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Abstract
We present the first solution to τ -majorities on tree paths. Given a tree of n nodes, each with a
label from [1..σ], and a fixed threshold 0 < τ < 1, such a query gives two nodes u and v and asks
for all the labels that appear more than τ · |Puv| times in the path Puv from u to v, where |Puv|
denotes the number of nodes in Puv. Note that the answer to any query is of size up to 1/τ . On a
w-bit RAM, we obtain a linear-space data structure with O((1/τ) lg∗ n lg lgw σ) query time. For
any κ > 1, we can also build a structure that uses O(n lg[κ] n) space, where lg[κ] n denotes the
function that applies logarithm κ times to n, and answers queries in time O((1/τ) lg lgw σ). The
construction time of both structures is O(n lgn). We also describe two succinct-space solutions
with the same query time of the linear-space structure. One uses 2nH + 4n+ o(n)(H + 1) bits,
where H ≤ lg σ is the entropy of the label distribution, and can be built in O(n lgn) time. The
other uses nH +O(n) + o(nH) bits and is built in O(n lgn) time w.h.p.
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1 Introduction

Finding frequent elements in subsets of a multiset is a fundamental operation for data analysis
and data mining [15, 13]. When the sets have a certain structure, it is possible to preprocess
the multiset to build data structures that efficiently find the frequent elements in any subset.

The best studied multiset structure is the sequence, where the subsets that can be queried
are ranges (i.e., contiguous subsequences) of the sequence. Applications of this case include
time sequences, linear-versioned structures, and one-dimensional models, for example. Data
structures for finding the mode (i.e., the most frequent element) in a range require time
O(

√
n/ lgn), and it is unlikely that this can be done much better within reasonable extra

space [8]. Instead, listing all the elements whose relative frequency in a range is over some
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fraction τ (called the τ -majorities of the range) is feasible within linear space and O(1/τ)
time, which is worst-case optimal [1]. Mode and τ -majority queries on higher-dimensional
arrays have also been studied [16, 8].

In this paper we focus on finding frequent elements when the subsets that can be queried
are the labels on paths from one given node to another in a labeled tree. For example, given a
minimum spanning tree of a graph, we might be interested in frequent node types on the path
between two nodes. Path mode or τ -majority queries on multi-labeled trees could be useful
when handling the tree of versions of a document or a piece of software, or a phylogenetic
tree (which is essentially a tree of versions of a genome). If each node stores a list of the
sections (i.e., chapters, modules, genes) on which its version differs from its parent’s, then we
can efficiently query which sections are changed most frequently between two given versions.

There has been relatively little work previously on finding frequent elements on tree paths.
Krizanc et al. [18] considered path mode queries, obtaining O(

√
n lgn) query time. This was

recently improved by Durocher et al. [14], who obtained O(
√
n/w lg lgn) time on a RAM

machine of w = Ω(lgn) bits. Like on the more special case of sequences, these times are
not likely to improve much. No previous work has considered the problem of finding path
τ -majority queries, which is more tractable than finding the path mode. This is our focus.

We present the first data structures to support path τ -majority queries on trees of n nodes,
with labels in [1..σ], on a RAM machine. We first obtain a data structure using O(n lgn) space
and O((1/τ) lg lgw σ) time (Theorem 3). Building on this result, we reduce the space to O(n)
at the price of a very slight increase in the query time, O((1/τ) lg∗ n lg lgw σ) (Theorem 6).
We then show that the original query time can be obtained within very slightly superlinear
space, O(n lg[κ] n) for any desired κ > 1, where lg[κ] n denotes the function that applies
logarithm κ times to n (Theorem 7). Finally, we show that our linear-space data structure
can be further compressed, to either 2nH + 4n+ o(n)(H + 1) bits or nH +O(n) + o(nH)
bits, where H ≤ lg σ is the entropy of the distribution of the labels in T , while retaining the
same query times of the linear-space data structure (Theorems 8 and 9). All our structures
can be built in O(n lgn) deterministic time; only the latter one requires that time only w.h.p.
We close with a brief discussion of directions for future research. In particular, we describe
how to adapt our results to multi-labeled trees.

Durocher et al. [14] also considered queries that look for the least frequent elements and
τ -minorities on paths. In the appendix, we show how to compress their data structure for
τ -minorities with only a very slight increase in query time.

2 Preliminaries

2.1 Definitions
We deal with rooted ordinal trees (or just trees) T . Further, our trees are labeled, that is,
each node u of T has an integer label label(u) ∈ [1..σ]. We assume that, if our main tree
has n nodes, then σ = O(n) (we can always remap the labels to a range of size at most n
without altering the semantics of the queries of interest in this paper).

The path between nodes u and v in a tree T is the (only) sequence of nodes Puv = 〈u =
z1, z2, . . . , zk−1, zk = v〉 such that there is an edge in T between each pair zi and zi+1, for
1 ≤ i < k. The length of the path is |Puv| = k, for example the length of the path Puu is 1.
Any path from u to v goes from u to the lowest common ancestor of u and v, and then from
there it goes to v (if u is an ancestor of v or vice versa, one of these two subpaths is empty).

