
Cell-like P systems with polarizations and minimal rules

Linqiang Pan a, David Orellana-Martín b, Bosheng Song c,∗,
Mario J. Pérez-Jiménez b

a Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, 
Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
b Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, University of Sevilla, Avda. Reina Mercedes s/n, 41012 
Sevilla, Spain
c College of Information Science and Engineering, Hunan University, Changsha 410082, Hunan, China

a b s t r a c t

Keywords:
Bio-inspired computing 
Membrane computing 
Minimal rule 
Universality
PSPACE

P systems with active membranes are a class of computation models in the area of
membrane computing, which are inspired from the mechanism by which chemicals
interact and cross cell membranes. In this work, we consider a normal form of P systems
with active membranes, called cell-like P systems with polarizations and minimal rules,
where rules are minimal in the sense that an object evolves to exactly one object with
the application of an evolution rule or a communication rule, or an object evolves to two
objects that are assigned to the two new generated membranes by applying a division rule.
The present work investigates the computational power of P systems with polarizations
and minimal rules. Specifically, results about Turing universality and non-universality are
obtained with the combination of the number of membranes, the number of polarizations,
and the types of rules. We also show that polarizationless P systems with minimal rules are
equivalent to Turing machines working in a polynomial space, that is, the class of problems
that can be solved in polynomial time by polarizationless P systems with minimal rules is
equal to the class PSPACE.

1. Introduction

A cell is the basic unit of biological organization that constitutes all living organisms. Motivated by the behavior of a
single cell and multiple cells cooperating in a certain environment, a lively branch of natural computing, called membrane 
computing, was proposed in 1998, and the literature of membrane computing has been growing fast covering theoretical 
results [44,48,53,62], applications on real-life problems [40,41,64], and implementation of computation models [21,24]. The 
computation models in membrane computing are called P systems, which have two main families (identified by the mem-
brane structure): cell-like P systems (a rooted tree) [36] and tissue-like P systems [23,32] (a graph) or neural-like P systems
[14,46,47] (a directed graph). For a more detailed presentation of membrane computing the reader can refer to [39], while 
a complete bibliography of this area is available on the web site http://ppage .psystems .eu.

Cell-like P systems have a hierarchical arrangement of membranes embedded in a main membrane, called the skin
membrane [36]. The range of each membrane is defined as a compartment (region), which contains multisets of objects, 
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evolution rules and possibly other membranes. The outside region of the skin membrane is called environment. A membrane 
with no lower neighbors is called elementary; otherwise, the membrane is called non-elementary. In cell-like P systems, 
multisets of objects in different regions may evolve to other objects [36] or they can move between two regions [12,35]. 
With different biological, mathematical, or computer science motivations, the applications of rules in cell-like P systems are 
investigated in various ways, such as minimal parallelism [5,10], time-freeness [4,49,52], flat maximal parallelism [9,30,51,
61].

P systems with active membranes were proposed in [37], which have the important feature that each membrane has an 
electrical charge, that may be + (positive), − (negative), or 0 (neutral). The polarization of a membrane can be modified at a 
computation step. P systems with active membranes have five types of rules: (a) object evolution rules (an object evolves to 
a multiset of objects in a region); (b) in communication rules (an object enters a membrane); (c) out communication rules 
(an object exits a membrane); (d) dissolving rules (initiated by an object, a membrane is dissolved: all the objects in this 
membrane are released to the immediately outside region, and the rules in this dissolved membrane are lost); (e) division 
rules (initiated by an object, a membrane is divided into two membranes).

As computing devices, an important issue of P systems with active membranes is to study the computational power 
[8,11]. The first result about the universality of P systems with active membranes was presented in [34], and the result 
about the universality of P systems with active membranes was improved by optimizing the number of membranes, the 
types of rules and the number of polarizations [38]. The computational power of P systems with active membranes was 
also investigated with the consideration of various strategies for rule application, such as asynchronous [11] or minimal 
parallelism [5].

Another interesting issue of P systems with active membranes is to investigate computational efficiency, since such 
systems offer the attractive possibility of solving NP-complete problems in feasible time [6,22,28,37], such as the SAT
problem [2,37,59,60,63], Subset Sum [43], and Vertex Cover [15]. Moreover, PSPACE-complete problems can also be 
solved by P systems with active membranes [27,54]. It is also known that P systems with active membranes without using 
membrane dissolving rules can solve the QSAT problem in linear time [1]. In [3], it is shown that the QSAT problem was 
solved by P systems with active membranes without polarizations and using evolution rules, send-out communication rules, 
dissolution rules and division for elementary and non-elementary membranes.

The computational complexity of (tissue) P systems with membrane division or membrane separation has also been 
investigated. In [58], it was proved that P systems with active membranes characterize PSPACE, that is, the class of problems 
solvable by P systems with active membranes is equal to PSPACE (further studied in [16–19,57]). In [55,56], an upper bound 
of the computational power of tissue P systems with cell separation or cell division is provided, respectively; it was thus 
shown that the class of problems that are solved in polynomial time by tissue P systems with cell separation or cell division 
is contained in the class PSPACE.

The present work considers a normal form of P systems with active membranes, called cell-like P systems with minimal 
rules, where the rules are minimal in the sense that an object evolves to exactly one object with the application of an 
evolution rule or a communication rule, or an object evolves to two objects that are assigned to the two new generated 
membranes by applying a division rule. More specifically, we consider six types of rules in cell-like P systems with minimal 
rules: (1) possibly modifying an object in a region but not moving it out of the region; (2) possibly modifying an object out 
of a region but not moving it into the region; (3) sending out and possibly modifying an object; (4) sending in and possibly 
modifying an object; (5) interchanging and possibly modifying two objects; (6) dividing elementary or non-elementary 
membranes.

The contributions of this work are summarized as follows:

(a) A normal form of P systems with active membranes is proposed, where the rules are minimal. Moreover, the environ-
ment as an important component is considered in cell-like P systems with minimal rules, and it is supposed that the
objects initially located in the environment have an arbitrarily large number of copies.

(b) The computational power of cell-like P systems with polarizations and minimal rules (CPPMRs, for short) is investigated.
It is proved that CPPMRs with arbitrarily many membranes, using rules of types (1), (2) or using rules of types (3), (5)
or using rules of type (4) are able to compute the lengths of the strings of finite languages. We further prove that
CPPMRs with four membranes, using rules of types (1), (2), (4) or using rules of types (3), (4) are Turing universal; the
result about the universality can also be obtained for cell-like P systems with two membranes, with two polarizations
and using rules of types (4), (5).

(c) The computational complexity of cell-like P systems with minimal rules and without polarizations (CPMRs, for short) is
also investigated. It is shown that the computational power of CPMRs is equivalent to that of Turing machines working
in polynomial space, that is, the class of problems solved by CPMRs in polynomial time is equal to the class of problems
PSPACE. Specifically, on the one hand, CPMRs can solve the PSPACE-complete problem QSAT; on the other hand, Turing
machines can simulate CPMRs in polynomial space.

The rest of the paper is organized as follows. The definitions of CPPMRs and recognizer CPPMRs are presented in sec-
tion 2. The computational power of CPPMRs is investigated in section 3. In section 4, a characterization of PSPACE using 
CPMRs is given. Finally, conclusions and future works are presented in section 5.
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2. Cell-like P systems with polarizations and minimal rules

In this section, we directly give the definitions of CPPMRs and recognizer CPPMRs. For the basic notions used in this
work from formal language theory, one can refer to [45].

