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Testing Piecewise Functions

Steve Hanneke, Liu Yang

Abstract

This work explores the query complexity of property testing for general piecewise
functions on the real line, in the active and passive property testing settings. The
results are proven under an abstract zero-measure crossings condition, which has
as special cases piecewise constant functions and piecewise polynomial functions.
We find that, in the active testing setting, the query complexity of testing
general piecewise functions is independent of the number of pieces. We also
identify the optimal dependence on the number of pieces in the query complexity
of passive testing in the special case of piecewise constant functions.

Keywords: Property testing; Active testing; Learning theory; Real-valued
functions

1. Introduction

Property testing is a well-studied class of problems, in which an algorithm
must decide (with high success probability) from limited observations of some
object whether a given property is satisfied, or whether the object is in fact far
from all objects with the property [1, 2]. In many property testing problems,
it is natural to describe the object as a function f mapping some instance
space X to a value space Y, and the property as a family of functions F . The
property testing problem is then equivalently stated as determining whether
f ∈ F or whether f is far from all elements of F , for a natural notion of distance.
In this setting, the observations are simply (x, f(x)) points. The setting has
been studied in several variations, depending on how the x observation points
are selected (e.g., at random or by the algorithm). In particular, this type of
property testing problem is closely related to the PAC learning model of [3].1

One of the main theoretical questions in the study of property testing is how
many observations are needed by the optimal tester, a quantity known as the
query complexity of the testing problem. In the above context, this question is
most interesting when one can show that the query complexity of the testing
problem is significantly smaller than the query complexity of the corresponding
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PAC learning problem [4, 5, 6, 7, 8, 9].
The property testing literature is by now quite broad, and includes testing

algorithms and characterizations of their query complexities for many function
classes F ; see [10, 11, 12] for introductions to this literature and some of its key
techniques. However, nearly all of the work on the above type of property testing
problem has focused on the special case of binary functions, where |Y| = 2, or
in some cases with Y a general finite field. In this article, we are interested in
the study of more general types of functions, including real-valued functions.
Previous works on testing real-valued functions include testers for whether f is
monotone [13, 14, 15], unate [16], or Lipschitz [15, 17]. In the present work, we
study a general problem of testing piecewise functions. Specifically, we consider
a scenario where X = R, and where the function class F can be described as
a k-piecewise function (for a given k ∈ N), where each piece is a function in a
given base class of functions H. Formally, defining t0 = −∞ and tk = ∞, for
any t1, . . . , tk−1 ∈ R with t1 ≤ · · · ≤ tk−1, and any h1, . . . , hk ∈ H, define (for
any x ∈ R)

f
(
x; {hi}ki=1, {ti}k−1

i=1

)
= hi(x) for the i such that ti−1 < x ≤ ti.

Then we consider classes F = Fk(H) defined as

Fk(H) =
{
f
(
·; {hi}ki=1, {ti}k−1

i=1

)
: h1, . . . , hk ∈ H, t1 ≤ · · · ≤ tk−1

}
.

In the results below, we will be particularly interested in the dependence on k in
the query complexity of the testing problem. To be clear, the values t1, . . . , tk−1

and functions h1, . . . , hk are all free parameters, with different choices of these
yielding different functions, all contained in Fk(H). Thus, in the testing prob-
lem (defined formally below), the algorithm may directly depend on k and H,
but in the case of f ∈ Fk(H) the specific values of t1, . . . , tk−1 and functions
h1, . . . , hk ∈ H specifying f are all considered as unknown.

In this work, our primary running example is the scenario where Y = R and
H is the set of degree-p polynomials : H = {x 7→∑p

i=0 αix
i : α0, . . . , αp ∈ R}, so

that Fk(H) is the set of k-piecewise degree-p polynomials. A further interesting
special case of this is when p = 0, in which case Fk(H) is the set of k-piecewise
constant functions. However, our general analysis is more abstract, and will
also apply to many other interesting function classes H.

Specifically, for the remainder of this article, we consider Y as an arbitrary
nonempty set (equipped with an appropriate σ-algebra), and H as an arbi-
trary nonempty set of measurable functions X → Y satisfying the following

1In the PAC (probably approximately correct) learning model proposed by Valiant [3] (and
previously by Vapnik and Chervonenkis [4]), it is assumed that f ∈ F , and an algorithm is

tasked with choosing any f̂ that is (with high probability) within distance ǫ of f , given access
to a finite number of (x, f(x)) pairs drawn at random (or in some variants, selected by the
algorithm).
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zero-measure crossings property:

∀h, h′ ∈ H, h 6= h′ =⇒ λ({x : h(x) = h′(x)}) = 0, (1)

where λ denotes the Lebesgue measure. It is well known that this property
is satisfied by polynomial functions: for any two polynomial functions h, h′ of
degree p, if they agree on a nonzero measure set of points, then we can find in
that set distinct points x1, . . . , xp+1 on which they agree, but since the values
on any p + 1 distinct points uniquely determine the polynomial function, it
must be that h = h′. Thus, the analysis below indeed applies to piecewise
polynomial functions as a special case. The zero-measure crossings property
is also satisfied by many other interesting function classes, such as shifted sine
functions {x 7→ sin(x+ t) : t ∈ R} or normal pdfs {x 7→ c · e−(x−t)2/2 : t ∈ R}.

The testing problem is defined as follows. Fix a value ǫ ∈ (0, 1) and a
probability measure P over X , and for any measurable f, g : X → Y, define
ρ(f, g) = P(x : f(x) 6= g(x)), the L0(P) (pseudo)distance between f and g.
Further define ρ(f,F) = infg∈F ρ(f, g), the distance of f from a set of functions
F . In the active testing protocol, the algorithm samples a number s of iid
unlabeled examples from P , and then interactively queries for the f values at
points of its choosing from among these: that is, it chooses one of the s examples
x, queries for its value f(x), then selects another of the s examples x′, queries
for its value f(x′), and so on, until it eventually halts and produces a decision
of either Accept or Reject. The following definition is taken from [18].

Definition 1. An s-sample q-query ǫ-tester for F under the distribution P is
a randomized algorithm A that draws a sample S of size at most s iid from P,
sequentially queries for the value of f on at most q points of S, and satisfies the
following properties (regardless of the identity of f):

• if f ∈ F , it decides Accept with probability at least 2
3 .

• if ρ(f,F) ≥ ǫ, it decides Reject with probability at least 2
3 .

We will be interested in identifying values of q for which there exist s-sample
q-query ǫ-testers for F , known as the query complexity; we are particularly in-
terested in this when s is polynomial in k, 1/ǫ, and the complexity of H (defined
below). In the special case that q = s, so that the algorithm queries the values
at all of the points in S, the algorithm is called a passive tester [2], whereas in
the general case of q ≤ s it is referred to as an active tester [18] (in analogy to
the setting of active learning studied in the machine learning literature [8, 19]).

Remark on general distributions P: For simplicity, we will focus on P =
Uniform(0, 1) in this work. However, all of our results easily generalize to all
distributions P over R absolutely continuous with respect to Lebesgue measure.
Specifically, [18] discuss a simple technique which produces this generalization,
by using the empirical distribution to effectively rescale the real line so that the
distribution appears approximately uniform. One can show that this technique
is also applicable in the present more-general context as well. The rescaling
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effectively changes the function class H, but its graph dimension (defined be-
low) remains unchanged, and the zero-measure crossings property is preserved
due to P being absolutely continuous. In the special case of testing piecewise
constant functions, even the restriction to absolutely continuous distributions
can be removed, as then the zero-measure crossings property always holds. The
interested reader is referred to [18] for the details of this rescaling technique.