Given a real number 0 < τ < 1, a τ -majority of the path Puv is any label that appears
(strictly) more than τ · |Puv| times among the labels of the nodes in Puv. The path τ -majority
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problem is, given u and v, list all the τ -majorities in the path Puv. Note that there can be
up to b1/τc such τ -majorities.

Our results hold in the RAM model of computation, assuming a computer word of
w = Ω(lgn) bits, supporting the standard operations.

Our logarithms are to the base 2 by default. By lg[k] n we mean the function that applies
logarithm k times to n, i.e., lg[0] n = n and lg[k] n = lg(lg[k−1] n). By lg∗ n we denote the
iterated logarithm, i.e., the minimum k such that lg[k] n ≤ 1.

2.2 Sequence representations
A bitvector B[1..n] can be represented within n+ o(n) bits so that the following operations
take constant time: access(B, i) returns B[i], rankb(B, i) returns the number of times bit b
appears in B[1..i], and selectb(B, j) returns the position of the jth occurrence of b in B
[12]. If B has m 1s, then it can be represented within m lg(n/m) +O(m) bits while retaining
the same operation times [22]. Those structures can be built in linear time. Note the space
is o(n) bits if m = o(n).

Analogous operations are defined on sequences S[1..n] over alphabets [1..σ]. For example,
one can represent S within nH + o(n)(H + 1) bits, where H ≤ lg σ is the entropy of the
distribution of symbols in S, so that rank takes time O(lg lgw σ), access takes time O(1), and
select takes any time in ω(1) [4, Thm. 8]. The construction takes linear time. While this rank
time is optimal, we can answer partial rank queries in O(1) time, prank(S, i) = rankS[i](S, i),
by adding O(n(1 + lgH)) bits on top of a representation giving constant-time access [3,
Sec. 3]. This construction requires linear randomized time.

2.3 Range τ -majorities on sequences
A special version of the path τ -majority queries on trees is range τ -majority queries on
sequences S[1..n], which are much better studied. Given i and j, the problem is to return all
the distinct symbols that appear more than τ · (j − i+ 1) times in S[i..j]. The most recent
result on this problem [2, 1] is a linear-space data structure, built in O(n lgn) time, that
answers queries in the worst-case optimal time, O(1/τ).

For our succinct representations, we also use a data structure [1, Thm. 6] that requires
nH + o(n)(H + 1) bits, and can answer range τ -majority queries in any time in (1/τ) · ω(1).
The structure is built on the sequence representation mentioned above [4, Thm. 8], and thus
it includes its support for access, rank, and select queries on the sequence. To obtain
the given times for τ -majorities, the structure includes the support for partial rank queries
[3, Sec. 3], and therefore its construction time is randomized. In this paper, however, it
will be sufficient to obtain O((1/τ) lg lgw σ) time, and therefore we can replace their prank
queries by general rank operations. These take time O(lg lgw σ) instead of O(1), but can be
built in linear time.4 Therefore, this slightly slower structure can also be built in O(n lgn)
deterministic time.

When a set has no structure, we can find its τ -majorities in linear time. Misra and
Gries [19] proposed an optimal solution that computes all τ -majorities using O(n lg(1/τ))
comparisons. When implemented on a word RAM over an integer alphabet of size σ, the
running time becomes O(n) [13].

4 In fact, their structure [1] can be considerably simplified if one can spend the time of a general rank
query per returned majority.
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2.4 Tree operations
For tree nodes u and v, we define the operations root (the tree root), parent(u) (the parent
of node u), depth(u) (the depth of node u, 0 being the depth of the root), preorder(u) (the
rank of u in a preorder traversal of T ), postorder(u) (the rank of u in a postorder traversal
of T ), subtreesize(u) (the number of nodes descending from u, including u), anc(u, d)
(the ancestor of u at depth d), and lca(u, v) (the lowest common ancestor of u and v). All
those operations can be supported in constant time and linear space on a static tree after a
linear-time preprocessing, trivially with the exceptions of anc [6] and lca [7].

A less classical query is labelanc(u, `), which returns the nearest ancestor of u (possibly
u itself) labeled ` (note that the label of u needs not be `). If u has no ancestor labeled `,
labelanc(u, `) returns null. This operation can be solved in time O(lg lgw σ) using linear
space and preprocessing time [17, 25, 14].

2.5 Succinct tree representations
A tree T of n nodes can be represented as a sequence P [1..2n] of parentheses (i.e., a bit
sequence). In particular, we consider the balanced parentheses representation, where we
traverse T in depth-first order, writing an opening parenthesis when reaching a node and a
closing one when leaving its subtree. A node is identified with the position P [i] of its opening
parenthesis. By using 2n+ o(n) bits, all the tree operations defined in Section 2.4 (except
those on labels) can be supported in constant time [21].

This representation also supports access, rank and select on the bitvector of parentheses,
and the operations close(P, i) (the position of the parenthesis closing the one that opens
at P [i]), open(P, i) (the position of the parenthesis opening the one that closes at P [i]),
and enclose(P, i) (the position of the rightmost opening parenthesis whose corresponding
parenthesis pair encloses P [i]; when P represents a tree, this parenthesis represents the
parent of the node that P [i] corresponds to).

