
HAL Id: hal-01926512
https://hal.science/hal-01926512

Submitted on 19 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Randomised Strategies in the

λ

-Calculus
Ugo Dal Lago, Gabriele Vanoni

To cite this version:
Ugo Dal Lago, Gabriele Vanoni. On Randomised Strategies in the

λ

-Calculus. 19th Italian Conference on Theoretical Computer Science, Sep 2018, Urbino, Italy. �hal-
01926512�

https://hal.science/hal-01926512
https://hal.archives-ouvertes.fr

On Randomised Strategies in the λ-Calculus?

Ugo Dal Lago1 and Gabriele Vanoni2

1 Università di Bologna & INRIA Sophia Antipolis
ugo.dallago@unibo.it
2 Politecnico di Milano

gabriele.vanoni@mail.polimi.it

Abstract. In this work we study randomised reduction strategies— a
notion already known in the context of abstract reduction systems—for
the λ-calculus. We develop a simple framework that allows us to prove a
randomised strategy to be positive almost-surely normalising. Then we
propose a simple example of randomised strategy for the λ-calculus that
has such a property and we show why it is non-trivial with respect to
classical deterministic strategies such as leftmost-outermost or rightmost-
innermost. We conclude studying this strategy for the affine λ-calculus,
where duplication is syntactically forbidden.

Keywords: λ-calculus · probabilistic rewriting · reduction strategies.

1 Introduction

There are different possible strategies you can follow to evaluate expressions.
Some are better than others, and bring you to the result in a lower number of
steps. Since programs in pure functional languages are essentially expressions, the
problem of defining good strategies is particularly interesting. Finding minimal
strategies, i.e. strategies that minimise the number of steps to normal form, seems
even more interesting. However, the problem of picking the redex leading to
the reduction sequence of minimal length has been proven undecidable for the
λ-calculus [3, Section 13.5], the paradigmatic pure functional language. In the
last decades several reduction strategies have been developed. Their importance
is crucial in the study of evaluation orders in functional programming languages,
which is one of their main characteristics and defines an important part of their
semantics. The reader can think about the differences between Haskell (call-by-
need) and Caml (call-by-value). The λ-calculus is a good abstraction to study
reduction mechanisms because of its very simple structure. In fact, although
Turing-complete, it can be seen as a rewriting system [13], where terms can be
formed in only two ways, by abstraction and application, and only one rewriting
rule, the β-rule, is present. Reduction strategies for the λ-calculus are typically
defined according to the position of the contracted redex e.g. leftmost-outermost,
leftmost-innermost, rightmost-innermost. As the following trivial examples show,
? This work was partially supported by ANR grant Elica ANR-14-CE25-0005 and
Inria/JSPS EA Crecogi. An Extended Version with more details is available [9].

2 U. Dal Lago and G. Vanoni

the adopted strategy can indeed have a strong impact on evaluation performances,
and possibly also on termination behaviour.

Example 1. Let ω = λx.xx and Ω = ωω. We now consider the reduction of the
term (λx.y)Ω according to two different reduction strategies, namely leftmost-
outermost (LO) and rightmost-innermost (RI).

(λx.y)Ω −→LO y

(λx.y)Ω −→RI (λx.y)Ω −→RI (λx.y)Ω −→RI · · ·

The term Ω is a looping combinator i.e. it reduces to itself. However, in (λx.y)Ω
the argument Ω is discarded since the function returns the constant y. Thus
leftmost-outermost (akin to call-by-name in functional programming languages)
yields a normal form in one step. Conversely, rightmost-innermost (akin to call-
by-value) continues to evaluate the argument (λx.y)Ω, though it is useless, and
rewrites always the same term, yielding to a non-terminating process.

Example 2. Let I = λx.x. We now consider the reduction of the term (λx.xx)(II),
according to LO and RI strategies, as above.

(λx.xx)(II) −→LO (II)(II) −→LO I(II) −→LO II −→LO I

(λx.xx)(II) −→RI (λx.xx)I −→RI II −→RI I

Here the argument II is duplicated and thus it is much more convenient to
reduce it before it is copied, as in rightmost-innermost. Leftmost-outermost does,
indeed, some useless work.