Definition 1. A cell-like P system with polarizations and minimal rules of degree q ≥ 1 (CPPMR, for short) is a tuple

� = (�, H,μ,E,M1, . . . ,Mq,R, iout),

where

• �, E are two alphabets of objects, where objects in E (E ⊆ �) are initially present in the environment in an infinite
number of copies;

• H is a finite set of labels;
• μ is an initial membrane structure;
• Mi , 1 ≤ i ≤ q, are initial multisets of objects placed in each membrane;
• R is a finite set of rules:

(1) [ a ]α1
i → [ b ]α2

i , i ∈ H, α1, α2 ∈ {+, −, 0}, a, b ∈ �.
(A simple object evolves in membrane i under the control of the charge of the membrane i. In this process the 
membrane polarization may be modified.)

(2) a[ ]α1
i → b[ ]α2

i , i ∈ H, α1, α2 ∈ {+, −, 0}, a, b ∈ �.
(A simple object evolves in the father region of membrane i under the control of the charge of the membrane i. In 
this process the membrane polarization may be modified. Note that one object and one membrane can be subject 
of only one rule.)

(3) [ a ]α1
i → b[ ]α2

i , i ∈ H, α1, α2 ∈ {+, −, 0}, a, b ∈ �.
(Send out of an object from the membrane i under the control of the charge of the membrane i. In this process, 
both the object and the membrane polarization may be modified.)

(4) a[ ]α1
i → [ b ]α2

i , i ∈ H, α1, α2 ∈ {+, −, 0}, a, b ∈ �.
(Send an object into the membrane i under the control of the charge of the membrane i. In this process, both the 
object and the membrane polarization may be modified. Note that one object and one membrane can be subject of 
only one rule.)

(5) a[ b ]α1
i → c[ d ]α2

i , i ∈ H, α1, α2 ∈ {+, −, 0}, a, b, c, d ∈ �.
(Under the control of the charge of the membrane i, an object placed in the father region of membrane i is sent into 
the membrane, possibly modified, and simultaneously, an object placed in membrane i is sent out. In this process, 
all objects and the membrane polarization may be modified.)

(6) [ a ]α1
i → [ b ]α2

i [ c ]α3
i , i ∈ H, α1, α2, α3 ∈ {+, −, 0}, a, b, c ∈ �.

(A weak division rule is applicable if membrane i has the polarization α1 and contains object a; moreover, mem-
brane i cannot be the skin membrane or the output membrane. Under the control of object a and the polarization 
of membrane i, such membrane is divided into two membranes: the object specified in the rule is replaced in the 
two new membranes, the polarizations of the two new membranes can be modified, all the other objects are dupli-
cated in the two generated membranes. We remark that if the division membrane is a non-elementary membrane, 
then all membranes and objects included in this non-elementary membrane will be duplicated in each of the new 
generated membranes.)

• iout ∈ {0, 1, . . . , q} is the output region.

A CPPMR works in the maximally parallel manner [36]. Note that any object can be subject to only one rule of any type,
and any membrane can be subject to only one rule of any type.

A configuration of a CPPMR is described by the current membrane structure, the current objects in each region, and 
the current multiset of objects over � \ E in the environment. By using rules described above, one can define transitions
among configurations. Any sequence of transitions starting from the initial configuration is called a computation. A halting 
configuration is such that no rule can be used in the system. The result of a halting computation is the number of specified 
objects present in the output region when a computation halts. A non-halting computation produces no result.

We denote by N(�) the set of natural numbers generated by system �. The family of all sets N(�) of natural numbers 
computed by systems � with at most m membranes, with at most k polarizations, and using rules as in list-of-rules is 
denoted by N O Pm(chark, list-of-rules). If parameter m is not bounded then it is replaced by ∗.

In this work, we use recognizer CPPMRs to solve decision problems, one can consult Chapter 12 in [39,42] for details.

Definition 2. A recognizer cell-like P system without polarizations and minimal rules of degree q ≥ 1 (recognizer CPMR, for 
short) is a tuple

� = (�, H,�,μ,E,M1, . . . ,Mq,R, iin, iout),



4

such that:

• (�, H, μ, E, M1, . . . , Mq, R, iout) is a cell-like P system with polarizations and minimal rules of degree q ≥ 1;
• � has two distinguished objects yes and no, with at least one copy of them present in some multisets M1, . . . , Mq ,

but none of them present in E ;
• � is an (input) alphabet strictly contained in �, and such that E ⊆ � \ �;
• M1, . . . , Mq are finite multisets over � \ �;
• iin ∈ {1, . . . , q} is the input membrane, and iout = 0;
• all computations halt;
• if C is a computation of �, then either object yes or object no (but not both) must have been released into the

environment, and only at the last step of the computation.

If all computations of CPMR with the same input always produce the same result, then such CPMR is called confluent.

Definition 3. A decision problem X = (I X , θX ) is solvable in polynomial time by a family � = {�(n) | n ∈N} of recognizer P 
systems from CPMR in a uniform way, if the following conditions hold:

• the family � is polynomially uniform by Turing machines, that is, there exists a deterministic Turing machine working
in polynomial time which constructs the system �(n) from n ∈N;

• there exists a pair (cod, s) of polynomial-time computable functions over I X such that:
– for each instance u ∈ I X , s(u) is a natural number and cod(u) is an input multiset of the system �(s(u));
– for each n ∈N , s−1(n) is a finite set;
– the family � is polynomially bounded with regard to (X, cod, s), that is, there exists a polynomial function p, such

that for each u ∈ I X every computation of �(s(u)) with input cod(u) is halting and it performs at most p(|u|) steps;
– the family � is sound with regard to (X, cod, s), that is, for each u ∈ I X , if there exists an accepting computation of

�(s(u)) with input cod(u), then θX (u) = 1;
– the family � is complete with regard to (X, cod, s), that is, for each u ∈ I X , if θX (u) = 1, then every computation of

�(s(u)) with input cod(u) is an accepting one.

The set of all decision problems that can be solved by recognizer CPMRs in a uniform way and polynomial time is 
denoted by PMCCPMR .

3. Computational power of CPPMRs

In this section, we investigate the computational power of CPPMRs. We denote by N F I N the family of all finite sets of
positive integers, and by N R E the family of sets of numbers which are Turing computable.

Theorem 3.1. N O P∗(char3, (1), (2)) ⊆ N F I N.

Proof. Obviously, by using rules of types (1) and (2), an object can evolve to another object in a membrane or outside of 
a membrane, and the system cannot bring objects into membranes from the environment. Therefore, in any computation, 
the number of objects in the CPPMRs will not change by using rules of types (1) and (2). So, the number of configurations 
reachable by computations is finite. Therefore, the system can only generate finite sets of natural numbers. �
Theorem 3.2. N O P∗(char3, (4)) ⊆ N F I N.

Proof. According to rules of type (4), an object can be sent into a membrane, and the membrane polarization may be 
modified. We note that only rules of type (4) exist in a CPPMR, hence the number of objects can be increased if and only if 
the objects placed in the environment are sent into the skin membrane. Without loss of generality, it is assumed that the 
skin membrane has neutral polarization. When a rule of type (4) is used, we have the following two cases: (i) the object 
entering into the skin membrane does not belong to E ; (ii) the object entering into the skin membrane belongs to E .

• Case (i): Obviously, the number of objects from the environment (that is, from �\E ) is finite, so the number of objects
entering into the system by using the rules of type (4) is finite.

• Case (ii): When a sequence of (always different) objects is sent into the system, the polarization of the skin membrane
must be changed at the step that the last object of the sequence is sent into the system, otherwise, these rules can be
applied forever, and the computation never stops. Therefore, a finite number of objects can enter the systems.

In general, the number of objects in the system in each configuration is finite. So, the number of reachable configurations
is finite and the generated set of numbers by the system is finite. Therefore, the theorem holds. �
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Theorem 3.3. N O P∗(char3, (3), (5)) ⊆ N F I N.

Proof. By using rules of type (5), an object in a membrane is exchanged with an object out of this membrane. By applying 
rules of type (3), an object is sent out of a membrane. The number of objects in the system cannot be increased in any 
computation starting from the initial configuration to a halting configuration. Hence the number of configurations of the 
system is finite, and the set of natural numbers generated by the system is finite. Therefore, the theorem holds. �

In what follows, we will show some results about the Turing universality of CPPMRs, which are proved by simulating 
register machines.