Labeled trees can be represented within nH + 2n + o(n)(H + 1) bits by adding the
sequence S[1..n] of the node labels in preorder, so that label(i) = access(S, preorder(i)).

3 An O(n lg n)-Space Solution

In this section we design a data structure answering path τ -majority queries on a tree of n
nodes using O(n lgn) space and O((1/τ) lg lgw σ) time. This is the basis to obtain our final
results.

We start by marking O(τn) tree nodes, in a way that any node has a marked ancestor at
distance O(1/τ). A simple way to obtain these bounds is to mark every node whose height
is ≥ d1/τe and whose depth is a multiple of d1/τe. Therefore, every marked node is the
nearest marked ancestor of at least d1/τe − 1 distinct non-marked nodes, which guarantees
that there are ≤ τn marked nodes. On the other hand, any node is at distance at most
2d1/τe − 1 from its nearest marked ancestor.

For each marked node x, we will consider prefixes Pi(x) of the labels in the path from x

to the root, of length 1 + 2i, that is,

Pi(x) = 〈label(x), label(parent(x)), label(parent2(x)), . . . , label(parent2i

(x))〉

(terminating the sequence at the root if we reach it). For each 0 ≤ i ≤ dlg depth(x)e, we
store Ci(x), the set of (τ/2)-majorities in Pi(x). Note that |Ci(x)| ≤ 2/τ for any x and i.
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By successive applications of the next lemma we have that, to find all the τ -majorities in
the path from u to v, we can partition the path into several subpaths and then consider just
the τ -majorities in each subpath.

I Lemma 1. Let u and v be two tree nodes, and let z be an intermediate node in the path.
Then, a τ -majority in the path from u to v is a τ -majority in the path from u to z (including
z) or a τ -majority in the path from z to v (excluding z), or in both.

Proof. Let duz be the distance from u to z (counting z) and dzv be the distance from z to v
(not counting z). Then the path from u to v is of length d = duz + dzv. If a label ` occurs at
most τ · duz times in the path from u to z and at most τ · dzv times in the path from z to v,
then it occurs at most τ(duz + dzv) = τ · d times in the path from u to v. J

Let us now show that the candidates we record for marked nodes are sufficient to find
path τ -majorities towards their ancestors.

I Lemma 2. Let x be a marked node. All the τ -majorities in the path from x to a proper
ancestor z are included in Ci(x) for some suitable i.

Proof. Let dxz = depth(x)− depth(z) be the distance from x to z (i.e., the length of the
path from x to z minus 1). Let i = dlg dxze. The path Pi(x) contains all the nodes in an
upward path of length 1 + 2i starting at x, where dxz ≤ 2i < 2dxz. Therefore, Pi(x) contains
node z, but its length is |Pi(x)| < 1 + 2dxz. Therefore, any τ -majority in the path from x to
z appears more than τ · (1 + dxz) > (τ/2) · (1 + 2dxz) > (τ/2) · |Pi(x)| times, and thus it is a
(τ/2)-majority recorded in Ci(x). J

3.1 Queries
With the properties above, we can find a candidate set of size O(1/τ) for the path τ -majority
between arbitrary tree nodes u and v. Let z = lca(u, v). If v 6= z, let us also define
z′ = anc(v, depth(z) + 1), that is, the child of z in the path to v. The path is then split into
at most four subpaths, each of which can be empty:
1. The nodes from u to its nearest marked ancestor, x, not including x. If x does not exist or

is a proper ancestor of z, then this subpath contains the nodes from u to z. The length of
this path is less than 2d1/τe by the definition of marked nodes, and it is empty if u = x.

2. The nodes from v to its nearest marked ancestor, y, not including y. If y does not exist
or is an ancestor of z, then this subpath contains the nodes from v to z′. The length of
this path is again less than 2d1/τe, and it is empty if v = y or v = z.

3. The nodes from x to z. This path exists only if x exists and descends from z.
4. The nodes from y to z′. This path exists only if y exists and descends from z′.

By Lemma 1, any τ -majority in the path from u to v must be a τ -majority in some of
these four paths. For the paths 1 and 2, we consider all their up to 2d1/τe − 1 nodes as
candidates. For the paths 3 and 4, we use Lemma 2 to find suitable values i and j so that
Ci(x) and Cj(y), both of size at most 2/τ , contain all the possible τ -majorities in those paths.
In total, we obtain a set of at most 8/τ +O(1) candidates that contain all the τ -majorities
in the path from u to v.

In order to verify whether a candidate is indeed a τ -majority, we follow the technique of
Durocher et al. [14]. Every tree node u will store count(u), the number of times its label
occurs in the path from u to the root. We also make use of operation labelanc(u, `). If u has
no ancestor labeled `, this operation returns null, and we define count(null) = 0. Therefore,
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the number of times label ` occurs in the path from u to an ancestor z of u (including z)
can be computed as count(labelanc(u, `))− count(labelanc(parent(z), `)). Each of our
candidates can then be checked by counting their occurrences in the path from u to v using

(count(labelanc(u, `))− count(labelanc(parent(z), `)))
+ (count(labelanc(v, `))− count(labelanc(z, `))).

