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Abstract. We study tilings of regions in the square lattice with L-shaped tromi-
noes. Deciding the existence of a tiling with L-trominoes for an arbitrary region
in general is NP-complete, nonetheless, we identify restrictions to the problem
where it either remains NP-complete or has a polynomial time algorithm. First,
we characterize the possibility of when an Aztec rectangle and an Aztec diamond
has an L-tromino tiling. Then, we study tilings of arbitrary regions where only
180◦ rotations of L-trominoes are available. For this particular case we show that
deciding the existence of a tiling remains NP-complete; yet, if a region does not
contains certain so-called “forbidden polyominoes” as sub-regions, then there exists
a polynomial time algorithm for deciding a tiling.

Keywords: polyomino tilings, tromino, efficient tilings, NP-completeness, Aztec
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1 Introduction

1.1 Background

A packing puzzle is a solitary game where a player tries to find a way to cover a given shape
using polyominoes, where a polyomino is a set of squares joined together by their edges.
The computational complexity of packing puzzles was studied by Demaine and Demaine
[3] and they showed that tiling a shape or region using polyominoes is NP-complete.

In this paper we study tilings of regions in the square lattice with L-shaped trominoes
(a polyomino of three cells) called an L-Tromino or simply tromino in this work. A cell
in Z

2 is a subset [a, a+1]× [b, b+1] and a region is any finite union of connected cells. At
our disposal we have an infinite number of trominoes and would like to know if a given
region can be covered or tiled with trominoes.

The problem of tiling with trominoes was first studied by Conway and Lagarias [2]
who presented an algebraic necessary condition for a region in order to have a tiling.
Moore and Robson [8] showed that deciding if a region can be covered with trominoes
is NP-complete. Later Horiyama et al. [5] presented another proof of NP-completeness
by constructing an one-one reduction which implies that counting the number of tilings
with trominoes is #P-complete. Counting the number of tilings with L-trominoes was
also studied by Chin et al. [1] using generating functions.

⋆ M.P. Saikia is supported by the Austrian Science Foundation FWF, START grant Y463.
⋆⋆ M. Villagra is supported by Conacyt research grant PINV15-208.



1.2 Contributions

In this paper we aim at identifying instances of the tiling problem with trominoes that
either have efficient algorithms or remain NP-complete. As a further generalization of the
problem, we also consider regions with “defects” or holes, that is, we want to know if there
is a tiling with trominoes without covering the defects. First we study the Aztec rectangle
(and hence, also an Aztec diamond) [4,10] and show that any Aztec rectangle of side
lengths a, b can be covered with trominoes if and only if a(b+ 1) + b(a+ 1) ≡ 0 (mod 3)
(Theorem 1), which implies the existence of a polynomial time algorithm for finding a
tiling in an Aztec rectangle. Then we show that for the cases when a(b+1)+ b(a+1) ≡ 0
(mod 3) does not hold, if an Aztec Rectangle has exactly one defect, then it can be covered
with trominoes (Theorem 3). In general, however, deciding the tiling of an Aztec diamond
with an unknown number of defects is NP-complete (Theorem 4).

In the second part of this paper we study a restricted case of the tiling problem
where we only have 180◦ rotations of the trominoes available. Here we show that the
problem remains NP-complete (Theorem 5) by slightly modifying the one-one reduction
from the 1-in-3 Graph Orientation Problem of Horiyama et al. [5], whereas any Aztec
rectangle has no tiling at all (Theorem 6). Nevertheless, we show that if a region does not
contain any of the so-called “forbidden polyominoes” identified in this work, then that
region has an efficient algorithm for deciding a tiling (Theorem 7). This latter result is
proved by constructing a planar dual graph of the region, called an intersection graph,
and identifying independent sets of certain size. If the intersection graph has a claw, then
that claw will correspond to a forbidden polyomino; if the graph is claw-free, however, we
can use well-known efficient algorithms for finding independent sets, and hence, a tiling
for the region.

In Section 5 we study a relation between L-Trominoes and I-Trominoes (a tromino
with the shape of an I). We introduce a technique for decomposing a region in simple
parts that yields an efficient algorithm for finding L-Tromino covers. This tiling technique
is a modification of the proof of Theorem 6 for tiling the Horiyama et al. [5] gadgets with
I-Trominoes to tiling general regions with L-Trominoes. Finally, we close this paper with
a simple lower bound on the number of tromino tilings of an Aztec diamond.

2 Preliminaries

In this work we will use Z to denote the set of integers and [a, b] to denote the discrete
interval {a, a + 1, . . . , b}. A region R is a finite union of cells, such that the interior is
connected. If a cell is the set of points [a, a+1]×[b, b+1], we label such a cell by (a, b) which
we refer to as the cell’s coordinate. Two cells are adjacent if the Manhattan distance, i.e.,
the L1-norm, of their coordinates is 1; thus, two cells in diagonal to each other are not
adjacent.

A tromino is a polyomino of 3 cells. In general, there are two types of trominoes, the
L-tromino and the I-tromino. An L-tromino is a polyomino of 3 cells with an L shape.
An I-tromino is a polyomino of 3 straight cells with the form of an I. In this work we
will mostly be dealing with L-Trominos and we will refer to them simply as trominoes;
I-trominoes will appear later but we will make sure to clarify which type of tromino we
are referring to.