1.1. Related Work: Testing Unions of Intervals

The work of [18] explored the query complexity of testing in both the ac-
tive and passive models, for a variety of function classes, but all under the
restriction Y = {0, 1}. Of the results of [18], the most relevant to the present
work are results on the query complexity of testing unions of intervals : x 7→
I [x ∈ ⋃n

i=1[t2i−1, t2i]], for a fixed n ∈ N, defined for all nondecreasing sequences
t1, . . . , t2n ∈ R∪{±∞}. They specifically find that the query complexity of test-
ing unions of intervals is O(1/ǫ4) — independent of n — in the active testing
setting, and is O(

√
n/ǫ5) in the passive testing setting, with an Ω(

√
n) lower

bound; these results strengthened an earlier result of Kearns and Ron [20].
Note that unions of intervals are a special case of piecewise constant functions,
and indeed the techniques we employ in constructing the tester below closely
parallel the analysis of unions of intervals by [18]. However, to extend that
approach to general piecewise functions — even piecewise constant functions —
requires careful consideration about what the appropriate generalization of the
technique should be. In particular, the original proof involved a self-correction
step, wherein f is replaced by a smoothed function, which is then rounded again
to a binary-valued function. This kind of smoothing and rounding interpreta-
tion no longer makes sense for general Y-valued functions. We are therefore
required to re-interpret these steps in the more general setting, where we find
that they can be reformulated as voting on the function value at each point
(rather than rounding a smoothed version of f). In the end, the active tester
below for general Fk(H) functions has significant differences compared to the
original tester for unions of intervals from [18]. Nevertheless, we do recover the
dependences on k established by [18] for active and passive testing of unions of
intervals, as special cases of our results on testing piecewise constant functions.
Our results on testing general piecewise functions further extend this beyond
piecewise constant functions, and require the introduction of additional uniform
concentration arguments from VC theory. These considerations about general
piecewise functions also lead us to an appropriate generalization of the notion
of noise sensitivity, a quantity commonly appearing in the property testing lit-
erature for binary-valued functions [18].

It is also worth mentioning that, for binary-valued functions in higher di-
mensions Rn, the noise sensitivity has also been used to test for the property
that the decision boundary of f has low surface area [21]. For simplicity, the
present work focuses on the one-dimensional setting, leaving for future work the
appropriate generalization of these results to higher-dimensional spaces.
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1.2. The Graph Dimension

For any set Z, any collection C of subsets of Z, and any m ∈ N ∪ {0},
following [22], we say C shatters a set {z1, . . . , zm} ⊆ Z if

|{C ∩ {z1, . . . , zm} : C ∈ C}| = 2m.

The VC dimension of C is then defined as the largest integer m for which
∃{z1, . . . , zm} ⊆ Z shattered by C, or as infinity if no such largest m exists.

The VC dimension is an important quantity in characterizing the optimal
sample complexity of statistical learning for binary classification. It is also useful
in our present context, for the purpose of defining a related complexity measure
for general functions. Specifically, the graph dimension of H, denoted d below,
is defined as the VC dimension of the collection {{(x, h(x)) : x ∈ X} : h ∈ H}
(where Z = X ×Y in this context). For the remainder of this article, we restrict
to the case 0 < d < ∞, but otherwise we can consider H as a completely
arbitrary set of functions (subject to (1)).

To continue the examples from above, we note that in the case of |Y| ≥ 2 and
H as the set of constant functions (so that Fk(H) is the k-piecewise constant
functions) one can easily show d = 1. Moreover, in the case of Y = R and H
as the set of degree-p real-valued polynomial functions (so that Fk(H) is the
k-piecewise degree-p polynomial functions), it follows from basic algebra that
d = p+ 1, since any polynomial f is uniquely determined by any p+ 1 distinct
(x, f(x)) pairs (so that d ≤ p + 1), and any p + 1 pairs (x, y) (with distinct x
components) can be fit by a polynomial (so that d ≥ p + 1, by choosing p + 1
distinct x points, each with two corresponding y values, and all 2p+1 choices of
which y value to use for each point can be fit by a degree-p polynomial).

The results below will be expressed in terms of k, ǫ, and d. The dependence
of the query complexity on each of these is an important topic to consider.
However, in the present work, we primarily focus on identifying the optimal
dependence on k. The optimal joint dependence on k, ǫ, and the complexity of
H is a problem we leave for future work.

1.3. Main Results

We are now ready to state our main results. We present their proofs in
the sections below. The first result is for active testing. Its proof in Section 3
below is based on an analysis of a novel generalization of the notion of the noise
sensitivity of a function.

Theorem 1. For any ǫ ∈ (0, 1/2), there exists an s-sample q-query ǫ-tester
for Fk(H) under the distribution Uniform(0, 1), with s = O

(
dk
ǫ6 ln

(
1
ǫ

))
and q =

O
(

d
ǫ8 ln

(
1
ǫ

))
.

In particular, this immediately implies that the optimal dependence on k in
the query complexity of active testing is O(1). This independence from k in the
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query complexity is the main significance of this result.2

Our second result is for both active and passive testing, and applies specifi-
cally to the special case of piecewise constant functions (for any Y space). The
upper bound in this result is again based on a generalization of the notion of
the noise sensitivity of a function, and recovers as a special case the result of
[18] for unions of intervals. The lower bound is essentially already known, as it
was previously established by [20, 18] for unions of intervals, which are a special
case of piecewise constant functions. The proof of the lower bound for general
piecewise constant functions follows immediately from this via a simple reduc-
tion argument. The complete proof of this theorem is presented in Section 4
below.

Theorem 2. If H is the set of constant functions, then for any ǫ ∈ (0, 1/2),
there exists an s-sample q-query ǫ-tester for Fk(H) under the distribution

Uniform(0, 1), with s = O
(√

k
ǫ5

)
, and with q = O

(
1
ǫ4

)
for active testing, and

q = s for passive testing.
Moreover, in this case, if ǫ ∈ (0, 1/8), every s-sample s-query ǫ-tester for

Fk(H) under the distribution Uniform(0, 1) has s = Ω
(√

k
)
.

In particular, this implies that the optimal query complexity of passive test-
ing of k-piecewise constant functions has dependence

√
k on the number of pieces

k. It is also straightforward to extend this lower bound to k-piecewise degree-p
polynomial functions. However, our results below do not imply an upper bound
with

√
k dependence on k for passive testing of this larger function class, and

as such identifying the optimal query complexity of passive testing for piece-
wise degree-p polynomials (and for general classes H satisfying (1)) remains an
interesting open problem.

2. A Generalization of Noise Sensitivity

Here we develop a generalization of the definition of the noise sensitivity
used by [18] in their analysis of testing unions of intervals; this will be the
key quantity in the proofs of the above theorems. Throughout this section,
we let P be the Lebesgue measure restricted to [0, 1]: i.e., the distribution
Uniform(0, 1). For any x ∈ X and y ∈ Y, define H(x,y) = {h ∈ H : h(x) = y}.
Let x ∼ Uniform(0, 1), and conditioned on x, let x′ ∼ Uniform(x − δ, x + δ).