The time to perform query labelanc is O(lg lgw σ) using a linear-space data structure on
the tree [17, 25, 14], and therefore we find all the path τ -majorities in time O((1/τ) lg lgw σ).

The space of our data structure is dominated by the O(lgn) candidate sets Ci(x) we
store for the marked nodes x. These amount to O((1/τ) lgn) space per marked node, of
which there are O(τn). Thus, we spend O(n lgn) space in total.

I Theorem 3. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a RAM
machine of w-bit words, we can build an O(n lgn) space data structure that answers path
τ -majority queries in time O((1/τ) lg lgw σ).

3.2 Construction
The construction of the data structure is easily carried out in linear time (including the fields
count and the data structure to support labelanc [14]), except for the candidate sets Ci(x)
of the marked nodes x. We can compute the sets Ci(x) for all i in total time O(depth(x))
using the linear-time algorithm of Misra and Gries [19] because we compute (τ/2)-majorities
of doubling-length prefixes Pi(x). This amounts to time O(mt) on a tree of t nodes and m
marked nodes. In our case, where t = n and m ≤ τn, this is O(τn2).

To reduce this time, we proceed as follows. First we build all the data structure components
except the sets Ci(x). We then decompose the tree into heavy paths [24] in linear time,
and collect the labels along the heavy paths to form a set of sequences. On the sequences,
we build in O(t lg t) time the range τ -majority data structure [2, 1] that answers queries in
time O(1/τ). The prefix Pi(x) for any marked node x then spans O(lg t) sequence ranges,
corresponding to the heavy paths intersected by Pi(x). We can then compute Ci(x) by
collecting and checking the O(1/τ) (τ/2)-majorities from each of those O(lg t) ranges.

Let the path from x to the root be formed by O(lg t) heavy path segments π1, . . . , πk
We first compute the O(1/τ) (τ/2)-majority in the sequences corresponding to each prefix
π1, . . . , πk: For each πj , we (1) compute its 2/τ majorities on the corresponding sequence in
time O(1/τ), (2) add them to the set of 2/τ majorities already computed for π1, . . . , πj−1,
and (3) check the exact frequencies of all the 4/τ candidates in the path π1, . . . , πj in time
O((1/τ) lg lgw σ), using the structures already computed on the tree. All the (τ/2)-majorities
for π1, . . . , πj are then found.

Each path Pi(x) is formed by some prefix π1, . . . , πj plus a prefix of πj+1. We can then
carry out a process similar to the one to compute the majorities of π1, . . . , πj+1, but using
only the proper prefix of πj+1. The O(lg t) sets Ci(x) are then computed in total time
O((1/τ) lg t lg lgw σ). Added over the m marked nodes, we obtain O((1/τ)m lg t lg lgw σ)
construction time.

I Lemma 4. On a tree of t nodes, m of which are marked, all the candidate sets Ci(x) can
be built in time O((1/τ)m lg t lg lgw σ).

The construction time in our case, where t = n and m ≤ τn, is the following.

I Corollary 5. The data structure of Theorem 3 can be built in time O(n lgn lg lgw σ).
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4 A Linear-Space (and a Near-Linear-Space) Solution

We can reduce the space of our data structure by stratifying our tree. First, let us create a
separate structure to handle unary paths, that is, formed by nodes with only one child. The
labels of upward maximal unary paths are laid out in a sequence, and the sequences of the
labels of all the unary paths in T are concatenated into a single sequence, S, of length at most
n. On this sequence we build the linear-space data structure that solves range τ -majority
queries in time O(1/τ) [2, 1]. Each node in a unary path of T points to its position in S.
Each node also stores a pointer to its nearest branching ancestor (i.e., ancestor with more
than one child).

The stratification then proceeds as follows. We say that a tree node is large if it has more
than (1/τ) lgn descendant nodes; other nodes are small. Then the subset of the large nodes,
which is closed by parent, induces a subtree T ′ of T with the same root and containing
at most τn/ lgn leaves, because for each leaf in T ′ there are at least (1/τ) lgn− 1 distinct
nodes of T not in T ′. Further, T − T ′ is a forest of trees {Fi}, each of size at most (1/τ) lgn.

We will use for T ′ a structure similar to the one of Section 3, with some changes to ensure
linear space. Note that T ′ may have Θ(n) nodes, but since it has at most τn/ lgn leaves,
T ′ has only O(τn/ lgn) branching nodes. We modify the marking scheme, so that we mark
exactly the branching nodes in T ′. Spending O((1/τ) lgn) space of the candidate sets Ci(x)
over all branching nodes of T ′ adds up to O(n) space.

The procedure to solve path τ -majority queries on T ′ is then as follows. We split the
path from u to v into four subpaths, exactly as in Section 3. The subpaths of type 1 and 2
can now be of arbitrary length, but they are unary, thus we obtain their 1/τ candidates in
time O(1/τ) from the corresponding range of S. Finally, we check all the O(1/τ) candidates
in time O((1/τ) lg lgw σ) as in Section 3.

