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Abstract. A specification given as a formula in linear temporal logic (LTL)
defines a system by its set of traces. However, certain features such as informa-
tion flow security constraints are rather modeled as so-called hyperproperties,
which are sets of sets of traces. One logical approach to this is team logic,
which is a logical framework for the specification of dependence and indepen-
dence of information. LTL with team semantics has recently been discovered
as a logic for hyperproperties.

We study the complexity theoretic aspects of LTL with so-called synchronous
team semantics and Boolean negation, and prove that both its model checking
and satisfiability problems are highly undecidable, and equivalent to the
decision problem of third-order arithmetic. Furthermore, we prove that this
complexity already appears at small temporal depth and with only the “future”
modality F. Finally, we also introduce a team-semantical generalization of
stutter-invariance.
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1 Introduction
Linear temporal logic (LTL) [22] is a successful specification language for state-based
transition systems, with many applications in software and hardware verification and
protocol design [2, 24]. This is not limited to correctness of the program output with
respect to the input, but also covers aspects such as fairness, safety and deadlock-freeness.

The execution behaviour of a system is usually modeled as a trace, that is, an infinite
sequence of propositional assignments. However, certain important properties of systems
are not expressible as classes of traces. One simple example is bounded termination of
the system, that is, all traces reach some final state after at most 𝑐 steps, where 𝑐 does
depend on the system not but on the trace. Another is observational determinism, also
noninterference, which means that the externally visible development of a trace should
only depend on the input from the view of an external observer.
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Recent research on temporal logic has also accounted for such properties of systems as
the above. Clarkson and Schneider [5] coined the name hyperproperties for these, which
are formally sets of sets of traces. A logic to specify hyperproperties, called HyperLTL,
was introduced by Clarkson et al. [4]. It extends LTL by universal and existential trace
quantifiers, and can for example express observational determinism and has decidable
model checking. On the other hand, its satisfiability problem is undecidable and it still
lacks the expressive power for properties such as bounded termination [4].

Another novel logical framework useful for expressing hyperproperties is team seman-
tics [13]. Generally speaking, team semantics extends classical logic such that formulas
are evaluated not over single assignments, states, etc., but instead over sets of those. It
has been studied in the context of first-order logic, propositional logic and modal logic,
for example [28, 29, 32].

Team semantics has also been adapted to temporal logics like CTL [12] and recently
LTL [13] by Krebs et al. They distinguish two kinds of team semantics for LTL: asyn-
chronous semantics, which is strictly weaker than HyperLTL, and synchronous semantics,
which is expressively incomparable to HyperLTL. Roughly speaking, the future operator
F either “asynchronously” skips a finite amount of time on every trace that is unbounded
and depends on the trace, or “synchronously” advances to a point in the future that is
equal for all traces, and similarly for the other temporal operators.

In team logic, often non-classical atoms are added to the syntax that express properties
of teams. The prime example is the dependence atom dep(𝑝1, . . . , 𝑝𝑛; 𝑞), which was
introduced by Väänänen [28] in the context of team semantics. It states that the value
of 𝑞 functionally depends on the values of 𝑝1, . . . , 𝑝𝑛. Applied to traces, this defines a
hyperproperty. In fact, the dependence atom allows to intuitively implement features like
observational determinism, for example the formula

𝑘⋀︁
𝑖=1

dep(in1, . . . , in𝑛; G(end → out𝑖))

states that the truth of the formulas G(end → out𝑖), and thus the values of out1, . . . , out𝑘
at the end of the computation on each trace, depend only on the values of the propositions
in1, . . . , in𝑛 at the beginning of that trace.

Several other non-classical atoms have been considered in the past, e.g., independence,
inclusion, and exclusion constraints as well as atoms for counting. We refer the reader
to the literature [1, 10] for further information. (Our results hold regardless of whether
those atoms are available or not.)

Team semantics generally lacks the Boolean negation, and although the connective ¬ is
part of the syntax, it is not the classical negation and does not satisfy for example the law
of excluded middle [28]. Sometimes Boolean negation, also called contradictory negation or
strong negation, is re-introduced and denoted by ∼. This usually increases the expressive
power greatly, as was shown for propositional, modal and first-order team logic [11, 28,
33]. On the other hand, this is not surprising, as in the context of proposition-based
logics, the non-classical atoms of dependency, independence, inclusion and others are all
expressible by polynomial-sized formulas if ∼ is available [19].
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The most important logical decision problems are model checking (does the given
system satisfy the given formula?) and satisfiability (is the given formula true in some
system?). Not only model checking, but also satisfiability is routinely solved in practice,
since an unsatisfiable and hence self-contradictory specification is of no use. Thus checking
for satisfiability is a sensible heuristic to avoid errors in the specification. [2]

Model checking and the satisfiability problem sometimes become easier for fragments
of the logic. For example, while both problems are well-known to be PSPACE-complete
for LTL [27], their complexity can drop down to NP or even less when the input formulas
are restricted, for example if they use only certain subsets of temporal operators, if the
nesting depth of temporal operators is small, or if the number of distinct propositional
symbols is bounded [6, 25, 27]. For HyperLTL, some research in the same direction has
been done, with focus on fragments of small alternation depth of trace quantifiers and
small temporal depth [4, 7, 20].

Contributions. We consider the logic LTL(∼), which in this paper denotes linear
temporal logic (LTL) with team semantics, with Boolean negation ∼, and with synchronous
semantics of the temporal connectives.

We begin with identifying a stutter-invariant fragment of LTL(∼). Classically, a formula
𝜙 being stutter-invariant means that finitely often repeating arbitrary labels on a trace
does not change the truth of 𝜙. Peled and Wilke [21] showed that the stutter-invariant
LTL-definable trace properties are exactly those that are definable without the “nexttime”
operator X. One application of stutter-invariant formulas is the hierarchical refinement
of specifications and structures, where atomic transitions are replaced by a complex
subroutine [15, 21].

In Section 3, we generalize the notion of stutter-equivalence to teams, and thus to
hyperproperties, and partially obtain a similar result: we show that every X-free formula
is stutter-invariant. Whether the converse holds like in the classical case is left open.

Afterwards, we turn to the computational complexity of LTL(∼). It turns out that both
its satisfiability and model checking problem are equivalent to third-order arithmetic. In
particular, model checking and satisfiability have the same complexity, which is well-known
feature of LTL that now recurs in team semantics.

Moreover, we investigate the problem of countable satisfiability, which asks for a
countable team satisfying a formula, as well as finite satisfiability, for which the team is
induced as the set of traces of a finite Kripke structure. (Note that there are countable
teams that not finitely generated, and finitely generated teams that are not countable.)
For obvious reasons, the finite satisfiability problem is closer to practical applications than
general satisfiability, and while these satisfiability notions coincide for classical LTL [27],
they do not for, e.g., HyperLTL [20].

We sum up our complexity theoretic results for LTL(∼). The bold-face symbol Δ3
0 refers

to the decision problem of third-order arithmetic 𝛥3
0 (and likewise Δ2

0 for second-order).
These and other notions will be defined in Section 4.

Theorem 1.1. Model checking, satisfiability and finite satisfiability are equivalent to
Δ3

0 and countable satisfiability is equivalent to Δ2
0 w. r. t. logspace-reductions. Further-

more, this already holds with only the temporal operator F and temporal depth two (for
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satisfiability) and one (for model checking), respectively.

We also consider so-called 𝒞-restricted variants of the above problems, where 𝒞 is, e.g.,
the class of ultimately periodic traces. Here, of all traces generated by a given structure
or contained in a satisfying team, we consider only those in 𝒞.

Theorem 1.2. If 𝒞 is the class of ultimately periodic traces or the class of ultimately
constant traces, then 𝒞-restricted model checking, satisfiability and finite satisfiability
are equivalent to Δ2

0 w. r. t. logspace-reductions. Again, this already holds with only
the temporal operator F and temporal depth two (for satisfiability) and one (for model
checking), respectively.

In Section 4, we prove the upper bound of Theorem 1.1, which mostly amounts to
a translation from LTL(∼) to 𝛥3

0 on the level of formulas, which reduces both model
checking and satisfiability to Δ3

0. In Section 5, we then present a reduction of Δ3
0 back

to model checking. More precisely, given a 𝛥3
0-formula 𝜙, we compute a model 𝒦 and a

temporal formula 𝜓 such that 𝜓 holds in the traces of 𝒦 iff 𝜙 is true in N. The reduction
is surprisingly simple in the sense that it works already for a small fragment of formulas,
namely with only F-operators and no temporal nesting.

Next, in Section 6, we reduce the problem of model checking to satisfiability. It is a
standard approach to reduce LTL model checking to (un-)satisfiability, and amounts
to describing the structure of a model as a formula [25] (or alternatively as an 𝜔-
automaton [30]). For LTL(∼), we do this only indirectly. In fact, we show that the full
team of all possible traces is definable, and from it extract the subteam of precisely the
traces of the structure. Like for model checking, already a weak fragment suffices for the
hardness of satisfiability, namely only F and temporal depth two.

By the above chain of reductions, then all these problems are logspace-equivalent. If the
restriction is imposed that the teams in question are countable, for example by looking
only at ultimately periodic traces, then all the above arguments can be carried out with
second-order arithmetic 𝛥2

0, by which we will prove Theorem 1.2.

2 Preliminaries
Basic notions The power set of a set 𝑋 is ℘𝑋. The set of non-negative integers is
N = {0, 1, 2, . . .}, also denoted by 𝜔. For 𝑛 ∈ N, we write short [𝑛] for {1, 2, . . . , 𝑛}. The
set of all infinite sequences over 𝑋 is 𝑋𝜔. The set of all 𝑛-tuples over 𝑋 is 𝑋𝑛, and the
set of all finite sequences is 𝑋*. We sometimes write an infinite sequence 𝑥 = 𝑥0, 𝑥1, . . .
as (𝑥𝑖)𝑖≥0, and refer to the 𝑖-th element 𝑥𝑖 also as 𝑥(𝑖).

Computational complexity A (decision) problem is a subset 𝐴 ⊆ 𝛴* of words over some
finite alphabet 𝛴, which is assumed as 𝛴 = {0, 1} unless stated otherwise. A logspace-
reduction from a problem 𝐴 to a problem 𝐵 is a function 𝑓 that is computable in space
𝒪(log𝑛) such that 𝑥 ∈ 𝐴 ⇔ 𝑓(𝑥) ∈ 𝐵, for all 𝑥 ∈ 𝛴*. 𝐴 and 𝐵 are logspace-equivalent if
they are mutually logspace-reducible.
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All stated reductions are logspace-reductions. For a detailed introduction to computation
theory and complexity, we refer the reader to standard literature [26].

Linear Temporal Logic Let AP = {𝑝1, 𝑝2, . . .} be a countably infinite set of atomic
propositions. The set of all formulas of linear temporal logic (LTL) over AP is written
LTL, and is defined by the grammar

𝜙 ::= 𝑝𝑖 | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | X𝜙 | F𝜙 | G𝜙 | 𝜙U𝜙 | 𝜙R𝜙.

The connectives X (nexttime), F (future), G (globally), U (until), R (release) are called
temporal operators. The temporal depth td(𝜙) is their nesting depth, that is,

td(𝑝𝑖) := 0
td(¬𝜙) := td(𝜙)
td(𝜙 ∘ 𝜓) := max{td(𝜙), td(𝜓)} for ∘ ∈ {∧,∨}
td(𝑂𝜙) := td(𝜙) + 1 for 𝑂 ∈ {X,F,G}
td(𝜙𝑂𝜓) := max{td(𝜙), td(𝜓)} + 1 for 𝑂 ∈ {U,R}.

The logic LTL𝑘(𝑂1, . . . , 𝑂𝑛), for 𝑛, 𝑘 ≥ 1, is the syntactical fragment of LTL that contains
all formulas of temporal depth up to 𝑘, and in which only the temporal operators
𝑂1, . . . , 𝑂𝑛 ∈ {X,F,G,U,R} are used.

Traces A label is a subset of AP. If 𝑠 is a label, then we also write 𝑠𝑛 or 𝑠𝜔 for length 𝑛
resp. infinite sequences consisting only of the label 𝑠. A trace is an element of (℘AP)𝜔, i.e.,
an infinite sequence of labels. The suffix 𝑡(𝑖)𝑡(𝑖+ 1) · · · is 𝑡𝑖, where 𝑡0 = 𝑡. The projection
of 𝑡 onto a set 𝛷 ⊆ AP is 𝑡�𝛷, defined by 𝑡�𝛷 := (𝑡(𝑖) ∩ 𝛷)𝑖≥0.

A trace is ultimately periodic if there exist 𝑐, 𝑑 > 0 such that 𝑡(𝑛) = 𝑡(𝑛 + 𝑑) for all
𝑛 ≥ 𝑐. It is constant if 𝑡(0) = 𝑡(1) = · · · , and ultimately constant if 𝑡𝑖 is constant for some
𝑖.

Semantics LTL-formulas are evaluated on traces as follows, where 𝑡 is a trace and
𝑝 ∈ AP.

𝑡 � 𝑝 ⇔ 𝑝 ∈ 𝑡(0) 𝑡 � G𝜙 ⇔ ∀𝑘 ≥ 0 : 𝑡𝑘 � 𝜙
𝑡 � ¬𝜙 ⇔ 𝑡 2 𝜙 𝑡 � 𝜙U𝜓 ⇔ ∃𝑘 ≥ 0 : 𝑡𝑘 � 𝜓
𝑡 � 𝜙 ∧ 𝜓 ⇔ 𝑡 � 𝜙 and 𝑡 � 𝜓 and ∀𝑗 < 𝑘 : 𝑡𝑗 � 𝜙
𝑡 � 𝜙 ∨ 𝜓 ⇔ 𝑡 � 𝜙 or 𝑡 � 𝜓 𝑡 � 𝜙R𝜓 ⇔ ∀𝑘 ≥ 0 : 𝑡𝑘 � 𝜓
𝑡 � X𝜙 ⇔ 𝑡1 � 𝜙 or ∃𝑗 < 𝑘 : 𝑡𝑗 � 𝜙
𝑡 � F𝜙 ⇔ ∃𝑘 ≥ 0 : 𝑡𝑘 � 𝜙

We employ the usual abbreviations, implication 𝜙 → 𝜓 ≡ ¬𝜙 ∨ 𝜓, equivalence 𝜙 ↔
𝜓 ≡ (𝜙 → 𝜓) ∧ (𝜓 → 𝜙), truth ⊤ ≡ 𝑝 ∨ ¬𝑝, and falsity ⊥ ≡ 𝑝 ∧ ¬𝑝.

As usual, we use � and ≡ for semantical entailment and equivalence.
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Kripke structures A Kripke structure or just structure is a tuple 𝒦 = (𝑊,𝑅, 𝜂, 𝑟)
where 𝑊 is a non-empty set of states or worlds, 𝑅 ⊆ 𝑊 ×𝑊 is the transition relation,
𝜂 : 𝑊 → ℘AP maps each state to a label, and 𝑟 ∈ 𝑊 is the initial state or root of
𝒦. We assume that all structures are serial, or total, that is, for every 𝑤 ∈ 𝑊 there
exists some 𝑣 ∈ 𝑊 such that (𝑤, 𝑣) ∈ 𝑅. A path in 𝒦 is a sequence 𝜋 ∈ 𝑊𝜔 such that
(𝜋(𝑖), 𝜋(𝑖+ 1)) ∈ 𝑅 for all 𝑖 ≥ 0, and 𝜋(0) = 𝑟.

The trace induced by a path 𝜋 is 𝜂(𝜋) := (𝜂(𝜋(𝑖)))𝑖≥0. Note that paths and traces are
different objects, and an aperiodic path may still induce a constant trace if it cycles
through states with equal labels.

The set of all traces induced by paths in 𝒦 is 𝑇 (𝒦). A structure 𝒦 satisfies a formula
𝜙, in symbols 𝒦 � 𝜙, if 𝑡 � 𝜙 for all 𝑡 ∈ 𝑇 (𝒦). The classical model checking problem of
LTL is now the set of all pairs (𝒦, 𝜙) where 𝒦 is a structure, 𝜙 is an LTL-formula, and
𝒦 � 𝜙.

The subset of ultimately constant, resp. periodic, traces in 𝒦 is denoted by 𝑇ulc(𝒦),
resp. 𝑇ulp(𝒦).

2.1 Team semantics
A team 𝑇 is a (possibly empty) set of traces, formally 𝑇 ⊆ (℘AP)𝜔. As for traces, we
define the suffix 𝑇 𝑖 := {𝑡𝑖 | 𝑡 ∈ 𝑇}, and say that a team 𝑇 is constant, ultimately
constant, or ultimately periodic, if all traces 𝑡 ∈ 𝑇 are. Also, we define the projection
𝑇 �𝛷 := {𝑡�𝛷 | 𝑡 ∈ 𝑇}.