A register machine is a tuple M = (m, H, l0, lh, I), where m is a natural number (it represents the number of registers), 
H is a set of labels, l0, lh ∈ H are initial and halting one, respectively, I is a set of instructions li : (op(r), l j, lk) (op(r) is an 
ADD operation or a SUB operation on register r of M) of the following forms:

• li : (ADD(r), l j, lk) (when this instruction is applied, the value of register r is increased by one and then the machine
will carry out one of the instructions with labels l j , lk);

• li : (SUB(r), l j, lk) (when this instruction is applied, we have two cases: if the content of register r is greater than
zero, then the content of register r is decreased by one and the machine will carry out the instruction with label l j ;
otherwise, the content of register r is not changed and the machine will carry out the instruction with label lk );

• lh : HALT (the halt instruction).

A register machine M generates the set of numbers N(M) as follows: initially all registers are empty, M starts with
the initial instruction l0, by applying instructions as indicated by the labels, the register machine will halt if and when 
it reaches the halting instruction lh . The number stored in the first register at the halting moment is called the number 
generated by the register machine. It is known that register machines and Turing machines are equivalent, that is, both of 
them characterize N R E [25].

Theorem 3.4. N O P4(char3, (3), (4)) = N R E.

Proof. It is known that a register machine with three registers is universal [7,25], so we assume that the simulated register 
machine M = (m, H, l0, lh, I) has m = 3. We construct a CPPMR � that simulates M .

� = (�, H,μ,E,M1,M2,M3,M4,R,1),

where

� = {l, l′, l′′ | l ∈ H} ∪ {a,a′},
H = {1,2,3,4},
μ = [ [ ]0

1[ ]0
2[ ]0

3 ]0
4,

E = {a},
M1 = M2 = M3 = ∅, M4 = {l0},

and the set R of rules is defined as follows (each register r = 1, 2, 3 of M corresponds to a membrane labeled with r, the 
value of register r is represented as the number of copies of object a in membrane r. When object li appears in membrane 4, 
the system starts to simulate the instruction li . The number of copies of object a in membrane 1 is considered the result of 
a computation).

• We construct the following rules to simulate an ADD instruction li : (ADD(r), l j, lk) of M:

r1 : li[ ]0
r → [ li ]0

r ,

r2 : [ li ]0
r → l′i[ ]+

r ,

r3 : [ l′i ]0
4 → l′i[ ]+

4 ,

r4 : a[ ]+
4 → [ a ]0

4,

r5 : a[ ]+
r → [ a ]0

r ,

r6 : l′i[ ]0
4 → [ l j ]0

4,

r7 : l′i[ ]0
4 → [ lk ]0

4.
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At the first two steps, object li evolves to l′i and the polarization of membrane r is changed from neutral to positive.
With the polarization of membrane 4 changes to positive, one copy of a is sent into membrane 4, returning the polarization 
of membrane 4 to neutral. At step 5, object a is sent into the membrane r changing the polarization back to neutral (the 
number of copies of a in membrane r is increased by one, which simulates that the number stored in register r is increased 
by one); in parallel, object l j or lk appears in membrane 4 non-deterministically by using rule r6 or r7. Therefore, the next 
instruction with label l j or lk will be simulated at the next step.

• We construct the following rules to simulate a SUB instruction li : (SUB(r), l j, lk) of M:

r8 : li[ ]0
r → [ li ]0

r ,

r9 : [ li ]0
r → l′i[ ]−

r ,

r10 : [ a ]−
r → a′[ ]+

r ,

r11 : [ l′i ]0
4 → l′i[ ]0

4,

r12 : l′i[ ]0
4 → [ l′′i ]0

4,

r13 : l′′i [ ]+
r → [ l′′i ]+

r ,

r14 : l′′i [ ]−
r → [ l′′i ]−

r ,

r15 : [ l′′i ]+
r → l j[ ]0

r ,

r16 : [ l′′i ]−
r → lk[ ]0

r .

The simulation of a SUB instruction li works as follows. At the first two steps, object li evolves to l′i and the polarization
of membrane r is changed to negative. In what follows, the system will check whether membrane r contains object a.

• Membrane r contains at least one copy of object a (that is, the number stored in register r is greater than 0). One
copy of object a evolves to a′ , which is sent out of membrane r, and the polarization of such membrane is changed to
positive; in membrane 4, object l′i evolves to l′′i in two steps. By using rules r13 and r15, object l′′i evolves to l j , returning
the polarization of membrane r to neutral. Hence one copy of object a is consumed in membrane r (simulating that the
number stored in register r is decreased by one), and the next instruction l j will be simulated at the next step.

• Membrane r has no object a (that is, the number stored in register r is 0). Object l′i will be evolved to l′′i by using rules
r11, r12. At the next two steps, object l′′i evolves to lk , and the polarization of membrane r is returned neutral. Hence,
the next instruction lk will be simulated at the next step.

Hence, system � simulates the SUB instruction of M correctly.
The computation can stop only when object lh appears in membrane 4 at some step. The number of copies of object a

in membrane 1 is the result of the system, hence N(M) = N(�), which concludes the proof. �
Theorem 3.5. N O P4(char3, (1), (2), (4)) = N R E.

Proof. For a register machine M = (3, H, l0, lh, I) with three registers, we construct the CPPMR, �, to simulate M .

� = (�, H,μ,E,M1,M2,M3,M4,R,1),

where

• � = {l, l′, l′′ | l ∈ H} ∪ {a, a′},
• H = {1, 2, 3, 4},
• μ = [ [ ]0

1[ ]0
2[ ]0

3 ]0
4,

• E = {a},
• M1 =M2 =M3 = ∅, M4 = {l0},

and the rule set R is defined as follows (each register r = 1, 2, 3 of M corresponds to a membrane labeled with r, the value 
of register r is represented as the number of copies of a in membrane r. The system starts to simulate the instruction li
when object li appears in membrane 4. The result of the computation is encoded as the number of copies of object a in 
membrane 1).

• The following rules are used to simulate an ADD instruction li : (ADD(r), l j, lk) of M:

r1 : li[ ]0
r → l′ [ ]+

r ,
i
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r2 : [ l′i ]0
4 → [ l′′i ]+

4 ,

r3 : a[ ]+
4 → [ a ]0

4,

r4 : a[ ]+
r → [ a ]0

r ,

r5 : [ l′′i ]0
4 → [ l j ]0

4,

r6 : [ l′′i ]0
4 → [ lk ]0

4.

At the first two steps, object li evolves to l′′i in membrane 4, and the polarizations of membrane r and membrane 4 are 
changed to positive. At the next two steps, one copy of object a is sent into membrane r from the environment (simulating 
that the value of register r is increased by one) and the polarizations of membrane r and membrane 4 are returned to 
neutral by using rules r3, r4. In parallel, at step 4, object l j or lk appears in membrane 4 non-deterministically by using rule 
r5 or r6. Therefore, the next instruction with label l j or lk will be simulated at the next step.

• We construct the following rules to simulate a SUB instruction li : (SUB(r), l j, lk) of M:

r7 : li[ ]0
r → l′i[ ]−

r ,

r8 : [ a ]−
r → [ a′ ]+

r ,

r9 : [ l′i ]0
4 → [ l′′i ]0

4,

r10 : l′′i [ ]+
r → l j[ ]0

r ,

r11 : l′′i [ ]−
r → lk[ ]0

r .

At the first step, object li evolves to l′i , changing the polarization of membrane r to negative by using rule r7. In what
follows, the system will check whether membrane r contains object a.