The nodes u and v may, however, belong to some small tree Fi, which is of size
O((1/τ) lgn). We preprocess all those Fi in a way analogous to T . From each Fi we
define F ′i as the subtree of Fi induced by the (parent-closed) set of the nodes with more than
(1/τ) lg lgn descendants; thus F ′i has O(|Fi|τ/ lg lgn) branching nodes, which are marked.
We store the candidate sets Ci(x) of their marked nodes x, considering only the nodes in F ′i .

If the candidates were stored as in Section 3, they would require O((1/τ) lg σ) bits
per marked node. Instead of storing the candidate labels ` directly, however, we will
store depth(y), where y is the nearest ancestor of x with label `. We can then recover
` = label(anc(x, depth(y))) in constant time. Since the depths in Fi are also O((1/τ) lgn),
we need only O(lg((1/τ) lgn)) bits per candidate. Further, by sorting the candidates by their
depth(y) value, we can encode only the differences between consecutive depths using γ-codes
[5]. Encoding k increasing numbers in [1..m] with this method requires O(k lg(m/k)) bits;
therefore we can encode our O(1/τ) candidates using O((1/τ) lg lgn) bits in total. Added
over all the O(lgn) values of i,5 the candidates Ci(x) require O((1/τ) lg lgn) words per
marked (i.e., branching) node. Added over all the branching nodes of F ′i , this amounts to
O(|F ′i |) space. The other pointers of Fi, as well as node labels, can be represented normally,
as they are O(n) in total.

The small nodes left out from the trees Fi form a forest of subtrees of size O((1/τ) lg lgn)
each. We can iterate this process κ times, so that the smallest trees are of size O((1/τ) lg[κ] n).
We build no candidates sets on the smallest trees. We say that T ′ is a subtree of level 1, our

5 The values of i are also bounded by O(lg((1/τ) lgn)), but the bound O(lgn) = O(w) is more useful
this time.
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F ′i are subtrees of level 2, and so on, until the smallest subtrees, which are of level κ. Every
node in T has a pointer to the root of the subtree where it belongs in the stratification.

The general process to solve a path τ -majority query from u to v is then as follows. We
compute z = lca(u, v) and split the path from u to z into k − k′ + 1 subpaths, where k′ and
k (note k′ ≤ k ≤ κ) are the levels of the subtree where z and u belong, respectively. Let us
call ui the root of the subtree of level i that is an ancestor of u, except that we call uk′ = z.
1. If k = κ, then u belongs to one of the smallest subtrees. We then collect the O((1/τ) lg[κ] n)

node weights in the path from u to uκ one by one and include them in the set of candidates.
Then we move to the parent of that root, setting u← parent(uκ) and k ← κ− 1.

2. At levels k′ ≤ k < κ, if u is a branching node, we collect the 2/τ candidates from the
corresponding set Ci(u), where i is sufficient to cover uk (Ci(u) will not store candidates
beyond the subtree root). We then set u← parent(uk) and k ← k − 1.

3. At levels k′ ≤ k < κ, if u is not a branching node, let x be lowest between parent(z) and
the nearest branching ancestor of u. Let also p be the position of u in S. Then we find the
1/τ τ -majorities in S[p..p+ depth(u)− depth(x)− 1] in time O(1/τ). We then continue
from u← x and k ← k(x), where k(x) is the level of the subtree where x belongs. Note
that k(x) can be equal to k, but it can also be any other level k′ ≤ k(x) < k.

4. We stop when u = parent(z).

A similar procedure is followed to collect the candidates from v to z′. In total, since each
path has at most one case 2 and one case 3 per level k, we collect at most 4κ candidate sets
of size O(1/τ), plus two of size O((1/τ) lg[κ] n). The total cost to verify all the candidates is
then O((1/τ)(κ+ lg[κ] n) lg lgw σ). The data structure uses linear space for any choice of κ,
whereas the optimal time is obtained by setting κ = lg∗ n.

The construction time, using the technique of Lemma 4 in level 1, is O(n lg lgw σ), since
T ′ has t = O(n) nodes and m = O(τn/ lgn) marked nodes. For higher levels, we use the
basic quadratic method described in the first lines of Section 3.2: a subtree F of level k
has t = O((1/τ) lg[k−1] n) nodes and m = O(τt/ lg[k] n) marked nodes, so it is built in time
O(mt). There are O(τn/ lg[k−1] n) trees of level k, which gives a total construction time of
O(n lg[k−1] n/ lg[k] n) for all the nodes in level k. Added over all the levels k > 1, this yields
O(n lgn/ lg lgn). Both times, for k = 1 and k > 1, are however dominated by the O(n lgn)
time to build the range majority data structure on S.

I Theorem 6. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a RAM
machine of w-bit words, we can build in O(n lgn) time an O(n) space data structure that
answers path τ -majority queries in time O((1/τ) lg∗ n lg lgw σ).