A defect is a cell that is “marked” in the sense that no tromino can be placed on top
of that cell. A cover or tiling of a region R is a set of trominoes covering all cells of R
that are not defects with no overlapping and each tromino is packed inside R. The size
of a cover is the number of tiles in it.



Definition 1. TROMINO is the following problem:
INPUT : a region R with defects.
OUTPUT : “yes” if R has a cover and “no” otherwise.

Moore and Robson [8] proved that TROMINO is NP-complete and Horiyama et al.
[5] proved that #TROMINO, the counting version of TROMINO, is #P-complete.

In this work we will also consider tilings where only trominoes with 180◦ rotations
are used. More precisely, given a region R we want to find a cover where all trominoes
are right-oriented as in Figure 1(a) or left-oriented as in Figure 1(b). We will refer to
trominoes where only their 180◦ rotations are considered as 180-trominoes. A 180-cover
of R is a cover with 180-trominoes.

(a) Right-oriented (b) Left-oriented

Fig. 1: The 180-TROMINO problem either takes trominoes from the left figure or the
right figure.

Definition 2. 180-TROMINO is the following problem:
INPUT : a region R with defects.
OUTPUT : “yes” if R has a 180-cover and “no” otherwise.

3 Tiling of the Aztec Rectangle

The Aztec diamond of order n, denoted AD(n), is the union of lattice squares [a, a+1]×
[b, b + 1], with a, b ∈ Z, that lie completely inside the square {(x, y) | |x| + |y| ≤ n + 1}.
Figure 2 shows the first four Aztec diamonds. Tilings of the Aztec diamond with dominoes
was initiated by Elkies et al. [4], which gave impetus to a lot of current work in this area.

The concept of an Aztec diamond can be very easily extended to that of an Aztec
rectangle. We denote by ARa,b the Aztec rectangle which has a unit squares on the
southwestern side and b unit squares on the northwestern side; in the case when a = b = n
we get an Aztec diamond of order n—in view of this, all results about Aztec rectangles
stated in this paper can also be stated for Aztec diamonds, and therefore, we do not
mention all such results as corollaries.

When dealing with Aztec rectangles, with no loss of generality, we always assume that
a < b. As an example Figure 3 shows AR4,10. Domino tilings of Aztec rectangles have
been studied by various mathematicians starting with Mills et. al. [6].

In the following subsections we study tilings of the Aztec rectangle using trominoes
with and without defects, and then specialize them to Aztec diamonds.

3.1 Tilings with No Defects

For any Aztec rectangle ARa,b with no defects, we can completely understand when there
is a tiling. The following theorem gives a characterization.



(a) AD(1) (b) AD(2) (c) AD(3) (d) AD(4)

Fig. 2: Aztec diamonds of order 1, 2, 3 and 4.

Fig. 3: Aztec rectangle AR4,10.

Theorem 1. ARa,b has a cover if and only if a(b+ 1) + b(a+ 1) ≡ 0 (mod 3).

As a corollary, we get the following for the Aztec diamond.

Corollary 1. AD(n) has a cover if and only if n(n+ 1) ≡ 0 (mod 3).

Proof. Put a = b = n in Theorem 1.

To prove Theorem 1, first we present tilings of particular cases of the Aztec rectangle
in Lemmas 2 and 3. The following lemma is trivial.

Lemma 1. An Aztec rectangle, ARa,b contains a(b+1)+ b(a+1) unit squares. Further,
specializing a = b = n we get that an Aztec diamond of order n contains 2n(n + 1) unit
squares.

Define a stair as a polyomino made-up only of trominoes with their 180◦ rotations
connected as in Figure 4(a). The same stair can be rotated 90◦ to obtain another stair. A
k-stair is a co-joined set of k stairs, where a stair is joined to another stair by matching
their extremes; for example, in Figure 4(b) we can see two stairs where the lowest extreme
of the upper stair is matched with the upper extreme of the lower stair. This idea is easily
extended to a set of k stairs thus giving a k-stair as in Figure 4(c). A k-stair can also be
rotated 90◦ to obtain another k-stair. The height of a k-stair is the number of steps in it.
It is easy to see that the height of a k-stair is 3k+ 2. In addition, a single tromino would
be a 0-stair.

Lemma 2. If 3 | a, b and ARa,b has a cover, then ARa+2,b+2 has a cover.



(a) 1-stair (b) 2-stair (c) k-stair

Fig. 4: A stair also includes all 90◦ rotations.

(a) Tiling with a single
stair.

(b) Tiling with a double
stair.

Fig. 5: Tilings of Lemmas 2 and 3.

Proof. If a, b are multiples of 3, then an a/3-stair and an b/3-stair can be used to tile
around ARa,b along the shorter and longer sides respectively, using the pattern of Figure
5(a). This tiling increments the order of the Aztec rectangle by 2, thus obtaining a tiling
for ARa+2,b+2.

Lemma 3. If 3 | a+ 1, b+ 1 and ARa,b has a cover, then ARa+4,b+4 has a cover.