2Since the dependence on ǫ in this result is greater in the bound on q than in s (due to
some over-counting in the bound on q when ǫ is small), we should note that this result also
implies the existence of an s-sample min{q, s}-query ǫ-tester, since we could simply query all
s samples and then simulate the interaction with the oracle internally. This becomes relevant
for ǫ ≪ 1/

√
k. That said, we describe a simple testing strategy at the end of Section 3 which

obtains s = q = O
(

dk ln(k)
ǫ

ln
(

1
ǫ

)

)

, which is superior in this range ǫ ≪ 1/
√
k anyway.
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Define the instantaneous noise sensitivity at x as3

NSδ(f, x;H) = inf
h∈H(x,f(x))

P(h(x′) 6= f(x′)|x),

or in the event that H(x,f(x)) is empty, define NSδ(f, x;H) = 1. Then define the
noise sensitivity as

NSδ(f ;H) = E[NSδ(f, x;H)] =

∫ 1

0

NSδ(f, z;H)dz.

The instantaneous noise sensitivity essentially measures the ability of func-
tions from H to match the behavior of f in a local neighborhood around a given
point x, and the noise sensitivity is simply the average of this over x.

We have the following two key lemmas on this definition of noise sensitivity.
Their statements and proofs directly parallel the analysis of unions of intervals
by [18], but with a few important changes (particularly in the proof of Lemma 2)
to generalize the arguments to general piecewise functions.

Lemma 1. For any δ > 0, ∀f ∈ Fk(H), NSδ(f ;H) ≤ (k − 1) δ2 .

Proof. For f ∈ Fk(H), let h1, . . . , hk ∈ H and t1, . . . , tk−1 ∈ R be such that
f(·) = f

(
·; {hi}ki=1, {ti}k−1

i=1

)
. Thus, for any i ≤ k and x ∈ (ti−1, ti], and any

y ∈ R, we have hi(x) = f(x), and we would have hi(y) 6= f(y) only if x and y
are separated by one of the boundaries ti−1 or ti; in particular, x ≤ ti ≤ y or
y ≤ ti−1 ≤ x.

Let x ∼ Uniform(0, 1) and (conditioned on x) y ∼ Uniform(x − δ, x + δ).
Denoting by i(x) the i with ti−1 < x ≤ ti, we have

NSδ(f, x;H) ≤ P(hi(x)(y) 6= f(y)|x) ≤ P(x ≤ ti(x) ≤ y|x)+P(y ≤ ti(x)−1 ≤ x|x),

so that

NSδ(f ;H) ≤ P(x ≤ ti(x) ≤ y) + P(y ≤ ti(x)−1 ≤ x)

≤
k−1∑

i=1

(P(x ≤ ti ≤ y) + P(y ≤ ti ≤ x)) ,

where the last inequality uses the facts that P(tk ≤ y) = 0 and P(y ≤ t0) = 0.
For any fixed t ∈ R,

P(x ≤ t ≤ y) ≤
∫ δ

0

Py′∼Uniform(t−z−δ,t−z+δ)[y
′ ≥ t]dz =

∫ δ

0

δ − z

2δ
dz =

δ

4
,

noting that, if t is outside [δ, 1], then the probability can only become smaller.

3The original definition of [18] essentially defined NSδ(f, x) = P(f(x′) 6= f(x)|x). The
involvement of H in our generalization of the definition will be crucial to the results below.
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Similarly, any t ∈ R has P(y ≤ t ≤ x) ≤ δ
4 , again noting that the probability

only becomes smaller if t is outside [0, 1− δ].
Combining these inequalities with the above bound on NSδ(f ;H) yields

NSδ(f ;H) ≤ (k − 1) δ2 , as claimed.

Lemma 2. Fix any ǫ ∈ (0, 1/2) and let δ = ǫ2

32k . Let f : X → Y be any function

with NSδ(f ;H) ≤ (k − 1) δ2 (1 +
ǫ
4 ). Then ρ(f,Fk(H)) < ǫ.

Proof. Let k′ = ⌊1 + (k − 1)(1 + ǫ
2 )⌋. We first argue that f is ǫ

2 -close to a
function in Fk′(H), and then we argue that every function in Fk′(H) is ǫ

2 -close
to Fk(H).

For each h ∈ H, consider the function fh
δ : [0, 1] → [0, 1] defined by

fh
δ (x) =

1

2δ

∫ x+δ

x−δ

I[f(t) = h(t)]dt.

The function fh
δ is the convolution of t 7→ I[f(t) = h(t)] and the uniform

kernel φ : R → [0, 1] defined by φ(x) = 1
2δ I[|x| ≤ δ]. Note that, since any

distinct h, h′ ∈ H have
∫ 1

0 I[h(t) = h′(t)]dt = 0 (by the zero-measure crossings

assumption (1)), the sum (over h ∈ H) of all fh
δ (x) values is at most 1. In

particular, at most one h ∈ H has fh
δ (x) > 1/2 for any x.

Fix τ = 4
ǫNSδ(f ;H). Since NSδ(f ;H) ≤ (k − 1) δ2 (1 + ǫ

4 ) < ǫ2

32 , we have
τ < 1/8. For each x, let hx = argmaxh∈H fh

δ (x) (breaking ties arbitrarily);
since the sum (over h ∈ H) of fh

δ (x) values is finite (bounded by 1), it follows
that the value suph∈H fh

δ (x) is actually realized by some fh
δ (x) with h ∈ H, so

that hx is well-defined. Define a function g∗ : [0, 1] → Y ∪{∗} by g∗(x) = hx(x)
if fhx

δ (x) ≥ 1 − τ , and g∗(x) = ∗ otherwise. Next, define a function g : R → Y
by setting, for any x ∈ [0, 1], g(x) = hz(x) where z is the largest value in [0, x]
for which g∗(z) 6= ∗, and let gx = hz; if no such z exists, take z minimal in [x, 1]
with g∗(z) 6= ∗ instead; if that also does not exist, we can define g(x) and gx
arbitrarily, as this case will not come up in our present context. As we discuss
below, fhx

δ (x) = suph∈H fh
δ (x) is continuous in x, which entails that at least

one of these two possible z values will exist if g∗ is not everywhere equal ∗ in
[0, 1]. For completeness, also define, for any x < 0, g(x) = g0(x), and for any
x > 1, g(x) = g1(x).

Now note that

ρ(f, g) = P(x : f(x) 6= g(x)) ≤ P(x : g∗(x) = ∗) + P(x : ∗ 6= g∗(x) 6= f(x))

= P
(
x : sup

h∈H
fh
δ (x) < 1− τ

)

+ P
(
x : H \H(x,f(x)) 6= ∅, sup

h∈H\H(x,f(x))

fh
δ (x) ≥ 1− τ

)
. (2)

Because τ < 1/2, at most one h can have fh
δ (x) ≥ 1− τ (as discussed above), so

that if the event suph∈H fh
δ (x) < 1 − τ holds or the event H \ H(x,f(x)) 6= ∅

8



and suph∈H\H(x,f(x))
fh
δ (x) ≥ 1 − τ holds, then either way we would have

suph∈H(x,f(x))
fh
δ (s) < 1− τ (or H(x,f(x)) = ∅); thus, since the two events imply-

ing this are disjoint, the sum of probabilities in (2) is at most

P
(
x : H(x,f(x)) = ∅ or sup

h∈H(x,f(x))

fh
δ (x) < 1− τ

)
.