On the other hand, we can use any constant number κ of levels, and build the data
structure of Section 3 on the last one, so as to ensure query time O(1/τ) in this level as well.
We use, however, the compressed storage of the candidates used in this section. With this
storage format, a candidate set Ci(x) takes O((1/τ) lg[κ] n) bits. Multiplying by lgn (the
crude upper bound on the number of i values), this becomes O((1/τ) lg[κ] n) words. Since the
trees are of size O((1/τ) lg[κ−1] n) and the sampling rate used in Section 3 is τ , this amounts
to O((1/τ) lg[κ−1] n lg[κ] n) space per tree. Multiplied by the O(τn/ lg[κ−1] n) trees of level κ,
the total space is O(n lg[κ] n).

The construction time of the candidate sets in the last level, using the basic quadratic
construction, is O(mt) = O((1/τ)(lg[κ−1] n)2), because t = O((1/τ) lg[κ−1] n) and m = τt

according to the sampling used in Section 3. Multiplying by the O(τn/ lg[κ−1] n) trees of
level κ, the total construction time for this last level is O(n lg[κ−1] n), again dominated by
the time to build the range majority data structures if κ > 1. This yields the following result.
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I Theorem 7. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a RAM
machine of w-bit words, for any constant κ > 1, we can build in O(n lgn) time an O(n lg[κ] n)
space data structure that answers path τ -majority queries in time O((1/τ) lg lgw σ).

5 A Succinct Space Solution

The way to obtain a succinct space structure from Theorem 6 is to increase the thresholds
that define the large nodes in Section 4. In level 1, we now define the large nodes as those
whose subtree size is larger than (1/τ)(lgn)3; in level 2, larger than (1/τ)(lg lgn)3; and in
general in level k as those with subtree size larger than (1/τ)(lg[k] n)3. This makes the space
of all the Ci(x) structures to be o(n) bits. The price is that the traversal of the smallest trees
now produces O((1/τ)(lg[κ] n)3) candidates, but this is easily sorted out by using κ+ 1 levels,
since (lg[κ+1] n)3 = o(lg[κ] n). To obtain succinct space, we will need that there are o(n)
subtrees of the smallest size, but that we find only O((1/τ) lg∗ n) candidates in total. Thus
we set κ = lg∗ n− lg∗∗ n, so that there are O(κ) = O(lg∗ n) levels, and the last-level subtrees
are of size O((1/τ)(lg[κ+1] n)3) = o((1/τ) lg[lg∗ n−lg∗∗ n] n) = o((1/τ) lg∗ n). Still, there are
O(τn/(lg[κ+1] n)3) = O(τn/(lg[lg∗ n−lg∗∗ n+1] n)3) = O(τn/(lg lg∗ n)3) = o(n) subtrees in the
last level.

The topology of the whole tree T can be represented using balanced parentheses in
2n + o(n) bits, supporting in constant time all the standard tree traversal operations we
use [21]. We assume that opening and closing parentheses are represented with 1s and 0s in
P , respectively. Let us now focus on the less standard operations needed.

5.1 Counting labels in paths
In Section 3, we count the number of times a label ` occurs in the path from u to the root
by means of a query labelanc and by storing count fields in the nodes. In Section 4, we
use in addition a string S to support range majority queries on the unary paths.

To solve labelanc queries, we use the representation of Durocher et al. [14, Lem. 7],
which uses nH + 2n+ o(n)(H + 1) bits in addition to the 2n+ o(n) bits of the tree topology.
This representation includes a string S[1..n] where all the labels of T are written in preorder;
any implementation of S supporting access, rank, and select in time O(lg lgw σ) can be
used (e.g., [4]). This string can also play the role of the one we call S in Section 4, because
the labels of unary paths are contiguous in S, and any node v can access its label from
S[preorder(v)].

On top of this string we must also answer range τ -majority queries in timeO((1/τ) lg lgw σ).
We can use the slow variant of the succinct structure described in Section 2.3, which requires
only o(n)(H+1) additional bits and also supports access in O(1) time and rank and select
in time O(lg lgw σ). This variant of the structure is built in O(n lgn) time.

In addition to supporting operation labelanc, we need to store or compute the count
fields. Durocher et al. [14] also require this field, but find no succinct way to represent it.
We now show a way to obtain this value within succinct space.

The sequence S lists the labels of T in preorder, that is, aligned with the opening
parentheses of P . Assume we have another sequence S′[1..n] where the labels of T are listed
in postorder (i.e., aligned with the closing parentheses of P ). Since the opened parentheses
not yet closed in P [1..i] are precisely node i and its ancestors, we can compute the number
of times a label ` appears in the path from P [i] to the root as

rank`(S, rank1(P, i))− rank`(S′, rank0(P, i)).



XX:10 Tree Path Majority Data Structures

Therefore, we can support this operation with nH + o(n)(H + 1) additional bits. Note
that, with this representation, we do not need the operation labelanc, since we do not need
that P [i] itself is labeled `.