Next, we introduce synchronous team semantics of LTL as defined by Krebs et al. [13].
Let 𝑇 be a team and 𝑝 ∈ AP. Then:

𝑇 � 𝑝 ⇔ ∀𝑡 ∈ 𝑇 : 𝑝 ∈ 𝑡(0)
𝑇 � ¬𝜙 ⇔ ∀𝑡 ∈ 𝑇 : {𝑡} 2 𝜙
𝑇 � 𝜙 ∧ 𝜓 ⇔ 𝑇 � 𝜙 and 𝑇 � 𝜓

𝑇 � 𝜙 ∨ 𝜓 ⇔ ∃𝑆,𝑈 ⊆ 𝑇 : 𝑆 ∪ 𝑈 = 𝑇, 𝑆 � 𝜙 and 𝑈 � 𝜓

𝑇 � X𝜙 ⇔ 𝑇 1 � 𝜙

𝑇 � F𝜙 ⇔ ∃𝑘 ≥ 0 : 𝑇 𝑘 � 𝜙
𝑇 � G𝜙 ⇔ ∀𝑘 ≥ 0 : 𝑇 𝑘 � 𝜙
𝑇 � 𝜙U𝜓 ⇔ ∃𝑘 ≥ 0 : 𝑇 𝑘 � 𝜓 and ∀𝑗 < 𝑘 : 𝑇 𝑗 � 𝜙
𝑇 � 𝜙R𝜓 ⇔ ∀𝑘 ≥ 0 : 𝑇 𝑘 � 𝜓 or ∃𝑗 < 𝑘 : 𝑇 𝑗 � 𝜙

Note that the disjunction of team semantics is not Boolean, but instead splits the team
into two parts. For example, the team {{𝑝}∅𝜔, ∅{𝑝}∅𝜔} does satisfy F𝑝∨ F𝑝, as each trace
itself satisfies F𝑝, but the whole team does not satisfy F𝑝, as there is no single timestep 𝑘
at which 𝑇 𝑘 � 𝑝 [13]. Hence F𝑝 ∨ F𝑝 ̸≡ F𝑝.

On single traces, classical semantics and team semantics coincide:

Proposition 2.1 ([13]). For all 𝜙 ∈ LTL and traces 𝑡, 𝑡 � 𝜙 iff {𝑡} � 𝜙.
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The following are standard properties of logics with team semantics:

Definition 2.2 (Downward closure). A formula 𝜙 is downward closed if for all teams 𝑇
and 𝑇 ′ ⊆ 𝑇 it holds that 𝑇 � 𝜙 implies 𝑇 ′ � 𝜙.

Definition 2.3 (Empty team satisfaction). A formula 𝜙 has empty team satisfaction if
∅ � 𝜙.

Definition 2.4 (Union closure). A formula 𝜙 is union closed if for all sets 𝒯 of teams it
holds that ∀𝑇 ∈ 𝒯 : 𝑇 � 𝜙 implies ⋃︀

𝒯 � 𝜙.

Definition 2.5 (Flatness). A formula 𝜙 is flat if for all teams 𝑇 it holds that 𝑇 � 𝜙 ⇔
∀𝑡 ∈ 𝑇 : {𝑡} � 𝜙.

We say that a logic 𝐿 has one of the above properties if all 𝐿-formulas have the
respective property.

Observe that union closure implies empty team satisfaction, and that flatness is
equivalent to simultaneous downward closure and union closure.

Proposition 2.6 ([13]). LTL with team semantics has downward closure and empty team
satisfaction.

This property is shared with other related logics such as dependence logic [28].
However, unlike asynchronous semantics, the synchronous semantics we use is not

union closed and hence not flat:

Proposition 2.7 ([13]). The formula F𝑝 is not union closed.

In fact, this already follows from the previous example, as in union closed logics
𝜙 ∨ 𝜙 ≡ 𝜙, but here F𝑝 ∨ F𝑝 2 F𝑝.

Next, we introduce the dependence atom1 as an example for a non-classical formula in
team-semantics. For LTL, it is defined as follows [13]:

𝑇 � dep(𝜙1, . . . , 𝜙𝑛;𝜓) ⇔ ∀𝑡, 𝑡′ ∈ 𝑇 :
(∀𝑖 ∈ [𝑛] : {𝑡} � 𝜙𝑖 ⇔ {𝑡′} � 𝜙𝑖) ⇒ ({𝑡} � 𝜓 ⇔ {𝑡′} � 𝜓)

That is, whenever traces in 𝑇 agree on the truth of all 𝜙𝑖, then they agree on the truth
of 𝜓, or in other words, 𝜓 is functionally determined by 𝜙1, . . . , 𝜙𝑛. For the case 𝑛 = 0
we just write dep(𝜓), which means that the truth of 𝜓 is constant among the team.

Let LTL(dep) denote the extension of LTL by the dependence atom. The following
result is analogous to first-order dependence logic [28].

Proposition 2.8. LTL(dep) has downward closure and empty team satisfaction.

Theorem 2.9 ([13]). Model checking of LTL(dep) is hard for NEXPTIME.
1The term atom is used for historic reasons. In the first-order setting, the atom ranges only over

individual variables and/or terms as arguments, and for this reason is indeed an atomic formula [28].
That the arguments themselves are formulas happens only in proposition-based logics. In the latter
setting, usually, non-classical atoms such as the dependence atom range only over classical formulas,
whereas here they range over arbitrary formulas. However, this does not affect our results, since
Proposition 2.10 and the other translations [19] also hold for this more general syntax.
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2.2 Team logic with negation
In team logic, the contradictory negation, or Boolean negation, is denoted by ∼ to
distinguish it from ¬:

𝑇 � ∼𝜙 ⇔ 𝑇 2 𝜙

We write LTL(∼) for the extension of LTL by ∼, and define fragments of the form
LTL𝑘(∼, 𝑂1, . . . , 𝑂𝑛) like for classical LTL.

With the Boolean negation available, it is now possible to define the Boolean disjunction,
the material implication, and equivalence on the level of teams:

𝜙6 𝜓 := ∼(∼𝜙 ∧ ∼𝜓),
𝜙 _ 𝜓 := ∼𝜙6 𝜓,
𝜙 ] 𝜓 := (𝜙 _ 𝜓) ∧ (𝜓 _ 𝜙).

Observe that the formulas 𝜙 and ¬¬𝜙 are not equivalent, but ¬𝜙 and ¬¬¬𝜙 are
(similarly to intuitionistic logic). The reason is that ¬¬𝜙 states that 𝜙 holds in all
singletons.2

Furthermore, non-classical atoms such as the dependence atom become definable [19].

Proposition 2.10. The dependence atom is definable as follows:

dep(𝜙1, . . . , 𝜙𝑛;𝜓) ≡ ∼
(︂

⊤ ∨
(︁ 𝑛⋀︁
𝑖=1

dep(𝜙𝑖) ∧ ∼dep(𝜓)
)︁)︂

where

dep(𝜙) ≡ ¬¬𝜙6 ¬𝜙.

Proof. First, dep(𝜙) says that every trace satisfies either 𝜙 or ¬𝜙, and hence that 𝜙 is
constant among all traces. For this reason, the part inside the outermost ∼ of the first
line states that some subteam is constant in every 𝜙𝑖, but not in 𝜓, which is precisely
the negation of the dependence atom.

Corollary 2.11. LTL(∼) is neither downward closed nor union closed. Also, this even
holds without any temporal operators.

Proof. The formula dep(𝑝) is not union closed, and ∼𝑝, which states that at least one
trace in the team satisfies ¬𝑝, is not downward closed.

2In the team logic literature, usually ¬ is allowed only in front of atoms 𝑝𝑖. In such cases, ¬𝜙 is
sometimes defined as an abbreviation for pushing ¬ inwards to the atomic level using the equivalences
¬(𝜙∧𝜓) ≡ ¬𝜙∨¬𝜓, ¬F𝜙 ≡ G¬𝜙, and so on. However, it will be useful to define ¬ in front of arbitrary
formulas in a way that is consistent with its semantics on classical formulas, for example in order to
succinctly define a “flat” approximation of a formula. With our definition, we follow Yang et al. [9, 31,
33] and Kuusisto [14].
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In fact, also the connective ¬ can be expressed with ∼, ⊥ and ∨ as follows [18]. First
note that the constant ⊤ is equivalent to ∼(𝑝∧ ∼𝑝). Moreover, ⊥ holds only in the empty
team, so non-emptiness can be expressed as ∼⊥. Now the formulas

∃⊆𝜙 := ⊤ ∨ 𝜙 ∀⊆𝜙 := ∼∃⊆∼𝜙

say that some (resp. every) subteam satisfies 𝜙, and

∃1𝜙 := ∃⊆(∼⊥ ∧ ∀⊆(⊥ 6 𝜙)) ∀1𝜙 := ∼∃1∼𝜙

say that some (resp. every) singleton subteam satisfies 𝜙. Intuitively, the formula ∃1𝜙
states that there is some non-empty subteam of which all non-empty subteams satisfy 𝜙,
which is precisely the case if some singleton satisfies 𝜙. Thus we can write ¬𝜙 as ∀1∼𝜙.

Sometimes it is necessary to “condition” a team 𝑇 to only those traces that satisfy a
certain formula 𝜙. For this, we define the team 𝑇𝜙 := {𝑡 ∈ 𝑇 | {𝑡} � 𝜙}. Observe that 𝑇𝜙
and 𝑇¬𝜙 always form a disjoint partition of 𝑇 .

On the formula side, we use the connective 𝜙 →˓ 𝜓 to express that 𝑇𝜙 � 𝜓. It is
definable as ¬𝜙 ∨ (¬¬𝜙 ∧ 𝜓).

Let us turn to the decision problems associated with LTL(∼). A formula is satisfiable
if it is true in at least one team. The satisfiability problem of a logic 𝐿 formally is the set
of all satisfiable formulas 𝜙 ∈ 𝐿.

A team 𝑇 is finitely generated if 𝑇 = 𝑇 (𝒦) for some finite structure 𝒦, and a formula
𝜙 is finitely satisfiable if it satisfied by some finitely generated team. Also, 𝜙 is called
countably satisfiable if it is satisfied by some countable team.

For practical purposes, it is sometimes preferable to consider only traces that have
a finite representation, which is the case for example for ultimately periodic traces. In
general, if 𝒞 is some class of traces, then we say that a formula 𝜙 is 𝒞-satisfiable if there
is a team 𝑇 such that 𝑇 ∩ 𝒞 satisfies 𝜙. Likewise, 𝜙 is finitely 𝒞-satisfiable if 𝑇 (𝒦) ∩ 𝒞
satisfies 𝜙 for some finite structure 𝒦.

Note that it makes no sense to combine the restriction of finite satisfiability and
countability alone:

Proposition 2.12. If 𝒦 is a finite structure and 𝑇 (𝒦) is countable, then 𝑇 (𝒦) is already
ultimately periodic.

Proof. Proof by contraposition: Suppose some 𝑡 ∈ 𝑇 (𝒦) is not ultimately periodic. The
path 𝜋 that induces 𝑡 must visit some state 𝑤 in 𝒦 infinitely often, say at positions
𝑖0, 𝑖1, . . .. If we now consider the intervals 𝑡(𝑖0) · · · 𝑡(𝑖1 − 1), 𝑡(𝑖1) · · · 𝑡(𝑖2 − 1), . . ., then at
least two of them are distinct, since 𝑡 is not ultimately periodic. But then there are at
least two cycles through 𝑤 with distinct labels, and hence 𝑇 (𝒦) is uncountable.

The model checking problem of 𝐿 is the set of all pairs (𝒦, 𝜙) such that 𝜙 ∈ 𝐿 and
𝑇 (𝒦) � 𝜙 in team semantics.3

3Here, formulas are written as strings over a suitable finite alphabet, with propositions encoded as
binary numbers. A finite Kripke structure 𝒦 = (𝑊,𝑅, 𝜂, 𝑟) is encoded by a number 𝑛 := |𝑊 |, lists of
pairs of numbers (in binary) for with 𝑅 and 𝜂, and a single number for 𝑟.
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Again, for a class 𝒞 of traces, the problem of 𝒞-model checking is the set of pairs (𝒦, 𝜙)
where 𝑇 (𝒦)∩𝒞 � 𝜙. Recall that 𝑇ulp(𝒦) is the subteam of all ultimately periodic traces in
𝑇 (𝒦) (and analogously 𝑇ulc(𝒦)), and can thus be written as 𝑇 (𝒦) ∩ 𝒞 for appropriate 𝒞.4
For a class 𝒞 of traces, the corresponding decision problems are called 𝒞-restricted model
checking, satisfiability, etc. If 𝒞 is the class of ultimately periodic (constant) traces, then
we just call the 𝒞-restricted model checking problem ultimately periodic and ultimately
constant model checking, respectively.

For flat formulas, the complexity of these problems coincides with their classical
counterparts. The underlying reductions for their lower bounds are all computable in
logspace.

Proposition 2.13 ([27]). Model checking and satisfiability of classical LTL is PSPACE-
complete.

Proposition 2.14 ([13]). The satisfiability problem for LTL-formulas in team semantics,
restricted to non-empty teams, is PSPACE-complete.

Here, the empty team needs to be excluded since otherwise the problem becomes trivial
due to empty team satisfaction. With negation ∼, this distinction becomes redundant,
since 𝜙 is satisfiable iff 𝜙 ∨ ⊤ is satisfiable in a non-empty team, and 𝜙 is satisfiable in a
non-empty team iff 𝜙 ∧ ∼⊥ is satisfiable.

Proposition 2.15 ([13]). The model checking problem for LTL-formulas in team seman-
tics is PSPACE-hard.

3 A Stutter-Invariant Fragment of LTL(∼)
We begin by investigating the concept of stutter-equivalence and lift the classical definition
to team semantics. We follow Peled and Wilke [21]. Two traces 𝑡, 𝑡′ are called stutter-
equivalent if there are two sequences 0 = 𝑖0 < 𝑖1 < 𝑖2 < · · · and 0 = 𝑗0 < 𝑗1 < 𝑗2 < · · ·
of indices such that, for all 𝑘 ≥ 0, it holds that 𝑡(𝑖𝑘) = · · · = 𝑡(𝑖𝑘+1 − 1) = 𝑡′(𝑗𝑘) =
· · · 𝑡′(𝑗𝑘+1 − 1).

Intuitively, two traces are stutter-equivalent if one can be obtained from the other by
adding and removing consecutive copies of labels (while leaving at least one copy), e.g.,
{𝑝}{𝑝}{𝑞}{𝑧}𝜔 is stutter-equivalent to {𝑝}{𝑞}{𝑞}{𝑧}𝜔, but {𝑝}{𝑧}𝜔 is not.

Every X-free LTL-formula 𝜙 defines a stutter-invariant property in the sense that it
cannot distinguish stutter-equivalent traces 𝑡 and 𝑡′, i.e., 𝑡 � 𝜙 ⇔ 𝑡′ � 𝜙. Indeed, Peled
and Wilke [21] show that the stutter-invariant properties definable in LTL are exactly
those definable without X.

4Classically, there is no difference between full and ultimately periodic model checking. The reason is
that every satisfiable LTL-formula is satisfied in some ultimately periodic trace [27], and that the
traces of a structure 𝒦 are definable by a formula 𝜒𝒦 [25]. So if some trace 𝑡 in 𝒦 satisfies ¬𝜙, then
𝜒𝒦 ∧ ¬𝜙, and hence ¬𝜙, holds in some ultimately periodic trace in 𝒦.
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· · ·

· · ·

· · ·

· · ·

0 ↦→ 0 1 ↦→ 2 2 ↦→ 4 3 ↦→ 6

0 ↦→ 0 1 ↦→ 1 2 ↦→ 3 3 ↦→ 4𝑓 :

𝑔 :

𝑇

𝑇 ′

Figure 1: Stutter-equivalence of teams witnessed by stuttering functions 𝑓 and 𝑔. Distinct
propositional labels are encoded by different colors.

3.1 Stutter-equivalence in team semantics
The first step in this section is to generalize the definition of stutter-equivalence to teams.
For this, note that the above definition of stutter-equivalence can also be written as
follows: For all 𝑘, it holds that 𝑡(𝑖𝑘) = · · · = 𝑡(𝑖𝑘+1 − 1) and 𝑡′(𝑗𝑘) = · · · = 𝑡′(𝑗𝑘+1 −
1), and additionally the “filtered” traces (𝑡𝑖𝑘)𝑘≥0 = 𝑡(𝑖0)𝑡(𝑖1)𝑡(𝑖2) · · · and (𝑡′𝑗𝑘)𝑘≥0 =
𝑡′(𝑗0)𝑡′(𝑗1)𝑡′(𝑗2) · · · are identical. We generalize this equivalent definition to teams:

Definition 3.1 (Stuttering functions). A stuttering function of a trace 𝑡 is a strictly
increasing function 𝑓 : N → N such that 𝑓(0) = 0 and 𝑡(𝑓(𝑘)) = · · · = 𝑡(𝑓(𝑘 + 1) − 1) for
all 𝑘. A stuttering function of a team 𝑇 is a function 𝑓 that is a stuttering function for
each trace 𝑡 ∈ 𝑇 .