Now observe that NSδ(f, x;H) = 1 − suph∈H(x,f(x))
fh
δ (x) if H(x,f(x)) 6= ∅, and

NSδ(f, x;H) = 1 if H(x,f(x)) = ∅. Together with Markov’s inequality, this
implies that

P
(
x : H(x,f(x)) = ∅ or sup

h∈H(x,f(x))

fh
δ (x) < 1− τ

)

= P(x : NSδ(f, x;H) > τ) <
NSδ(f ;H)

τ
=

ǫ

4
.

Thus, we have established that ρ(f, g) ≤ ǫ
4 .

Next we show that g ∈ Fm+1(H) for some nonnegative integer m ≤
(k− 1)(1+ ǫ

2 ). Since each fh
δ is the convolution of I[f(·) = h(·)] with a uniform

kernel of width 2δ, it is 1
2δ -Lipschitz smooth. Also recall that τ < 1/2, and the

sum of all fh
δ (x) values for a given x is at most 1. Thus, if we consider any two

points x, z ∈ [0, 1] with g∗(x) 6= ∗, g∗(z) 6= ∗, x < z, and hx 6= hz, then it must
be that |x− z| ≥ 2δ(1− 2τ), and that there is at least one point t ∈ (x, z) with
suph∈H fh

δ (t) = 1/2. Since each fh
δ is 1

2δ -Lipschitz, so is suph∈H fh
δ , so that we

have

∫ t+2δ( 1
2−τ)

t−2δ( 1
2−τ)

sup
h∈H

fh
δ (s)ds ≤ 2

∫ 2δ( 1
2−τ)

0

(
1

2
+

s

2δ

)
ds = 2δ

(
1

2
− τ

)(
3

2
− τ

)
.

Therefore,

∫ z

x

NSδ(f, s;H)ds ≥
∫ z

x

(
1− sup

h∈H
fh
δ (s)

)
ds

≥ (z − x)− 2δ

(
1

2
− τ

)(
3

2
− τ

)
≥ 2δ (1− 2τ)− 2δ

(
1

2
− τ

)(
3

2
− τ

)

= 2δ

(
1

2
− τ

)(
1

2
+ τ

)
= 2δ

(
1

4
− τ2

)
.

Since any x with g∗(x) 6= ∗ has g(x) = g∗(x), and since gt is extrapolated
from the left in ∗ regions of g∗ (aside from the case of an interval of ∗ values
including 0, where it is extrapolated from the right), for every point x > 0 for
which there exist arbitrarily close points y having gy 6= gx, we must have that
g∗(x) 6= ∗, and that there is a point z < x such that g∗(z) 6= ∗ and such that
every t ∈ (z, x) has gt = gz 6= gx. Combined with the above, we have that

9



∫ x

z
NSδ(f, s;H)ds ≥ 2δ(14 −τ2). Altogether, if g has m such “transition” points,

then

NSδ(f ;H) =

∫ 1

0

NSδ(f, s;H)ds ≥ m2δ

(
1

4
− τ2

)
.

By assumption, NSδ(f ;H) ≤ (k − 1) δ2 (1 +
ǫ
4 ). Therefore, we must have

m ≤ (k − 1)δ(1 + ǫ
4 )

4δ(14 − τ2)
≤ (k − 1)

1 + ǫ
4

1− 4τ2
≤ (k − 1)

1 + ǫ
4

(1− 2τ)2
≤ (k − 1)

(
1 +

ǫ

2

)
,

since τ < 1/8. In particular, this means g ∈ Fm+1(H) for an m ≤ (k−1)(1+ ǫ
2 ),

as claimed.

As a second step in the proof, we show that for any nonnegative integer
m ≤ (k−1)(1+ ǫ

2 ), any function g′ ∈ Fm+1(H) is ǫ
2 -close to a function in Fk(H).

Let t1, . . . , tm ∈ R with t1 ≤ · · · ≤ tm, and h1, . . . , hm+1 ∈ H, be such that
g′(·) = f(·; {hi}m+1

i=1 , {ti}mi=1). For each i ∈ {1, . . . ,m+ 1}, let ℓi = P((ti−1, ti])
denote the probability mass in the ith region. In particular, ℓ1+ · · ·+ ℓm+1 = 1,
so there must be a set S ⊆ {1, . . . ,m + 1} with |S| = (m + 1) − k ≤ (k − 1) ǫ2
such that ∑

i∈S

ℓi ≤
(m+ 1)− k

(m+ 1)
≤ (k − 1)ǫ/2

1 + (k − 1)(1 + ǫ/2)
<

ǫ

2
.

Define a function f ′ : X → Y such that, for each i ∈ {1, . . . ,m + 1} and
x ∈ (ti−1, ti], we set f ′(x) = hj(x) for the j ∈ {1, . . . ,m + 1} \ S of smallest
|i − j| (breaking ties to favor smaller j). The function f ′ is then contained in
Fk(H), and has f ′(x) = g′(x) for every x ∈ (ti−1, ti] with i /∈ S, and hence
ρ(g′, f ′) < ǫ

2 . This completes the proof, since taking g′ = g yields ρ(f, f ′) ≤
ρ(f, g) + ρ(g, f ′) < ǫ.

3. Active Testing

We can use the above lemmas to construct an active tester for Fk(H) as

follows. Fix any ǫ ∈ (0, 1/2). Let m =
⌈

c
ǫ4

⌉
, ℓ =

⌈
c′d
ǫ4 ln

(
c′′

ǫ

)⌉
, δ = ǫ2

32k , and

s = m +
⌈
max

{
2ℓ
δ ,

8
δ ln(12m)

}⌉
, for appropriate choices of numerical constants

c, c′, c′′ ≥ 1 from the analysis below. Sample s points x′′
1 , . . . , x

′′
s independent

Uniform(0, 1). Define xi = x′′
i for each i ≤ m. For each i ≤ m, denoting ti0 = m,

for each j ∈ {1, . . . , ℓ}, let tij = min{t ∈ {ti(j−1)+1, . . . , s} : x′′
t ∈ (xi−δ, xi+δ)}

if such a value exists (if it does not exist, the tester may return any response,
as this is a failure case), and define x′

ij = x′′
tij . Thus, the random variables

x1, . . . , xm are iid Uniform(0, 1) and, given xi, the random variables x′
i1, . . . , x

′
iℓ

are conditionally iid Uniform((xi−δ, xi+δ)∩ [0, 1]) (given xi and the event that
they exist). The tester requests the f values for all m(ℓ+ 1) of these points xi,

10



x′
ij , i ∈ {1, . . . ,m}, j ∈ {1, . . . , ℓ}. It then calculates, for each i ≤ m,

N̂Sδ(f, xi;H) = min
h∈H(xi,f(xi))

1

ℓ

ℓ∑

j=1

I[h(x′
ij) 6= f(x′

ij)],

or N̂Sδ(f, xi;H) = 1 in the event that H(xi,f(xi)) is empty. Then define

N̂Sδ(f ;H) =
1

m

m∑

i=1

N̂Sδ(f, xi;H).

