. For the standard permutahedron, we notice that for any = € S, and
its symmetrized counterpart # € S,, and any vector s € R, n’s — #'s =

> ooi2< cmgxustnznw

3



2L 3 ey s(v) =: f(s). Equivalently, we can write 7’s = (7/,1)(s; f(s)), where
(,a) appends the scalar a to the right of a row vector and (-;a) appends to
the bottom of a column vector. Algorithm [I] can be easily adjusted to work
with action set S, x {1}. For the proof, we keep the same potential function.
The technical part of the proof is lower bounding the smallest eigenvalue of
the expectation of 77/, where 7 is now drawn from the uniform distribution on
S, x {1}. We omit these simple details for lack of space. O O

4.1 Proof of Lemma

The expression E[X?] can be written as

E[X7] =Y plu < vjw)((s(v) = s(u))?
uFv
+ Z plu <vAu <v'w)(s(v) — s(u))(s(v) — s(u))
[{u,v,u’ v }|=4
+ Z plu<vAu <v|w)(s() —s(u))(s() —s)), (4.8)

[{u,v,u’ 0"} |=3

where p(u < v Au' < v'|w) is the probability that both v <z v and u’ <z v/
with « ~ PL, (w). Similarly,

E[X3] = > p(u, vfw)((s(v) = s(u))*
uFv
+ Y plu=vlwp < vw) (s(v) = s(u)(s(v') - s())

{w,v,u/ 0" =4

+ > plu=vlw)pu’ <V |w) (s(v) = s(u)(s(v) = s(u)) .

uFv,u! #v!
Hu,v,u 0"} =3

(4.9)

Since Plackett-Luce is a random utility model (see [12]), it is clear that
whenever a pair of pairs u # v,u’ # v satisfies [{u,v,u/,v'} = 4, p(u <
vAu < vw) = plu < vlw)p(u' < v'|w). Hence, it suffices to prove that the
third summand in the RHS of ([@9]) is upper bounded by the third summand in
the RHS of (#8). But now notice the following identity:

> =2 X

uFv,u! #v! ACV uFv,u! #v!
[{u,v,u’ v/ }|=3 [A]=3  w,v,u/ v/ €A
Hu,v,u/ 0"} =3

This last sum rearrangement implies that it suffices to prove that for any A of

10



cardinality 3,

Fy(A):= Y plu,vhw)p(u’,v'[w) (s(v) — s(u))(s(v") = s(u))
RAVTN
[{u,v,u’,v"}|=3

< Z plu, v A, v'|w) (s(v) — s(u))(s(v) — s(u')) = F1(A) .
wtv,ul o’
u,v,u’ v EA
1w, v,ul o'} =3
If we now denote A = {a,b,c}, then both F;(A) and F(A) are quadratic
forms in s(a), s(b), s(¢) (for fixed w). It hence suffices to prove that H(A) :=
Fi(A) — F»(A) is a positive semi-definite form in s(A) := (s(a), s(b), s(c))’. We
now write
Haa %Hab l‘E[ac
H(A) = S(A)I %Hab be §Hbc S(A) .
§Hac %Hbc Hcc

The matrix is singular, because clearly H(A) = Fi(A) = F5(A) = 0 whenever
s(a) = s(b) = s(c). To prove positive semi-definiteness, by Sylvester’s crite-
rion it hence suffices to show that the diagonal element H,, > 0 and that the
principal 2-by-2 minor determinant H,, Hpp — %Hgb > 0. Using the definitions,
together with the properties of PL,, (w), a technical (but quite tedious) algebraic
derivation (see Appendix [A] for details) gives

4es(a)+s(b)+s(c)
Hy,, = . (4.10)
(es(a) —+ es(b))(es(a) —+ es(c))(es(a) + es(b) —+ es(c))
Similarly, by symmetry, Hp, = des () H D)) From a

(€5 ®) tes(@) (=B fe5(0)) (e5(@) f e fes(@)) *
similar (yet more tedious) technical algebraic calculation which we omit, one
gets: (see Appendix [A] for details):

_ges(@)+s(b)+2s(c)
(es(a) —+ es(b))(es(a) —+ es(c))(es(b) + es(c))(es(a) + es(b) + es(c)) )
One now verifies, using ([@I0)-(@I1), the identity

Hab =

(4.11)

1 ) 16625(a)+2s(b)+2s(c)
Haabe_ZHab = (es(a) =+ es(b))Q(es(a) + es(c))(es(b) + es(c))(es(a) + es(b) + es(c))? :

It remains to notice, trivially, that H,, > 0 and HgoHpy, — %Hgb > 0 for all
possible values of s(a), s(b), s(¢). The proof of the lemma is concluded.