Proof. To find a tiling for ARa+4,b+4 we use four copies of AD(2) added to the four
corners of ARa,b. Then, to complete the tiling, we use two (a− 2)/3 and (b− 2)/3-stairs
one on top of each other along the shorter and longer sides respectively, to complete the
border. The entire construction follows the pattern of Figure 5(b). This tiling increments
the order of the Aztec rectangle by 4, thus obtaining a tiling for ARa+4,b+4.

Now, let us prove Theorem 1.

Proof (Proof of Theorem 1). The values for which a(b+ 1) + b(a+ 1) ≡ 0 (mod 3) holds
are a, b = 3k and a, b = 3k − 1 for some k ∈ Z.

Thus, the statement is equivalent to saying that for all positive integers k there is a
tiling of ARa,b where 3 | a, b or 3 | a + 1, b + 1 and that there are no tilings for ARa,b

when 3 | a+ 2, b+ 2.
We show the second part now, which is easy since if we have ARa,b with a, b of the

form 3k + 2, then the number of lattice squares inside ARa,b is not divisible by 3 and
hence we cannot tile this region with trominoes.



We come to the first cases now. Using Lemmas 2 and 3, this part is clear if we can
show the base induction case to be true.

The base case of Lemma 2 is shown in Figure 6(a), which is AR3,6. Once we have a
tiling of AR3,6, we can use Lemma 2 to create a tiling of an Aztec rectangle whose sides
are increased by 2. We can also increase AR3,6 by using the additional pieces shown in
Figure 6(b,c) using them in combinations with any case of Aztec rectangle satisfying the
properties of Lemma 2 to increase either the longer or the shorter sides, and if all three
additional pieces are used then we can increase both sides of ARa,b.

(a) Base induction
case.

(b) Length additional pieces. (c) Breadth addi-
tional piece.

Fig. 6: Base case of Lemma 2.

Similarly, the base case of Lemma 3 is shown in Figure 7(a), which is AR2,5. Once we
have a tiling of AR2,5, we can use Lemma 3 to create a tiling of an Aztec rectangle whose
sides are increased by 4. We can also increase ARa,b by using the additional pieces shown
in Figure 7(b,c,d) using them in combinations with any case of Aztec rectangle satisfying
the properties of Lemma 3 to increase either the longer or the shorter sides, and if all
three additional pieces are used then we can increase both sides of ARa,b.

(a) Base in-
duction case.

(b) Length
additional
piece.

(c) Length
additional
piece.

(d) Breadth ad-
ditional piece.

Fig. 7: Base case of Lemma 3.

An O(b2) time algorithm is immediately obtained from the proof of Theorem 1.

Theorem 2. A tromino cover for ARa,b can be found in time O(b2).

Proof. Given a, b ∈ N, the following procedure called ARTiling(a, b) finds a tiling for
ARa,b.



1. If a = 2, b = 5 or a = 3, b = 6, return the tiling of Figure 7(a) or Figure 6(b),
respectively.

2. If a(b+ 1) + b(a+ 1) 6≡ 0 (mod 3), then return “there is no tiling”.
3. If a, b are multiples of 3, then

(a) R← ARTiling(a− 2, b− 2);
(b) fill the borders of R using the pattern of Figure 6.

4. If a+ 1, b+ 1 is a multiple of 3, then
(a) R← ARTiling(a− 4, b− 4);
(b) fill the borders of R using the pattern of Figure 7.

5. Return R.

Steps 2 and 3 are done in time O(log b) and steps 3b and 4b can be done in time O(b),
thus, giving a total time complexity of O(b2). The correctness follows from Lemmas 2 and
3.

Corollary 2. A tromino cover for AD(n) can be found in time O(n2).

3.2 Tiling with Defects

From Theorem 1 we know that for any positive integers a, b, the Aztec rectangles with no
defects ARa,b such that 3 divides a, b or 3 divides a+1, b+1 have a cover but if 3 divides
a+ 2, b+ 2, then ARa,b does not have a tiling. We show that if such an Aztec rectangle
has exactly one defect, then it can be covered with trominoes.

Theorem 3. There exists a cover for ARa,b with a, b of the form 3k − 2 having one
defect.

Proof. To tile ARa,b with one defect we use a construct which we call a fringe appearing
in Figure 8(a). It is easy to check that if a fringe has exactly one defect, then it can be
covered with trominoes.

To construct a tiling for ARa,b with one defect we place a fringe in a way that includes
the defect and the left and right ends of the fringe touches the boundaries of the Aztec
rectangle as in Figure 8(b). Then we use the tiling pattern of Figure 8(b) where we put
stairs above and below the fringe.

(a) Fringe (b) Tiling pattern

Fig. 8: Tiling of ARa,b with one defect. A fringe can be composed of any number of order
1 Aztec diamonds AD(1) joined by their upper right and lower left cells. A reversed fringe
is obtained by joining order 1 Aztec diamonds by their upper left and lower right cells.



Corollary 3. For any positive integer k, the Aztec diamond AD(3k− 2) with one defect
has a cover.