In general, innermost strategies are considered more efficient, because programs
often need to copy their arguments (as in Example 2). However, as seen in
Example 1, rightmost-innermost is not normalising: there exist terms which have
a normal form which, however, can be missed by innermost strategies. Instead, a
classical result by Curry and Feys [8] states that the leftmost-outermost strategy
is normalising, i.e. it always rewrites terms to their normal norm, if it exists. Thus,
leftmost-outermost is slower, but safer. Could we get, in a sense, the best of both
worlds? All reduction strategies for the λ-calculus in the literature up to now are
deterministic, i.e. they are (partial) functions on (possibly shared representations
of) terms. There is however some work on probabilistic term rewriting systems
[4, 10, 2], in particular regarding termination, and about randomised strategies
in the abstract [5]. What would happen if the redexes to reduce were picked
according to some probability distribution? How many steps would a term need
to reach a normal form on the average?

In this work we consider a simple randomised reduction strategy Pε, where
the LO-redex is reduced with probability ε and the RI-redex is reduced with
probability 1 − ε. This is not necessarily the most interesting example, but
certainly a good starting point in our investigation. The uniform randomised
strategy which picks one between all the redexes in the term uniformly at
random looks more natural, although much more difficult to analyse: there is
no fixed lower bound on the probability of picking the standard redex, i.e. the
leftmost-outermost one. The following are our main results:

On Randomised Strategies in the λ-Calculus 3

• For every, 0 < ε ≤ 1, the strategy Pε is positive almost-surely normalising on
weakly normalising terms. That means that if a termM is weakly normalising,
then the expected number of reduction steps from M to its normal form with
strategy Pε is finite. This is in contrast to the rightmost-innermost strategy,
as can be seen from Example 1. Rightmost-innermost, in other words, is the
only non normalising strategy in the family {Pε}0≤ε≤1, namely P0.

• The family of strategies {Pε}0<ε<1 is shown to be non-trivial. In other words,
there exists a class of terms and 0 < µ < 1 for which Pµ outperforms, on
average, both LO and RI. This shows that randomisation can indeed be
useful in this context. This is not surprising: in computer science there are
a lot of examples where adding a random factor improves performances,
e.g. in randomised algorithms, which are often faster (in average) than their
deterministic counterparts [11].

• The expected number of reduction steps to normal form with strategy Pε,
seen as a function on ε, has minimum in 1 for terms in the affine λ-calculus
λA.

The rest of this paper is structured as follows. In Section 2 basic definitions and
results for the untyped λ-calculus are given. In Section 3 we present our model of
fully probabilistic abstract reduction system and we give a sufficient condition to
prove positive almost-sure termination. In Section 4 we apply this model to the
λ-calculus, defining a randomised reduction strategy and collecting some results.
Section 5 contains the conclusions with some ideas for further investigations on
the subject.

Acknowledgements

Our interest in randomised strategies comes from some interesting and insightful
discussions the first author had with Prakash Panangaden.

2 Basic Notions and Notations

The following definitions are standard and are adapted from [13].

Definition 1. Assume a countable infinite set V of variables. The λ-calculus is
the language of terms defined by the following grammar:

M,N ::= x ∈ V | MN | λx.M
We denote by Λ the set of all λ-terms. As usual, λ-terms are taken modulo α-
equivalence, which allows to appropriately define the capture-avoiding substitution
of all the free occurrences of x for N in M , denoted M{N/x}.

Reduction will be defined based on the notion of a context, which needs to be
given a formal status.

4 U. Dal Lago and G. Vanoni

Definition 2. We define (one-hole) contexts by the following grammar:

C,D ::= � | CM | MC | λx.C
We denote with Λ� the set of all contexts.

Intuitively, contexts are λ-terms with a hole that can be filled with another
λ-term. We indicate with C[M] the term obtained by replacing � with M in C.
Those λ-terms in the form R = (λx.M)N are called β-reducible expressions or
β-redexes and M{N/x} is said to be the contractum of R. This is justified by
the following definition.
Definition 3. The relation of β-reduction, −→β⊆ Λ× Λ, is defined as

−→β= {(C[(λx.M)N], C[M{N/x}]) |M,N ∈ Λ,C ∈ Λ�}.

The relation of ANF-β-reduction, −→
βANF
⊆ Λ× Λ, is defined by

−→
βANF

= {(C[(λx.M)N], C[M{N/x}]) |M,N ∈ Λ, N is in normal form, C ∈ Λ�}.

We denote by −−�β the reflexive and transitive closure of −→β.