Lemma 3. If k ≥ 80/ǫ, then for appropriate choices of numerical constants
c, c′, c′′, for any measurable function f : X → Y, with probability at least 2/3,
all of the above x′

ij points exist, and the following two claims hold:

NSδ(f ;H) ≤ (k − 1)
δ

2
=⇒ N̂Sδ(f ;H) ≤ (k − 1)

δ

2

(
1 +

ǫ

8

)

NSδ(f ;H) > (k − 1)
δ

2

(
1 +

ǫ

4

)
=⇒ N̂Sδ(f ;H) > (k − 1)

δ

2

(
1 +

ǫ

8

)
.

Proof. For each i ≤ m, any t ∈ {m + 1, . . . , s} has conditional probability
(given xi) at least δ of having x′′

t ∈ (xi − δ, xi + δ). Therefore, by a Chernoff
bound (applied under the conditional distribution given xi) and the law of total
probability, with probability at least 1 − exp{−δ(s − m)/8}, the number of
t ∈ {m+1, . . . , s} with x′′

t ∈ (xi− δ, xi+ δ) is at least (1/2)δ(s−m) ≥ ℓ. By the
union bound, this holds simultaneously for all i ≤ m with probability at least
1−m exp{−δ(s−m)/8} ≥ 11/12, and on this event all of the x′

ij points exist.
The VC dimension of the collection of sets {{(x, h(x)) : x ∈ X} : h ∈ H} is

d (by definition of d). Therefore, denoting

Aℓ,m = 4
d ln(2eℓ/d) + ln(96m)

ℓ
,

applying standard VC “relative deviation” bounds [4] (see Theorem 5.1 of
[23]), to obtain a concentration inequality for the frequency of (x′

ij , f(x
′
ij)) ∈

{(x, h(x)) : x ∈ X}, holding for all h ∈ H, we obtain that, for each i ≤ m, with
probability at least 1− 1/(12m), if the points x′

ij exist, then every h ∈ H has

1

ℓ

ℓ∑

j=1

I[h(x′
ij) 6= f(x′

ij)] ≤ P(h(x′
i1) 6= f(x′

i1)|xi)

+
√
P(h(x′

i1) 6= f(x′
i1)|xi)Aℓ,m +Aℓ,m (3)

11



and

1

ℓ

ℓ∑

j=1

I[h(x′
ij) 6= f(x′

ij)] ≥ P(h(x′
i1) 6= f(x′

i1)|xi)

−
√
P(h(x′

i1) 6= f(x′
i1)|xi)Aℓ,m. (4)

The union bound implies this is true simultaneously for all i ≤ m with proba-
bility at least 11/12.

Furthermore, for any xi ∈ (δ, 1− δ), the conditional distribution of x′
i1 given

xi is Uniform(xi − δ, xi + δ), so that

NSδ(f, xi;H) = inf
h∈H(xi,f(xi))

P(h(x′
i1) 6= f(x′

i1)|xi)

in the case H(xi,f(xi)) 6= ∅. Thus, on the above events, for each i ≤ m with
xi ∈ (δ, 1 − δ) and H(xi,f(xi)) 6= ∅, taking the infimum over h ∈ H(xi,f(xi)) on
both sides of (3) yields

N̂Sδ(f, xi;H) ≤ NSδ(f, xi;H) +
√
NSδ(f, xi;H)Aℓ,m +Aℓ,m. (5)

For the other inequality, note that the left hand side of (4) is nonnegative, so
that the inequality remains valid if we include a maximum with 0 on the right
hand side. Then noting that x 7→ x − max

{√
xAℓ,m, 0

}
is nondecreasing on

[0, 1], we obtain, on the above events, for each i ≤ m with xi ∈ (δ, 1 − δ) and
H(xi,f(xi)) 6= ∅,

N̂Sδ(f, xi;H) ≥ NSδ(f, xi;H)−
√
NSδ(f, xi;H)Aℓ,m. (6)

Both of these inequalities are trivially also satisfied in the case H(xi,f(xi)) = ∅.
Furthermore, since k ≥ 80/ǫ, we have 2δ ≤ ǫ3

16·80 , so that a Chernoff bound
implies that, for an appropriately large choice of the numerical constant c, with
probability at least 11/12,

1

m

m∑

i=1

I[xi /∈ (δ, 1− δ)] ≤ ǫ3

16 · 65 .

Furthermore, note that since k ≥ 80/ǫ, we have ǫ3

16·65 = (k − 1) δ2
k

k−1
64ǫ

16·65 <

(k − 1) δ2
ǫ
16 , so that on the above event,

1

m

m∑

i=1

I[xi /∈ (δ, 1− δ)] < (k − 1)
δ

2

ǫ

16
. (7)

Additionally, since k ≥ 80/ǫ, we have (k−1) δ2 > ǫ2

65 , so thatm > c/65
(k−1)(δ/2)ǫ2 ,

12



which clearly also means m > c/65
(k−1)(δ/2)(1+ǫ/4)ǫ2 . Therefore, another applica-

tion of a Chernoff bound implies that, for an appropriately large choice of the
numerical constant c, with probability at least 11/12,

NSδ(f ;H) ≤ (k − 1)
δ

2
=⇒ 1

m

m∑

i=1

NSδ(f, xi;H) ≤ (k − 1)
δ

2

(
1 +

ǫ

33

)
(8)

and

NSδ(f ;H) > (k − 1)
δ

2

(
1 +

ǫ

4

)

=⇒ 1

m

m∑

i=1

NSδ(f, xi;H) > (k−1)
δ

2

(
1 +

ǫ

4

)(
1− ǫ

33

)
≥ (k−1)

δ

2

(
1 +

7

33
ǫ

)
.

(9)

The union bound implies that all four of the above events hold simultane-
ously with probability at least 2/3. Let us suppose all of these events indeed
hold. In this case, if NSδ(f ;H) ≤ (k − 1) δ2 , then (5) and Jensen’s inequality
imply

N̂Sδ(f ;H)

≤ 1

m

m∑

i=1

(
NSδ(f, xi;H)+

√
NSδ(f, xi;H)Aℓ,m+Aℓ,m

)
+

1

m

m∑

i=1

I[xi /∈ (δ, 1− δ)]

≤
(

1

m

m∑

i=1

NSδ(f, xi;H)

)
+

√√√√
(

1

m

m∑

i=1

NSδ(f, xi;H)

)
Aℓ,m

+Aℓ,m +
1

m

m∑

i=1

I[xi /∈ (δ, 1− δ)],

and (7) and (8) imply this is at most

(k − 1)
δ

2

(
1 +

ǫ

33

)
+

√
(k − 1)

δ

2

(
1 +

ǫ

33

)
Aℓ,m +Aℓ,m + (k − 1)

δ

2

ǫ

16
.