We can consider many different classes of defects, and it can be observed that some of
these classes have easy tilings. As an example, we have in Figure 9(a) an Aztec rectangle
with four defects on its corners. A tiling of this region is shown in Figure 9(b). In the
combinatorics literature, tilings of regions with defects of several kinds for Aztec rectangle
have been studied (see [10] for the most general class of boundary defects).

(a) ARa,b with four de-
fects

(b) Tiling pattern

Fig. 9: Tiling of ARa,b with four defects.

Remark 1. Similar defects can be studied for Aztec diamonds as well. In fact, we can
delete all cells in a fringe and obtain a tiling.

Even though the proof of Theorem 3 gives an O(b2) time algorithm for finding a cover
for ARa,b with one defect, in general, however, it is computationally hard to determine
if ARa,b with an unknown number of defects has a cover.

Theorem 4. It is NP-complete to decide whether AD(n) with an unbounded number of
defects has a cover.

Proof (Proof Sketch). The reduction is from tiling an arbitrary region R′ with defects.
The idea is to embed R′ into AD(n) for some sufficiently large n and insert defects in
AD(n) in a way that surrounds R′ (see Figure 10).

Corollary 4. It is NP-complete to decide if ARa,b with an unbounded number of defects
has a cover.

4 Tiling with 180-Trominoes

In this section we study tilings of arbitrary regions using only 180-trominoes. With no
loss of generality, we will only consider right-oriented 180-trominoes.



Fig. 10: Tiling an Aztec Rectangle with arbitrary defects.

Fig. 11: I-Tromino to L-Tromino transformation using 180-Trominoes.

4.1 Hardness

It is easy to see that even when restricted to 180-trominoes, deciding the existence of a
tiling of an arbitrary region is still hard.

Theorem 5. 180-TROMINO is NP-complete.

Proof. The proof uses the same gadgets for the reduction for I-Trominoes from the 1-in-3
Graph Orientation Problem of Horiyama et al. [5]. Take any gadget of Horiyama et al.
[5] and partition each cell into 4 new cells. Thus, each I-tromino is transformed in a new
2×6 or 6×2 region (depending on the orientation of the I-tromino) which can be covered
with four 180-trominoes as in Fig 11. If a gadget is covered with I-trominoes, then the
same gadget, after partitioning each cell into four new cells, can also be covered with
180-trominoes. To see the other direction of this implication, we exhaustively examined
all possible ways to cover each 4-cell-divided gadget with L-trominoes, and observed that
each gadget with its original cells can also be covered with I-trominoes. Figures 12, 13
and 14 show this.

Remark 2. Theorem 5 also implies that the Triangular Trihex Tiling Problem of Conway
and Lagarias [2] (see Figure 15) is NP-complete (see Figure 16).

It is natural to think along these lines about tiling the Aztec rectangle with 180-
trominoes. However, we show that it is impossible.

Theorem 6. ARa,b does not have a 180-cover.



(a)

(b)

Fig. 12: Tiling of the duplicator gadget.

(a) (b)

(c) (d)

Fig. 13: Tiling of the cross gadget.

Proof. Consider the southwestern side of any Aztec rectangle as in Figure 17 and pick
any one of the marked cells, say the cell at coordinate (c, d). There are only two ways to
cover that cell with a right-oriented tromino. With one tromino we can cover the cells
with coordinates (c, d), (c, d + 1) and (c + 1, d + 1), whereas with the other tromino we
can cover the cells (c, d), (c+ 1, d) and (c+ 1, d+ 1). In either case the cells at (c, d) and



(a) (b) (c)

Fig. 14: Tiling of the clause gadget.

Fig. 15: Two triangular trihex.

Fig. 16: Transformation from triangular trihex to 180-tromino.

(c + 1, d + 1) are always covered, and depending on which tromino is chosen either the
cell at (c, d+ 1) or (c+ 1, d) is covered. Therefore, if we cover the entire bottom-left side
of an Aztec rectangle, there will always be a cell at (c, d+ 1) or (c+ 1, d) that cannot be
covered. Note that any reversed fringe that is on top of the bottom-left side of any Aztec
rectangle can be covered with 180-trominoes if it has one defect.

Corollary 5. AD(n) does not have a 180-cover.

Fig. 17: Covering of an Aztec rectangle with right-oriented trominoes.



4.2 Efficient Tilings

In this subsection we identify a sufficient condition for a region to have an efficient algo-
rithm that decides the existence of a 180-cover.

Theorem 7. If a region R does not contain any of the forbidden polyominoes of Figure
18 as a subregion, then there exists a polynomial-time algorithm that decides whether R
has a 180-cover.

Fig. 18: Forbidden polyominoes. All 180◦ rotations, reflections and shear transformations
are also forbidden polyominoes.

A natural and practical application of Theorem 7 is in determining if a region does not
contain as a subregion any of the forbidden polyominoes, and then, run a polynomial-time
algorithm to find a 180-cover. Since the number of forbidden polyominoes is constant, we
can check for their non-existence in linear-time. Also, a more theoretical application of
Theorem 7 is that it could serve as a stepping-stone towards a characterization of regions
admitting polynomial-time algorithms.