We can see the λ-calculus defined above as an abstract reduction system
(ARS) [13] (Λ,−→β), namely a countable set endowed with a relation, also called
the reduction relation. We denote by ΛWN the set of weakly normalising terms of
Λ, i.e. terms which have a normal form.

2.1 Two Subcalculi of Λ

There are interesting subsets of the λ-calculus. In particular we focus our attention
on two subsystems where terms satisfy a predicate on the number of occurrences
of free variables. These systems are meaningful because they are stable w.r.t.
β-reduction i.e. ifM ∈ S andM −→β N then N ∈ S. A comprehensive treatment
is in [12].

The λI-calculus. The λI-calculus was the original calculus studied by Alonzo
Church in the ’30 [7], and [3] contains a whole section dedicated to it. In λI-
calculus there is no cancellation, in that variables have to occur free at least once
when forming abstractions. Terms of the λI-calculus are not strongly normalising
in general. As an example, Ω is a λI-term. One can prove, however, that on
λI-terms, weak normalisation implies strong normalisation: in other words, all
strategies are qualitatively equivalent. This does not mean, however, that they
are quantitatively equivalent.

The λA-calculus. The λA-calculus is the dual of λI-calculus and it is sometimes
called affine λ-calculus in the literature. It is a very weak calculus in which
variables bound by abstractions occur at most once free in the abstraction’s body,
thus forbidding duplication. The λA-calculus is strongly normalising, in a very
strong sense: every reduction sequence from a term M has length bounded by
the size of M .

On Randomised Strategies in the λ-Calculus 5

2.2 Reduction Strategies

ARSs are sets endowed with a relation, and are thus inherently nondeterministic.
The notion of reduction strategy allows us to fix one redex among the available
ones, thus turning reduction into a deterministic process.

Definition 4 (Deterministic Strategies). Given an ARS (A,→), a deter-
ministic reduction strategy for A is a partial function S : A ⇀ A such that S(a)
is defined iff a is not in normal form and a→ S(a) whenever S(a) is defined.

If σ : a0 → a1 → · · · → an is a reduction sequence with strategy S and an is in
normal form, we write StepsS(a0) = n = |σ|. If σ : a0 → a1 → · · · is infinite, we
say that StepsS(a0) = +∞. We define two reduction strategies for the λ-calculus
that will be useful in the following sections.

Definition 5. Leftmost-outermost (LO) is a deterministic reduction strategy
in which LO(M) = N if and only if M −→β N and the redex contracted in M
is the leftmost among the ones in M (measuring the position of a redex by its
beginning). If LO(M) = N , we write M −→LO N .

Definition 6. Rightmost-innermost (RI) is a deterministic reduction strategy in
which RI(M) = N if and only if M −→β N and the redex contracted in M is
the rightmost among the ones in M (measuring the position of a redex by its
beginning). Again, if RI(M) = N , we write N −→RI N .

Lemma 1. If M −→β N , then StepsLO(N) ≤ StepsLO(M).

3 Probabilistic Abstract Reduction Systems as Strategies

We introduce now a framework suitable to define randomised strategies. In
particular, we shift the notion of ARS to the fully probabilistic case. With respect
to standard Markov chain theory, our construction is simpler and allows to reason
better in an infinite state context. The first preliminary concept we need is that
of a distribution.

Definition 7 (Distribution). A partial probability distribution over a count-
able set A is a mapping ρ : A→ [0, 1] such that |ρ| ≤ 1 where |ρ| =

∑
a∈A

ρ (a). We

denote the set of partial probability distributions over A by PDist (A). The support
of a partial distribution ρ ∈ PDist (A) is the set Supp (ρ) = {a ∈ A | ρ (a) > 0}. A
probability distribution over a countable set A is a partial probability distribution
µ such that |µ| = 1. Dist (A) denotes the set of probability distributions over A.

Strategies as from Definition 4 are inherently deterministic: the process of picking
a reduct among the many possible ones can only have one outcome. But what if
this process becomes probabilistic? This is captured by the following notion:

Definition 8 (Randomised Strategies). Given an ARS (S,→), a randomised
reduction strategy P for (S,→) is a partial function such that if s ∈ S is in normal
form, then P(s) = ⊥, otherwise P(s) = µ ∈ Dist (S), and Supp (µ) ⊆ {t | s→ t}.