In other words, the range of a stuttering function includes at least zero and all positions
on which the trace differs from the predecessor.

Example Every trace of the form ∅𝑛{𝑝}∅𝜔 has infinitely many stuttering functions, whose
range only needs to include zero,𝑛+1, and an arbitrary infinite subset of {𝑛+2, . . .}. On the
other hand, when combined to a team, the only stuttering function of {∅𝑛{𝑝}∅𝜔 | 𝑛 ≥ 0}
is the identity; intuitively, there exists no position 𝑖 on which every trace stays unchanged
compared to the previous position.

If 𝑓 : N → N, then let 𝑡[𝑓 ] denote the trace 𝑡(𝑓(0))𝑡(𝑓(1))𝑡(𝑓(2)) · · · , and 𝑇 [𝑓 ] the team
{𝑡[𝑓 ] | 𝑡 ∈ 𝑇}.

Definition 3.2 (Stutter-equivalence). Teams 𝑇, 𝑇 ′ are stutter-equivalent, in symbols
𝑇 ≡st 𝑇

′, if there are stuttering functions 𝑓 of 𝑇 and 𝑓 ′ of 𝑇 ′ such that 𝑇 [𝑓 ] = 𝑇 ′[𝑓 ′].

See also Figure 1 for two example teams that are stutter-equivalent.
Next, we show that stutter-equivalent teams always have the same cardinality.

Proposition 3.3. If 𝑓 is a stuttering function of 𝑇 , then |𝑇 | = |𝑇 [𝑓 ]|.
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Proof. We show that the surjective map 𝑡 ↦→ 𝑡[𝑓 ] from 𝑇 to 𝑇 [𝑓 ] is also injective. Let
𝑡, 𝑡′ ∈ 𝑇 such that 𝑡[𝑓 ] = 𝑡′[𝑓 ]. Then 𝑡(𝑓(𝑘)) = 𝑡′(𝑓(𝑘)) for all 𝑘. As 𝑓 is a stuttering
function, also 𝑡(𝑗) = 𝑡(𝑓(𝑘)) = 𝑡′(𝑓(𝑘)) = 𝑡′(𝑗) for all 𝑗 such that 𝑓(𝑘) ≤ 𝑗 < 𝑓(𝑘 + 1) for
some 𝑘, and hence for all 𝑗. Consequently, 𝑡 = 𝑡′.

Corollary 3.4. Any two stutter-equivalent teams have the same cardinality.

In our definition, a team is a set of traces, which consist of labels indexed by natural
numbers. However, a team 𝑇 also intuitively corresponds to a single sequence which maps
to each position a “snapshot” of all traces, indexed by the elements of 𝑇 . Let us relax
the necessity of AP being countable in this section, then the resulting sequence is indeed
a trace.

Fix an index set 𝐼. The snapshot trace sn(𝑇 ) of an 𝐼-indexed team {𝑡𝑖}𝑖∈𝐼 is a trace in
(℘(AP × 𝐼))𝜔 and is defined by (𝑝, 𝑖) ∈ sn(𝑇 )(𝑛) ⇔ 𝑝 ∈ 𝑡𝑖(𝑛).

Proposition 3.5. Let 𝑇 = {𝑡𝑖}𝑖∈𝐼 and 𝑇 ′ = {𝑡′𝑖}𝑖∈𝐼 be 𝐼-indexed teams. Then 𝑇 and 𝑇 ′
are stutter-equivalent teams if and only if sn(𝑇 ) and sn(𝑇 ′) are stutter-equivalent traces.

Proof. Clearly, a function 𝑓 is a stuttering function of a team 𝑇 if and only if it is one
of the trace sn(𝑇 ). Also, clearly sn(𝑇 )[𝑓 ] = sn(𝑇 [𝑓 ]). As a consequence, 𝑇 [𝑓 ] = 𝑇 ′[𝑔] for
stuttering functions 𝑓, 𝑔 if and only if sn(𝑇 )[𝑓 ] = sn(𝑇 ′)[𝑔].

The above statement can be extended to all teams, since stutter-equivalent teams have
the same cardinality and thus can be indexed by the same set 𝐼.

A team 𝑇 has a stuttering position 𝑖 if 𝑡(𝑖) = 𝑡(𝑖+ 1) for all 𝑡 ∈ 𝑇 , but there are 𝑡 ∈ 𝑇
and 𝑗 > 𝑖+ 1 such that 𝑡(𝑖) ̸= 𝑡(𝑗). (So constant suffixes are not considered stuttering.)
A trace or team with no stuttering positions is called stutter-free.

Next, we prove the team analogs of several classical properties of stutter-equivalence.

Theorem 3.6. Stutter-equivalence on teams satisfies the following properties.

1. If 𝑇 is a stutter-free team, then 𝑇 = 𝑇 [𝑓 ] for every stuttering function 𝑓 .

2. Every team 𝑇 has a unique stutter-free team that is stutter-equivalent to it.

3. Stutter-equivalence is reflexive, transitive and symmetric.

4. Every stutter-equivalence class contains exactly one stutter-free team.

Proof. 1.: Suppose 𝑇 ̸= 𝑇 [𝑓 ]. Then there exists a minimal 𝑖 such that 𝑓(𝑖) ̸= 𝑖. In
particular, 𝑓(𝑖) > 𝑖 > 0. Let 𝑡 ∈ 𝑇 be arbitrary. By minimality of 𝑖, 𝑡(𝑖−1) = 𝑡(𝑓(𝑖−1)). By
definition of stuttering function, 𝑡(𝑓(𝑖−1)) = · · · = 𝑡(𝑓(𝑖)−1). Since 𝑓(𝑖−1) ≤ 𝑖 ≤ 𝑓(𝑖)−1,
it follows that 𝑡(𝑖− 1) = 𝑡(𝑖). But 𝑇 was stutter-free, contradiction.

2.: Let 𝑗0, 𝑗1, . . . be all non-stuttering positions of 𝑇 in ascending order. Then 𝑓(0) :=
0, 𝑓(𝑖 + 1) := 𝑗𝑖 + 1 is a stuttering function of 𝑇 (see Figure 2). So 𝑇 ≡st 𝑇 [𝑓 ] via
the stuttering function 𝑓 for 𝑇 and the identity for 𝑇 [𝑓 ]. Moreover, the team 𝑇 [𝑓 ] is
stutter-free. For the uniqueness part, suppose 𝑇1 ≡st 𝑇 and 𝑇2 ≡st 𝑇 for stutter-free
𝑇1 ̸= 𝑇2 via stuttering functions 𝑓1 for 𝑇1 and 𝑓2 for 𝑇2. By 1., then 𝑇 [𝑓1] = 𝑇1 and
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· · ·
𝑗0 𝑗1

𝑓(0) 𝑓(1) 𝑓(2)

Figure 2: Defining a stuttering function 𝑓 from the non-stuttering positions 𝑗𝑖.

𝑇 [𝑓2] = 𝑇2. By distinctness, there is 𝑡⋆ ∈ 𝑇 and a minimal 𝑖 > 0 with 𝑡⋆(𝑓1(𝑖)) ̸= 𝑡⋆(𝑓2(𝑖)),
hence 𝑓1(𝑖) ̸= 𝑓2(𝑖). W.l.o.g. 𝑓1(𝑖) > 𝑓2(𝑖). By minimality of 𝑖, 𝑓1(𝑖 − 1) = 𝑓2(𝑖 − 1) <
𝑓2(𝑖) ≤ 𝑓1(𝑖) − 1, and by definition of stuttering function, 𝑡(𝑓2(𝑖− 1)) = 𝑡(𝑓2(𝑖)) for all
𝑡 ∈ 𝑇 . As 𝑇 [𝑓2] is stutter-free, the suffix 𝑇 [𝑓2]𝑖−1 must already be constant. But then
also the suffix 𝑇 𝑓2(𝑖−1) of 𝑇 is constant, contradiction to 𝑡⋆(𝑓1(𝑖)) ̸= 𝑡⋆(𝑓2(𝑖)).

3.: We show that two teams are stutter-equivalent if and only if they are stutter-
equivalent to a common stutter-free team. This relation is transitive due to 2., and it is
clearly reflexive and symmetric. The direction “⇐” follows from 1. For “⇒”, suppose
𝑇1 ≡st 𝑇2, and 𝑇 ′ := 𝑇1[𝑓1] = 𝑇2[𝑓2] for stuttering functions 𝑓1, 𝑓2. By 1. and 2., there
exist 𝑔 and a stutter-free team 𝑇 ⋆ with 𝑇 ⋆ ≡st 𝑇

′ via 𝑇 [𝑔] = 𝑇 ⋆. Now, it is not hard to
check that 𝑓𝑖 ∘ 𝑔 is a stuttering function of 𝑇𝑖, 𝑖 ∈ {1, 2}. As a result, 𝑇1 ≡st 𝑇

⋆ ≡st 𝑇2.
4.: Follows from 2. and 3.

3.2 The stutter-invariance of X-free formulas
In the remainder of this section, we prove that the X-free formulas of LTL(∼) are indeed
stutter-invariant, where a formula 𝜙 ∈ LTL(∼) is stutter-invariant if, for all teams 𝑇, 𝑇 ′,
𝑇 ≡st 𝑇

′ implies 𝑇 � 𝜙 ⇔ 𝑇 ′ � 𝜙.
The proof requires a series of technical lemmas.

Lemma 3.7 (Splitting preserves stutter invariance). Let 𝑇, 𝑆 be teams. Then the following
are equivalent:

1. 𝑇 ≡st 𝑆.

2. For all 𝑇1, 𝑇2 such that 𝑇 = 𝑇1 ∪ 𝑇2, there are teams 𝑆1, 𝑆2 such that 𝑆 = 𝑆1 ∪ 𝑆2
and 𝑇𝑖 ≡st 𝑆𝑖 for 𝑖 ∈ {1, 2}.

Proof. 2. to 1. is easy: Obviously 𝑇 = 𝑇 ∪ ∅, but ∅ is only stutter-equivalent to itself, so
𝑇 ≡st 𝑆.

We proceed with 1. to 2. By assumption, there are stuttering functions 𝑓 of 𝑇 and 𝑔 of 𝑆
such that 𝑇 [𝑓 ] = 𝑈 = 𝑆[𝑔]. Let 𝑈𝑖 := 𝑇𝑖[𝑓 ] for 𝑖 ∈ {1, 2}, and let 𝑆𝑖 := {𝑡 ∈ 𝑆 | 𝑡[𝑔] ∈ 𝑈𝑖}.
Then 𝑆𝑖[𝑔] = 𝑈𝑖 = 𝑇𝑖[𝑓 ]. Clearly 𝑓 and 𝑔 are stuttering functions for 𝑇𝑖 and 𝑆𝑖 as well,
which yields 𝑇𝑖 ≡st 𝑆𝑖.

Obviously 𝑆1 ∪ 𝑆2 ⊆ 𝑆, so it remains to show that 𝑆 ⊆ 𝑆1 ∪ 𝑆2. Let 𝑡 ∈ 𝑆. Then
𝑡[𝑔] ∈ 𝑆[𝑔] = 𝑇 [𝑓 ], so there is 𝑡′ ∈ 𝑇 such that 𝑡′[𝑓 ] = 𝑡[𝑔]. As 𝑇 ⊆ 𝑇1 ∪ 𝑇2, there is
𝑖 ∈ {1, 2} such that 𝑡′ ∈ 𝑇𝑖, consequently 𝑡[𝑔] = 𝑡′[𝑓 ] ∈ 𝑈𝑖. From 𝑡 ∈ 𝑆 and 𝑡[𝑔] ∈ 𝑈𝑖 we
conclude 𝑡 ∈ 𝑆𝑖.
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Lemma 3.8 (Future preserves stutter invariance). Let 𝑇, 𝑆 be teams. Then the following
are equivalent:

1. 𝑇 ≡st 𝑆.

2. There are surjective, non-decreasing 𝜇, 𝜈 : N → N such that 𝑇𝜇(𝑛) ≡st 𝑆
𝜈(𝑛) for all

𝑛 ≥ 0.

In particular, 2. implies that every suffix of 𝑇 is stutter-equivalent to a suffix of 𝑆 and
vice versa, which will be necessary for stutter invariance of the temporal operators.

Proof. Again, 2. to 1. is easy, since necessarily 𝜇(0) = 𝜈(0) = 0. For 1. to 2., suppose
𝑇 [𝑓 ] = 𝑆[𝑔] for stuttering functions 𝑓, 𝑔. We construct the functions 𝜇, 𝜈 inductively such
that always 𝑇𝜇(𝑛) ≡st 𝑆

𝜈(𝑛). At the same time, we will ensure another invariant necessary
for showing the correctness of the construction, namely that for every 𝑛 there is 𝑘 such
that 𝑓(𝑘) ≤ 𝜇(𝑛) < 𝑓(𝑘 + 1) and 𝑔(𝑘) ≤ 𝜈(𝑛) < 𝑔(𝑘 + 1).

Intuitively, the functions 𝜇 and 𝜈 “run along” 𝑇 and 𝑆, with 𝜇 “waiting” on 𝑇 if 𝑆
stutters and vice versa (recall that 𝜇 and 𝜈 are only non-decreasing, not necessarily
increasing). Positions of the form 𝑓(𝑘) and 𝑔(𝑘), in the range of the stuttering functions,
are then crossed in lockstep, so to speak.

We give the formal definition. First, let 𝜇(0) = 𝜈(0) = 0. For the inductive step to
𝑛 + 1, we distinguish two cases. First, if either 𝜇(𝑛) + 1 /∈ ran 𝑓 or 𝜈(𝑛) + 1 /∈ ran 𝑔 or
both holds, let

𝜇(𝑛+ 1) :=
{︃
𝜇(𝑛) if 𝜇(𝑛) + 1 ∈ ran 𝑓
𝜇(𝑛) + 1 if 𝜇(𝑛) + 1 /∈ ran 𝑓

and analogously for 𝜈 and 𝑔. In other words, we can “advance” 𝜇 and/or 𝜈 as long
as neither crosses the range of 𝑓 or 𝑔. In either case, clearly 𝑇𝜇(𝑛) ≡st 𝑇

𝜇(𝑛+1) and
𝑆𝜈(𝑛) ≡st 𝑆

𝜈(𝑛+1), so 𝑇𝜇(𝑛+1) ≡st 𝑆
𝜈(𝑛+1) by induction hypothesis.

In the other case, both 𝜇(𝑛) + 1 ∈ ran 𝑓 and 𝜈(𝑛) + 1 ∈ ran 𝑔. Then we advance both 𝜇
and 𝜈 in lockstep: let 𝜇(𝑛+1) := 𝜇(𝑛)+1 and 𝜈(𝑛+1) := 𝜈(𝑛)+1. By induction hypothesis,
there is a common 𝑘 such that 𝜇(𝑛+1) = 𝜇(𝑛)+1 = 𝑓(𝑘) and 𝜈(𝑛+1) = 𝜈(𝑛)+1 = 𝑔(𝑘).
It remains to show that 𝑇 𝑓(𝑘) ≡st 𝑆

𝑔(𝑘).
For this, we define stuttering functions 𝑓𝑘 of 𝑇 and 𝑔𝑘 of 𝑆 such that 𝑇 𝑓(𝑘)[𝑓𝑘] = 𝑆𝑔(𝑘)[𝑔𝑘]

by 𝑓𝑘(𝑖) := 𝑓(𝑖+ 𝑘) − 𝑓(𝑘) and 𝑔𝑘(𝑖) := 𝑔(𝑖+ 𝑘) − 𝑔(𝑘). Clearly 𝑓𝑘(0) = 𝑔𝑘(0) = 0 and
both are strictly increasing.

We show that these are stuttering functions of 𝑇 𝑓(𝑘) and 𝑆𝑔(𝑘). For the sake of con-
tradiction, suppose 𝑓𝑘 is not a stuttering function of 𝑇 𝑓(𝑘) (the proof for 𝑔𝑘 and 𝑆𝑔(𝑘) is
analogous). Then there exist a position 0 < 𝑖 /∈ ran 𝑓𝑘 and a trace 𝑡 ∈ 𝑇 𝑓(𝑘) such that
𝑡(𝑖− 1) ̸= 𝑡(𝑖), or equivalently, 𝑡 ∈ 𝑇 such that 𝑡(𝑓(𝑘) + 𝑖− 1) ̸= 𝑡(𝑓(𝑘) + 𝑖).

However, this implies that 𝑓(𝑘) + 𝑖 ∈ ran 𝑓 as 𝑓 is a stuttering function of 𝑇 , so
𝑓(𝑘)+ 𝑖 = 𝑓(ℓ) for some ℓ. In particular, ℓ > 𝑘. But then 𝑓𝑘(ℓ−𝑘) = 𝑓(ℓ−𝑘+𝑘)−𝑓(𝑘) =
𝑓(ℓ) − 𝑓(𝑘) = 𝑖, so 𝑖 ∈ ran 𝑓𝑘, contradiction.