For the remainder of this subsection we present a proof of Theorem 7. Remember that,
with no loss of generality, we only consider right-oriented trominoes. Given a region R we
construct a graph GR, which we call the region graph of R, as follows. For each cell (a, b)
that is not a defect there is a vertex vab. There is an edge for each pair of adjacent cells
and for each pair vab and v(a+1)(b+1). Note that this reduction is one-to-one. We present
an example in Figure 19.

(a) Region R (b) Region graph
GR

Fig. 19: Example of a region graph construction.

From the region graph GR we construct a new graph IR which we call an intersection
graph as follows. For each triangle in GR there is a vertex t and there is an edge between
vertices ti and tj if the corresponding triangles share a vertex in GR; for example, the
intersection graph of Figure 19 is a triangle, because all triangles in the region graph share
at least one vertex.

Lemma 4. For any region R with a fixed number of defects, the maximum number of
180-trominoes that fit in R equals the size of a maximum independent set in IR.



Proof. Let k be the maximum number of tiles that fit in R and let S be a maximum
independent set in the intersection graph IR. We claim that |S| = k.

Each triangle in the region graph GR correspond to a position where a 180-tile can fit.
If k is the maximum number tiles that can fit in R, then there exists a set of k triangles
in GR, denoted T , that do not share any common vertex. Each triangle in T corresponds
to a vertex in IR and since none of the triangles in T share a common vertex, T defines
an independent set in IR and k ≤ |S|.

To prove that |S| = k suppose by contradiction that T is not a maximum independent
set of IR, that is, k < |S|. Since S is an independent set in IR, there are |S| triangles in
GR that do not share a common vertex. Thus, we can fit |S| 180-trominoes in R, which
is a contradiction because k < |S|.

The idea for a proof of Theorem 7 is to construct a polynomial time algorithm that
decides the existence of a 180-cover by deciding if a maximum independent set in IR
equals the number of cells of R divided by 3, which agrees with the number of trominoes
covering R. Deciding the existence of a maximum independent set of a given size is a well-
known NP-complete problem, nevertheless, it is known from the works of Minty [7], Sbihi
[11] and Nakamura and Tamura [9] that for claw-free graphs3 finding independent sets
can be done in polynomial time. Hence, if IR is claw-free, then we can use a polynomial
time algorithm for finding independent sets to decide the existence of a 180-cover. If IR
has a claw, however, each claw will give one of the forbidden polyominoes.

In Lemma 5 below we show that 180-TROMINO is polynomial time reducible to
deciding independent sets, which allow us to construct algorithms for 180-TROMINO
using known algorithms for deciding independent sets. Then in Lemma 6 we show that if
IR has a claw, then that claw corresponds to a forbidden polyomino in the region R.

Lemma 5. There is a many-one polynomial-time reduction from 180-TROMINO to the
problem of deciding existence of an independent set of a given size.

Proof. First the reduction constructs the region graph GR and the intersection graph IR.
If the size of the largest independent set equals the number of cells of R divided by 3,
then output “yes” because R has a 180-cover; otherwise output “no” because R does not
have a 180-cover.

Suppose R has a 180-cover. If n is the number of cells in R, then the number of tiles
in the 180-cover is n/3. By Lemma 4, the largest independent set in IR equals n/3.

Now suppose R does not have a 180-cover. If n is the number of cells in R, then n/3
is not equal the maximum number of tiles that can fit in R. Thus, by Lemma 4, it holds
that n/3 is not equal the size of the largest independent set in IR.

Lemma 6. If IR has a claw, then R has at least one forbidden polyomino.

Proof. For any claw in IR there is a vertex of degree 3 and three vertices of degree 1,
and each vertex in IR corresponds to a triangle in the region graph GR. We refer to the
triangle that corresponds to the degree 3 vertex as the central triangle and each degree
1 triangle is called an adjacent triangle. Thus, to obtain all forbidden polyominoes, we
look at all posible ways to connect (by the vertices) each adjacent triangle to the central
triangle in such a way that each adjacent triangle only connects to the central triangle
in a single vertex and it is not connected to any other adjacent triangle; otherwise, if an
adjacent triangle connects with two vertices of the central triangle or any two adjacent

3 A graph is claw-free if it does not have K1,3 (a claw) as an induced subgraph.



vertices connects with one another, then the induced graph does not corresponds to a
claw. In Figure 20 we show two examples on how to obtain a polyomino from another by
a shear transformation. By exhaustively enumerating all possibilities as done in Figure
20, we can extract all polyominoes that correspond to claws in IR. We partition this set
of polyominoes in five equivalence classes, where two polyominoes are in the same class
if and only if one can be obtained from the other by a 180◦ rotation, a reflection or shear
transformation. All of these equivalence classes can be seen in Figure 21.

(a) Polyomino 1 transformation. (b) Polyomino 2 transformation.

(c) Region graph of polyomino 1. (d) Region graph of polyomino 2.

Fig. 20: Shear transformation of two polyominoes. The central triangle is painted light
gray in each example. Each arrow → represents a shear transformation.

Fig. 21: All possible subregions that generate a claw in IR with their corresponding for-
bidden polyomino. Any two polyominoes inside a rectangle can be obtained from one to
the other by a 180◦ rotation, a reflection or shear transformation.