6 U. Dal Lago and G. Vanoni

Please notice that if (S,→) is an ARS and P is a randomised reduction strategy
for it, then (S,P) can be seen as a fully probabilistic abstract reduction system
(FPARS), namely a probabilistic abstract reduction system [2] whose dynamics
is purely probabilistic, without any nondeterminism. In the following, we will
study randomised strategies as FPARS.

The dynamics of an FPARS can be handled by way of an appropriate notion
of a configuration, on which an evolution function can be defined:

Definition 9 (Configurations, Computations). Let (S,P) be an FPARS
and s, t ∈ S be two states. We define the probability P (s→ t) of a transition
from s to t:

P (s→ t) =

{
µ (t) if P (s) = µ,

0 if P (s) = ⊥.

A configuration of an FPARS (S,P) is a partial probability distribution ρ ∈
PDist (S). The evolution of an FPARS (S,P) from a configuration ρ is a function
E : PDist (S)→ PDist (S) defined in the following way:

E (ρ) = σ where σ (s) =
∑
t∈S

ρ (t) · P (t→ s) for every s ∈ S.

If E (ρ) = σ we write ρ σ. A computation is any sequence (ρi)i∈N, such that
ρi ρi+1.

Remark 1. Those computations (ρi)i∈N where ρ0 is Dirac (i.e. there exists s ∈ S
such that ρ0(s) = 1) are particularly interesting: they model the evolution of an
FPARS starting from one state. We write in this case ρ0 = Dirac(s).

Example 3. Consider an ARS (S,→), where S = {a, b} and →= {(a, a), (a, b)}.
We define a randomised strategy P on top of (S,→). P(a) = µ such that µ(a) =
µ(b) = 1

2 , while P(b) = ⊥ since b is in normal form. A computation (ρi)i∈N
starting from ρ0 = Dirac(a) has the following form.{

1 a

0 b
ρ0

{
1
2 a
1
2 b
ρ1

{
1
4 a
1
4 b
ρ2

 · · ·

{
1
2k

a
1
2k

b
ρk

 · · ·

How could we measure the length of a computation? It is natural to look for a
definition capturing the average derivation length from s to its normal form.

Definition 10. Let (S,P) be an FPARS and ρ0 = Dirac(s), where s ∈ S. Given

the computation (ρi)i∈N, StepsP(s) =
∞∑
i=1

|ρi|.

Observe that the definition above collapses to the one given for the deterministic
case when P is deterministic. That it is the expected value of a random variable
capturing the number of reduction steps to normal form from s can be proved
by standard arguments from the theory of Markov Chains, see [9] for details.
Termination is a crucial problem in rewriting theory. Since we are in a probabilistic
context, distinct such notions are possible. We define in our setting two classical
termination properties.

On Randomised Strategies in the λ-Calculus 7

Definition 11. An FPARS is almost-surely terminating (AST) if for each initial
configuration ρ0, the computation (ρi)i∈N, is such that lim

n→+∞
|ρn| = 0.

Definition 12. An FPARS (S,P) is positive almost-surely terminating (PAST)
if for each s ∈ S, StepsP(s) < +∞. In this case we say that P is a positive
almost-surely normalising strategy.

Example 4. Consider the same setting of Example 3. It is easy to see that
(S,P) is AST since lim

n→+∞
|ρn| = lim

n→+∞
1

2n−1 = 0. Moreover (S,P) is PAST since

StepsP(a) =
∞∑
n=1
|ρn| =

∞∑
n=1

1
2n−1 = 2 and StepsP(b) = 0.

It is well-known from Markov chain literature that AST does not imply PAST e.g.
in the symmetric random walk on Z. We recall a standard result in Markov chain
theory that gives a sufficient condition for PAST and a bound on the average
number of steps to normal form.

Notation 1. For ε > 0 we write x >ε y if and only if x ≥ y + ε. This order is
well-founded on real numbers with a lower bound.

Definition 13. Given an FPARS (S,P), we define a function V : S → R as
Lyapunov if:
• There exists b ∈ R such that V (s) ≥ b for each s ∈ S.
• There exists ε > 0 such that for every s ∈ S if P (s) = µ, then V (s) >ε V (µ),
where V is extended to partial distributions as follows:

V (µ) =
∑
t∈S

V (t) · µ (t) .

Remark 2. Without loss of generality, given a Lyapunov function V we can
always consider a new Lyapunov function W (s) ≥ 0 for each s ∈ S simply adding
a constant to V .