For appropriately large choices of the numerical constants c′, c′′, we can obtain

Aℓ,m ≤ ǫ4

65·68·33 ≤ (k − 1) δ2
ǫ2

68·33 , so that the above expression is at most

(k − 1)
δ

2

(
1 +

ǫ

33
+

√(
1 +

ǫ

33

) ǫ2

68 · 33 +
ǫ2

68 · 33 +
ǫ

16

)
≤ (k − 1)

δ

2

(
1 +

ǫ

8

)
,

which verifies the first claimed implication from the lemma. On the other hand,
for the second implication, if NSδ(f ;H) > (k−1) δ2

(
1 + ǫ

4

)
, then (6) and Jensen’s

13



inequality imply

N̂Sδ(f ;H)

≥ 1

m

m∑

i=1

(
NSδ(f, xi;H)−

√
NSδ(f, xi;H)Aℓ,m

)
− 1

m

m∑

i=1

I[xi /∈ (δ, 1− δ)]

≥
(

1

m

m∑

i=1

NSδ(f, xi;H)

)
−

√√√√
(

1

m

m∑

i=1

NSδ(f, xi;H)

)
Aℓ,m

− 1

m

m∑

i=1

I[xi /∈ (δ, 1− δ)],

and (7) implies this is greater than

(
1

m

m∑

i=1

NSδ(f, xi;H)

)
−

√√√√
(

1

m

m∑

i=1

NSδ(f, xi;H)

)
Aℓ,m − (k − 1)

δ

2

ǫ

16
.

Now since our choices of constants c, c′, c′′ above imply Aℓ,m ≤ (k − 1) δ2
ǫ2

68·33 ≤
(k − 1) δ2

(
1 + 7

33 ǫ
)
, and since x 7→ x −

√
xAℓ,m is increasing for x ≥ Aℓ,m, (9)

implies the above expression is greater than

(k − 1)
δ

2

(
1 +

7

33
ǫ

)
−
√
(k − 1)

δ

2

(
1 +

7

33
ǫ

)
Aℓ,m − (k − 1)

δ

2

ǫ

16

≥ (k − 1)
δ

2

(
1 +

7

33
ǫ

)
−
√
(k − 1)

δ

2

(
1 +

7

33
ǫ

)
(k − 1)

δ

2

ǫ2

68 · 33 − (k − 1)
δ

2

ǫ

16

= (k − 1)
δ

2

(
1 +

7

33
ǫ−

√(
1 +

7

33
ǫ

)
ǫ2

68 · 33 − ǫ

16

)
> (k − 1)

δ

2

(
1 +

ǫ

8

)
.

This verifies the second claimed implication from the lemma, and thus completes
the proof.

We are now ready to finish describing the tester and prove its correctness.

Theorem 3. If k ≥ 80/ǫ, then the procedure that outputs Accept if N̂Sδ(f ;H)
≤ (k − 1) δ2 (1 + ǫ

8 ), and otherwise outputs Reject, is an s-sample q-query ǫ-
tester for the class Fk(H) of k-piecewise H functions under the distribution
Uniform(0, 1), for s as defined above, and for q = m(ℓ+ 1) (where m and ℓ are
as defined above).

Proof. If f ∈ Fk(H), then Lemma 1 implies it has NSδ(f ;H) ≤ (k − 1) δ2 ,

so that Lemma 3 implies that with probability at least 2/3, N̂Sδ(f ;H) ≤
(k − 1) δ2

(
1 + ǫ

8

)
, and hence the tester will output Accept.
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On the other hand, if f is ǫ-far from every function in Fk(H), then Lemma 2
implies that NSδ(f ;H) > (k − 1) δ2 (1 +

ǫ
4 ), so that Lemma 3 implies that with

probability at least 2/3, N̂Sδ(f ;H) > (k− 1) δ2 (1 +
ǫ
8 ), and hence the tester will

output Reject.
The claim about the number of samples and number of queries is immediate

from the definition of the tester.

Theorem 1 immediately follows from this result for any k ≥ 80/ǫ, since
m(ℓ+ 1) = O

(
d
ǫ8 ln

(
1
ǫ

))
and s = O

(
dk
ǫ6 ln

(
1
ǫ

))
.

For k < 80/ǫ, there is a trivial tester satisfying Theorem 1, based on the
learn-then-validate technique of [20], which in fact works for any distribution
P . Specifically, in this case, we can take s =

⌈
c1dk
ǫ ln(2ek) ln

(
1
ǫ

)⌉
+
⌈
c2
ǫ

⌉
=

O
(

d
ǫ2 ln

2
(
1
ǫ

))
iid P samples, for appropriate numerical constants c1, c2 ≥ 1, and

query for the f values for these s samples (so q = s here). We then find a function

f̂ ∈ Fk(H) consistent with f on the first
⌈
c1dk
ǫ ln(2ek) ln

(
1
ǫ

)⌉
of these (f̂ chosen

independently from the rest of the samples), if such a function f̂ exists; we then

check whether f̂ agrees with f on at least (1 − ǫ/2)
⌈
c2
ǫ

⌉
of the remaining

⌈
c2
ǫ

⌉

samples. If this f̂ exists and satisfies this condition, then we output Accept,
and otherwise we output Reject. We can bound the graph dimension of Fk(H)
as follows. For any n distinct points x1, . . . , xn ∈ R and n values y1, . . . , yn ∈ Y,
the number of distinct {(x, g(x)) : x ∈ X} ∩ {(x1, y1), . . . , (xn, yn)} sets that

can be realized by functions g ∈ Fk(H) is at most
(
en
d

)dk ( en
k

)k
, obtained by

applying Sauer’s lemma within each subset (tj−1, tj] ∩ {x1, . . . , xn} and mul-

tiplying them to get at most
(
en
d

)dk
possible classifications for any fixed tj

values, and then multiplying by a bound
(
en
k

)k
on the number of ways to par-

tition {x1, . . . , xn} into at most k intervals. Since
(
en
d

)dk ( en
k

)k
is strictly less

than 2n for any n > 4dk log2(2ek), the graph dimension of Fk(H) is at most
4dk log2(2ek). Thus, if f ∈ Fk(H), then standard VC bounds for the realizable
case [4, 5] imply that, for an appropriate choice of the numerical constant c1,

with probability at least 5/6, the function f̂ will have P(x : f̂(x) 6= f(x)) < ǫ/4.
Also, for an appropriately large numerical constant c2, a Chernoff bound im-
plies that, with probability at least 5/6, if P(x : f̂(x) 6= f(x)) < ǫ/4 then f̂ will
agree with f on at least (1 − ǫ/2)

⌈
c2
ǫ

⌉
of the last

⌈
c2
ǫ

⌉
samples. By the union

bound, both of these events occur simultaneously with probability at least 2/3,
and the tester will output Accept when they occur. On the other hand, if
f is ǫ-far from every function in Fk(H), then either f̂ will not exist (in which

case the tester outputs Reject), or else f̂ is some function in Fk(H), so that

P(x : f̂(x) 6= f(x)) > ǫ. Therefore, for an appropriately large choice of the
numerical constant c2, a Chernoff bound implies that with probability at least
2/3, if f̂ exists, then it disagrees with f on strictly more than ǫ

2

⌈
c2
ǫ

⌉
of the last⌈

c2
ǫ

⌉
samples, so that the tester will output Reject.
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4. Piecewise Constant Functions

Next, we restrict focus to the special case of piecewise constant functions:
that is, throughout this subsection, take H as the set of all constant functions
X → Y. In this case, we study both active and passive testing. We con-
struct a passive tester achieving the bound in Theorem 2, as well as an active
tester whose number of queries has an improved dependence on ǫ compared to
Theorem 1. Unlike the above general active tester, this construction follows
more-closely the construction of testers for unions of intervals from [18], and
indeed recovers the same dependences on k and ǫ from that work, now for this
more-general problem of testing piecewise-constant functions.