Lemmas 5 and 6 complete the proof of Theorem 7.



5 I-Trominoes vs L-Trominoes

In Section 4 we saw that any gadget of Horiyama et al. [5] can be covered with I-trominoes
if and only if the same gadget, after partitioning each cell into four new cells, can be
covered with 180-trominoes. In general, if R is any region and R⊞ is the region R where
each cell is partitioned into four cells, we have that if R can be covered with I-trominoes,
then R⊞ can be covered with 180-trominoes. We do not know, however, if the other way
of this implication holds in the general case. The following theorem partly answers this
open problem.

Theorem 8. Let R be a connected region of size n. The region R⊞ has an L-Tromino
cover if and only if 3 divides n.

It is clear that if R⊞ has an L-Tromino cover, then 3 divides n. We prove the other part
in the remainder of this section.

A planar dual graph4 of a region R is a graph where for each cell (a, b) that is not
a defect there is a vertex vab in G and there is an edge for each pair of adjacent cells.
The difference between a planar dual graph defined here and the region graph of Section
4 is that a region graph is a planar dual graph with the addition that there is an edge
between each pair of vertices vab and v(a+1)(b+1).

Definition 3. Let G = (V,E) be a connected graph with n vertices and n a multiple of
3. We say that G is detachable if there exists a cut C that partitions G in two connected
subgraphs of size n1 and n2 such that 3 divides n1 and 3 divides n2. We also say that C
detaches G.

Definition 4. A region R is detachable if its planar dual graph is detachable.

A very simple fact is that if R is a region of size n, then a planar dual graph of R⊞

has at least 2n− 1 cycles of size 4. In order to construct a tiling for R⊞ we use Lemmas
8 and 9 given below. But first, we introduce a technical lemma that helps in the proof of
Lemma 8.

Lemma 7. Let k ≥ 3 be a positive integer and G be any connected graph of size a multiple
of k that contains exactly one cycle of length at least least k + 1. Then there exists a cut
of edges from the cycle that partitions G in two trees whose sizes are both multiples of k.

Proof. Suppose for the sake of contradiction that any cut of edges in the cycle of G yields
two trees: one of size n1 and another of size n2, where n1 or n2 is not a multiple of k.

Let n be the number of vertices in G and let e0, e1, . . . , ek be the k + 1 edges of the
only cycle of G, where n is a multiple of k. Also fix a vertex v ∈ e0. It is clear that cutting
any two of these edges will partition G in two trees.

Let T(i,j) be the tree obtained from cutting edges ei and ej such that v is a vertex

of T(i,j) and let T (i,j) denote the other tree, each of size |T(i,j)| and |T (i,j)| respectively.
Let a1, a2, ..., ak be a sequence of k integers where ai is the size of the tree T(0,i), i.e.,
ai = |T(0,i)|. Note that by cutting any pair of edges {ei, ej}, where i, j > 0, the size of

the trees T(i,j) and T (i,j) are |T(i,j)| = n− |ai − aj | and |T (i,j)| = |ai − aj |, respectively
5.

In Figure 22 we present a pictorial explanation of how to obtain the values of |T(i,j)| and

|T (i,j)|.

4 Please note that this is an abuse of the term dual graph used in graph theory. The practise is,
however, standard in combinatorics of tilings.

5 Here |ai − aj | denotes absolute value.
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Fig. 22: Cycle of the graph with sizes a1, a2 and a3 whose corresponding cuts are indicated
by the dashed lines. Thus T(0,2) is the tree inside the dashed line with label a2, T(0,1) is
the tree inside the dashed line with label a1 and T(0,3) is the tree inside the dashed line
with label a3. From the figure it is easy to see that, for example, if we cut e2 and e1, then
T (2,1) = |a2 − a1| and |T(2,1)| = n− |a2 − a1| where the vertex v is in T(2,1).

The sequence a1, . . . , ak always satisfies one of two cases: (i) the values of ai modulo
k are all different, or (ii) there exists at least one congruent pair {ai, aj} modulo k, i.e.,
ai ≡ aj (mod k) where i 6= j. If they are all different, there is some ai that is congruent
to 0 modulo k. By cutting the pair of edges {e0, ei} we have |T(0,j)| = ai ≡ 0 (mod k)

and |T (0,j)| = n − ai ≡ 0 (mod k), which is a contradiction. If we have a congruent
pair {ai, aj}, then if we cut the pair of edges {ei, ej} we have that |T(i,j)| = |ai − aj | ≡ 0

(mod k) and |T (i,j)| = n−|ai−aj | ≡ 0 (mod k), which is again a contradiction. Therefore,
we conclude that there is a cut where n1 and n2 are both multiples of k.

Lemma 8. Let G be any connected graph of size n with n a multiple of 3. If G contains
a cycle of size at least 4, then G is detachable.

Proof. Suppose that G has at least one cycle. The following procedure finds a cut that
detaches G.

1. C ← {}.
2. Repeat until exactly one cycle remains in G.

(a) Pick any cycle X in G.
(b) Pick any edge e in X.
(c) Delete e from G.
(d) Add e to C.

3. From the last cycle in G select two edges e1 and e2 such that G is partitioned in two
connected components G1 and G2 each of size a multiple of 3.