Theorem 1 (Foster [6]). If we can define for an FPARS P = (S,P) a Lya-
punov function V , then P is PAST and the average derivation length StepsP(s)

of any sequence (ρi)i∈N starting from any s ∈ S is bounded by V (s)
ε .

4 Randomised Strategies in the λ-calculus

We define here a randomised strategy Pε for the ARS (Λ,−→β). Given a reducible
term M , Pε(M) = µ such that for each N ∈ Λ:

µ(N) =


ε if M −→β N and the LO-redex is reduced,
1− ε if M −→β N and the RI-redex is reduced,
0 otherwise.

In this way we have defined an FPARS (Λ,Pε).

8 U. Dal Lago and G. Vanoni

(λx.y)Ω

y

ε

(λx.y)Ω

y

ε

(λx.y)Ω

···

1− ε

1− ε

(a)

(λx.y)Ω

y

ε

1− ε

(b)

Fig. 1: The tree (a) and the cyclic graph (b) representing the reduction sequence
of M .

Notation 2. For the FPARS (Λ,Pε) we define the function ExpLenM : [0, 1]→ R
where ExpLenM (ε) = StepsPε

(M).

Example 5. Let us consider the term M = (λx.y)Ω where Ω = ωω with ω =
λx.xx. There are two possible representations of the development of the strategy
Pε for this term, one as an infinite tree (Figure 1a) and another one as a cyclic
graph (Figure 1b). According to the different representations, we can compute in
different ways the probability of reaching normal form and the average derivation
length. The results coincide yielding in both cases probability of termination
equal to 1 and average derivation length equal to 1

ε .

Theorem 2. The FPARS (ΛWN,Pε) is PAST whenever ε > 0.

Proof. We use Foster’s Theorem to prove the claim. Thus, we have to find a
suitable Lyapunov function V . We consider V = StepsLO. Certainly condition
(1) is verified since StepsLO (M) ≥ 0 for each M ∈ ΛWN. We have to verify (2).
Suppose Pε(M) = µ. If M −→LO N and M −→RI L, by Lemma 1 we can write:

StepsLO (µ) = StepsLO(N) · ε+ StepsLO(L) · (1− ε)
≤ (StepsLO (M)− 1) · ε+ StepsLO(M) · (1− ε)
= ε · StepsLO (M)− ε+ StepsLO (M) · (1− ε)
= StepsLO (M)− ε.

Since 0 ≤ ε ≤ 1, StepsLO (M) >ε StepsLO (µ) for each normalising term M . Then,
if ε > 0, (ΛWN,Pε) is PAST and the average number of steps to normal form of
a term M reduced with strategy Pε is bounded by StepsLO(M)

ε . ut

The bound we obtain on ExpLenM (ε) from the above proof is very loose and
thus it does not give us any information on the actual nature of the function
ExpLenM (ε). We show, by means of an example, that the strategy Pε is non-trivial
i.e. there exists a term M and 0 < ε < 1, such that ExpLenM (ε) < ExpLenM (1) =
StepsLO(M) < ExpLenM (0) = StepsRI(M).

On Randomised Strategies in the λ-Calculus 9

-1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1.00
ε

-15

-10

-5

0

5

10

15

E
xp
L
en
M

9
(ε
)

Fig. 2: The function ExpLenM9
(ε).

Example 6. Let us consider a family of terms Mn = NLn where:

N = λx. ((λy.z)Ω)︸ ︷︷ ︸
P

x Ln = Cn ((λx.x)y)︸ ︷︷ ︸
S

Cn = λx. xx · · ·x︸ ︷︷ ︸
n times

After quite simple computations one can derive ExpLenMn
(ε) = (n−3)ε3+4ε2+ 2

ε .
Clearly for ε = 0 the expression diverges. If n ≥ 2 there is a minimum for 0 <
ε < 1, and thus ExpLenMn

(ε) < ExpLenMn
(1) = StepsLO(Mn) < ExpLenMn

(0) =
StepsRI(Mn) = +∞. ExpLenM9

(ε) is plotted in Figure 2.

Studying the behaviour of ExpLenM (ε) for an arbitrary term M is a difficult task,
which goes outside the scope of this paper.

As a first step in the direction of a full understanding of the nature of
ExpLenM (ε), we study it in the case M is a term of the subcalculus λA we have
previously introduced. In particular we show in the next section that ExpLenM (ε)
has minimum in ε = 1.