With 𝑓𝑘 and 𝑔𝑘 being stuttering functions, it remains to show 𝑇 𝑓(𝑘)[𝑓𝑘] = 𝑆𝑔(𝑘)[𝑔𝑘]. For
this we prove 𝑇 𝑓(𝑘)[𝑓𝑘] = 𝑇 [𝑓 ]𝑘 and 𝑆𝑔(𝑘)[𝑔𝑘] = 𝑆[𝑔]𝑘, since 𝑇 [𝑓 ] = 𝑆[𝑔] by assumption,
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which implies 𝑇 [𝑓 ]𝑘 = 𝑆[𝑔]𝑘. We show 𝑇 𝑓(𝑘)[𝑓𝑘] = 𝑇 [𝑓 ]𝑘 (the proof is again analogous for
𝑆). For this it suffices that for every trace 𝑡,

𝑡𝑓(𝑘)[𝑓𝑘] = (𝑡(𝑓𝑘(𝑖) + 𝑓(𝑘)))𝑖≥0 = (𝑡(𝑓(𝑖+ 𝑘)))𝑖≥0 = 𝑡[𝑓 ]𝑘.

Theorem 3.9. Every X-free LTL(∼)-formula is stutter-invariant.

Proof. Due to the equivalences G𝜓 ≡ ∼F∼𝜓, F𝜓 ≡ ⊤U𝜓 and 𝜓R𝜃 ≡ ∼(∼𝜓U∼𝜃), it
suffices to consider formulas 𝜙 ∈ LTL(∼,U). We have to show, for teams 𝑇 and 𝑆, that
𝑇 ≡st 𝑆 implies 𝑇 � 𝜙 ⇔ 𝑆 � 𝜙. Hence let 𝑇 and 𝑆 be stutter-equivalent teams via
𝑇 [𝑓 ] = 𝑆[𝑔]. The proof is now by induction on 𝜙.

• For all propositional formulas, e.g., 𝜙 = 𝑝,¬𝑝,⊤,⊥ for 𝑝 ∈ AP, this is clear: Since
𝑓(0) = 0 = 𝑔(0), the teams 𝑇 and 𝑆 agree on the first position of traces.

• For the Boolean connectives, ∧ and ∼, the induction step is clear.

• For the case 𝜙 = ¬𝜓, recall from p. 9 that ¬𝜓 ≡ ∀1∼𝜓, which can be reduced to
the connectives ⊥, ∼ and ∨.

• The ∨-case follows by induction hypothesis and Lemma 3.7.

• For the U-case, we show “⇒”, as “⇐” is symmetric. Suppose 𝑇 � 𝜓U𝜃, so there
is 𝑘 ≥ 0 such that 𝑇 𝑘 � 𝜃 and 𝑇 𝑗 � 𝜓 for all 𝑗 < 𝑘. We show that 𝑆 � 𝜓U𝜃. By
Lemma 3.8, there are surjective, non-decreasing 𝜇, 𝜈 such that 𝑇𝜇(𝑛) ≡st 𝑆

𝜈(𝑛) for
all 𝑛. In particular, 𝜇(𝑛) = 𝑘 for some 𝑛, so by induction hypothesis 𝑆𝜈(𝑛) � 𝜃. It
remains to show that 𝑆ℓ � 𝜓 for all ℓ < 𝜈(𝑛). Choose 𝑛 minimal, i.e., such that
𝑛 = 0 or 𝜇(𝑛 − 1) < 𝑘. If 𝑛 = 0, then 𝜈(𝑛) = 0 and we are done. Otherwise let
ℓ < 𝜈(𝑛) be arbitrary; then there exists 𝑚 < 𝑛 such that 𝜈(𝑚) = ℓ since 𝜈 is
surjective and non-decreasing. As 𝜇(𝑚) ≤ 𝜇(𝑛− 1) < 𝑘, by assumption 𝑇𝜇(𝑚) � 𝜓.
But then also 𝑆𝜈(𝑚) = 𝑆ℓ � 𝜓 by induction hypothesis.

4 From LTL(∼) to third-order arithmetic
In this section, we translate formulas of LTL(∼) into arithmetic formulas and by this
obtain the upper complexity bounds for Theorem 1.1 and 1.2. Before we start, let us
briefly introduce third-order arithmetic. For a full formal definition in the context of
higher order logic, we refer the reader to the literature [16]; here we need only a small
part of it. In this context, we write N for the standard model of arithmetic with the usual
interpretations for +, × and so on.

A (third-order) type is a tuple 𝜏 = (𝑛1, . . . , 𝑛𝑘), where 𝑘, 𝑛1, . . . , 𝑛𝑘 ≥ 1. For each type
𝜏 there is a set of (third-order) 𝜏 -variables 𝒱𝜏 := {a, b, c, . . .}. Syntactically, third-order
logic extends second-order logic as follows. We include all atomic formulas, connectives
and quantifiers from second-order logic. Moreover, if a ∈ 𝒱𝜏 is a third-order variable of
type 𝜏 = (𝑛1, . . . , 𝑛𝑘) and for each 𝑖 ∈ {1, . . . , 𝑘}, 𝐴𝑖 is a second-order relation symbol of
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arity 𝑛𝑖, then a(𝐴1, . . . , 𝐴𝑘) is an atomic formula.5 Finally, if 𝜙 is a formula and a is as
above, then ∃a𝜙 and ∀a𝜙 are formulas. A formula is closed if it has no free variables.

If 𝜏 = (𝑛1, . . . , 𝑛𝑘) is a type, then elements 𝒜 ∈ ℘(℘N𝑛1 × · · · × ℘N𝑛𝑘) are called
𝜏 -objects. For example, the subset relation ⊆ is a (1, 1)-object, and “⊆(𝐴,𝐵)” would be
an atomic formula if 𝐴 and 𝐵 are unary (set) variables. An example of a (2, 2)-object is
the relation “is the transitive closure of ”.

We extend the usual Tarski semantics to third-order logic, i.e., interpretations ℐ map 𝜏 -
variables to 𝜏 -objects. An interpretation ℐ satisfies a(𝐴1, . . . , 𝐴𝑘) if (ℐ(𝐴1), . . . , ℐ(𝐴𝑘)) ∈
ℐ(a). The quantifiers work as expected.

The set of all formulas of third-order arithmetic, that is, third-order formulas over the
vocabulary (+,×, 0, 1,=,≤), is written 𝛥3

0. Likewise, the set of formulas of second-order
arithmetic is 𝛥2

0. The subset of closed formulas that are true in N is denoted by a boldface
letter, i.e., Δ3

0 and Δ2
0, respectively.6

4.1 The uncountable cases
We reduce LTL(∼) to third-order arithmetic as follows. The propositions 𝑝1, 𝑝2, . . . are
identified with numbers 1, 2, . . .. The idea is now that a trace 𝑡 can be encoded as a binary
relation 𝑆 such that 𝑆(𝑗, 𝑘) is true iff 𝑝𝑘 ∈ 𝑡(𝑗), and vice versa. Finally, a team is encoded
as a unary third-order relation 𝒜 of binary relations 𝑆 such that 𝑆 ∈ 𝒜 iff 𝑆 represents
some trace 𝑡 ∈ 𝑇 . Now, we define a translation 𝜌a(𝜙) ∈ 𝛥3

0 of the LTL(∼)-formula 𝜙 with
one free third-order variable a of type (2). The translation is faithful in the sense that
a team 𝑇 satisfies 𝜙 if and only if (N,𝒜) � 𝜌a(𝜙), where 𝒜 is the third-order relation
encoded by 𝑇 .

In what follows, we restrict ourselves to the temporal operators X and U, since the
remaining ones are expressible as G𝜙 ≡ ∼F∼𝜙, F𝜙 ≡ ⊤U𝜙 and 𝜙R𝜓 ≡ ∼(∼𝜙U∼𝜓).
Moreover, we can assume that ¬ occurs only in front of atomic propositional formulas,
by an argument as in the proof of Theorem 3.9.

Let 𝑚 denote the term 1 + 1 + · · · + 1⏟  ⏞  
𝑚 times

for 𝑚 ≥ 1, or 0 if 𝑚 = 0, respectively.

The atomic formulas and Boolean connectives are straightforward:

𝜌a(𝑝𝑘) := ∀𝑆(a(𝑆) → 𝑆(0, 𝑘))
𝜌a(¬𝑝𝑘) := ∀𝑆(a(𝑆) → ¬𝑆(0, 𝑘))

𝜌a(𝜓 ∧ 𝜃) := 𝜌a(𝜓) ∧ 𝜌a(𝜃)
𝜌a(∼𝜓) := ¬𝜌a(𝜓)

For the splitting connective, we existentially quantify two subteams:

𝜌a(𝜓 ∨ 𝜃) := ∃b∃c
(︀
∀𝑆(a(𝑆) ↔ (b(𝑆) ∨ c(𝑆))) ∧ 𝜌b(𝜓) ∧ 𝜌c(𝜃)

)︀
5We leave out higher-order functions here, as they easily can be represented by a relation encoding their

graph, analogously to the second-order case.
6With the notation, we follow the convention for first-order arithmetic 𝛥1

0 and second-order arithmetic
𝛥2

0; an equivalent notation for 𝛥3
0 would be 𝛥2

𝜔 [23].
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For the temporal operators, we define an auxiliary formula a
𝑑−→ b with a free first-order

variable 𝑑 and two free third-order variables a and b, stating that b represents the team
𝑇 𝑑 when a represents the team 𝑇 :

a
𝑑−→ b := ∀𝑆

(︀
b(𝑆) ↔ ∃𝑆′(a(𝑆′) ∧ ∀𝑗∀𝑘(𝑆(𝑗, 𝑘) ↔ 𝑆′(𝑗 + 𝑑, 𝑘)))

)︀
Then we can translate X and U as follows:

𝜌a(X𝜓) := ∃b(a 1−→ b ∧ 𝜌b(𝜓))

𝜌a(𝜓U𝜃) := ∃𝑑 ∀𝑒 ∃b ∃c
(︀
a

𝑑−→ b ∧ a
𝑒−→ c ∧ 𝜌b(𝜃) ∧ (𝑒 < 𝑑 → 𝜌c(𝜓))

)︀
Lemma 4.1. Let 𝜙 ∈ LTL(∼) and let 𝑇 be a team. Let

𝒜𝑇 :=
{︁{︀

(𝑗, 𝑘) ∈ N2 | 𝑝𝑘 ∈ 𝑡(𝑗)
}︀

| 𝑡 ∈ 𝑇
}︁

.

Then 𝑇 � 𝜙 if and only if (N,𝒜𝑇 ) � 𝜌a(𝜙).

Proof. Straightforward induction on the syntax of 𝜙.

Theorem 4.2. Satisfiability and finite satisfiability of LTL(∼) are logspace-reducible to
Δ3

0.

Proof. We apply the previous lemma. Assume 𝜙 ∈ LTL(∼). Clearly, by the above lemma,
𝜙 is satisfiable if and only if ∃a 𝜌a(𝜙) holds in N.

The case where the team is finitely generated is more complicated. Suppose that
𝑇 = 𝑇 (𝒦), where 𝒦 = (𝑊,𝑅, 𝜂, 𝑟) is a finite structure. Essentially, the idea is to first
quantify the components of 𝒦 as second-order objects, and then to express in the logic
that we are looking precisely at the traces in 𝑇 (𝒦). For this, w.l.o.g. 𝑊 ⊆ N, 𝑅 ⊆ N × N
and 𝑟 = 0. The propositional assignment 𝜂 can equivalently be represented as a relation
𝜂 := {(𝑛, 𝑘) | 𝑝𝑘 ∈ 𝜂(𝑛)}. We can then talk about 𝒦 inside arithmetic. First, the set 𝑊
should be finite and non-empty. Also, 𝑅 should be total and a subset of 𝑊 ×𝑊 :

𝜓frame(𝑊,𝑅) := 𝑊 (0) ∧ ∃𝑛 ∀𝑚 (𝑊 (𝑚) → 𝑚 < 𝑛) ∧ ∀𝑚∃𝑛𝑅(𝑚,𝑛)
∧ ∀𝑚∀𝑛(𝑅(𝑚,𝑛) → (𝑊 (𝑚) ∧𝑊 (𝑛)))

A path 𝜋 through 𝒦 is then simply a function N → 𝑊 , hence a second-order object. We
assert that 𝜋 is an 𝑅-path starting at the root,

𝜓path(𝑊,𝑅, 𝜋) := 𝜋(0) = 0 ∧ ∀𝑗
(︀
𝑊 (𝜋(𝑗)) ∧𝑅(𝜋(𝑗), 𝜋(𝑗 + 1))

)︀
.

We model a trace 𝑡 as the relation 𝑆 := {(𝑗, 𝑘) | 𝑝𝑘 ∈ 𝑡𝑗}. We can state that a trace is in
𝑇 (𝒦) by saying that it is the trace of some path from 𝑤:

𝜓trace(𝑊,𝑅, 𝜂, 𝑆) := ∃𝜋
(︀
𝜓path(𝑊,𝑅, 𝜋) ∧ ∀𝑗∀𝑘(𝑆(𝑗, 𝑘) ↔ 𝜂(𝜋(𝑗), 𝑘))

)︀
The formula

𝜓generated(𝑊,𝑅, 𝜂, a) := ∀𝑆(a(𝑆) ↔ 𝜓trace(𝑊,𝑅, 𝜂, 𝑆))
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expresses that a contains precisely all traces in 𝑇 (𝒦). Now 𝜙 is satisfied by the team
𝑇 (𝒦), for some finite 𝒦, if and only if

N � ∃𝑊∃𝑅∃𝜂∃a
(︀
𝜓frame(𝑊,𝑅) ∧ 𝜓generated(𝑊,𝑅, 𝜂, a) ∧ 𝜌a(𝜙)

)︀
The formula constructed in the above reduction consists of the inductive translation

of 𝜙 as well as a constant part. The terms 𝑘 have length linear in 𝑘, but w.l.o.g. 𝑘 is
bounded by |𝜙|. For this reason, it is straightforward to show that 𝜌a(𝜙), and hence the
whole formula, is computable in logarithmic space.

In the remainder of this section, we will present similar reductions, which all are
logspace-computable as well.

Theorem 4.3. Model checking of LTL(∼) is logspace-reducible to Δ3
0.

Proof. We proceed as in the proof for satisfiability restricted to finitely generated teams,
but additionally have to claim on the level of formulas that the relations 𝑊 ,𝑅, and 𝜂, which
are quantified in the logic, are equal to the structure which is given as the input instance,
say, (𝑊 ′, 𝑅′, 𝜂′, 𝑟′, 𝜙). W.l.o.g. the input structure is of the form 𝑊 ′ = {0, 1, . . . ,𝑚− 1},
for some 𝑚 > 0, and 𝑟′ = 0.

Then the conjunction of the formulas

𝜓=𝑊 ′(𝑊 ) := ∀𝑛(𝑊 (𝑛) ↔ 𝑛 < 𝑚)
𝜓=𝑅′(𝑅) := ∀𝑛∀𝑚(𝑅(𝑛,𝑚) ↔

⋁︁
(𝑖,𝑗)∈𝑅

(𝑛 = 𝑖 ∧𝑚 = 𝑗))

𝜓=𝜂′(𝜂) := ∀𝑛∀𝑘(𝜂(𝑛, 𝑘) ↔
⋁︁
𝑖<𝑚

𝑝𝑗∈𝜂′(𝑖)

(𝑛 = 𝑖 ∧ 𝑘 = 𝑗)

asserts that (𝑊 ′, 𝑅′, 𝜂′) = (𝑊,𝑅, 𝜂). Hence in the reduction of the previous theorem, we
can replace the subformula 𝜓generated(𝑊,𝑅, 𝜂, a) by

𝜓generated(𝑊,𝑅, 𝜂, a) ∧ 𝜓=𝑊 ′(𝑊 ) ∧ 𝜓=𝑅′(𝑅) ∧ 𝜓=𝜂′(𝜂)

which proves the theorem.

4.2 The countable cases
Next, we proceed with the decision problems that are reducible to Δ2

0, i.e., second-order
arithmetic. Here, we can only manage countable teams, since the interpretations of
second-order variables are always countable objects. Given such a team 𝑇 , we can assume
that it is of the form {𝑡𝑖}𝑖∈𝐼 for some 𝐼 ⊆ N.