5 Bandit Algorithm based on Projection and
Decomposition

In this section, we propose another bandit algorithm OSMDRank, described in
Algorithm We will be working under the more restricted assumption that

11



Algorithm 2 Algorithm OSMDRank(n,n,v,T) (assuming [|s;||; <1 and 7, €
Q@ for all t)

1: given: ground set size n, positive parameters 7,y (y < 1), time horizon T

2: let 1 = 0 € Q,. (Note that z; = arg min aco, Fla))

3: fort=1,...,T do

4: let & = (1 —v)z: (Note that a; € Qn since the origin 0 and z; are in Qn
and Z; is a convex combination of them).

5. output m = Decomposition(Z;) (i.e., choose m; so that E[m] = Z:) and
suffer loss ¢; (= m}s¢)

6: let distribution D, over [—1, 1]™denote a mixture of the uniform distribu-
tion over the canonical basis with random sign (with probability +) and
a Radmacher distribution over {—1,1}" with parameter (1 4+ z;,)/2 for
each i =1,...,n (with probability 1 — )

7. estimate the loss vector §; = ¢, P, m;, where P, = E,p,[00]

8 letzy 1 =VF~ (F(z) —n8e)

12 enlstfiv),;ﬂ = Projection(,, 1) (that is, #¢41 = min, 4 Dp(z, Tip1))

sup||s¢]l1 <1 and sup ||7¢]|ec < 1. This in particular implies that |7;s¢| < 1, as
before. But now we shall achieve a better expected regret of O(nv/T).
We prefer, for reasons clarified shortly, to require that the actions 7, are

vertices of the rescaling Qn = P € [-1,1]™ of the symmetrized per-
mutahedron. That is, sup||7r,5||OO S 1 (and sup||stH1 < 1). This will al-
low us to work with the following standard regularizer F : [-1,1]" — R*:

F(z) = 3>"  (1+2)In(1+ )+ (1 —2)In(1 — x)). The regularizer F(z) is
the key to the OSMD (Online Stochastic Mirror Descent) algorithm of Bubeck
et al. [5], on which our algorithm is based. OSMD is a bandit algorithm over
the hypercube domain [—1,1]™ and a variant of Follow the Regularized Leader
(FTRL, e.g., [§]) for linear loss functions. To apply this algorithm, we need
a new projection and decomposition technique for the polytope Qn, as well as
a slightly modified perturbation step in line 4 of Algorithm Our algorithm
OSMDRank has the following two procedures:

1. Projection: Given a point x; € [—1,1]"™, return arg min, .4 Ap(ye, xt),
where Ap is the Bregman divergence defined wr.t. F, ie., Ap(y,z) =
F(y) — F(z) — VF(z)'(y — =) (also known as binary relative entropy)

2. Decomposition: Given y; € Qn from the the projection step, output a
random vertex 7y of @, such that E[f;] = y;.

The decomposition can be done using the technique of [I5], which runs in
O(nlogn) time. (To be precise, the method there was defined for the standard

4Note that the binary relative entropy is different from the relative entropy, where the
relative entropy is defined as Rel(p,q) = >/~ piln %for probability distributions p and ¢
over [n].
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permutahedron; The adjustments for the symmetrized version are trivial.) For

notational purposes, we define f := VF, and notice that f(z); = % 1n }J_r;z, and

-2
eyi —1 . .
Sir1- Our projection procedure

its inverse function f~! is given by f~1(y); =
is presented in Algorithm [Bl

Lemma 3. (i) Given q € [-1,1]", Algorithm[3 outputs the projection of q onto
Qn, with respect to the regularizer F. (ii) The time complexity of the algorithm
is O(nt(n) 4+ n?), where 7(n) is the time complexity to perform step 4.

skecth. Our projection algorithm is an extension of that in [I3] and our proof
follows a similar argument in [I3]. For simplicity, we assume that elements in ¢
are sorted in descending order, i.e., g1 > g2 > - -+ > q,. This can be achieved in
time O(nlogn) by sorting g. Then, it can be shown that projection preserves
the order in g by using Lemma 1 in [I3]. That is, the projection p of ¢ satisfies
P1 > pa > -+ > pp. So, if the conditions %Z;lej < E;Zl("TH —4), for
i=1,...,n— 1, are satisfied, then other inequality constraints are satisfied as
well since for any S C [n] such that [S| =4, 37, gp; < Z;‘:l pj. Therefore,
relevant constraints for projection onto Qn are only linearly many.

By following a similar argument in [13], we can show that the output p indeed
satisfies the KKT optimality conditions for projection, which completes the
proof of the first statement. Finally, the algorithm terminates in time O(n7(n)+
n?) since the number of iteration is at most n and each iteration takes O(n +
7(n)) time, which completes the second statement of the lemma. O O

Note that with respect to other regularizers (e.g. relative entropy or Eu-
clidean norm squared), a different projection scheme is possible in time O(n?)
(see [15, [13] for the details). It is an open question whether an O(n?) algorithm
can be devised with respect to the binary relative entropy we need here. In our
case, we need to solve a numerical optimization problem by, say, binary search.
Note that the time 7(n) is reasonably small: In fact, we can perform the binary
search over the domain [—1, 1] for each dimension i. Therefore, if the precision
is a fixed constant, the binary search ends in time O(n) for each dimension.
In that case, 7(n) is O(n?). We are ready to present our main result for this
section.