• Membrane r contains at least one copy of object a (that is, the number stored in register r is greater than 0). With
membrane r having negative polarization, one copy of object a evolves to a′ in membrane r, and the polarization of
membrane r is changed to positive; in addition, object l′i in membrane 4 evolves to l j at the next two steps by using
rules r9, r10, and the polarization of membrane r is returned to neutral. Hence one copy of object a is consumed in
membrane r (simulating that the value of register r is decreased by one), and the next instruction l j will be simulated
at the next step.

• Membrane r has no object a (that is, the number stored in register r is 0). At the next two steps, rules r9, r11 are used
one by one, object l′i evolves to lk in membrane 4, returning the polarization of membrane r to neutral. Hence, the next
instruction lk will be simulated at the next step.

Hence, system � correctly simulates the SUB instruction of M .
The computation can stop only when object lh appears in membrane 4 at some step. The number of copies of object a

in membrane 1 is the result of the system, hence N(M) = N(�), which concludes the proof. �
Theorem 3.6. N O P2(char2, (4), (5)) = N R E.

Proof. For a register machine M = (3, H, l0, lh, I) with three registers, we construct a CPPMR, �, to simulate M .

� = (�, H,μ,E,M1,M2,R,2),

where

• � = {ai, a′
i | 1 ≤ i ≤ 3} ∪ {l, l′, l′′, l′′′, liv | l ∈ H},

• H = {1, 2},
• μ = [ [ ]0

2 ]0
1,

• E = {ai | 1 ≤ i ≤ 3} ∪ {liv | l ∈ H},
• M1 = {l0}, M2 = ∅,

and the set R of rules is defined as follows (the result of the computation is encoded as the number of copies of object a1
in membrane 2. When object li appears in membrane 1, the system starts to simulate the instruction li ).

• We construct the following rules to simulate an ADD instruction li : (ADD(r), l j, lk) of M:

r1 : ar[ li ]0 → l′ [ ar ]0,
1 i 1
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r2 : ar[ ]0
2 → [ ar ]0

2,

r3 : l′i[ ]0
1 → [ l j ]0

1,

r4 : l′i[ ]0
1 → [ lk ]0

1.

An ADD instruction li is simulated in two steps. First, object li in membrane 1 is exchanged with object ar from the 
environment, then object li evolves to l′i . At step 2, object ar is sent into membrane 2 (simulating that the number stored
in register r is increased by one); in parallel, object l j or lk appears in membrane 1 non-deterministically by using rule r3
or r4. Therefore, the next instruction with label l j or lk will be simulated at the next step.

• We construct the following rules to simulate each SUB instruction li : (SUB(r), l j, lk) of M:

r5 : liv
i [ li ]0

1 → l′i[ liv
i ]0

1,

r6 : liv
i [ ar ]0

2 → a′
r[ liv

i ]−
2 ,

r7 : l′i[ ]0
1 → [ l′i ]0

1,

r8 : l′i[ ]−
2 → [ l′′i ]0

2,

r9 : l′i[ ]0
2 → [ l′′′i ]0

2,

r10 : a′
r[ l′′i ]0

2 → l j[ a′
r ]0

2,

r11 : liv
i [ l′′′i ]0

2 → lk[ liv
i ]0

2.

The simulation of a SUB instruction li works as follows. At the first step, object li in membrane 1 is exchanged with 
object liv

i , then object li evolves to l′i . In what follows, the system will check whether membrane 2 contains object ar .

• Membrane 2 contains at least one copy of object ar (that is, the value stored in register r is greater than 0). With
object liv

i present in membrane 1, rule r6 is applied, one copy of object ar evolves to a′
r , and object liv

i is sent into 
membrane 2; in parallel, object l′i evolves to l′′i , which is sent into membrane 2 by applying rules r7, r8, returning the 
polarization of membrane 2 to neutral. At step 4, object l′′i evolves to l j , which is sent out of membrane 2. Hence one 
copy of object ar is consumed in membrane 2 (it simulates that the number stored in register r is decreased by one), 
and the next instruction l j will be simulated at the next step.

• Membrane 2 has no object ar (that is, the value stored in register r is 0). At the next two steps, object l′i evolves to l′′′i ,
which is sent into membrane 2. At step 4, by applying rule r11, object l′′′i evolves to lk , which is sent out of membrane 2. 
Hence, the next instruction lk will be simulated at the next step.

Hence, system � correctly simulates the SUB instruction of M .
The computation can stop only when object lh appears in membrane 4 at some step. The number of copies of object a1

in membrane 2 is the result of the computation, hence N(M) = N(�). �
4. CPMRs characterize PSPACE

In this section, we first construct a family of recognizer CPMRs to solve the QSAT problem, then we will show that
recognizer CPMRs can be simulated by a Turing machine working in a polynomial space.

4.1. Solving the QSAT problem by CPMRs

Given a Boolean formula ϕ(x1, . . . , xn) in conjunctive normal form, with Boolean variables x1, . . . , xn , the sentence ϕ∗ =
∃x1∀x2 . . . Q nxnϕ(x1, . . . , xn) (where Q n is ∃ if n is odd, and Q n is ∀ otherwise) is said to be the (existential) fully quantified
formula associated with ϕ(x1, . . . , xn). We say that ϕ∗ is satisfiable if there exists a truth assignment, σ , over {i : 1 ≤ i ≤ n ∧
i odd} such that each extension, σ ∗ (an extension of SAT models for QBF), of σ over {1, . . . , n} verifies σ ∗(ϕ(x1, . . . , xn)) = 1. 
For further detailed description of the QSAT problem, one can refer to [1,33,50,57].

We encode the instance ϕ as follows, which will be applied as input to the CPMR:

cod(ϕ) = α1,1 . . . α1,m α2,1 . . . α2,m . . . . . . αn,1 . . . αn,m,

where m is the number of clauses, and for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

αi, j =

⎧⎪⎨
⎪⎩

di, j if clause C j contains variable xi;
d′

i, j if clause C j contains variable ¬xi;
d′′ if clause C j does not contain variable xi and variable ¬xi .
i, j



9

Consider the primitive recursive and bijective function from N2 onto N defined by 〈n, m〉 = ((n + m)(n + m + 1)/2) + n. 
For each t = 〈n, m〉, we define the recognizer CPMR (�(t) = (�, H, μ, E, �, M1, . . . , Mn+2, R, iin, iout) as follows:

• � = � ∪ {ai, ti,m+1, f i,m+1 | 1 ≤ i ≤ n} ∪ {ti, j, f i, j | 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {c j, e j, e′
j | 1 ≤ j ≤ m} ∪ {αi | 0 ≤ i ≤ n2 + 2nm +

n + m + 4} ∪ {d, em+1, e′
m+1, g, g′, p, s, t, t′, yes, no},

• H = {1, 2, . . . , n + 2},
• μ = [ [ [ . . . [ [ ]n+1 ]n . . . ]2 ]1 ]n+2,
• � = {di, j, d′

i, j, d
′′
i, j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

• E = ∅,
• M1 = {a1, g, p}, Mi = {g}, 2 ≤ i ≤ n − 1, Mn =Mn+1 = ∅, Mn+2 = {α1, g},
• iin = n + 1 is the input membrane,
• iout = 0 is the environment,
• the set R consists of the following rules:

r1,i : [ ai ] i → [ ti,1 ] i[ f i,1 ] i, 1 ≤ i ≤ n,

r2,i, j : ti,1[ ] j → [ ti,1 ] j,1 ≤ i ≤ n − 1, i < j ≤ n,

r3,i, j : f i,1[ ] j → [ f i,1 ] j, 1 ≤ i ≤ n − 1, i < j ≤ n,

r4,i, j : ti, j[ di, j ]n+1 → c j[ ti, j+1 ]n+1, 1 ≤ i ≤ n,1 ≤ j ≤ m,

r5,i, j : ti, j[ d′
i, j ]n+1 → d[ ti, j+1 ]n+1, 1 ≤ i ≤ n,1 ≤ j ≤ m,

r6,i, j : ti, j[ d′′
i, j ]n+1 → d[ ti, j+1 ]n+1, 1 ≤ i ≤ n,1 ≤ j ≤ m,

r7,i, j : f i, j[ di, j ]n+1 → d[ f i, j+1 ]n+1, 1 ≤ i ≤ n,1 ≤ j ≤ m,

r8,i, j : f i, j[ d′
i, j ]n+1 → c j[ f i, j+1 ]n+1, 1 ≤ i ≤ n,1 ≤ j ≤ m,

r9,i, j : f i, j[ d′′
i, j ]n+1 → d[ f i, j+1 ]n+1, 1 ≤ i ≤ n,1 ≤ j ≤ m,

r10,i, j : [ ti, j+1 ]n+1 → ti, j+1[ ]n+1, 1 ≤ i ≤ n,1 ≤ j ≤ m − 1,

r11,i, j : [ f i, j+1 ]n+1 → f i, j+1[ ]n+1, 1 ≤ i ≤ n,1 ≤ j ≤ m − 1,

r12,i : [ ti,m+1 ]n+1 → ai+1[ ]n+1, 1 ≤ i ≤ n − 1,

r13,i : [ f i,m+1 ]n+1 → ai+1[ ]n+1, 1 ≤ i ≤ n − 1,

r14,i, j : [ ai ] j → ai[ ] j, 2 ≤ i ≤ n − 1, i < j ≤ n,

r15 : [ tn,m+1 ]n+1 → [ e1 ]n+1,

r16 : [ fn,m+1 ]n+1 → [ e1 ]n+1,

r17, j : c j[ e j ]n+1 → e′
j+1[ e j+1 ]n+1, 1 ≤ j ≤ m,

r18 : [ em+1 ]n+1 → t[ ]n+1,

{r19,i : g[ t ] i → s[ g′ ] i,

r20,i : s[ t ] i → t[ s′ ] i | Q i = ∀,1 ≤ i ≤ n},
{r21,i : g[ t ] i → t[ g′ ] i | Q i = ∃,1 ≤ i ≤ n},
r22 : t[ p ]1 → yes[ t′ ]1,

r23 : [ yes ]n+2 → yes[ ]n+2,

r24,i : [ αi ]n+2 → [ αi+1 ]n+2, 1 ≤ i ≤ n2 + 2nm + n + m + 3,

r25 : αn2+2nm+n+m+4[ p ]1 → no[ α0 ]1,

r26 : [ no ]n+2 → no[ ]n+2.

The computation of the P system �(ϕ∗) that solves the QSAT problem can be divided into four phases: generation phase, 
checking phase, quantifier phase, and output phase. In what follows, we explain how the system works in each phase.

Generation phase. A binary tree structure is produced by dividing non-elementary membranes with labels 1, 2, . . . , n; 
in this way the system produces all truth assignments for the variables x1, . . . , xn . In addition, the system checks the 
clauses that are satisfied by the corresponding truth assignment. Therefore, some of the objects c1, c2, . . . , cm appear in a 
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Fig. 1. The membrane structure of the system when the generation phase completes, where the numbers at nodes indicate the labels of membranes.

membrane n when the generation phase completes (object c j corresponds to the clauses satisfied by the truth-assignment). 
In parallel in membrane n + 2, the subscript of object αi is increased in order to count the number of steps.

Next we describe how the system assigns and looks for the clauses satisfied by the truth-assignment of variable xi .
Division rule r1,i is used when object ai appears in membrane i, two copies of membrane with label i are generated, 

where objects ti,1 and f i,1 are produced in these two new membranes i. In the following steps, object ti,1 (resp., f i,1) will 
be sent into membrane n by using rules r2,i, j (resp., r3,i, j).

The appearance of object ti,1 (resp., f i,1) in membrane n shows that the clauses made true by the truth-assignment of 
variable xi will be checked. Specifically, if object ti, j appears in a membrane n and object di, j (resp., d′

i, j, d
′′
i, j) appears in the

immediate lower membrane n, object di, j (resp., d′
i, j and d′′

i, j ) evolves to c j (resp., d), which is sent out of membrane n + 1;
in addition, object ti, j evolves to ti, j+1, which is sent into membrane n + 1. Similarly, if object f i, j appears in a membrane 
n and object d′

i, j (resp., di, j, d′′
i, j) appears in the immediate lower membrane n, object d′

i, j (resp., di, j and d′′
i, j ) evolves to c j

(resp., d), which is sent out of membrane n +1; in addition, object f i, j evolves to f i, j+1, which is sent into membrane n +1. 
At the next step, object ti, j+1 (resp., f i, j+1) is sent out of membrane n + 1. This process can be repeated until object ti,m+1
(resp., f i,m+1) appears in membrane n + 1.

By using rule r12,i (resp., r13,i), object ti,m+1 (resp., f i,m+1) evolves to ai+1, which is sent out of membrane n + 1. By 
using rule r14,i, j , object ai+1 is sent out from membrane n to membrane i + 1. When object ai+1 appears in membrane 
i + 1, the system starts to assign and look for the clauses satisfied by the truth-assignment of variable xi+1 .

Rule r15 (resp., r16) is applied only when the object tn,m+1 (resp., fn,m+1) appears in membrane n + 1. Object tn,m+1
(resp., fn,m+1) evolves to e1, and the generation phase completes.

We count the number of steps taken in this phase. For variable x1, division rule takes one step, sending object t1,1 or 
f1,1 into membrane n takes n − 1 steps, checking the clauses satisfied by variable x1 takes 2m steps, sending object a2 into 
membrane 2 costs n − 2 steps. Hence the system takes 2n + 2m − 2 steps to assign and look for the clauses satisfied by 
variable x1. For variable x2, this process takes 2n + 2m − 4 steps. Note that objects t2,1 and f2,1 transfer to membrane n
from membrane 2 (objects t1,1 and f1,1 transfer to membrane n from membrane 1), and object a3 transfers to membrane 
3 from membrane n (object a2 transfers to membrane 2 from membrane n). Therefore, we can deduce that two steps are 
decreased when the system assigns and looks for the clauses satisfied by variable from xi to xi+1 (1 ≤ i ≤ n − 2). So the 
total number of steps is n2 + 2nm − n − 2m. Hence the system takes 2m + 1 steps for assigning and looking for the clauses 
satisfied by variable xn . So the generation phase takes n2 + 2nm − n + 1 steps. When the generation phase completes, the 
membrane structure is shown in Fig. 1.

Checking phase. We have the membrane structure as shown in Fig. 1 when the generation phase completes. Clearly, each 
membrane n contains a membrane n + 1, which contains some objects from the set {c1, c2, . . . , cm} (object c j corresponds 
to the j-th clause satisfied by the truth assignment of the variables).

Object c1 starts to be checked in each membrane n if membrane n + 1 contains object e1. If a membrane n has object c1, 
then object e1 evolves to e′

2, which is sent out of membrane n + 1; in addition, object c1 evolves to e2, which is sent into
membrane n + 1. Now object c2 starts to be checked in each membrane n. Note that if object c j does not appear in a 
membrane n, then r17, j cannot be applied and the computation in that membrane n will stop.

When a membrane n + 1 has the object em+1, it means the immediate upper membrane n has all the objects 
c1, c2, . . . , cm , so rule r18 is used, object em+1 evolves to t , which is sent out of membrane n + 1.

In general, the checking phase takes m + 1 steps.
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Quantifier phase. In this phase, we will check whether the formula ϕ∗ is satisfied. Object t moves upwards the binary 
tree structure, at each level, checking one quantifier ∀ by rules r19,i, r20,i or ∃ by rules r21,i .