We encode 𝑇 as a pair (𝐼, 𝑃 ) ∈ ℘N × ℘N3 (indices and propositions) such that 𝐼 ⊆ N
is as in the subscript of {𝑡𝑖}𝑖∈𝐼 , and 𝑃 describes the traces in the sense that 𝑃 (𝑖, 𝑗, 𝑘) is
true iff 𝑝𝑘 ∈ 𝑡𝑖(𝑗).
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The temporal operators are implemented by “shifting” all entries in 𝑃 by an offset 𝑑.
This works similarly to the 𝛥3

0 case. The set 𝐼 is unaffected by this. The atomic formulas
and Boolean connectives are again straightforward:

𝜌𝐼,𝑃 (𝑝𝑘) := ∀𝑖(𝐼(𝑖) → 𝑃 (𝑖, 0, 𝑘))
𝜌𝐼,𝑃 (¬𝑝𝑘) := ∀𝑖(𝐼(𝑖) → ¬𝑃 (𝑖, 0, 𝑘))

𝜌𝐼,𝑃 (𝜓 ∧ 𝜃) := 𝜌𝐼,𝑃 (𝜓) ∧ 𝜌𝐼,𝑃 (𝜃)
𝜌𝐼,𝑃 (∼𝜓) := ¬𝜌𝐼,𝑃 (𝜓)

For the splitting connective, we need to divide 𝐼 only:

𝜌𝐼,𝑃 (𝜓 ∨ 𝜃) := ∃𝐼 ′∃𝐼 ′′
(︀
∀𝑖(𝐼(𝑖) ↔ (𝐼 ′(𝑖) ∨ 𝐼 ′′(𝑖))) ∧ 𝜌𝐼′,𝑃 (𝜓) ∧ 𝜌𝐼′′,𝑃 (𝜃)

)︀
For the temporal operators, we again define an auxiliary formula:

𝑃
𝑑−→ 𝑄 := ∀𝑖∀𝑗∀𝑘

(︀
𝑄(𝑖, 𝑗, 𝑘) ↔ 𝑃 (𝑖, 𝑗 + 𝑑, 𝑘)

)︀
𝜌𝐼,𝑃 (X𝜓) := ∃𝑃 ′(𝑃 1−→ 𝑃 ′ ∧ 𝜌𝐼,𝑃 ′(𝜓))

𝜌𝐼,𝑃 (𝜓U𝜃) := ∃𝑑 ∀𝑒 ∃𝑃 ′ ∃𝑃 ′′
(︀
𝑃

𝑑−→ 𝑃 ′ ∧ 𝑃
𝑒−→ 𝑃 ′′

∧ 𝜌𝐼,𝑃 ′(𝜃) ∧ (𝑒 < 𝑑 → 𝜌𝐼,𝑃 ′′(𝜓))
)︀

Lemma 4.4. Let 𝜙 be a formula and 𝑇 = {𝑡𝑖}𝑖∈𝐼 a team, where 𝐼 ⊆ N. Let 𝑃 :=
{(𝑖, 𝑗, 𝑘) | 𝑖 ∈ 𝐼 and 𝑝𝑘 ∈ 𝑡𝑖(𝑗)}. Then 𝑇 � 𝜙 if and only if (N, 𝐼, 𝑃 ) � 𝜌𝐼,𝑃 (𝜙) is true.

Proof. Easy induction on the syntax of 𝜙 analogous to Lemma 4.1.

Theorem 4.5. Countable satisfiability, 𝒞-restricted satisfiability and 𝒞-restricted finite
satisfiability of LTL(∼) are logspace-reducible to Δ2

0 if 𝒞 is the class of ultimately periodic
traces or the class of ultimately constant traces.

Note that we do not consider countable finite satisfiability, as it coincides with finite
satisfiability over ultimately periodic teams by Proposition 2.12.

Proof. A formula 𝜙 is satisfied in a countable team if and only if N � ∃𝐼∃𝑃 𝜌𝐼,𝑃 (𝜙). This
immediately follows from Lemma 4.4. Moreover, the trace number 𝑖 represented in 𝑃 is
ultimately periodic if (N, 𝑖, 𝑃 ) � 𝜓ulp(𝑖, 𝑃 ), where

𝜓ulp(𝑖, 𝑃 ) := ∃𝑐∃𝑑(𝑑 > 0 ∧ ∀𝑗∀𝑘 (𝑗 ≥ 𝑐 → (𝑃 (𝑖, 𝑗, 𝑘) ↔ 𝑃 (𝑖, 𝑗 + 𝑑, 𝑘))))).

It follows that

N � ∃𝐼 ∃𝑃
(︀
𝜌𝐼,𝑃 (𝜙) ∧ ∀𝑖(𝐼(𝑖) → 𝜓ulp(𝑖, 𝑃 ))

)︀
iff 𝜙 is satisfied by some team of ultimately periodic traces. For ultimately constant traces
we simply replace 𝑑 in 𝜓ulp by 1.
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We proceed with the finitely satisfiable cases. For this, we use the formulas 𝜓generated
and 𝜓frame from the proof of Theorem 4.2, but now with a pair (𝐼, 𝑃 ) as argument instead
of a higher-order relation. More precisely, the formula

𝜓generated,ulp(𝑊,𝑅, 𝜂, 𝐼, 𝑃 ) := ∀𝑆
(︁(︁
𝜓trace(𝑊,𝑅, 𝜂, 𝑆)

∧ ∃𝑐∃𝑑
(︀
𝑑 > 0 ∧ ∀𝑗∀𝑘(𝑗 ≥ 𝑐 → (𝑆(𝑗, 𝑘) ↔ 𝑆(𝑗 + 𝑑, 𝑘)))

)︀)︁
↔

(︁
∃𝑖∀𝑗 ∀𝑘(𝑆(𝑗, 𝑘) ↔ 𝑃 (𝑖, 𝑗, 𝑘))

)︁)︁
stores all ultimately periodic traces in (𝐼, 𝑃 ), with 𝜓trace as in Theorem 4.2. Then

N � ∃𝑊 ∃𝑅 ∃𝜂 ∃𝐼 ∃𝑃
(︁
𝜓frame(𝑊,𝑅) ∧ 𝜓generated,ulp(𝑊,𝑅, 𝜂, 𝐼, 𝑃 ) ∧ 𝜌𝐼,𝑃 (𝜙)

)︁
iff 𝜙 is satisfied in the ultimately periodic traces of a finitely generated team. Again, the
proof for the ultimately constant case is similar.

Theorem 4.6. Ultimately periodic and ultimately constant model checking of LTL(∼)
are reducible to Δ2

0.

Proof. Completely analogous to Theorem 4.3 and 4.5. The formula is

∃𝑊 ∃𝑅 ∃𝜂 ∃𝐼 ∃𝑃 ∃𝐼
(︀
𝜓frame(𝑊,𝑅) ∧ 𝜓generated,ulp(𝑊,𝑅, 𝜂, 𝐼, 𝑃 )

∧ 𝜓=𝑊 ′(𝑊 ) ∧ 𝜓=𝑅′(𝑅) ∧ 𝜓=𝜂′(𝜂) ∧ 𝜌𝐼,𝑃 (𝜙)
)︀
,

with the ultimately constant case again similar.

5 From third-order arithmetic to model checking
In this section, we make the next step to prove Theorem 1.1 and 1.2: we state the lower
bounds of the model checking problem. For this, a given 𝛥3

0-formula 𝜙 is translated
to an LTL(∼)-formula 𝜓 and a structure 𝒦 such that N � 𝜙 ⇔ 𝑇 (𝒦) � 𝜓. In the first
subsection, we begin with some preprocessing on 𝜙. Mainly, we reduce the maximal arity
of quantified relations, which simplifies the subsequent steps significantly.

Hence, let 𝜙 ∈ 𝛥3
0 be closed. First, we bring 𝜙 into prenex form by a routine

transformation. So w.l.o.g. 𝜙 = 𝑄1𝑋1 · · ·𝑄𝑛𝑋𝑛𝜃, where 𝑛 ≥ 1, 𝜃 is quantifier-free,
{𝑄1, . . . , 𝑄𝑛} ⊆ {∃, ∀}, and 𝑋1, . . . , 𝑋𝑛 are pairwise distinct (first-order, second-order,
or third-order) variables.

5.1 A bounded-arity normal form of 𝛥3
0

It is a well-known fact that there are first-order definable pairing functions, i.e., bijections
𝜋 : N × N → N. One example is the Cantor polynomial,

𝜋(𝑛,𝑚) := 1
2

(︀
(𝑛+𝑚)2 + 3𝑛+𝑚

)︀
.
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It can easily be generalized to arbitrary arities by

𝜋(ℓ)(𝑛1, . . . , 𝑛ℓ) := 𝜋(𝜋(ℓ−1)(𝑛1, . . . , 𝑛ℓ−1), 𝑛ℓ), 𝜋(1)(𝑛) := 𝑛.

That this allows to reduce quantified relation symbols to unary ones is a standard result
in second-order logic. Here, we prove it for formulas with third-order atoms.

It is routine to simulate all quantified function symbols by relation symbols, so w.l.o.g.
the only function symbols are +,× and the numerical constants. Moreover, we can assume
that the built-in symbols +,×, 0, 1, < do not occur inside higher-order atoms (otherwise
we replace them by quantified copies).

We naturally extend the definition of 𝜋 to relations 𝐴 ⊆ Nℓ by 𝜋(𝐴) := {𝜋(ℓ)(n) | n ∈
𝐴}. Likewise, for higher-order relations a ⊆ ℘Nℓ1 × · · · × ℘Nℓ𝑘 , let

𝜋(a) := {(𝜋(ℓ1)(𝐴1), . . . , 𝜋(ℓ𝑘)(𝐴𝑘)) | (𝐴1, . . . , 𝐴𝑘) ∈ a}.

Finally, for an interpretation ℐ, we write 𝜋(ℐ) for the interpretation that agrees with
ℐ on first-order variables and has 𝜋(ℐ)(𝑋) = 𝜋(ℐ(𝑋)) for each (second- or third-order)
variable 𝑋. In the interpretation 𝜋(ℐ), now all second-order variables are mapped to
unary relations, i.e., sets, and all third-order variables are mapped to relations of type
(1, . . . , 1).

Lemma 5.1. Let 𝑓ℓ be a fixed ℓ-ary function variable not occurring in 𝜙. Let 𝜙′ be
obtained from 𝜙 by replacing each atomic formula 𝐴(𝑡1, . . . , 𝑡ℓ), where 𝐴 is a second-order
variable, by 𝐴(𝑓ℓ(𝑡1, . . . , 𝑡ℓ)), and furthermore changing the arity of each second-order
variable to one, and changing the type of each third-order variable to (1, . . . , 1). Then
(N, ℐ) � 𝜙 ⇔ (N, 𝜋(ℐ)) � 𝜙′ for all interpretations ℐ in which ℐ(𝑓ℓ) = 𝜋(ℓ).

Proof. By induction on 𝜙. The only interesting cases are the following:

• If 𝜙 = 𝐴(𝑡1, . . . , 𝑡ℓ) is atomic, with𝐴 a second-order variable and 𝑡1, . . . , 𝑡ℓ first-order
terms, then the equivalence holds by definition, as

(N, ℐ) � 𝐴(𝑡1, . . . , 𝑡ℓ) ⇔ (ℐ(𝑡1), . . . , ℐ(𝑡ℓ)) ∈ ℐ(𝐴)
⇔ 𝜋(ℓ)(ℐ(𝑡1), . . . , ℐ(𝑡ℓ)) ∈ 𝜋(ℐ(𝐴))
⇔ ℐ(𝑓ℓ(𝑡1, . . . , 𝑡ℓ)) ∈ 𝜋(ℐ(𝐴)) = 𝜋(ℐ)(𝐴)
⇔ (N, 𝜋(ℐ)) � 𝐴(𝑓ℓ(𝑡1, . . . , 𝑡ℓ)).

• If 𝜙 is atomic third-order, then again by definition (ℐ(𝐴1), . . . , ℐ(𝐴𝑘)) ∈ ℐ(a) ⇔
(𝜋(ℐ(𝐴1)), . . . , 𝜋(ℐ(𝐴𝑘))) ∈ 𝜋(ℐ(a)) = 𝜋(ℐ)(a).

• If 𝜙 = ∃𝐴𝜓 and 𝐴 is ℓ-ary second-order, then this follows from the fact that
𝜋 : ℘(Nℓ) → ℘(N) as defined above is a bijection and by induction hypothesis.

• If 𝜙 = ∃a𝜓 and a is third-order, then the argument is similar.
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Next, we aim at eliminating the newly introduced function 𝑓ℓ. The graph of the pairing
function 𝜋(ℓ) is definable by a formula 𝜓ℓ with ℓ+ 1 arguments, viz.

𝜓ℓ(𝑡1, . . . , 𝑡ℓ, 𝑡) := ∃𝑥2 · · · ∃𝑥ℓ−1(𝜓2(𝑡1, 𝑡2, 𝑥2) ∧ · · · ∧ 𝜓2(𝑥ℓ−1, 𝑡ℓ, 𝑡))

where

𝜓2(𝑡1, 𝑡2, 𝑡) := (2 × 𝑡) = ((𝑡1 + 𝑡2) × (𝑡1 + 𝑡2)) + (3 × 𝑡1) + 𝑡2

defines the Cantor polynomial. By this, the formula 𝐴(𝑓ℓ(𝑡1, . . . , 𝑡ℓ)) can equivalently
be translated to ∃𝑥(𝜓(𝑡1, . . . , 𝑡ℓ, 𝑥) ∧ 𝐴(𝑥)). As a consequence, we can assume that all
second-order variables are unary.

Next, we reduce the arity of third-order variables. As they now all have type (1, . . . , 1)
this is straightforward; a suitable pairing function 𝛱 : (℘N)𝑘 → ℘N is

𝛱(𝐴1, . . . , 𝐴𝑘) :=
⋃︁
𝑖∈[𝑘]

{𝑘 · 𝑛+ (𝑖− 1) | 𝑛 ∈ 𝐴𝑖},

where (the graph of) 𝛱 is defined by

𝜃𝑘(𝐴1, . . . , 𝐴𝑘, 𝐵) := ∀𝑚
(︀
𝐵(𝑚) ↔ ∃𝑛

⋁︁
𝑖∈[𝑘]

(𝐴𝑖(𝑛) ∧𝑚 = 𝑘 · 𝑛+ 𝑖− 1))
)︀
.

On the level of formulas, we replace a(𝐴1, . . . , 𝐴𝑘) with ∃𝐵(𝜃𝑘(𝐴1, . . . , 𝐴𝑘, 𝐵) ∧ a(𝐵)),
and make all third-order variables unary, analogously to the second-order case.

Finally, we can assume that the only built-in non-logical symbol is <, since ≤, =, +, ×
and all numerical constants are easily definable from it as quantified relations. Observe
that this re-introduces binary and ternary relation symbols, but ultimately, we have a
constant bound of three on the arity. In fact, we could either reduce the arity of all
relations to one and keep + and × to express the pairing function, or eliminate + and ×
but keep relations of arity ℓ > 1. But at least in second-order logic it is impossible to
achieve both simultaneously, as the MSO(<)-theory of N is decidable, known as Büchi’s
theorem [3]. For third-order logic, to the best of the author’s knowledge, this is open.

Corollary 5.2. For every closed formula 𝜙 ∈ 𝛥3
0 there is a logspace-computable closed

formula 𝜓 ∈ 𝛥3
0 such that N � 𝜙 ⇔ N � 𝜓 and furthermore,

1. 𝜓 is in prenex form, i.e., of the form 𝑄1𝑋1 · · ·𝑄𝑛𝑋𝑛 𝜃, where 𝜃 is quantifier-free,
{𝑄1, . . . , 𝑄𝑛} ⊆ {∃,∀}, and 𝑋1, . . . , 𝑋𝑛 are pairwise distinct (first-order, second-
order, or third-order) variables.

2. All atomic formulas in 𝜓 are of the form
• a(𝐴), with a unary third-order,𝐴 unary second-order, and {a, 𝐴} ⊆ {𝑋1, . . . , 𝑋𝑛},
• 𝐴(𝑥1, . . . , 𝑥ℓ), with ℓ ∈ {1, 2, 3}, 𝐴 ℓ-ary second-order, 𝑥1, . . . , 𝑥ℓ first-order

and {𝐴, 𝑥1, . . . , 𝑥ℓ} ⊆ {𝑋1, . . . , 𝑋𝑛},
• or 𝑥1 < 𝑥2 with {𝑥1, 𝑥2} ⊆ {𝑋1, . . . , 𝑋𝑛}.
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∅ 0, end0 1

Figure 3: Gadget where every number is represented by a trace 𝑡. The length of the first
cycle between ∅ and 1 determines the value, assuming 𝑡(1)�{0, 1} ∈ 0*10𝜔.

5.2 Representing numbers and relations in traces and teams
Next, we draw the connection to LTL(∼). The crucial idea is that (ℓ-tuples of) numbers,
as well as sets thereof, can be encoded on traces. For this, we use propositions 𝛴 := {0, 1}.
Since a trace consists of countably infinitely many positions in a well-ordered fashion, it is
natural to represent a number 𝑛 by simply setting a bit on the 𝑛-th position. These are the
traces generated by the structure shown in Figure 3, aside from the single trace that never
reaches 1. In other words, the structure generates all traces of the form ∅{0}*{1}{0, end}𝜔
and ∅{0}𝜔. Note that our encoding does not count the initial state of a trace, because
this is fixed by the structure (and in our case labeled with ∅).