If we do use operation labelanc, however, we can ensure that P [i] is labeled `, and
another solution is possible based on partial rank queries. Let o = rank`(S, rank1(P, i)) and
c = rank`(S′, rank0(P, i)) be the numbers of opening and closing parentheses up to P [i], so
that we want to compute o− c. Since P [i] is labeled `, it holds that S[rank1(P, i))] = `, and
thus o = prank(S, rank1(P, i)). To compute c, we do not store S′, but rather S′′[1..2n], so
that S′′[i] is the label of the node whose opening or closing parenthesis is at P [i] (i.e., S′′ is
formed by interleaving S and S′). Then, prank(S′′, i) = o+ c; therefore the answer we seek
is o− c = 2 · prank(S, rank1(P, i))− prank(S′′, i).

We use the structure for constant-time partial rank queries [3, Sec. 3] that requires
O(n) + o(nH) bits on top of a sequence that can be accessed in O(1) time. We can build it
on S and also on S′′, though we do not explicitly represent S′′: any access to S′′ is simulated
in constant time with S′′[i] = S[rank1(P, i)] if P [i] = 1, and S′′[i] = S[rank1(P, open(P, i))]
otherwise. This partial rank structure is built in O(n) randomized time and in O(n lgn)
time w.h.p.6

5.2 Other data structures

The other fields stored at tree nodes, which we must now compute within succinct space, are
the following:

Pointers to candidate sets Ci(x) All the branching nodes in all subtrees except those of
level κ + 1 are marked, and there are O(n/(lg[κ+1] n)3) = o(n) such nodes. We can then
mark their preorder ranks with 1s in a bitvector M [1..n]. Since M has o(n) 1s, it can be
represented within o(n) bits [22] while supporting constant-time rank and select operations.
We can then find out when a node i is marked (iff M [preorder(i)] = 1), and if it is, its
rank among all the marked nodes, r = rank1(M, preorder(i)). The Ci(x) sets of all the
marked nodes x of any level can be written down in a contiguous memory area of total size
o(n) bits, sorted by the preorder rank of x. A bitvector C of length o(n) marks the starting
position of each new node x in this memory area. Then the area for marked node i starts
at p = select1(C, r). A second bitvector D can mark the starting position of each Cj(x)
in the memory area of each node x, and thus we access the specific set Cj(x) from position
select1(D, rank1(D, p− 1) + j).

Pointers to subtree roots We store an additional bitvector B[1..2n], parallel to the paren-
theses bitvector P [1..2n]. In B, we mark with 1s the positions of the opening and closing
parentheses that are roots of subtrees of any level. As there are O(n/(lg[κ+1] n)3) = o(n)
such nodes, B can be represented within o(n) bits while supporting constant-time rank and
select operations. We also store the sequence of o(n) parentheses P ′ corresponding to those
in P marked with a 1 in B. Then the nearest subtree root containing node P [i] is obtained by
finding the nearest position to the left marked in B, r = rank1(B, i) and j = select1(B, r),
and then considering the corresponding node P ′[r]. If it is an opening parenthesis, then the

6 It involves building perfect hash functions, which succeeds with constant probability p in time O(n).
Repeating c lgn times, the failure probability is 1 −O(1/nc/ lg(1/p)).
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nearest subtree root is the node whose parenthesis opens in P [j]. Otherwise, it is the one
opening at P [j′], where j′ = select1(B, enclose(P ′, open(P ′, r))) (see [23, Sec. 4.1]).

Finding the nearest branching ancestor A unary path looks like a sequence of open-
ing parentheses followed by a sequence of closing parentheses. The nearest branching
ancestor of P [i] can then be obtained in constant time by finding the nearest closing
parenthesis to the left, l = select0(rank0(P, i)), and the nearest opening parenthesis to
the right, r = select1(rank1(close(P, i)) + 1). Then the answer is the larger between
enclose(P, open(P, l)) and enclose(P, r).

Determining the subtree level of a node Since we can compute s = subtreesize(i) of a
node P [i] in constant time, we can determine the corresponding level: if s > (1/τ) lg3 n, it is
level 1. Otherwise, we look up τ · s in a precomputed table of size O(lg3 n) that stores the
level corresponding to each possible size.

Therefore, depending on whether we represent both S and S′ or use partial rank structures,
we obtain two results within succinct space.

I Theorem 8. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On
a RAM machine of w-bit words, we can build in O(n lgn) time a data structure using
2nH + 4n+ o(n)(H + 1) bits, where H ≤ lg σ is the entropy of the distribution of the node
labels, that answers path τ -majority queries in time O((1/τ) lg∗ n lg lgw σ).

I Theorem 9. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a RAM
machine of w-bit words, we can build in O(n lgn) time (w.h.p.) a data structure using
nH +O(n) + o(nH) bits, where H ≤ lg σ is the entropy of the distribution of the node labels,
that answers path τ -majority queries in time O((1/τ) lg∗ n lg lgw σ).

We note that, within this space, all the typical tree navigation functionality, as well as
access to labels, is supported.

6 Conclusions

We have presented the first data structures that can efficiently find the τ -majorities on the
path between any two given nodes in a tree. Our data structures use linear or near-linear
space, and even succinct space, whereas our query times are close to optimal, by a factor
near log-logarithmic.