For quantifier Q i = ∀, we only need to prove the following fact: one copy of object t appears in the upper level mem-
brane if and only if there exists one copy of object t in each lower level membrane i. Specifically, by applying rule r19,i , 
object g evolves to g′ , which is sent into a membrane i; in addition, object t evolves to s, which is sent out of membrane i. 
By using rule r20,i , object s is exchanged with object t in another membrane i, one copy of object t is sent to the upper 
level membrane. Note that there is at most one copy of object t in a membrane i.

For quantifier Q i = ∃, we only need to prove the following fact: one copy of object t appears in the upper level mem-
brane if and only if there exists at least one copy of object t in lower level membrane i. Specifically, by using rule r21,i , 
object g evolves to g′ , which is sent into a membrane i; and object t is sent out of membrane i.

Hence the quantifier phase takes at most 2n steps.
Output phase. When object t appears in membrane n + 2, it means the formula ϕ∗ is satisfiable. In this case, object t

evolves to t′ , which is sent into membrane 1; and object p evolves to yes, which is sent out of membrane 1. Besides, the 
subscript of object αi is increased by one in membrane n + 2. At the next step, object yes is sent to the environment. At 
this moment, no rule is enabled in the system and the computation halts, so the result of the system is affirmative.

At step n2 + 2nm + n + m + 3, if membrane n + 2 does not contain object t , it means the formula ϕ∗ is not satisfiable. In 
this case, at step n2 + 2nm + n + m + 3, object αn2+2nm+n+m+3 evolves to αn2+2nm+n+m+4 in membrane n + 2. Next, object 
αn2+2nm+n+m+4 evolves to α0, which is sent into membrane 1; and object p evolves to no, which is sent out of membrane 
1. At step n2 + 2nm + n + m + 5, object no is sent to the environment. After that, no rule is enabled in the system and the
computation halts, hence the answer of the system is negative.

The necessary resources of the constructed P system are of polynomial order: (1) the size of the set �: n2 + 7nm + 4n +
4m + 16; (2) the initial number of membranes: n + 2; (3) the initial number of objects in membranes: n + 3; (4) the number 
of rules: (5n2 +20nm +5n +4m +18)/2; (5) the maximum length of a rule: 4. Hence, a deterministic Turing machine exists, 
which builds the P system �(ϕ∗) in a polynomial time with respect to n and m.

Obviously, P system �(ϕ∗) with input multiset cod(ϕ) takes at most n2 + 2nm + n + m + 4 steps when the output of the 
system is yes in the halting configuration, while the system takes at most n2 + 2nm + n + m + 5 steps when the output of 
the system is no in the halting configuration. Therefore, a polynomial bound for the number of steps of the computation 
exists.

Hence, the QSAT problem is solved by a uniform family of recognizer CPMRs in polynomial time. So, we get the following 
result:

Theorem 4.1. QSAT ∈ PMCCPMR .

As PMCCPMR is closed under polynomial time reductions, we get the following result:

Corollary 4.1. PSPACE ⊆ PMCCPMR .

4.2. Simulation of CPMRs by Turing machine in a polynomial space

In this subsection, the simulation of CPMRs by Turing machines in polynomial space is provided. Without loss of gener-
ality, we assume that the simulated P systems are confluent. In order to simulate non-deterministic confluent P systems, we 
define a weak priority between the selected rules, which is described as follows: (1) rules are used in a bottom-up manner 
for membranes; (2) rules are used in the order of types from (1) to (6) in a membrane [57,58]. In this way, confluent P 
systems can be simulated in a deterministic way.

The objects in any membrane h at any configuration Ct can be calculated from the previous configuration of this mem-
brane.

We assume that the labels of the initial membranes are one-to-one, but in CPMRs, the membranes generated by a 
division rule have the same label. In order to identify the uniqueness of membranes, we need to relabel the membranes. 
Specifically, an index is added to each label of membranes in the following way:

1. The environment is a special membrane and the depth level of the environment is denoted by −1. The depth of the
skin membrane is denoted as level 0. For the other membranes, the depth level of a membrane is the distance between
the two nodes corresponding to this membrane and the skin membrane in the tree associated with the structure of the
P system (see Fig. 2).

2. The index of the label of a membrane is the subscript of the label. In the initial configuration, each label has an empty
index, that is, it has the form a, b, c, d, instead of b[... ] , c[...,... ] , etc., as shown in Fig. 2. The index of skin membrane
remains unchanged during the computation process. In a configuration Ct , the index of the label of a membrane with
the depth level k ≥ 1 is a k-tuple of the form [s1, . . . , sk], where si , 1 ≤ i ≤ k, is a string over 1 and 2, the length of a
string si is the number of computation steps t , and the first k − 1 strings are the same ones as the parent membrane.
For example, in Fig. 2, after the first computation step, the label index of the membrane c with the depth level 2 is a
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Fig. 2. The illustration of the updating of label indices of membranes during a computation, where the CPMR � has the membrane structure
[ [ [ [ ] d ] c ] b ] a . At step one, membrane with label d is divided; at step two, the non-elementary membrane c1,1 is divided.

2-tuple [1, 1], consisting of the two strings of length one 1 and 1, and the first string 1 is the same as the label index
of the parent membrane b. The label indices of the membranes d with depth level 3 are 3-tuples [1,1,1] and [1,1,2], the
first two strings of these two 3-tuples 1 and 1 are the same as the label index of the parent membrane c.

3. At a computation step, the label indices of membranes are extended in a top-down manner by the distances of nodes
to the root node (corresponding to the skin membrane) in the tree structure of the P system, first root node, finally
leaf nodes. Specifically, considering a membrane h[i11 ...i1(t−1),...,ik1...ik(t−1)] at step t − 1, if membrane h is not divided at
step t , then after step t the first k − 1 strings of the label index of membrane h are the same as the parent membrane
and the digit 1 is added to the last string ik1 . . . ik(t−1) in the right end, that is, h[i11...i1(t−1),...,ik1...ik(t−1)] is updated to
h[s1,...,sk−1,ik1...ik(t−1)1] , where s1, . . . , sk−1 are the label index of the parent membrane (which is already updated following
the top-down manner). If membrane h is divided at step t , then after step t the first k − 1 strings of the label index of
membrane h are the same as the parent membrane, and digits 1 and 2 are added to the last string ik1 . . . ik(t−1) in the
right end, respectively; the obtained two k-tuples in this way are the updated label indices of the two new generated
membranes, correspondingly. For example, in Fig. 2, at step 2, membrane with label b is not divided, so the label index
of this membrane is updated from [1] to [11] by adding digit 1 to the last string (the only string) 1, that is, the label b[1]
is updated to b[11] . The membrane with label c is divided at step 2, two new membranes with label c are generated,
the label indices of membranes c are 2-tuples as the depth level of these membranes is 2, the first string of these
2-tuples are 11, which is the same as the parent membrane b, the last string 1 of the tuple [1, 1] is updated to [11, 12]
by adding 1 and 2 in the right end, respectively. Now, the labels of membrane c become c[11,11] and c[11,12] .

Consider a CPMR � = (�, H, �, μ, E, M1, . . . , Mm, R, iin, iout). We denote by S.M the multiset of objects in mem-
brane M (S is the state of each membrane). If a membrane does not exist, then the state of such membrane is denoted by 
null. We denote by |S.M|a the multiplicity of an object a in S.M .

In what follows, we define Function State, which is used to decide the result of a computation of �, specifically, 
from the initial configuration to a halting configuration. Function State can compute any membrane h which potentially 
exists at any step, and remember whether a rule was used in the process of computation. Function Parent and Func-
tion Use_children are used to calculate the parent membrane and the multisets of objects in membranes, respectively. 
Function State is used to calculate the state of the parent membrane and change the content of a membrane when rules 
are used in its children membranes, respectively. Functions Use_rules_type(1)-Use_rules_type(6) are used to 
calculate the content of membrane after applying the corresponding types of rules.