Since H is fixed as the set of constant functions X → Y in this section,
we simply write NSδ(f) to abbreviate NSδ(f ;H), which (as we argue below) is
consistent with the notion of noise sensitivity used in the prior literature [18].

Fix any ǫ ∈ (0, 1/2) and consider the case k ≥ 80/ǫ. Let δ = ǫ2

32k , m
′ =

⌈
c
ǫ4

⌉
,

n = 1 +
⌈
2
√
⌈1/δ⌉

⌉
, and s′ = 4nm′, for an appropriate choice of numerical

constant c ≥ 1 from the analysis below. Now the active and passive testers
both sample s′ points z′1, . . . , z

′
s′ independent Uniform(0, 1). Let t1, . . . , tm′ be

the firstm′ distinct values t in {1, . . . s′/n} for which ∃i, j ∈ {(t−1)n+1, . . . , tn}
with i < j and |z′i − z′j| < δ while z′i ∈ (δ, 1− δ), and for each r ∈ {1, . . . ,m′},
denote by ir the smallest integer i > (tr − 1)n with minj∈{i+1,...,trn} |z′i − z′j| <
δ while z′i ∈ (δ, 1 − δ), and denote by jr the smallest integer j > ir with
|z′ir −z′j | < δ; if there do not exist m′ such values tr, then the tester may output
any response, and this is considered a failure event. If these values do exist, then
for each r ≤ m′, denote zr = z′ir and yr = z′jr . The active tester queries the f
values for zr and yr, for each r ≤ m′, whereas the passive tester (necessarily)
queries the f values for all s′ points z′i. Both testers then calculate the following
quantity

N̂S
′
δ(f) =

1− 2δ

m′

m′∑

r=1

I[f(zr) 6= f(yr)]

and outputs Accept if N̂S
′
δ(f) ≤ (k − 1) δ2 (1 +

ǫ
8 ), and otherwise outputs Re-

ject.
Comparing N̂S

′
δ(f) to the quantity N̂Sδ(f ;H) defined above, the main dif-

ference is that, for each of the points zr, we use only a single point yr sampled
from (zr − δ, zr + δ), rather than ℓ points. For this reason, the total number of

examples (both labeled and unlabeled) required to calculate N̂S
′
δ(f) is signifi-

cantly smaller than the number required to calculate N̂Sδ(f ;H). Nevertheless,
in this special case of piecewise constant functions, we find that the guaran-

tees we had for N̂Sδ(f ;H) from Lemma 3 above remain valid for the quantity

N̂S
′
δ(f). Specifically, we have the following lemma.

Lemma 4. If k ≥ 80/ǫ, then for an appropriate choice of the numerical con-
stants c, for any measurable function f : X → Y, with probability at least 2/3,
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the values t1, . . . , tm′ exist, and

NSδ(f) ≤ (k − 1)
δ

2
=⇒ N̂S

′
δ(f) ≤ (k − 1)

δ

2

(
1 +

ǫ

8

)

NSδ(f) > (k − 1)
δ

2

(
1 +

ǫ

4

)
=⇒ N̂S

′
δ(f) > (k − 1)

δ

2

(
1 +

ǫ

8

)
.

Proof. The existence of the values t1, . . . , tm′ (with high probability) follows
from the so-called birthday problem as follows. Let β = 1/⌈1/δ⌉ and parti-
tion [0, 1) into disjoint intervals [(i − 1)β, iβ), i ∈ {1, . . . , 1/β}. For any n
iid Uniform(0, 1) samples w1, . . . , wn (for n as defined above), the probability

none of these intervals contains more than one wj value is
∏n−1

j=1 (1 − jβ) ≤
exp{−βn(n − 1)/2}, and noting that n ≥ 1 + 2

√
1/β, this is at most e−2.

Furthermore, on the event that there exists at least one interval containing
more than one wj value, for ĵ defined as the first j such that ∃j′ < j with
wj and wj′ in the same interval, we note that the (unconditional) distribu-
tion of wĵ is Uniform(0, 1). Therefore, with probability at least 1 − e−2 − 4β,
there exists some i ∈ {3, . . . , (1/β) − 2} such that at least two wj values are
in [(i − 1)β, iβ). Since 2β > 2δ/(1 + δ) > δ, these intervals [(i − 1)β, iβ) are
strictly contained within (δ, 1 − δ). Furthermore, since β < δ < 1/32, we have
1−e−2−4β > 1−e−2−1/8 > 1/2. Thus, for each t ∈ {1, . . . , s′/n}, the sequence
{z′i : i ∈ {(t− 1)n+1, . . . , tn}} has probability at least 1/2 of containing a pair
z′i, z

′
j (i < j) with |z′i − z′j| < δ and z′i ∈ (δ, 1 − δ). In particular, the expected

number of indices t for which such a pair exists is at least (1/2)s′/n ≥ 2m′.
Since these sequences are independent (over t), a Chernoff bound implies that
with probability at least 1 − exp{−(1/2)(s′/n)/8} ≥ 5/6 (for any choice of
c ≥ 4 ln(6)), at least m′ of these sequences contain such a pair, so that on this
event the values t1, . . . , tm′ indeed exist.

Next, note that since H is the set of constant functions, for any x, x′ and any
h ∈ H(x,f(x)), we have h(x′) = h(x), which implies that for x ∼ Uniform(0, 1)
and for x′ ∼ Uniform(x− δ, x+ δ) given x, we have NSδ(f) = P(f(x) 6= f(x′)).
Furthermore, z1 has distribution Uniform(δ, 1− δ) and the conditional distribu-
tion of y1 given z1 is Uniform(z1 − δ, z1 + δ). Therefore,

P(f(z1) 6= f(y1)) = P(f(x) 6= f(x′)|x ∈ (δ, 1− δ))

=
1

1− 2δ
P(f(x) 6= f(x′) ∧ x ∈ (δ, 1− δ)),

and this rightmost quantity is at least as large as

1

1− 2δ
(P(f(x) 6= f(x′))− 2δ) =

1

1− 2δ
(NSδ(f)− 2δ)

≥ 1

1− 2δ

(
NSδ(f)− (k − 1)

δ

2

ǫ

19

)
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and at most as large as

1

1− 2δ
P(f(x) 6= f(x′)) =

1

1− 2δ
NSδ(f).

Thus,

NSδ(f) ≤ (k − 1)
δ

2
=⇒ P(f(z1) 6= f(y1)) ≤

1

1− 2δ
(k − 1)

δ

2

and since ǫ
4 − ǫ

19 = 15
76ǫ,

NSδ(f) > (k−1)
δ

2

(
1 +

ǫ

4

)
=⇒ P(f(z1) 6= f(y1)) >

1

1− 2δ
(k−1)

δ

2

(
1 +

15

76
ǫ

)
.