Theorem 4. For n = O(n\/1/T) and v = O(y/1/T), Algorithm OSMDRank
has expected regret O(nv/T) and running time O(n? + nt(n)) per step, where
7(n) is the time for a numerical optimization step depending on n. Additionally,
there exists an algorithm with the same expected regret bound and running time
with respect to the standard permutahedron (assuming ||s¢||1 < 1/n).

sketch. The algorithm OSMDRank is a modification of OSMD for the hypercube
[—1,1]™ obtained by adding (1) a projection step and (2) a decomposition step.
Standard techniques show that adding the projection step does not increase
the expected regret bound (see, e.g., chapters 5 and 7 on OMD and OSMD of
Bubeck’s lecture notes [4]). The key facts are: (i) A variant of Theorem 2 of [5]
(regret bound of OSMD) holds for OSMD with Projection, (ii) E[m:] = (1—7)a4,

13



Algorithm 3 Projection onto Qn

1: given (q1,...,q,) € [—1,1]" satisfying ¢1 > g2 > -+ > qp. (This assumption
holds by renaming the indices, and reverting to their original names at the

end).
2: set 190 =0
3: fork=1,...,ndo
4: foreachi=1ir_1+1,...,n, set 5f = mingegr § subject to:

v -1 N _2 ntl _
Zj:ik,lﬂ 7 (f(g5) = 9) < n—1 Zj:ik,lJrl ( 2 ) :
5: 4} = argmaxXi.;, ,<i<n 65. In case of multiple minimizers, choose largest
as 1.

6: set pj:fil(f(qj)—(szkk) for j =igp—1+1,...,10
7. if i, = n, then break

8: end for

9: return (p1,...,pn)

and (iii) The estimated loss is the same one used in OSMD for the hypercube
[—1,1]™ . Once these three conditions are satisfied, we can prove a regret bound
of OSMDRank by following the proof of Theorem 5 in Bubeck et al. [5]. In
addition, the running time of OSMD per trial is O(n) [5]. Combining Lemma Bl
for the projection and the analysis of the decomposition from [15], the proof
of the first statement is concluded. The statement related to the standard
permutahedron holds based on the affine transformation between the standard
permutahedron and Qn O O

6 Future Work

The main open question is whether there is an algorithm of expected regret
O(nv/T) and time O(n?) in the setting of Section @l Another interesting line
of research is to study other ranking polytopes. For example, given any strictly
monotonically increasing function f : R — R we can consider as an action set

F7(S), defined as £ (S) = {(F(x(1), F(7(2)), ... f(x(n) : 7 € Sul}.
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A Derivations in proof of Lemma
By definition, and then by applying the properties of the distribution PL,, (w),

Hyo=pla<bha=<clw)+pb<arc=<alw)—plb=<aia=<clw)—plc=<aAa=<bw)
— [p(a < blw)p(a < cw) + p(b < ajw)p(c < alw) — p(a < blw)p(c < alw)

—pla < clw)p(b < a|w)] (A.1)
es(a)
pla<bna=<clw) = es(a) 4 es(b) 4 es(c) 42
b=<aA _ s(0) e5(e) es(©) es®
pb=ane=alw) = o @ @ T @ T @ § o 1 @ o) 1 oD
(A.3)
5(0) es(@)
plb<aANa=<clw)= es(a) + es(b) 4 es(e) esla) 4 esle) 4
es(0) es(@)
plc<aAa=<bw)= (8.5

es(a) + es(b) + es(c) es(a) + es(b)

Plugging (A2)-(A.5) in (AJ) and simplifying results in ({I0). One now verifies:

Hy=[pla<cAb=<clw)+plc<ahc<bw)—3pla<cAc=<bw)—3pb=<cAc=<alw)
— [=p(a < bJw)p(a < cjw) — p(b < alw)p(c < alw) + p(a < blw)p(c < a|w)

+ p(a < blw)p(a < clw) + p(a < blw)p(b < clw) + p(b < alw)p(c < blw)
—p(b < alw)p(b < clw) — p(a < blw)p(c < blw) + p(a < blw)p(b < c|w)
+p(b < alw)p(c < blw) — p(b < alw)p(b < clw) — p(a < blw)p(c < blw

= =

)p( ) —p( )p( ) —p(
—p(a < c|lw)p(b < cJw) — p(c < alw)p(c < blw) 4+ p(a < cJw)p(c < blw
+p(e < alw)p(b < clw)]

Again using identities (A.2)-([A3) and simplifying, gives ({11
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