For relations, we simply set more bits to 1, i.e., a trace models a subset of N by setting
a bit on every corresponding position. These traces are generated by the structure in
Figure 4.

Formally, a trace 𝑡 now represents the number 𝑛 ∈ N if 𝑡1�𝛴 = {0}𝑛{1}{0}𝜔. The
special proposition end marks that 1 has been seen earlier on the trace. This will be
necessary later in the reduction. For sets 𝐴 ⊆ N, a trace now represents 𝐴 if it holds for
all 𝑛 ≥ 0 that 1 ∈ 𝑡(𝑛+ 1) iff 𝑛 ∈ 𝐴.

To account for ℓ-tuples of numbers, where ℓ ∈ {2, 3}, we introduce copies 𝛴𝑘 := {0𝑘, 1𝑘}
of 𝛴, where 𝑘 ∈ {1, 2, 3}. The propositions 01 and 11 are identified with 0 and 1. A trace
𝑡 now represents the ℓ-tuple (𝑛1, . . . , 𝑛ℓ) if 𝑡�𝛴𝑘 represents 𝑛𝑘 for all 𝑘 ∈ [ℓ]. A structure
generating all ℓ-tuples is obtained from taking the ℓ-fold product of that in Figure 3 and
labeling the propositions accordingly, see Figure 5 for the case of ℓ = 2.

To encode more complex objects, we require teams. For binary or ternary second-order
relations 𝐴 ⊆ Nℓ, a team 𝑇 represents 𝐴 if, for all tuples n = (𝑛1, . . . , 𝑛ℓ) ∈ Nℓ, we have
n ∈ 𝐴 iff n is represented by some trace 𝑡 ∈ 𝑇 . Finally, a team 𝑇 represents a third-order
relation a ⊆ ℘N if, for all 𝐴 ⊆ N, we have 𝐴 ∈ a iff 𝐴 is represented by some trace 𝑡 ∈ 𝑇 .

Note that non-unary third-order relations or those with non-unary members could
not feasibly be represented as set of traces, so the lengthy preprocessing of the previous
subsection is crucial.

Let us stress that “trace-like” objects comprise numbers 𝑛 ∈ N, tuples n ∈ Nℓ, and
sets 𝐴 ⊆ N, while “team-like” objects comprise sets of tuples 𝐴 ⊆ Nℓ and higher-order
sets a ⊆ ℘N. Also, note that all possible logical atoms as in Corollary 5.2 boil down to
comparing trace-like objects to each other, as well as checking membership of a trace-like
object in a team-like object. This crucially relies on the established normal form.

In the Figures 3 to 5, we saw structures that generate the corresponding traces for
the encoding. To potentially represent one number, tuple or relation for each variable
𝑋1, . . . , 𝑋𝑛, and to tell these apart, we meld together several instances 𝒦𝑋𝑖 of these
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∅

0

1

Figure 4: Gadget where every unary relation is represented by a trace. Visiting 1 after 𝑛
steps means that the relation contains the number 𝑛− 1.

∅

01, 02, end

01, 02 01, 12

11, 12

11, 02

01, 02 11, 02

01, 02 01, 12

Figure 5: Gadget where every 2-tuple is represented by a trace 𝑡 that is a “superposition”
of two words of the form ∅{0}*{1}{0}𝜔, that is, the projections 𝑡�𝛴1 and 𝑡�𝛴2
are such words.
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structures, 𝑖 ∈ [𝑛], depending on what kind of variable each 𝑋𝑖 is.

• If 𝑋𝑖 is first-order, and thus should represent a number, let 𝒦𝑋𝑖 be the structure
shown in Figure 3. We will quantify a single trace from it.

• If 𝑋𝑖 is either second-order or third-order, but unary, let 𝒦𝑋𝑖 be the structure shown
in Figure 4. In the former case, we are interested in single traces, and in the latter
case in sets of traces.

• Finally, if 𝑋𝑖 is second-order and of arity ℓ > 1, then 𝒦𝑋𝑖 is constructed by taking
the ℓ-ary product of Figure 3 as demonstrated in Figure 5.

Given a formula 𝜙 with variables 𝑋1, . . . , 𝑋𝑛, we now in general define the structure
𝒦𝜙 to be the disjoint union of the 𝒦𝑋1 , . . . ,𝒦𝑋𝑛 , except that the roots of the 𝒦𝑋𝑖 are
identified in 𝒦; call this world 𝑟. Moreover, all non-root worlds from the respective 𝒦𝑋𝑖

are marked with the proposition 𝑋𝑖 (not shown in the figures), so as to cleanly separate
the values represented for each 𝑋𝑖 in 𝒦𝑋𝑖 . With the proposition 𝑋𝑖 (or the formula F𝑋𝑖,
if we are still in the root) we can determine whether a trace runs through the respective
𝒦𝑋𝑖 .

A team 𝑇 ⊆ 𝑇 (𝒦𝜙) now induces an interpretation ℐ𝑇 of the variables 𝑋𝑖 as described
above, depending on which traces of the respective 𝒦𝑋𝑖 are in 𝑇 . Recall that the notation
𝑇𝜙 refers to the subteam {𝑡 ∈ 𝑇 | {𝑡} � 𝜙} of 𝑇 .

• If 𝑋𝑖 is first-order, 𝑇F𝑋𝑖
= {𝑡} for some trace 𝑡, and 𝑡 � Fend, then ℐ𝑇 (𝑋𝑖) is the

unique number 𝑛 such that 𝑡1�𝛴 = {0}𝑛{1}{0}𝜔.

• If 𝑋𝑖 is second-order and unary, and 𝑇F𝑋𝑖
= {𝑡} for some trace 𝑡, then ℐ𝑇 (𝑋𝑖) :=

{𝑛 ∈ N | 1 ∈ 𝑡(𝑛+ 1)}.

• If 𝑋𝑖 is second-order and binary or ternary, then ℐ𝑇 (𝑋𝑖) := {(𝑛1, . . . , 𝑛ℓ) ∈ Nℓ |
∃𝑡 ∈ 𝑇F𝑋𝑖

: ∀𝑗 ∈ [ℓ] : 𝑡1�𝛴𝑗 = {0}𝑛𝑗 {1}{0}𝜔}.

• If 𝑋𝑖 is third-order, then ℐ𝑇 (𝑋𝑖) := {𝐴 ⊆ N | ∃𝑡 ∈ 𝑇F𝑋𝑖
: 𝑡 represents 𝐴}.

Next, we explain how the team is manipulated in order to implement arithmetical
quantifiers. Suppose we start with the team 𝑇 = 𝑇 (𝒦𝜙) and the outermost quantifier is
∃𝑋1. The ideas is then to non-deterministically shrink the subteam 𝑇𝑋1 , where 𝑋1 is one
of the above cases, to a suitable subteam 𝑈 ⊆ 𝑇𝑋1 representing a value for 𝑋1. If 𝑋1 is
for example first-order, then 𝑈 should be a singleton. Then we proceed with the team
(𝑇 ∖ 𝑇𝑋1) ∪𝑈 , and (existentially or universally) quantify an interpretation for 𝑋2, and so
on.

To confine the manipulation to a certain subteam 𝑇𝑋𝑖 , we use “subteam quantifiers”
∃⊆𝜙 and ∃1

𝜙 similar to ∃⊆ and ∃1 defined on p. 9. Let 𝜙 ∈ LTL and 𝜓 ∈ LTL(∼), and let

∃⊆𝜙𝜓 := ¬¬𝜙 ∨ 𝜓

∃1
𝜙𝜓 := ∃⊆𝜙 ((∃1𝜙) ∧ ∼∃⊆𝜙 ((∃1𝜙) ∧ ∼𝜓)).
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Then ∃⊆𝜙 intuitively says that we can shrink the subteam 𝑇𝜙 without touching the subteam
𝑇¬𝜙. Likewise, ∃1

𝜙 says that we can shrink 𝑇𝜙 to a singleton. The next lemma states this
formally. As before, the duals ∀⊆𝜙𝜓 := ∼∃⊆𝜙∼𝜓 and ∀1

𝜙𝜓 := ∼∃1
𝜙∼𝜓 work as expected.

Lemma 5.3. A team 𝑇 satisfies ∃⊆𝜙𝜓 if and only if there is a subteam 𝑆 ⊆ 𝑇𝜙 such that
(𝑇 ∖ 𝑇𝜙) ∪ 𝑆 � 𝜓. A team 𝑇 satisfies ∃1

𝜙𝜓 if and only if there is a trace 𝑡 ∈ 𝑇𝜙 such that
(𝑇 ∖ 𝑇𝜙) ∪ {𝑡} � 𝜓.

Proof. This was proved for so-called model team logic in [17, Proposition 5.3]. For LTL(∼),
the proof is identical.

5.3 Translating arithmetic formulas
In this section, we translate 𝛥3

0-formulas into team logic. First, let us repeat the definitions
of the various non-classical connectives from team semantics (pp. 8–9), as we need those
in the remainder of the paper.

Boolean connectives, including those definable from ∧ and ∼:

𝑇 � 𝜙 ∧ 𝜓 ⇔ 𝑇 � 𝜙 and 𝑇 � 𝜓

𝑇 � 𝜙6 𝜓 ⇔ 𝑇 � 𝜙 or 𝑇 � 𝜓

𝑇 � 𝜙 _ 𝜓 ⇔ 𝑇 � 𝜙 implies 𝑇 � 𝜓

𝑇 � 𝜙 ] 𝜓 ⇔ 𝑇 � 𝜙 iff 𝑇 � 𝜓

Subteam connectives, including those definable from ∧,∨,∼,⊤,⊥:

𝑇 � ¬𝜙 ⇔ ∀𝑡 ∈ 𝑇 : {𝑡} 2 𝜙
𝑇 � 𝜙 ∨ 𝜓 ⇔ 𝑇 = 𝑆 ∪ 𝑈 such that 𝑆 � 𝜙,𝑈 � 𝜓

𝑇 � 𝜙 →˓ 𝜓 ⇔ 𝑇𝜙 � 𝜓, where 𝑇𝜙 := {𝑡 ∈ 𝑇 | {𝑡} � 𝜙}
𝑇 � ∃1𝜙 ⇔ ∃𝑡 ∈ 𝑇 : {𝑡} � 𝜙

𝑇 � ∀1𝜙 ⇔ ∀𝑡 ∈ 𝑇 : {𝑡} � 𝜙

𝑇 � ∃⊆𝜙 ⇔ ∃𝑇 ′ ⊆ 𝑇 : 𝑇 ′ � 𝜙
𝑇 � ∀⊆𝜙 ⇔ ∀𝑇 ′ ⊆ 𝑇 : 𝑇 ′ � 𝜙
𝑇 � ∃1

𝜙𝜓 ⇔ ∃𝑡 ∈ 𝑇𝜙 : (𝑇 ∖ 𝑇𝜙) ∪ {𝑡} � 𝜓

𝑇 � ∀1
𝜙𝜓 ⇔ ∀𝑡 ∈ 𝑇𝜙 : (𝑇 ∖ 𝑇𝜙) ∪ {𝑡} � 𝜓

𝑇 � ∃⊆𝜙𝜓 ⇔ ∃𝑇 ′ ⊆ 𝑇𝜙 : (𝑇 ∖ 𝑇𝜙) ∪ 𝑇 ′ � 𝜓

𝑇 � ∀⊆𝜙𝜓 ⇔ ∀𝑇 ′ ⊆ 𝑇𝜙 : (𝑇 ∖ 𝑇𝜙) ∪ 𝑇 ′ � 𝜓

We are now in the position to state the inductive translation 𝜌(𝜙) ∈ LTL(∼), where
𝜙 ∈ 𝛥3

0. Formally, 𝜌 should satisfy that 𝑇 � 𝜌(𝜙) iff ℐ𝑇 � 𝜙.
We begin with the atomic formula 𝑥1 < 𝑥2, for which we have to compare two

represented numbers 𝑛1 and 𝑛2, respectively.
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It is straightforward to see that the formula

𝜌(𝑥1 < 𝑥2) := F((𝑥1 →˓ end) ∧ (𝑥2 →˓ 1))

implements 𝑥1 < 𝑥2, as it states that the digit 1 on the trace of 𝑛2 appears at some
position where it already appeared beforehand (indicated by end) on the trace of 𝑛1. This
clearly hinges on the fact that we have synchronous semantics.

Let us proceed with the atomic formula 𝐴(𝑥1, . . . , 𝑥ℓ), where 𝐴 is second-order. Assume
that 𝑇𝑥𝑖 represents a number 𝑛𝑖 for each 𝑖 ∈ [ℓ], and that 𝑇𝐴 represents an ℓ-ary relation,
ℓ ∈ {1, 2, 3}. Then (𝑛1, . . . , 𝑛ℓ) ∈ ℐ(𝐴) iff 𝑇 satisfies

𝜌(𝐴(𝑥1, . . . , 𝑥ℓ)) := ∃1
F𝐴

⋀︁
𝑗∈[ℓ]

F((𝑥𝑗 →˓ 1) ∧ (𝐴 →˓ 1𝑗)).

Intuitively, with ∃1
F𝐴 we select a trace 𝑡 in 𝒦𝐴 (in case ℓ = 1 this has no effect, as unary

relations are already encoded by single traces), and in the rest of the formula then check
for each 𝑗 ∈ [ℓ] that the 1 on the trace of 𝑥𝑗 appears on 𝑡�𝛴𝑗 at the same position.

Finally, we consider the higher-order atom a(𝐴). Here, 𝐴 must be a unary relation
symbol, so suppose 𝑇𝐴 is a single trace that represents a set of numbers. Then a(𝐴) is
translated to

𝜌(a(𝐴)) := ∃1
FaG((a →˓ 1) ] (𝐴 →˓ 1)),

which selects a witness trace from 𝑇a (representing a member of a) and compares it to
the single trace in 𝑇𝐴. To compare two unary relations, we synchronously traverse the
traces with G and check that the ones’ positions coincide.

After the atomic formulas, we now proceed with the remaining connectives. The Boolean
operators are straightforward: 𝜌(𝜓1 ∧ 𝜓2) := 𝜌(𝜓1) ∧ 𝜌(𝜓2) and 𝜌(¬𝜓) := ∼𝜌(𝜓).

Finally, the quantifiers of arithmetic will be simulated by ∃1 and ∃⊆, where we have
additional subformulas that ensure that the resulting subteam still represents a number
or relation, respectively. We can assume that all quantifiers are existential since ∀𝑋𝜓 ≡
¬∃𝑋¬𝜓.

For first-order 𝑥, let

𝜌(∃𝑥𝜓) := ∃1
F𝑥((F𝑥 →˓ Fend) ∧ 𝜌(𝜓))

where F𝑥 →˓ Fend excludes the trace that gets stuck in a loop of zeroes (cf. Figure 3).
For unary second-order 𝑋, we simply map

𝜌(∃𝑋 𝜓) := ∃1
F𝑋𝜌(𝜓)

since any trace in 𝑇F𝑥 represents a unary relation and vice versa (cf. Figure 4). For arity
ℓ > 1, recall that a relation is represented as a set of ℓ-tuples, each sitting on its own
trace (cf. Figure 5). Consequently,

𝜌(∃𝑋 𝜓) := ∃⊆F𝑋
(︀
(F𝑋 →˓ ¬¬Fend) ∧ 𝜌(𝜓)

)︀
.
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Here, with ¬¬Fend we say that no trace indefinitely avoids end, in other words, all traces
represent some tuple.

Third-order relations are again easy,

𝜌(∃a𝜓) := ∃⊆Fa𝜌(𝜓),

since again any subteam of 𝑇a represents a valid subset of ℘N and vice versa (cf. Figure 4).
In the next lemma, let 𝒦𝜙 again be the full structure defined as on p. 25.

Lemma 5.4. N � 𝜙 iff 𝑇 (𝒦𝜙) � 𝜌(𝜙).
Proof. By straightforward induction.

Note that all constructed formulas are expressible in LTL1(∼,F), i.e., with only the
temporal operator F and without nesting of temporal operators. In particular, observe
that constructs such as ∃⊆F𝑋𝜓 and F𝑋 →˓ 𝜓 do not add to the nesting depth of 𝜓.

Since all the above formulas only involve standard recursion, they are easily shown
logspace-computable. Likewise, the structure 𝒦𝜙 is logspace-computable as it only consists
of 𝑛 instances of constant substructures, where 𝑛 is the quantifier rank of 𝜙, with added
propositions. This concludes the main theorem of this section.
Theorem 5.5. Δ3

0 is reducible to model checking of LTL1(∼,F).
In fact, this yields also lower bounds for some countable cases. For this, observe that

all gadgets except Figure 4 also work if we consider only ultimately periodic (or even
ultimately constant) traces, that is, if every trace carries only finite information. As
a consequence, if we forbid third-order variables and also represent unary relations as
(infinite) sets of traces representing 1-tuples, then the reduction goes through and utilizes
only ultimately constant traces. This leads to the following result:
Theorem 5.6. Δ2

0 is reducible to ultimately periodic model checking and ultimately
constant model checking of LTL1(∼,F).