Now recall that 1
1−2δ (k − 1) δ2 > ǫ2

65 , and note that, if they exist, the pairs

(zr, yr) are iid over r ≤ m′. Therefore (recalling the definition of N̂S
′
δ(f) from

above), a Chernoff bound implies that, for an appropriately large choice of the
numerical constant c, with probability at least 5/6,

P(f(z1) 6= f(y1)) ≤
1

1− 2δ
(k − 1)

δ

2
=⇒ N̂S

′
δ(f) ≤ (k − 1)

δ

2

(
1 +

ǫ

8

)

and

P(f(z1) 6= f(y1)) >
1

1− 2δ
(k − 1)

δ

2

(
1 +

15

76
ǫ

)

=⇒ N̂S
′
δ(f) > (k − 1)

δ

2

(
1 +

15

76
ǫ

)(
1− ǫ

16

)
> (k − 1)

δ

2

(
1 +

ǫ

8

)
.

Altogether, on the above two events, we have

NSδ(f) ≤ (k − 1)
δ

2
=⇒ N̂S

′
δ(f) ≤ (k − 1)

δ

2

(
1 +

ǫ

8

)

and

NSδ(f) > (k − 1)
δ

2

(
1 +

ǫ

4

)
=⇒ N̂S

′
δ(f) > (k − 1)

δ

2

(
1 +

ǫ

8

)
.

To complete the proof, we note that both of these events occur simultane-
ously with probability at least 2/3 by the union bound.

Finally, we have the following result on testing of piecewise constant func-
tions.

Theorem 4. If k ≥ 80/ǫ, then the procedure that outputs Accept if N̂S
′
δ(f) ≤

(k − 1) δ2 (1 + ǫ
8 ), and otherwise outputs Reject, is an s′-sample q-query ǫ-

tester for the class of k-piecewise constant functions under the distribution
Uniform(0, 1), where q = 2m′ in the active testing variant and q = s′ for the
passive testing variant.
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Proof. This proof is nearly identical to that of Theorem 3. If f ∈ Fk(H), then
Lemma 1 implies it has NSδ(f) ≤ (k − 1) δ2 , so that Lemma 4 implies that with

probability at least 2/3, N̂S
′
δ(f) ≤ (k − 1) δ2

(
1 + ǫ

8

)
, and hence the tester will

output Accept.
On the other hand, if f is ǫ-far from every function in Fk(H), then Lemma 2

implies that NSδ(f) > (k − 1) δ2 (1 + ǫ
4 ), so that Lemma 4 implies that with

probability at least 2/3, N̂S
′
δ(f) > (k − 1) δ2 (1 + ǫ

8 ), and hence the tester will
output Reject.

The number of samples and number of queries in the claim are immediate
from the definition of the two testers.

The upper bounds claimed in Theorem 2 immediately follow from this the-

orem, noting that s′ = O
(√

k
ǫ5

)
, and also noting that for any k < 80/ǫ we can

obtain the result with the tester based on the learn-then-validate technique of
[20], as described above at the end of Section 3. In this latter case, the tester
uses ∝ k

ǫ ln(2ek) ln
(
1
ǫ

)
= O

(
1
ǫ2 ln

2
(
1
ǫ

))
samples (since d = 1 when H is the set

of constant functions).
For the lower bound claimed in Theorem 2, first note that our assumption

of d > 0 implies, in the case of H the set of constant functions, that |Y| ≥ 2.
Therefore, we can reduce testing unions of ⌊(k − 1)/2⌋ intervals to testing k-
piecewise constant functions by associating the binary labels 0 and 1 with any
two distinct labels y0, y1 ∈ Y. Then any {0, 1}-valued function f01 can be
mapped to a corresponding {y0, y1}-valued function f , where f is a k-piecewise
constant function if f01 is a union of ⌊(k− 1)/2⌋ intervals, while f is ǫ-far from
any k-piecewise constant function if f01 is ǫ-far from any union of ⌊(k−1)/2⌋+1
intervals. This increase by one in the latter case is because the complement of
a union of ⌊(k− 1)/2⌋ intervals is also k-piecewise constant, but is possibly only
representable as a union of ⌊(k−1)/2⌋+1 intervals. To account for this increase

by one, noting that the claim of an Ω
(√

k
)
lower bound only regards large values

of k, if we suppose k > 1/ǫ, then any union of ⌊(k− 1)/2⌋+1 intervals is within
distance 1/k < ǫ of a union of ⌊(k− 1)/2⌋ intervals. Thus, f01 is ǫ-far from any
union of ⌊(k − 1)/2⌋ + 1 intervals if it is 2ǫ-far from any union of ⌊(k − 1)/2⌋
intervals. Altogether, we have that f is ǫ-far from any k-piecewise constant
function if f01 is 2ǫ-far from any union of ⌊(k − 1)/2⌋ intervals. So, by this

reduction, the Ω
(√

⌊(k − 1)/2⌋
)
= Ω

(√
k
)
lower bound of [20, 18] for passive

testing of unions of ⌊(k − 1)/2⌋ intervals implies a corresponding Ω
(√

k
)
lower

bound for testing k-piecewise constant functions.4 This completes the proof of

4Technically, the result of [20] establishes this lower bound for the problem of testing
whether f01 is a union of n intervals or returns uniform random {0, 1} labels. However,
essentially the same argument would apply if, in the latter case, instead of random labels, we
took f01 to be a randomly-chosen binary function based on a partition of [0, 1] into n′ ≫ n
equal-sized regions, which would be at least 1/4 > 2ǫ distance from any union of n intervals
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Theorem 2.

5. Open Problem on the Query Complexity of Testing Polynomials

While the result above for active testing, when specialized to testing k-
piecewise degree-p polynomials, obtains the optimal dependence on the number
of pieces k, we were not able to show optimality in the degree p. This leads to
an even more-basic question:

Open Problem: What is the optimal dependence on p in the query complexity
of testing degree-p real-valued polynomials under P = Uniform(0, 1)?

This question is open at this time, for both the active and passive property
testing settings, and indeed also for the stronger value-query setting (where the
tester can query for f(x) at any x ∈ X ).

There is a trivial p + 1 + 1
ǫ ln(3) upper bound for both active and passive

testing, based on the learn-then-validate technique, since p+1 random samples
uniquely specify any degree-p polynomial (with probability one): that is, if we

fit a degree-p polynomial f̂ to the first p + 1 random points, then if f is a
degree-p polynomial we would have f̂ = f and thus the two would agree on the
remaining 1

ǫ ln(3) points, in which case we may decide Accept; on the other

hand, if f is ǫ-far from all degree-p polynomials, then it is ǫ-far from f̂ , and
hence with probability at least 2/3 at least one of 1

ǫ ln(3) random samples x will

have f̂(x) 6= f(x), in which case we may decide Reject.
One might näıvely think that, since it is possible to fit any p+ 1 values (at

distinct x’s) with a degree-p polynomial, a lower bound of Ω(p) should also hold.
However, we note that it is also possible to fit any k values (at distinct x’s) with
a k-piecewise constant function, and yet above we proved it is possible to test
k-piecewise constant functions using a number of queries with

√
k dependence

on k by passive testing or independent of k by active testing. So the mere ability
to fit p+1 arbitrary values with a degree-p polynomial is not in-itself sufficient
as a basis for proving a lower bound on the query complexity of testing degree-p
polynomials.
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