Function State
Input:
h[i11...ikt ] (a specification of a membrane), t ≥ 0: a nonnegative integer, k ≥ 0 is the depth level of membrane.
Variables:
S, T : states of membrane h[i11...ik(t−1)] and its parent membrane at configuration Ct−1, respectively;
T ′: state of parent membrane of h[i11...ikt ] at configuration Ct .
Output:
S ′: state of membrane h[i11...ikt ] at configuration Ct .

1. If t = 0, then output the state of membrane h in the initial configuration C0 and the program exits.
2. If k ≥ 0, then

(a) T ← State(Parent(h[i11...ikt ]), t)
(b) If T = null, then null is returned and the program exits.

3. S ← State(h[i11...ik(t−1)], t − 1)

4. If S = null, then null is returned and the program exits.
5. T ′ ← ∅, S ′ ← ∅
6. Use_children(h[i11...i ], t, S.M, S ′.M)
kt
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7. If k ≥ 0, then
(a) T ← State(Parent(h[i11...ik(t−1)]), t − 1)

(b) Use_rules_type(1)(h, S, S ′, T .M, T ′.M)

(c) Use_rules_type(2)(h, S, S ′, T .M, T ′.M)

(d) Use_rules_type(3)(h, S, S ′, T .M, T ′.M)

(e) Use_rules_type(4)(h, S, S ′, T .M, T ′.M)

(f) Use_rules_type(5)(h, S, S ′, T .M, T ′.M)

(g) Use_rules_type(6)(h, S, S ′, ikt)

8. If S ′ �= null, then S ′.M ← S ′.M ∪ S.M .
/* All unused objects pass unchanged to the next configuration. */

9. If ikt = 2 (an index 2 is added to a label of membrane, which means such membrane is obtained by a division rule)
and rule of type (6) cannot be used, then S ′ ← null. /* Membrane h[i11...ikt ] was possibly created by an application of
a rule of type 6 in t-th step. If the rule was not applied, then membrane h[i11 ...ikt ] does not exist. */

10. Output S ′ and exit.

Function Parent
Input:
h[i11...ikt ]: a specification of a membrane.
Output:
At configuration Ct , the parent membrane of h[i11...ikt ] .

1. Return g[i11...i(k−1)t ] . /* g is the label of the parent membrane of h in the initial configuration. */

As rules in the CPMR are used with a bottom-up priority, objects are evolved through elementary membranes to their 
parent membranes, which will change the contents of these membranes, and influence rules that are used in these mem-
branes.

Function Use_children
Input:
h[i11...ikt ]: a specification of a membrane;
t ≥ 0: a nonnegative integer;
M1: multiset of objects in membrane h[i11 ...ikt ] at configuration Ct ;
M2: empty set.
Variables:
T , T ′: states of membranes.
Output:
M1 ← M1 minus the multiset of objects, which are removed from membrane h[i11 ...ikt ] at the next step;
M2 ← M2 plus the multiset of objects, which come from other membranes at the next step.

For each t-tuple [ j(k+1)1 . . . j(k+1)t ] ( j(k+1)l ∈ {1, 2}, 1 ≤ l ≤ t) and each children membrane g of h, do:

1. T ← State(g[i11...ik(t−1), j(k+1)1... j(k+1)(t−1)], t − 1), T ′ ← ∅
2. If T = null, then end this cycle.
3. Use_children(g[i11...ikt , j(k+1)1... j(k+1)t ], t, T .M, T ′.M)

4. Use_rules_type(1)(g, T , T ′, M1, M2)

5. Use_rules_type(2)(g, T , T ′, M1, M2)

6. Use_rules_type(3)(g, T , T ′, M1, M2)

7. Use_rules_type(4)(g, T , T ′, M1, M2)

8. Use_rules_type(5)(g, T , T ′, M1, M2)

Finally, the following functions evaluate a simultaneous application of rules in a specified membrane.

Functions Use_rules_type(1)-Use_rules_type(6)
Input:
h: a specification of membrane;
S, S ′: two states of the membrane;
M1, M2: two multisets of objects in the parent membrane of h (for rules of types (1)-(5)); i: index of a membrane (for rules 

of type (6)).
Output:
S ← S minus multiset of objects consumed in membrane h by the applied rule
S ′ ← S ′ plus multiset of objects produced in membrane h by the applied rule
M1 ← M1 minus multiset of objects consumed in the parent membrane by the applied rule
M2 ← M2 plus multiset of objects produced in the parent membrane by the applied rule
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Here we demonstrate only the functions for rules of types (5) and (6). Function for rules of types (1)-(4) are analogous to 
rules of type (5).

(5) For each rule a[ b ]α1
i → c[ d ]α2

i in Rh:

• remove a copy of a from M1
• remove a copy of b from S.M
• add a copy of c to M2
• add a copy of d to S ′.M

(6) For each rule [ a ]α1
i → [ b ]α2

i [ c ]α3
i in Rh:

if a ∈ S.M then

• remove a from S.M
• if i = 1 then add b to S ′.M else add c to S ′.M
• skip all other rules of type (6)

Note that in a CPMR, only one object and only one membrane can be subject to one rule of any type. Hence any two (or
more than two) types of rules referring to the same membrane cannot be used at the same step.

4.2.1. Formal verification of the simulation

Theorem 4.2. Let � be a confluent recognizer CPMR and let C = (C0, C1, . . . ) be a computation with weak priority in rules as 
mentioned above. Let h[i11...ikt ] be a membrane of � at a configuration Ct in C . We can obtain the following statements: if at the 
configuration Ct the system � has membrane h[i11...ikt ] , then the state of membrane h is obtained by function State(h[i11...ikt ], t); 
otherwise, null is obtained from the function State(h[i11...ikt ], t).

Proof. It is easy to check that functions Parent and Use_rules_type(x) (1 ≤ x ≤ 6) are independent of any other 
function. By induction on t and k, we prove that the recursive functions State and Use_children correctly output the 
multisets of objects as the system � works.

1. Let t = 0. The function State returns the state of a membrane at the configuration C0 and so the result holds.
2. By induction hypothesis, let the theorem hold for t ≥ 0. We will prove that it holds also for t + 1.

(a) Let h be the environment, so k = −1. In this case, we analyse each item in function State.
i. Item 2 cannot be used.

ii. Item 3 outputs the correct state of membrane h according to induction hypothesis.
iii. Item 4 cannot be used because the environment exists at any time.
iv. By induction hypothesis, function Use_children with parameter t will output the correct result.
v. Item 7 cannot be used.

vi. Item 8 cannot be used due to the empty index for the environment.
vii. Item 9, objects which are not involved by any rule will be introduced into the resulting membrane.

(b) By induction hypothesis, let function State output the correct results for k ≥ −1. We will prove that this property
holds also for k + 1.

i. For item 2, if k ≥ 0, then function State is recursively called. Besides, k is the depth level of its parent mem-
brane, hence by induction hypothesis, the result is correct.

ii. Item 3 outputs the correct state of membrane h according to induction hypothesis.
iii. For item 4, if at configuration Ct , the membrane h does not exist, then function State outputs null.
iv. For item 6, by induction hypothesis, function Use_children with parameter t is used, hence it returns correct

result.
v. For item 7, recursively call function State with parameter t , which outputs the correct result by induction

hypothesis.
vi. Item 8, if the system uses a rule of type (6), the number 2 is the last digit of the index of the membrane;

otherwise this index of the membrane does not exist, and null must be returned.
vii. Item 9, objects which are not involved by any rule will be introduced into the state of the membrane.