In the next section, we reduce model checking to satisfiability, and thus close the circle
of logspace-reductions between these two problems and Δ3

0 (resp. Δ2
0).

6 From Model Checking to Satisfiability
A well-known feature of classical LTL is that its model checking problem can be reduced
to satisfiability (cf. Sistla and Clarke [27]). The idea is, given a structure 𝒦, to encode it
in a “characteristic formula” 𝜒𝒦 such that 𝑡 � 𝜒𝒦 if and only if 𝑡 is a trace in 𝒦. As a
consequence, 𝜒𝒦 → 𝜙 is valid (that is, its negation unsatisfiable) if and only if 𝑇 (𝒦) � 𝜙.

We elaborate a bit, following Schnoebelen [25]. Let 𝒦 = (𝑊,𝑅, 𝜂, 𝑟) be a structure over
a finite set 𝛷 ⊆ AP of propositions. W.l.o.g. there are distinct propositions 𝑝𝑤 for every
𝑤 ∈ 𝑊 such that 𝑝𝑤 ∈ 𝜂(𝑤) and 𝑝𝑤 /∈ 𝜂(𝑤′) for 𝑤′ ̸= 𝑤. Then the formula 𝜒𝒦 is:

𝜒𝒦 := 𝑝𝑟 ∧ G
⋁︁
𝑤∈𝑊

(︁
𝑝𝑤 ∧

⋀︁
𝑤′∈𝑊
𝑤′ ̸=𝑤

¬𝑝𝑤′ ∧
⋀︁

𝑞∈𝜂(𝑤)
𝑞 ∧

⋀︁
𝑞∈𝛷

𝑞/∈𝜂(𝑤)

¬𝑞 ∧
⋁︁

(𝑤,𝑤′)∈𝑅
X𝑝𝑤′

)︁
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Every trace in 𝒦 satisfies 𝜒𝒦, and conversely, a trace that satisfies 𝜒𝒦 is in 𝒦.
An analogous construction for LTL(∼) would be a formula 𝜒 such that 𝑇 � 𝜒 if and

only if 𝑇 = 𝑇 (𝒦). However, in team-semantics, things become complicated: Any classical
formula, such as 𝜒𝒦, defines a downward closed class of traces, and as such it defines
the subteams of 𝑇 (𝒦). This is sufficient if 𝜙 itself is downward closed, and indeed, then
𝑇 (𝒦) � 𝜙 iff ¬𝜒𝒦∨𝜙 is valid, which reduces the model checking problem in team semantics
to the validity problem.

If now 𝜙 itself is not downward closed, then we need some non-classical formula that
requires the actual existence of traces of 𝒦 in the team (which is again not a downward
closed property).

A formula 𝜙 defines a team 𝑇 (up to 𝛷) if it defines the class of teams 𝑇 ′ such that
𝑇 ′�𝛷 = 𝑇 . Thus we need to define the team 𝑇 (𝒦) up to 𝛷, where 𝛷 is the set of all
propositions that occur in 𝜙.

Our approach works in two steps. First we give a formula 𝜉 that defines the full team
T = (℘𝛷)𝜔, and then we use the formula 𝜒𝒦 to “weed out” traces not in 𝑇 (𝒦). For this,
we use the fact that T𝜒𝒦 = 𝑇 (𝒦); recall that 𝑇𝜓 = {𝑡 ∈ 𝑇 | {𝑡} � 𝜓}. Also recall that
𝑇 � 𝜙1 →˓ 𝜙2 iff 𝑇𝜙1 � 𝜙2. Then we obtain

𝑇 (𝒦) � 𝜙 ⇔ T � 𝜒𝒦 →˓ 𝜙, and (⋆)
T � 𝜓 ⇔ 𝜉 ∧ 𝜓 is satisfiable (⇔ 𝜉 _ 𝜓 is valid), (⋆⋆)

for all formulas 𝜙,𝜓 that contain only propositions from 𝛷. Combining (⋆) and (⋆⋆) yields
a reduction from model checking to satisfiability.

It remains to construct the formula 𝜉 that defines T. We split this task into two steps,
which each can be implemented in LTL(∼):

1. Force all traces of the form ∅*{𝑝}∅𝜔 to appear in the team, where 𝑝 ∈ 𝛷.

2. For every subset 𝑇 of traces as in 1., force that the trace defined by 𝑡(𝑖) := ⋃︀
𝑡′∈𝑇 𝑡

′(𝑖)
exists as well. As every trace can be expressed this way, this yields T.7

To simplify the constructions, we make some refinements to this idea. First, we introduce
an auxiliary proposition # /∈ 𝛷 to mark the positions after {𝑝}. We also define the
augmented team

T# := T ∪ {∅𝑛{𝑝}{#}𝜔 | 𝑛 ≥ 0, 𝑝 ∈ 𝛷}.

Defining this team clearly suffices, as T#�𝛷 = T.
In what follows, we refer to traces of the form ∅*{𝑝}{#}𝜔 as prototraces, as we build

all other traces from these. Prototraces are easily recognized in the team as they satisfy
the LTL-formula F#, while “regular” traces do not.

7Readers familiar with HyperLTL will notice that this is why LTL(∼) can enforce uncountable teams and
HyperLTL cannot. Roughly speaking, HyperLTL quantifies traces and binds them to trace variables,
but cannot quantify and bind infinitely many traces at once.
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The following LTL-formula defines prototraces, as it states that exactly one proposition
𝑝 appears, that # must appear directly afterwards, and that from that position on, #∧¬𝑝
holds forever.

𝜉⊆proto := ¬¬
⋁︁
𝑝∈𝛷

(︁
F𝑝 ∧

⋀︁
𝑝′∈𝛷∖{𝑝}

G¬𝑝′ ∧ G(𝑝 → X#) ∧ G(# → ¬𝑝 ∧ G#)
)︁

Conversely, the non-classical formula

𝜉⊇proto :=
⋀︁
𝑝∈𝛷

G∃1𝑝

states for every 𝑖 ≥ 0 and 𝑝 ∈ 𝛷 that 𝑝 appears on some trace at position 𝑖. Consequently,
𝜉proto := 𝜉⊆proto ∧ 𝜉⊇proto means that the team contains precisely all prototraces. Now we
can quantify over sets of prototraces and state that their position-wise union appears as
a trace, by saying that 𝑝 is false iff it is false in all prototraces:

𝜉 := (F# →˓ 𝜉proto) ∧ ∀⊆F#∃1
¬F#

⋀︁
𝑝∈𝛷

G
(︀
(¬F# →˓ ¬𝑝) ] (F# →˓ ¬𝑝)

)︀
Altogether, 𝜉 is the desired formula that defines T#.

A short inspection of the involved formulas reveals that they are all expressible in
LTL2(∼,F,X). For this, again note that →˓,∀1,∃1 and so on do not increase temporal
nesting, and that G is the same as ∼F∼.

Theorem 6.1. Let 𝑘 ≥ 2. Then the model checking problem of LTL𝑘(∼,F,X) is reducible
to its satisfiability problem.

In fact, it is possible to eliminate X from the reduction (assuming that 𝜙 itself is an
X-free formula). This is shown in the next subsection.

6.1 A hard stutter-invariant fragment
Let again a formula 𝜙 and an input structure 𝒦 = (𝑊,𝑅, 𝜂, 𝑟) be given, but now with
𝜙 ∈ LTL1(∼,F). In particular, 𝜙 is now stutter-invariant. By Theorem 5.5, this fragment
of model checking is already as hard as the full problem.

First, we restate the first part of the reduction, that is, from model checking to truth
in T#, in the stutter-invariant fragment:

Lemma 6.2. The model checking problem of LTL1(∼,F) is reducible to truth of LTL2(∼,F)-
formulas in T#.

This requires eliminating the X-operator in the formula 𝜒𝒦 (cf. p. 28). The idea is to
simulate it by using “helper” prototraces. The following table illustrates this.

𝑡 · · · ∅ {𝑥} {#} {#} · · ·
𝑡′ · · · ∅ ∅ {𝑦} {#} · · ·
𝑡′′ · · · 𝜂(𝑤) 𝜂(𝑤′) 𝜂(𝑤′′) 𝜂(𝑤′′′) · · ·
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We arbitrarily pick two distinct propositions 𝑥, 𝑦 ∈ 𝛷 (w.l.o.g. |𝛷| ≥ 2). Call a trace 𝑡
active at position 𝑖 if 𝑡(𝑖) ∩ 𝛷 ̸= ∅. We quantify two prototraces 𝑡, 𝑡′ such that 𝑡 is active
with 𝑥 first, and 𝑡′ is active with 𝑦 directly after. We say this by stating that 𝑥 and 𝑦
do not occur together, and also # may not occur simultaneously with 𝑥 or ∅, so 𝑦 must
appear immediately when 𝑥 is gone.

𝜁1 := F# →˓ G
(︀
∼(𝑥 ∨ 𝑦) ∧ ∼(# ∨ 𝑥) ∧ ∼(# ∨ (¬𝑥 ∧ ¬𝑦 ∧ ¬#)

)︀
This enables us to access consecutive positions in 𝑡′′ by querying whether a prototrace is
active with 𝑥 or 𝑦, respectively. Hence we can state that 𝑥 and 𝑦 appear together with
propositions 𝑝𝑤 and 𝑝𝑤′ , respectively, such that 𝑤,𝑤′ are successors:

𝜁2 :=
⋁︁

(𝑤,𝑤′)∈𝑅
G((F# →˓ ¬𝑥) 6 (¬F# →˓ 𝑝𝑤)) ∧ G((F# →˓ ¬𝑦) 6 (¬F# →˓ 𝑝𝑤′))

Let 𝜁 := ∀1
¬F# ∀1

(F#∧F𝑥) ∀1
(F#∧F𝑦) (𝜁1 _ 𝜁2). Then 𝜁 says that every non-prototrace

contains a sequence 𝑝𝑤1 , 𝑝𝑤2 , . . . of variables only if 𝑤1, 𝑤2, . . . is a path in 𝒦. The formula
𝜒′𝒦 that replaces 𝜒𝒦 can now be chosen as

𝜒′𝒦 :=
(︂

(¬F#) →˓ ¬¬
(︁
𝑝𝑟 ∧ G

⋁︁
𝑤∈𝑊

(𝑝𝑤 ∧
⋀︁

𝑤′∈𝑊
𝑤′ ̸=𝑤

¬𝑝𝑤′ ∧
⋀︁

𝑞∈𝜂(𝑤)
𝑞 ∧

⋀︁
𝑞 /∈𝜂(𝑤)

¬𝑞)
)︁)︂

∧ 𝜁

As before, we want to check 𝜙 only in 𝑇 (𝒦), so we split the full team into 𝑇 (𝒦) and
(℘𝛷)𝜔 ∖ 𝑇 (𝒦). However, in contrast to before we cannot simply write 𝜒𝒦 →˓ 𝜙 anymore.
The reason is that both sides of the splitting now need access to prototraces, but due to
the definition of →˓ (p. 9), the subteam T#

𝜒𝒦 would not contain any.
To solve this, let 𝜒′′𝒦 be a copy of the formula 𝜒′𝒦, but with the propositions 𝑥 and 𝑦

replaced by different distinct propositions 𝑥′ and 𝑦′, which are w.l.o.g. in 𝛷. One subteam
of T# now contains all traces in 𝑇 (𝒦), witnessed by 𝜒′𝒦 using prototraces for 𝑥 and 𝑦;
and the remaining subteam contains all traces in (℘𝛷)𝜔 ∖ 𝑇 (𝒦), witnessed by prototraces
for 𝑥′ and 𝑦′:

𝑇 (𝒦) � 𝜙 ⇔ T# �
(︁
(F# →˓ G(¬𝑥′ ∧ ¬𝑦′)) ∧ 𝜒′𝒦 ∧ (¬F# →˓ 𝜙)

)︁
∨

(︁
(F# →˓ G(¬𝑥 ∧ ¬𝑦)) ∧ ∼𝜒′′𝒦

)︁
The above formula is a reduction from model checking to truth in T# for LTL2(∼,F)-
formulas.

Next, we proceed with the second step by mapping the set of formulas true in T# to
the satisfiability problem.

Lemma 6.3. Truth of LTL2(∼,F)-formulas in T# is reducible to the satisfiability problem
of LTL2(∼,F).
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This boils down to finding an LTL2(∼,F)-formula that defines T# (up to stutter-
equivalence). We start with the formula that defines prototraces. Without X, we can
only define traces of the form ∅*{𝑝}+{#}𝜔, which are stutter-equivalent to prototraces.
For this, the formula 𝜉 (cf. p. 30) is changed to 𝜉′ where the subformula G(𝑝 → X#) is
replaced with G(𝑝 → (F# ∧ G(𝑝 ∨ #))).

A problem arises when considering teams: It may still be that the whole team is not
stutter-equivalent to a team of prototraces, although every trace is, as the following
example illustrates. The team depicted below is stutter-free, but not stutter-equivalent
to a team of prototraces.

𝑡 ∅ {𝑝} {𝑝} {#} {#} · · ·
𝑡′ ∅ ∅ {𝑞} {𝑞} {#} · · ·

So we need to control the stuttering throughout the team. The following formula stipulates
that whenever prototraces overlap, in the sense that they have a common active position,
their active positions are identical altogether (but not necessarily the labeled proposition).
We write ⋁︀

𝛷 short for ⋁︀
𝑝∈𝛷 𝑝.

𝜓stutter,1 := ∀⊆F#

(︁
#F →˓

(︁
(F

⋁︁
𝛷) _ G((¬# ∧ ¬

⋁︁
𝛷) 6 # 6

⋁︁
𝛷)

)︁)︁
With this, the situation depicted before cannot occur, and we obtain a team that is
stutter-equivalent to a team of prototraces. However, this is still not sufficient when other
traces come into play, as the following example shows:

𝑡 ∅ {𝑝} {𝑝} {#} {#} · · ·
𝑡′ ∅ ∅ ∅ {𝑞} {#} · · ·
𝑡′′ 𝜂(𝑤) 𝜂(𝑤′) 𝜂(𝑤′′) · · · · · · · · ·

The “regular” traces can still advance faster than the supposed prototraces, and as a
consequence, the whole team is again not stutter-equivalent to T#. This can be remedied
as follows. We stipulate that, whenever a prototrace 𝑡 is active, no non-prototrace may
change its label until 𝑡 switches to #:

𝜓stutter,2 := ∀1
F#∀1

¬F#
⋀︁
𝑝∈𝛷

ℓ∈{𝑝,¬𝑝}
𝑞∈𝛷

(︁
F

(︀
(F# →˓ 𝑞) ∧ (¬F# →˓ ℓ)

)︀
_ G

(︀
(F# →˓ 𝑞) _ (¬F# →˓ ℓ)

)︀)︁
Here, the first line asks whether there is some common position where a prototrace 𝑡 is
active and a normal trace 𝑡′ satisfies some literal ℓ. If so, then the second line states that
𝑡′ must satisfy ℓ in all positions where 𝑡 is active. Let 𝜓stutter := 𝜓stutter,1 ∧ 𝜓stutter,2.

Now we have achieved that the whole team stutters whenever a prototrace stays active.
For this reason, every prototrace stays active for effectively only one time step. Formally,
for any team 𝑇 , it holds that 𝑇 � 𝜉′ ∧ 𝜓stutter if and only if 𝑇 ≡st T

#. As a consequence,
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we obtain

T# � 𝜙 ⇔ ∃𝑇 : 𝑇 ≡st T
# and 𝑇 � 𝜙 (as 𝜙 is stutter-invariant)

⇔ ∃𝑇 : 𝑇 � 𝜉′ ∧ 𝜓stutter ∧ 𝜙 (construction of 𝜉′ and 𝜓stutter)
⇔ 𝜉′ ∧ 𝜓stutter ∧ 𝜙 is satisfiable.

Again, all formulas have temporal depth at most two and use only temporal operators
F and G. Combining Lemma 6.2 and Lemma 6.3 yields:

Theorem 6.4. Let 𝑘 ≥ 2. Then the model checking problem of LTL𝑘(∼,F) is reducible
to its satisfiability problem.

6.2 The countable cases
We showed in Theorem 4.6 and 5.6 that model checking of ultimately periodic/constant
traces in a structure is equivalent to Δ2

0. Here, we transfer this result also to the
satisfiability problem. We focus on ultimately constant traces as our result will also cover
the ultimately periodic case.

Let Tulc resp. T#
ulc be the team of all ultimately constant traces in T resp. T#. Then,

we need the following result, analogously to Lemma 6.2:

𝑇ulc(𝒦) � 𝜙 ⇔ Tulc � 𝜒𝒦 →˓ 𝜙

But we need to address a subtle issue first. For the formula 𝜒𝒦 to work, we assumed
that each state 𝑤 of the structure has some proposition 𝑝𝑤 labeled uniquely in that state.
For general model checking, this was no loss of generality. But unfortunately, adding
such propositions changes the set of ultimately constant paths! The following example
illustrates this.