4. Add e1 and e2 to C.
5. Add edges from C to G1 and G2 in such a way that G1 and G2 become induced

subgraphs of G. All edges that remain in C define a cut that detaches G in G1 and
G2.

The procedure presented above clearly terminates because at each iteration the num-
ber of cycles is decreased in one. At the end of Step 2, G contains exactly one cycle. We
need to show that in Step 3, there is a cut that partitions G in two connected components
each of size a multiple of 3. Indeed, at the end of Step 3 and by letting k = 3 in Lemma
7, there exist two edges e1 and e2 that partitions G in two trees each of size a multiple of
3.



Finally, in Step 5, since G1 and G2 are induced subgraphs of G and there are no edges
between G1 and G2, the set C defines a cut of G.

Corollary 6. For any planar dual graph G of a region R, if G is not detachable, then G
is a tree.

Proof. This corollary follows immediately from Lemma 8 by observing that all cycles in
a planar dual graph G of a region R are of size at least 4.

Lemma 9. Let R be a connected region of size n with n a multiple of 3. If R is not
detachable, then R⊞ has a cover.

Proof. Let R be a connected region of size n, with n a multiple of 3, that is not detachable.
By Corollary 6, the planar dual graph G of R is a tree.

There are four types of vertices in G, leaves (degree 1), trunks (degree 2), forks (degree
3), and crosses (degree 4). In order to construct a cover for R⊞, we will present a tiling
for each type of vertex and then show how to assemble all the parts.

The idea for constructing a tiling is to assign a “tag” to each cell of R and its cor-
responding vertex of G that will help in constructing the entire cover for R⊞. In what
follows we show how to assign theses tags and later how to use them to construct a cover.

First we consider a leaf, say ℓ. Since n is a multiple of 3, if we delete ℓ from G, the size
of the resulting graph equals 2 modulo 3. We use the size of the resulting graph modulo
3 as a tag for ℓ. See Figure 23(a). In the figure we assumed that the cell corresponding to
ℓ is attached to the region R on its right side. The general rule is that a tag is assigned
to the side of the cell that is connected to R

For a leaf we use a tiling pattern of a single tromino as shown in Figure 23(b). The
remaining cell in the lower right corner of Figure 23 will be covered after assembling the
leaf with another vertex. A reflected or rotated leaf uses a reflected or rotated tromino
tiling pattern, respectively.

2

(a) Leaf tag (b) Tiling pattern

Fig. 23: Leaf

Now we consider a trunk. Here we have two cases, a straight trunk and a bent trunk,
see Figures 24(a) and 24(b). We add the tags 1 and 1 to the sides of a trunk because that
is the size modulo 3 of both resulting graphs after deleting the trunk. The tiling pattern
for both types of trunks is presented in Figures 24(c) and 24(d). In Figure 24(a) note that
there are four different ways to place a tromino, however, we use this tiling pattern in a
way to enforce that any two trominoes placed on a straight trunk must have two of its
cells over the straight trunk. This way, depending on how a straight trunk is connected
to the region a correct tiling can be chosen.

Before proceeding to the next type of cell, we show how to use the information of the
tags to construct a tiling for the type of cells introduced so far. In Figure 25 we present a
tiling example of a region with two leafs and one trunk. To construct a tiling we always
join a 1 tag with a 2 tag. Note that in Figure 25(c) in order to attach the lower leaf to
the trunk, the tiling pattern of Figure 23 had to be reflected and then rotated.
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(a) Straight trunk

1
1

(b) Bent trunk (c) Straight trunk
tiling

(d) Bent trunk
tiling

Fig. 24: Trunk.

(a) Region
R

1
12

2

(b) Tag as-
signment

(c) Tiling
of R⊞

Fig. 25: Tiling example of a region with two leafs and one trunk.

In a fork there are two cases to consider depending on how a trunk is connected to
the region, see Figure 26. The tags again are assigned depending on the sizes modulo 3
of the graphs that result after deleting the fork. The tags assignment produces two types
of forks called a 2-2-1 fork and a 2-1-2 fork. Note that these tags are the same for the
rotated and reflected variants of a fork. Figures 26(c,d) present the tiling patterns.

1
2

2

(a) 2-2-1 Fork

2
1

2

(b) 2-1-2 Fork (c) 2-2-1 Fork tiling

(d) 2-1-2 Fork tiling

Fig. 26: Fork.

Finally, we consider a cross which has two cases as shown in Figure 27. As in previous
cases, the tiling patterns work for the reflected and rotated versions of the trominoes.
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1

(a) 21 Cross

2
2

2
2

(b) 24 Cross (c) 21 Cross tiling

(d) 24 Cross tiling

Fig. 27: Cross.

The general rule for constructing a tiling is thus to use the patterns presented above
and joining them by their opposing tags and the use of rotations and reflections of the
pattern.

Note that since R is not detachable, its planar dual graph is a tree. This implies that
certain cells are connected to other cells only in certain ways. For example, the bent trunk
of Figure 24(b) cannot be adjacent to the the fork of Figure 26 even though they have
opposing tags. That is because if they were connected in that way, then R would have a
cycle in its dual planar graph. They can, however, be connected in other ways.