4.1 The Case of the λA-calculus

The following lemma is an easy consequence of Xi’s combinatorial analysis of the
Standardisation Theorem [14]:

Lemma 2. Given a term M ∈ ΛA and a reduction sequence M
σ
−−�β N −→β L,

where σ is standard, we can construct a standard reduction sequence τ :M −−�β L
such that |τ | ≤ 1 + |σ|.

It is then easy to get the optimality of the leftmost-outermost strategy for
λA-terms:

Theorem 3. Given a reduction sequence σ : M −−�β N if M ∈ ΛA and N is
in normal form, then the reduction sequence τ :M −−�

βLO
N is such that |τ | ≤ |σ|.

10 U. Dal Lago and G. Vanoni

Proof. By induction on |σ|. The case |σ| = 0 is trivial. So now let us suppose
that the theorem holds for |σ| ≤ k. Let us prove it for |σ| = k+1. We can assume

that: σ : M
ξ
−−�β L

R−→β N . By induction hypothesis we can construct a LO
reduction sequence ρ :M −−�β L such that |ρ| ≤ |ξ|. Then, since LO reduction
sequences are standard, by Lemma 2 we can build a standard reduction sequence
τ :M −−�β N such that |τ | ≤ 1 + |ρ| ≤ 1 + |ξ| = |σ|. The claim follows from the
fact that standard reduction sequences to normal form are leftmost. ut

Theorem 3 is a Theorem about a deterministic strategy, while our purpose here
is to show the optimality of a randomised strategy. Some preliminary lemmas
are necessary in order to appropriately lift it.

The following two lemmas tell us that the existence of a strictly partial proba-
bility distribution along a computation witnesses the existence of a deterministic
computation leading to normal form:

Lemma 3. Let (S,P) an FPARS and (ρi)i∈N a computation, where ρ0 = Dirac(s0).
For each s ∈ S, if there exists k ≥ 0 such that ρk(s) > 0, then there exists a
reduction sequence s0 → s1 → · · · → sk−1 → s.

Proof. We argue by induction on k. If k = 0, then the reduction sequence is
trivially s0 ≡ s. If k = h, ρh(s) =

∑
t∈S

ρh−1 (t) · P (t→ s). Since ρh(s) > 0, there

exists t ∈ S such that ρh−1 (t) · P (t→ s) 6= 0, i.e. ρh−1(t) > 0 and P (t→ s) > 0.
Thus, by induction hypothesis there exists a sequence s0 → s1 → · · · → sh−2 → t,
and t → s. Hence there exists a reduction sequence s0 → s1 → · · · → sh−2 →
t→ s. ut

Lemma 4. Let (S,P) an FPARS and (ρi)i∈N a computation, where ρ0 = Dirac(s0).
If there exists k ≥ 1 such that |ρk| < 1, then there exists a sequence s0 → s1 →
· · · → sj such that sj is in normal form and j ≤ k − 1.

Proof. We argue by induction on k. If k = 1, since |ρ0| is Dirac(s0) then
P(s0) = ⊥ (otherwise |ρ1| = 1). Hence s0 is in normal form. If k = h and
|ρh−1| < 1 by induction hypothesis we are done. So let us consider the case in
which |ρh−1| = 1 and |ρh| < 1. We claim that there exists t ∈ NF(S) such that
ρh−1(t) > 0.

|ρh| =
∑
s∈S

∑
t∈S

ρh−1(t) · P (t→ s)

=
∑
t∈S

∑
s∈S

ρh−1(t) · P (t→ s) =
∑
t∈S

(
ρh−1(t)

∑
s∈S

P (t→ s)

)

=
∑

t 6∈NF(S)

(
ρh−1(t)

∑
s∈S

P (t→ s)

)
+

∑
t∈NF(S)

(
ρh−1(t)

∑
s∈S

P (t→ s)

)
.

If there was not t ∈ NF(S) such that ρh−1(t) > 0, then the second term in the
sum would vanish and |ρh| =

∑
t 6∈NF(S)

ρh−1(t) = 1. But |ρh| < 1 by hypothesis.

On Randomised Strategies in the λ-Calculus 11

Hence there exists t ∈ NF(S) such that ρh−1(t) > 0 and thus by Lemma 3 there
exist a sequence s0 → s1 → · · · → sh−2 → t. ut

We are almost done: the following lemma tells us that all configurations along a
computation starting from a λA-term M are proper until the n-th configuration,
where n = StepsLO(M).