3. We will prove that the function Use_children correctly outputs the multisets M2, S ′.M of objects. Obviously, for
item 6 of Function State, function Use_children with parameters h[i11...ikt ] and t is used in function State with
parameter t + 1. The depth of the membrane system is denoted by d.
(a) If k = d, then we know that membrane h[i11 ...ikt ] is an elementary membrane, hence function Use_children in

the main cycle cannot be used, and the multisets M1 and M2 are returned unchanged.
(b) For a depth level k, if the function Use_children correctly outputs the multisets of objects, then it holds also for

depth level k − 1.
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i. The call to the function State with parameter t for item 1, according to induction hypothesis for t , returns the
correct result.

ii. The recursive call to the function Use_children with parameters k and t in item 3, by induction hypothesis
on k, returns the correct result.

iii. Rules in membranes of h[i11 ...ikt ] are simulated in items 4-8, which are correct by assumption.

Therefore, for any step t and membrane with the depth level k, the function State with parameters (h[i11...ikt ], t) cor-
rectly outputs the state of membrane h[i11...ikt ] . �
Corollary 4.2. Let � be a confluent CPMR. The computation result of � can be obtained by function State.

Proof. The output membrane of � is the skin membrane, denoted by i0. It is known that object yes or no appears in iout

at the last step of the computation, which can be calculated by function State(iout, t) (t ≥ 0). Considering Theorem 4.2
and the definition of confluent P systems, we can conclude that the system outputs the correct results. �
4.2.2. Space complexity of the simulation

We denote by MCCPMR(t(n)) the class of problems solvable by a sound and complete polynomially uniform family of 
recognizer CPMR in time t(n).

Theorem 4.3. Let t(n) ≥ n, then we have MCCPMR(t(n)) ⊆ S P AC E(t(n)O (1)).

Proof. Let w ∈ I X be an instance with size n = |w| of a decision problem X , which is solved by a sound and complete 
uniform family of recognizer CPMRs. According to Corollary 4.2, it amounts to determine the space complexity of the 
function State to prove the statement.

Let the skin membrane be labeled with 1 and we denote by d the depth of the membrane structure; the number of 
objects initially placed in the system is denoted by q; the number of objects at configuration Ct is denoted by ot , hence 
o0 = |M1| + · · · + |Mm|.

It is easy to see that the values of m, d, q and log o0 are bounded by nO(1) . We treat these values as constants as they 
are fixed for a given system �(w) in the rest of proof. Moreover, the number of objects in the system can increase in the 
following two cases: (i) by introducing objects from the environment into the system, hence at configuration Ct , at most t
copies of objects can be inserted; (ii) by membrane division, at configuration Ct , the number of membranes is bounded by 
m(2d)t . Hence at configuration Ct the total number of objects ot ≤ (o0 + t)m(2d)t .

Since all objects in the system can appear in one membrane, hence at configuration Ct , in order to store the contents of 
an arbitrary membrane at configuration Ct , we need the space (in bits)

bt ≤ q�log ot� ≤ q�log (o0 + t)m� + qdt ≤ c0 + c1t, (1)

for positive constants c0, c1 ∈ nO(1) .
Let us denote by S(t, k) and C(t, k) the space complexities of function State with the parameter h[i11...ikt ] and of func-

tion Use_children, respectively. According to Function State, we know that State(t,k) calls State(t,k-1),
State(t-1,k), Use_children(t,k) and State(t-1,k-1). From Function Use_children, we know that
Use_children calls State(t-1,k+1) and Use_children(t,k+1); besides, the content of membrane h[i11...ikt ] (and 
its parent/child) is stored by variables as S, S ′, T , T ′ , and each of them requires at most bt bits; a specification of membrane 
h[i11...ikt ] requires kt + c (we denote by c = �log m�) bits. Let

S(t) = max{S(t,k) | 0 ≤ k ≤ d}. (2)

The following recurrences are obtained:

S(0,k) = b0,0 ≤ k ≤ d; (3)

S(t,0) = max{C(t,0), S(t − 1,0)} + 4bt + c, t ≥ 1; (4)

S(t,k) = max{C(t,k), S(t,k − 1), S(t − 1,k), S(t − 1,k − 1)} + 4bt + kt + c,

t ≥ 1,1 ≤ k ≤ d; (5)

C(t,d) = 0; (6)

C(t,k) ≤ max{C(t,k + 1), S(t − 1,k + 1)} + 4bt + t(k + 1) + c,

t ≥ 0,0 ≤ k < d.
(7)

By expanding (7) for k, k + 1, . . . , d, respectively, we obtain
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C(t,k) ≤ max{S(t − 1, i) | k < i ≤ d} +O(d2t + dbt),0 ≤ k ≤ d, t ≥ 0. (8)

From (2) and (8), formula (5) can be rewritten as follows:

S(t,k) ≤ max{S(t − 1) +O(d2t + dbt)} + O (bt + kt), t ≥ 1,1 ≤ k ≤ d. (9)

By substituting S(t, i) (0 ≤ i ≤ k − 1) with formula (9), we can obtain

S(t,k) ≤ max{S(t,k − 1), S(t − 1) + O (d2t + dbt)} + 2O (bt + kt)

≤ max{S(t,k − 2), S(t − 1) + O (d2t + dbt)} + 3O (bt + kt)

. . .

≤ max{S(t,0), S(t − 1) + O (d2t + dbt)} + (k + 1)O (bt + kt)

≤ max{C(t,0) + 4bt + c, S(t − 1) + O (d2t + dbt)} + O (kbt + k2t)

≤ S(t − 1) + O (d2t + dbt).

Therefore, according to (2), the recurrence (3)-(5) can be rewritten as follows:

S(0) = b0; (10)

S(t) ≤ S(t − 1) +O(d2t + dbt). (11)

From (11), we can obtain

S(t) = O(d2t2 + tdbt). (12)

Recall that d = nO(1) (n is the original instance size). From (1), we obtain S(t) = (nt)O(1) . Finally, we assume that the 
computation of the CPMR is polynomial time bounded, denoted by t(n), then we obtain S(t(n)) = (nt(n))O(1) = t(n)O (1) (by 
assumption t(n) ≥ n). �

So, the following result is obtained.

Corollary 4.3. PMCCPMR ⊆ PSPACE.

From Corollaries 4.1 and 4.3, we obtain the following result:

Theorem 4.4. PMCCPMR = PSPACE.

5. Conclusions and further works

In this work, we considered a normal form for P systems with active membranes, called cell-like P systems with polar-
izations and minimal rules (CPPMRs, for short). The computation power of CPPMRs has been investigated. We have shown 
that CPPMRs with arbitrarily many membranes, with three polarizations, using rules of types (1), (2) or using rules of types 
(3), (5) or using only rules of type (4) are able to compute only finite sets of non-negative integers. Besides, we proved that 
CPPMRs with four membranes, with three polarizations, using rules of types (1), (2), (4) or using rules of types (3), (4) are 
Turing universal; the result about universality can also be obtained by CPPMRs with two membranes, two polarizations and 
using rules of types (4), (5). Moreover, we have shown that the class of problems that can be solved in polynomial time by 
P systems with minimal rules and without polarizations is equal to the class of problems PSPACE.

The environment plays an important role for the computation power in CPPMRs, since the number of objects in the 
systems can be increased (using rules of type (4)) if and only if the objects sent into the systems are initially placed in the 
environment. Obviously, if the alphabet of the environment of CPPMRs is empty, then CPPMRs can only generate finite sets 
of natural numbers.

In the area of membrane computing, there exist three methods to produce new membranes, all of which are inspired 
by living cells: membrane division (mitosis) [37], membrane separation (membrane fission) [29], and membrane creation 
(autopoiesis) [26]. The computation model CPPMR considered in this work has the rule of membrane division. It is of 
interest to investigate cell-like P systems with polarizations and minimal rules where membrane division is replaced with 
membrane separation or membrane creation.

The P versus NP problem is a major unsolved problem in theoretical computer science. In computational complexity 
theory, the methods to tackle P versus NP problem were presented in terms of syntactical or semantical ingredients of the 
models, and many interesting characterizations of the P �= NP conjecture arise in membrane computing [13,20,31,53]. It is 
interesting to investigate the P versus NP problem in the framework of CPPMRs.
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