To finish the proof of Theorem 8, take any region R and apply the following procedure
to decompose R into a set of non-detachable subregions. Find a cut that detaches R in two
subregions R1 and R2; if any of these subregions R1 or R2 are detachable, keep finding
cuts that detach them in smaller subregions and so on. Repeat this procedure until all
subregions are not detachable. By Lemma 8 it is always possible to decompose R in this
way.

Let R1, . . . Rk be a collection of subregions of R that are not detachable obtained by
the procedure of the preceding paragraph. By Lemma 9 each Ri has a cover. Since each
Ri was obtained by decomposing R in detachable parts, we can then join the covers of all
subregions to obtain a cover for R. In Figure 28 we present an example of a detachable
region with all four types of cells given in the proof of Lemma 9. Note that if the region
R is a tree, then we can find a cut that detaches its dual planar graph using depth-first
search.

The proof of Theorem 8 also gives an efficient algorithm to find covers for any R⊞.

6 Concluding Remarks and Open Problems

In this work we studied the computational hardness of tiling arbitrary regions with
L-trominoes. We showed restrictions to the problem that keeps it computationally in-
tractable and identified concrete instances where an efficient tiling exists. In particular
we showed that tiling an Aztec rectangle (and hence, Aztec diamond) with defects is
still a hard problem, but in the presence of 0 or 1 defects, a tiling is decidable in poly-
nomial time. Furthermore, even if we restrict the problem of tiling an arbitrary region
with 180◦ rotations of L-trominoes it remains intractable. We showed, however, that if
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(b) Tags assignment (c) Tiling of R⊞

Fig. 28: Example of a detachable region R with a tiling for R⊞.

the region does not contains a so-called “forbidden polyomino” as a subregion, then the
tiling problem is decidable in polynomial time.

We conclude this paper with some open problems that we consider challenging and
that we believe will fuel future research in the subject.

1. Hardness of tiling the Aztec rectangle with a given number of defects. In Section 3
we saw that an Aztec rectangle with 0 or 1 defects can be covered with L-trominoes
in polynomial time, whereas in general the problem is NP-complete when the Aztec
rectangle has an unknown number of defects; with 2 + 3k, for every k, an Aztec
rectangle cannot be covered because the number of cells is not divisible by 3. It is
open if there exists a polynomial time algorithm for deciding a tiling for an Aztec
rectangle with a given number of defects.

2. Tiling of orthogonally-convex regions. In this work we showed several instances where
a tiling can be found in polynomial time. In general, it is open if an orthogonally-
convex region with no defects can be covered in polynomial time or if it is NP-complete
to decide if a tiling exists.

3. Enumeration of tromino tilings. We have not considered the problem of enumerating
tromino tilings of the regions described in this paper. In general, there are no such
formulas known in the literature for the shapes studied so far. However, we leave it
as an open problem for future research to enumerate such tilings. (See A for some
discussion.)
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A Enumeration of L-tromino tilings of Aztec diamonds

We have some amount of data for the number of L-tromino tilings of Aztec diamonds
(denoted by T (n) for an order n Aztec diamond), which we present in Table 1. As already
commented earlier, it is difficult in general to enumerate polyomino tilings of regions on
a finite lattice. However, we can give very simple bounds on the number of such tilings.



n T (n)
1 0
2 3
3 18
4 0
5 16856
6 2931525
7 0

Table 1: Values of number of L-tromino tilings of Aztec diamonds.

Theorem 9. If n = 3k for some k > 0, then we have

T (n) ≥ 4T (n− 1) + 4

k−1
∑

l=1

(l − 1)T (3l) +

k−1
∑

l=1

(l − 4)T (3l − 1). (1)

Proof. We first notice that any tiling of AD(n) contains all other tilings of AD(m) for
0 < m < n and m(m + 1) ≡ 0 (mod 3), as subtilings. This is clear from Figure 29. We

(a) Getting a tiling of AD(m)
from AD(m− 1).

(b) Getting a tiling of AD(m) from
AD(m− 2).

Fig. 29: Tilings using stairs.

further see that AD(n) can be tiled from any tiling of AD(n − 1) by appending stairs
on two adjacent boundary sides. This is shown in Figure 30. There are 4 ways to select
adjacent sides, which gives the factor of 4 in the first term of the right hand side of (1).

Now let us remove all the subtilings from AD(n − 1). In doing this, we will see that
the way we have constructed Figure 30 actually interacts with the construction in Figure
29 to produce 2k 2× 6 rectangles which can each be tiled in 2 different ways, for n = 3k.



Fig. 30: Getting a tiling of AD(n) from AD(n− 1).

From here we have the term 4k in the bound for different values of k. So, we have

T (n) ≥4

(

T (n− 1)−

k−1
∑

l=1

T (3l)− 2

k−1
∑

l=1

T (3l − 1)

)

+ 4

k−1
∑

l=1

lT (3l) +

k−1
∑

l=1

T (3l − 1)(l + T (2)).

This gives us the bound in (1).

Remark 3. A similar result will also hold for Aztec Rectangles, but with more parameters
as well as increased complexity.
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