Lemma 5. Given the FPARS (ΛA,Pε), and a computation (ρi)i∈N, where ρ0 =
Dirac(M0), for each k ≤ StepsLO(M0), then |ρk| = 1.

Proof. Let n = StepsLO(M0). By contradiction if there was k ≤ n such that
|ρk| < 1, then by Lemma 4 would exist a sequenceM0 −→β M1 −→β · · · −→β Mj

such that j ≤ k− 1 and Mj is normal form. But this is impossible from Theorem
3. ut

Corollary 1. For each term M in ΛA, ExpLenM (ε) has minimum in ε = 1.

Proof. Let n = StepsLO(M) = ExpLenM (1).

ExpLenM (ε) =

∞∑
i=1

|ρi| =
n∑
i=1

|ρi|+
∞∑

i=n+1

|ρi|
Lemma 5

=

n∑
i=1

1 +

∞∑
i=n+1

|ρi|

= n+

∞∑
i=n+1

|ρi| = ExpLenM (1) +

∞∑
i=n+1

|ρi| ≥ ExpLenM (1).

ut

4.2 The Case of the λI-calculus

In terms of the λI-calculus all redexes are needed to compute normal forms and
redexes can be duplicated. One might thus guess that the rightmost-innermost
strategy could be optimal there. However, innermost strategies, which do not
reduce a redex unless its argument is in normal form, are not optimal [1]. A
simple counterexample is shown in Figure 3: intuitively, RI is not optimal in this
case because the virtual redex yz is copied too early.

5 Conclusions

In this work we have initiated the study of randomised reduction strategies for the
λ-calculus. We have defined a family of examples of such strategies, and we have
shown that all of them, except one, are positive almost-surely normalising. Then
we have studied those strategies for λA, the affine λ-calculus, proving optimality
results.

Further work could consist in analysing the behaviour of the proposed strate-
gies in the scope of the full λ-calculus. In particular one could try to characterize
classes of λ-terms for which our strategies work strictly better than deterministic
ones, and to develop some methods to tune the parameter ε in order to get good
performances.

12 U. Dal Lago and G. Vanoni

(λx.xI)(λy.ω(yz))

(λy.ω(yz))I

ω(Iz)

ωz

(λx.xI)(λy.(yz)(yz))

(λy.((yz)(yz))I

(Iz)(Iz)

(Iz)z

zz

Fig. 3: The optimal reduction sequence of the term M = (λx.xI)(λy.ω(yz)), 4
steps, on the left, and its reduction under rightmost-innermost strategy, 5 steps,
on the right.

References

1. Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming
Languages. Cambridge University Press (1998)

2. Avanzini, M., Dal Lago, U., Yamada, A.: On Probabilistic Term Rewriting. In: Proc.
of 14th FLOPS. LNCS, vol. 10818, pp. 132–148. Springer (2018)

3. Barendregt, H.P.: The lambda calculus: its syntax and semantics. North-Holland
(1984)

4. Bournez, O., Garnier, F.: Proving Positive Almost-Sure Termination. In: Proc. of
16th RTA. LNCS, vol. 3467, pp. 323–337. Springer (2005)

5. Bournez, O., Kirchner, C.: Probabilistic Rewrite Strategies. Applications to ELAN.
In: Proc. of 13th RTA. LNCS, vol. 2378, pp. 252–266. Springer (2002)

6. Bremaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues.
Springer-Verlag (1999)

7. Church, A.: An Unsolvable Problem of Elementary Number Theory. American
Journal of Mathematics 58(2), 345–363 (1936)

8. Curry, H.B., Feys, R.: Combinatory Logic. North-Holland (1958)
9. Dal Lago, U., Vanoni, G.: On Randomised Strategies in the λ-Calculus (Long

Version) (2018), Available at: http://arxiv.org/abs/1805.03934
10. Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic Termination: Soundness, Com-

pleteness, and Compositionality. In: Proc. of 42nd POPL. pp. 489–501. ACM (2015)
11. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press

(1995)
12. Sinot, F.R.: Sub-λ-calculi, Classified. Electronic Notes in Theoretical Computer

Science 203(1), 123–133 (2008)
13. Terese: Term Rewriting Systems. Cambridge University Press (2003)
14. Xi, H.: Upper bounds for standardizations and an application. The Journal of

Symbolic Logic 64(1), 291–303 (1999)