0 0
𝑤 𝑤′

This structure has exactly one path from any state, which also induces an ultimately
constant trace. But adding propositions as mentioned before leads to the situation that
the team of ultimately constant traces is empty, and certainly this is not a valid reduction.

To make the same reduction work, we need to ensure that ultimately constant traces
are induced by paths through the structure that themselves are “ultimately constant”,
i.e., visit only one state infinitely often. However, note that the reduction from Δ2

0 in
Section 5 uses precisely such structures. In these, the ultimately constant traces are only
induced by paths that get stuck in a loop, i.e., in an edge of a state to itself. Therefore
we can strengthen Theorem 5.6 and obtain the following lemma.

Lemma 6.5. Δ2
0 is reducible to ultimately constant model checking of LTL1(∼,F) on

structures where all states have pairwise distinct labels.
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Thus we can assume the propositions 𝑝𝑤 for 𝑤 ∈ 𝑊 labeled as before, and obtain

𝑇ulc(𝒦) � 𝜙 ⇔ Tulc � 𝜒𝒦 →˓ 𝜙.

Next, we show that X can again be eliminated from 𝜒𝒦. As T#
ulc includes all prototraces

(which are ultimately constant), we can use the same formula as before on p. 31:

𝑇ulc(𝒦) � 𝜙 ⇔ T#
ulc �

(︁
(F# →˓ G(¬𝑥′ ∧ ¬𝑦′)) ∧ 𝜒′𝒦 ∧ (¬F# →˓ 𝜙)

)︁
∨

(︁
(F# →˓ G(¬𝑥 ∧ ¬𝑦)) ∧ ∼𝜒′′𝒦

)︁
This leads to the analogous reduction:

Lemma 6.6. Ultimately constant model checking of LTL1(∼,F) on structures where all
states have pairwise distinct labels is reducible to truth of LTL2(∼,F) in T#

ulc.

It remains to reduce the truth problem of T#
ulc to the satisfiability problem, as done

before for T# in Lemma 6.3. There, we showed that

T# � 𝜙 ⇔ (𝜉′ ∧ 𝜓stutter ∧ 𝜙) is satisfiable,

where 𝜉′, 𝜓stutter and 𝜙 all are LTL2(∼,F)-formulas. To define the team T# by a formula,
we previously used the formula 𝜉′, in particular the subformula

∀⊆F#∃1
¬F#

⋀︁
𝑝∈𝛷

G
(︀
(¬F# →˓ ¬𝑝) ] (F# →˓ ¬𝑝)

)︀
(⋆)

of 𝜉′ (cf. p. 30) claimed that the position-wise union of every subset of prototraces appears
as a regular trace in the team. This now has to be restricted to ultimately constant traces.
Ultimately constant traces are defined by the LTL-formula

𝛼 :=
⋀︁
𝑝∈𝛷

(FG𝑝 ∨ FG¬𝑝).

However, we want to express something slightly different: that the union of the currently
selected (ultimately constant) prototraces is still ultimately constant, which is not the case
in general. For this, we state that, in some suffix, 𝑝 ∈ 𝛷 either appears in no prototrace
(that is, FG¬𝑝 holds), or that at every position, 𝑝 appears in some prototrace (FG∼¬𝑝
holds):

𝛼′ := F# →˓
⋀︁
𝑝∈𝛷

(FG¬𝑝6 FG∼¬𝑝)

Accordingly, we obtain the formula 𝜉′′ by adding 𝛼′ to the above subformula (⋆) of 𝜉′:

∀⊆F#

(︁
𝛼′ _ ∃1

¬F#
⋀︁
𝑝∈𝛷

G
(︀
(¬F# →˓ ¬𝑝) ] (F# →˓ ¬𝑝)

)︀)︁
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By this, we force only the ultimately constant traces to appear. In total, we change the
reduction to

𝜙 ↦→ 𝜉′′ ∧ 𝜓stutter ∧ ¬¬𝛼 ∧ 𝜙.

Now 𝜉′′∧𝜓stutter ∧¬¬𝛼 defines T#
ulc up to stuttering. More precisely, a similar equivalence

chain as in the proof for Theorem 6.4 follows:

T#
ulc � 𝜙 ⇔ T#

ulc � ¬¬𝛼 ∧ 𝜙 (as ¬¬𝛼 defines ultimately constant teams)
⇔ ∃𝑇 : 𝑇 ≡st T

#
ulc and 𝑇 � ¬¬𝛼 ∧ 𝜙 (as ¬¬𝛼 and 𝜙 are stutter-invariant)

⇔ ∃𝑇 : 𝑇 � 𝜉′′ ∧ 𝜓stutter ∧ ¬¬𝛼 ∧ 𝜙 (construction of 𝜉′′ and 𝜓stutter)
⇔ 𝜉′′ ∧ 𝜓stutter ∧ ¬¬𝛼 ∧ 𝜙 is satisfiable.

Lemma 6.7. Let 𝒞 contain at least all ultimately constant traces. Then the truth
of LTL2(∼,F)-formulas in T#

ulc is reducible to the 𝒞-restricted satisfiability problem of
LTL2(∼,F).

The combination of Lemmas 6.5 to 6.7 yields:

Theorem 6.8. Let 𝒞 contain at least all ultimately constant traces. Then Δ2
0 is reducible

to the 𝒞-restricted satisfiability problem of LTL2(∼,F).

In particular, the reduction in Lemma 6.7 produces formulas that are either unsatisfiable,
or satisfied by some ultimately constant and hence countable team:

Corollary 6.9. Δ2
0 is reducible to the countable satisfiability problem of LTL2(∼,F).

6.3 Finite satisfiability
Finally, we investigate the complexity of the problem of finite satisfiability, i.e., whether
a formula is true in some team generated by a finite structure. Unlike in classical LTL,
this is a genuinely different problem. In LTL, every satisfiable formula is satisfied by
an ultimately periodic trace [27], which itself is always finitely generated. However, for
example, the LTL(∼)-formula

(G∃1(𝑝 ∧ X¬𝑝)) ∧ ∀1(𝑝UG¬𝑝)

defines the team {{𝑝}𝑛∅𝜔 | 𝑛 ≥ 1}, which is not generated by any finite structure [20].
The full team T is not finitely generated for the simple reason that its traces differ on

the first position. The same holds for T#, Tulc and T#
ulc. However, avoiding this problem

is not too difficult, we will show that these teams can actually be simulated by traces
with a common root. The idea is to “delay” the first label—we do not ask if a proposition
𝑝 is true at the beginning, but rather if there is some point in the future where 𝑝← holds,
where 𝑝← is a fresh proposition that does not interact with the formula otherwise.
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We add a new proposition root and claim that it is true in some non-empty, finite prefix
of the team, consistently across all traces, and that nothing else is labeled simultaneously:

𝜓root := root ∧ F¬root ∧ G((root ∧ ¬# ∧
⋀︁
𝑝∈𝛷

(¬𝑝 ∧ ¬𝑝←)) 6 G¬root)

Modulo stuttering, this is of course equivalent to every trace 𝑡 having the initial label
𝑡(0) = {root} and root /∈ 𝑡(1), 𝑡(2), · · · . In the initial prefix, the value of any proposition
𝑝 ∈ 𝛷 on a trace is now simulated by the truth of F𝑝←.

We carefully replace 𝑝 in the formulas as follows in order to not increase the temporal
depth to three.

• In 𝛼 and 𝛼′, that is, the formulas stated on p. 34 that say that a trace is ultimately
constant, we change nothing, since disturbing 𝑝 on a finite prefix of a trace does
not alter whether it is ultimately constant or not.

• The subformula G(𝑝 → (F# ∧ G(𝑝 ∨ #))) of 𝜉′, which states that on prototraces
the proposition 𝑝 is followed by # (after possible stuttering of 𝑝), is replaced by
G

(︀
(𝑝 ∨ F𝑝←) → (F# ∧ G(root ∨ 𝑝 ∨ #))

)︀
.

• Every other occurrence of 𝑝 ∈ 𝛷 has been only at temporal depth at most one, and
can thus be replaced with 𝑝6 (root ∧ ¬¬F𝑝←) without increasing the total temporal
depth of two.

Afterwards, the formula 𝜓root is appended to the reduction.
The team T# with the above changes is finitely generated: Add arcs from a root state

with label {root} to a fully connected set of states, one for each possible label, to generate
T. For the prototraces, add a single path from the root that cycles through an empty
label (or skips this altogether), eventually visits some 𝑝 ∈ 𝛷 and then cycles through {#}.
Moreover, the ultimately constant traces in this structure form precisely the team T#

ulc.
By this, we can adapt Theorem 6.8 to the case of finitely generated teams.

Theorem 6.10. Let 𝒞 contain at least all ultimately constant traces. Then Δ2
0 is reducible

to the 𝒞-restricted finite satisfiability problem of LTL2(∼,F).

7 Conclusion
In this article, we studied the computational complexity of the logic we called LTL(∼),
i.e., LTL with synchronous team semantics and with Boolean negation ∼. We showed
that both the model checking and the satisfiability problem are highly undecidable, each
equivalent to Δ3

0, that is, the set of all true formulas of third-order arithmetic. The idea
is that infinite traces can be seen as the characteristic sequences of subsets of N, and
teams hence represent sets of subsets of N, which are third-order objects. As one step in
the hardness proof, we used the fact that LTL(∼) can enforce uncountable teams, which
is possible in neither of the related logics HyperLTL [8] and team-logical LTL without
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negation [13]. Over countable teams, for example when using only ultimately periodic
traces, the complexity drops down to Δ2

0, that is, “only” second-order arithmetic.
Several known features of the high expressivity of HyperLTL manifest in LTL(∼) as

well. For example, Finkbeiner and Zimmermann [8] showed that HyperLTL can enforce
aperiodic traces, which is a crucial step also for our reduction to LTL(∼) where infinite
sets of numbers are identified with traces.

The lower complexity bounds already hold for weak fragments such as stutter-invariant
LTL(∼), and in fact with only the future modality F available and temporal depth two.
For model checking, even temporal depth one suffices. This deviates from classical LTL,
where temporal depth at least two is required for the full hardness, for any combination of
temporal operators [6, 25]. The satisfiability problem of HyperLTL, however, is undecidable
already for temporal depth one [20, Theorem 5]. The question whether a similar result
holds for LTL1(∼) is open.

In future research, studying other weak fragments could yield further insight. Be-
sides LTL1(∼), examples are the fragments using only X or with a bounded number of
propositional variables, which has also been considered for classical LTL [6]. Also, the
asynchronous operators might be worth investigating.

With its high complexity, LTL(∼) is much harder than HyperLTL, which has a non-
elementary but decidable model checking problem [4]. In fact, it seems plausible that
HyperLTL satisfiability is reducible to Δ2

0, since every satisfiable formula has a countable
model [8, Theorem 2], which would again be easier than satisfiability of LTL(∼).

The lower bounds presented here heavily utilize the unrestricted Boolean negation ∼
in team semantics in combination with team splitting. A sensible restriction of negation
may be a first step towards finding more tractable fragments.

References
[1] Samson Abramsky, Juha Kontinen, Jouko Väänänen and Heribert Vollmer, eds.

Dependence Logic, Theory and Applications. Springer, 2016.
[2] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,

2008.
[3] J Richard Büchi. Symposium on Decision Problems: On a Decision Method in

Restricted Second Order Arithmetic. Studies in Logic and the Foundations of
Mathematics. 44. Elsevier, 1966, pp. 1–11.

[4] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe and César Sánchez. Temporal Logics for Hyperproperties. POST.
8414. Lecture Notes in Computer Science. Springer, 2014, pp. 265–284.

[5] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. CSF. IEEE Computer
Society, 2008, pp. 51–65.

[6] Stéphane Demri and Philippe Schnoebelen. The Complexity of Propositional Linear
Temporal Logics in Simple Cases. Inf. Comput. 174 (2002), no. 1, pp. 84–103.

37



[7] Bernd Finkbeiner and Christopher Hahn. Deciding Hyperproperties. CONCUR. 59.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 13:1–13:14.

[8] Bernd Finkbeiner and Martin Zimmermann. The First-Order Logic of Hyperproper-
ties. STACS. 66. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017,
30:1–30:14.

[9] Rosalie Iemhoff and Fan Yang. Structural completeness in propositional logics of
dependence. Archive for Mathematical Logic 55 (2016), no. 7-8, pp. 955–975.

[10] Juha Kontinen. Dependence Logic: A survey of some recent work. Philosophy
Compass 8 (2013), no. 10, pp. 950–963.

[11] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor and Heribert Vollmer.
A Van Benthem Theorem for Modal Team Semantics. CSL. 41. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 277–291.

[12] Andreas Krebs, Arne Meier and Jonni Virtema. A Team Based Variant of CTL.
TIME. IEEE Computer Society, 2015, pp. 140–149.

[13] Andreas Krebs, Arne Meier, Jonni Virtema and Martin Zimmermann. Team Seman-
tics for the Specification and Verification of Hyperproperties. MFCS. 117. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 10:1–10:16.

[14] Antti Kuusisto. A Double Team Semantics for Generalized Quantifiers. Journal of
Logic, Language and Information 24 (2015), no. 2, pp. 149–191.

[15] Leslie Lamport. What Good Is Temporal Logic? Information Processing 83, R. E.
A. Mason, ed., Elsevier Publishers 83 (1983), pp. 657–668.

[16] Daniel Leivant. Higher order logic. Handbook of Logic in Artificial Intelligence and
Logic Programming (2). Oxford University Press, 1994, pp. 229–322.

[17] Martin Lück. Canonical Models and the Complexity of Modal Team Logic. Logical
Methods in Computer Science Volume 15, Issue 2 (Apr. 2019).

[18] Martin Lück. Team logic: axioms, expressiveness, complexity. PhD thesis. University
of Hanover, Hannover, Germany, 2020.

[19] Martin Lück and Miikka Vilander. On the Succinctness of Atoms of Dependency.
Logical Methods in Computer Science 15 (2019), no. 3.

[20] Corto Mascle and Martin Zimmermann. The Keys to Decidable HyperLTL Satisfia-
bility: Small Models or Very Simple Formulas. CoRR abs/1907.05070 (2019).

[21] Doron A. Peled and Thomas Wilke. Stutter-Invariant Temporal Properties are
Expressible Without the Next-Time Operator. Inf. Process. Lett. 63 (1997), no. 5,
pp. 243–246.

[22] Amir Pnueli. The Temporal Logic of Programs. FOCS. IEEE Computer Society,
1977, pp. 46–57.

[23] Hartley Rogers. Theory of recursive functions and effective computability. MIT
Press, 1987.

38



[24] Klaus Schneider. Verification of Reactive Systems - Formal Methods and Algorithms.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

[25] Philippe Schnoebelen. The Complexity of Temporal Logic Model Checking. Advances
in modal logic 4 (2002), no. 393-436, p. 35.

[26] Michael Sipser. Introduction to the Theory of Computation. 3rd ed. Cengage learning,
2012.

[27] Aravinda Prasad Sistla and Edmund M. Clarke. The Complexity of Propositional
Linear Temporal Logics. J. ACM 32 (1985), no. 3, pp. 733–749.

[28] Jouko Väänänen. Dependence logic: A New Approach to Independence Friendly
Logic. London Mathematical Society student texts 70. Cambridge University Press,
2007.

[29] Jouko Väänänen. Modal dependence logic. New perspectives on games and interac-
tion 4 (2008), pp. 237–254.

[30] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach to Automatic
Program Verification. LICS. IEEE Computer Society, 1986, pp. 332–344.

[31] Fan Yang. Modal dependence logics: Axiomatizations and model-theoretic properties.
Logic Journal of the IGPL 25 (2017), no. 5, pp. 773–805.

[32] Fan Yang and Jouko Väänänen. Propositional logics of dependence. Annals of Pure
and Applied Logic 167 (2016), no. 7, pp. 557–589.

[33] Fan Yang and Jouko Väänänen. Propositional team logics. Annals of Pure and
Applied Logic 168 (July 2017), no. 7, pp. 1406–1441.

39


	1 Introduction
	2 Preliminaries
	2.1 Team semantics
	2.2 Team logic with negation

	3 A Stutter-Invariant Fragment of LTL ()
	3.1 Stutter-equivalence in team semantics
	3.2 The stutter-invariance of X-free formulas

	4 From LTL() to third-order arithmetic
	4.1 The uncountable cases
	4.2 The countable cases

	5 From third-order arithmetic to model checking
	5.1 A bounded-arity normal form of 30
	5.2 Representing numbers and relations in traces and teams
	5.3 Translating arithmetic formulas

	6 From Model Checking to Satisfiability
	6.1 A hard stutter-invariant fragment
	6.2 The countable cases
	6.3 Finite satisfiability

	7 Conclusion