As mentioned in the Introduction, many applications of these results require that the
trees are multi-labeled, that is, each node holds several labels. We can easily accommodate
multi-labeled trees T in our data structure, by building a new tree T ′ where each node u
of T with m(u) labels `1, . . . , `m(u) is replaced by an upward path of nodes u1, . . . , um(u),
each ui holding the label `i and being the only child of ui+1 (and um(u) being a child of v1,
where v is the parent of u in T ). Path queries from u to v in T are then transformed into
path queries from u1 to v1 in T ′, except when u (v) is an ancestor of v (u), in which case we
replace u (v) by uu(m) (vm(v)) in the query. All our complexities then hold on T ′, which is
of size n = |T ′| =

∑
u∈T m(u).

Our query time for path τ -majorities in linear space, O((1/τ) lg∗ n lg lgw σ), is over the
optimal time O(1/τ) that can be obtained for range τ -majorities on sequences [1]. It is
open whether we can obtain optimal time on trees within linear or near-linear space. Other
interesting research problems are solving τ ′-majority queries for any τ ′ ≥ τ given at query
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time, in time proportional to 1/τ ′ instead of 1/τ , and to support insertions and deletions of
nodes in T . Similar questions can be posed for τ -minorities, where the O((1/τ) lg lgw σ) query
time of our linear-space solutions is also over the time O(1/τ) achievable on sequences [1].
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A Path τ -Minorities

A path τ -minority query asks for a τ -minority in a given path Pu,v, i.e., a label that appears
at least once and at most τ · |Puv| times in this path. If we try out A = 1 + b1/τc distinct
elements in the path from u to v, then one of them will turn out to be a τ -minority. With
this idea, we extend the technique of Chan et al. [9] to tree paths. To find a τ -minority,
we will find A distinct labels (or all the labels, if there are not that many) in the path Puz,
where z = lca(u, v), and check their frequency in Puv. We then run an analogous process on
the path Pvz. We will stop as soon as we find a label that is not a τ -majority. We describe
the process on Puz, as Pvz is analogous.

To find A distinct labels, we will simulate on Puz the algorithm of Muthukrishnan [20],
which finds A distinct elements in any range of an array E. In his algorithm, Muthukrishnan
defines the array C where C[i] = max{j < i, E[j] = E[i]} (C[i] is set to 0 if such a value
does not exist) and builds on C a range minimum query (RMQ) data structure; a range
minimum query asks for the minimum element in a given subrange of the array. Then he
finds A (or all the) distinct elements in any range E[i..j] via O(A) RMQs.

In our case, we store for each node u the field prevlabel(u) = depth(labelanc(parent(u),
label(u))), which is the depth of the nearest ancestor of u with its same label (and
−1 if there is none). Then we conceptually define E and C over Pu,v, where E[i] =
label(anc(u, i+ depth(z)− 1)) and C[i] = 1 + prevlabel(anc(u, i+ depth(z)− 1)). Note
that we do not store E or C explicitly, but each entry of E or C can be computed in constant
time using these formulas. To solve RMQs on C, we also build the linear-space data structure
of Chazelle [11], which can return the minimum-weight node in any path of a weighted
tree in constant time. This data structure is constructed over the tree T , for which we
assign prevlabel(u) as the weight of each node u. With all these structures, we can run
Muthukrishnan’s algorithm and obtain the A distinct labels of Puz. This yields our first
result, which slightly reduces the O((1/τ) lg lgn) time (within linear space) of Durocher et
al. [14]. Note that the prevlabel fields are easily computed in O(n) time in a DFS traversal.

I Theorem 10. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a
RAM machine of w-bit words, we can build an O(n) space data structure that answers path
τ -minority queries in time O((1/τ) lg lgw σ). The structure is built in linear time.

It is likely that the result of Durocher et al. [14] can be improved to match ours, by just
using a faster predecessor data structure. We can, however, make our solution succinct by
using our tree representation of 2n+ o(n) bits [21]. Instead of storing field prevlabel, we
compute it on the fly with the given formula. Using the structures of Durocher et al. [14,
Lem. 7], we can compute labelanc in time O(lg lgw σ). Their structure uses 2n+ o(n) bits
in addition to the topology of T and the representation of S.

The structure for RMQs, on the other hand, can be replaced by the one of Chan et al. [10],
which uses 2n+ o(n) further bits and answers RMQs with O(α(n)) queries prevlabel(u),
where α is the inverse Ackermann function. Therefore, we can spot the A candidates in time
O(A · α(n) lg lgw σ) and then verify them in time O(A · lg lgw σ). This yields the first result
for path α-minority queries within succinct space.

I Theorem 11. Let T be a tree of n nodes with labels in [1..σ], and 0 < τ < 1. On a RAM
machine of w-bit words, we can build in O(n) time a data structure using nH+6n+o(n)(H+1)
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bits, where H ≤ lg σ is the entropy of the distribution of the node labels, that answers path
τ -minority queries in time O((1/τ)α(n) lg lgw σ), where α is the inverse Ackermann function.
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